An Isotopic Dilution Approach for Quantifying Mercury Lability in Soils

Waleed H. Shetaya¹, ²,*, Stefan Osterwalder¹, Moritz Bigalke³, Adrien Mestrot³, Jen-How Huang¹, Christine Alewell¹.

¹ Environmental Geosciences, University of Basel, Bernoullistrasse 30, 4056 Basel, Switzerland.

² Air Pollution Department, Environmental Sciences Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.

³ Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland.

* Corresponding Author: waleedhares.shetaya@unibas.ch, waleed.shetaya@outlook.com
Abstract

The accurate estimation of soil mercury lability is crucial for risk assessment. In comparison to chemical fractionation and speciation, isotopic dilution (ID) offers precise definition of labile mercury fractions while maintaining natural equilibrium. We developed and applied an ID protocol with 199Hg to estimate the soil mercury (Hg) isotopically exchangeable (labile) pool or HgE using a range of industrially contaminated soils in Switzerland. The measured HgE values were consistent for the same soil against different spike levels (50, 100 and 200% of native 199Hg) indicating that the spiked and soil isotopes achieved required dynamic equilibrium at the soil-water interface. Total soil Hg (THg; mg kg$^{-1}$) was the best predictor of HgE (mg kg$^{-1}$) and %HgE and accounted for 96 and 63 % of the variance, respectively. Nonetheless, despite the wide range of THg (0.37 - 310 mg kg$^{-1}$) in the studied soils, Hg lability spanned across a narrow range (~12 – 25 % of THg), highlighting the large capacity of soils to sequester Hg in a very stable form. The ‘exchangeable pool’ of Hg extracted by CH$_3$COONH$_4$ and MgCl$_2$ (<0.25% and <0.32% of THg, respectively) largely underestimated Hg lability in comparison to ID suggesting the potential usefulness of the ID approach.

Keywords:
Soil pollution, Air pollution, Heavy metals, Stable isotopes, ICP-MS
1. Introduction

Mercury (Hg) is a global pollutant that has drawn public concern due to its toxicity and substantial bioaccumulation.\(^1\)\(^-\)\(^3\). The UNEP Minamata Convention on Mercury aims to reduce Hg use and to curb global anthropogenic emissions of Hg.\(^3\),\(^4\). However, legacy Hg in soils and sediments will continue to pose significant risks through re-emission to the atmosphere and the surrounding environments. For example, the land-atmosphere flux may actually exceed the primary anthropogenic emissions of Hg\(^0\) and thus prolongs its atmospheric residence.\(^5\)-\(^7\). Moreover, a considerable fraction of soil mercury can potentially accumulate in crops\(^8\) or migrate to ground and surface waters\(^9\).

Soil Hg mobility and bioavailability are largely linked to its labile pool; therefore, accurate estimation of Hg lability is pivotal. To date, chemical extraction methods are the most popular way to liberate the labile fraction of soil Hg. Nonetheless, they suffer numerous limitations e.g. inter-species conversion, re-adsorption and redistribution of Hg between soil phases.\(^10\),\(^11\). In addition, there is no universal protocol available such as the sequential extraction procedure developed by Tessier, et al.\(^12\) for classic hard metals\(^10\) and selecting the type and sequence of extractants has always been an empirical decision based on the nature of soil or the targeted Hg species.\(^10\),\(^11\). Moreover, when compared to Hg uptake by flora and fauna, good correlations were found between bioavailable Hg and Hg from all soil fractions indicating that labile Hg is not exclusively bound to specific soil phases.\(^13\),\(^14\).

Isotopic dilution (ID) assesses the labile metal pool in soils by defining the fraction of metal that is isotopically-exchangeable or its ‘E-Value’\(^15\). Currently, ID is the most promising method to estimate the potentially labile metal fraction regardless of its speciation or soil phase.\(^16\). Isotopic dilution has been successfully applied to determine the E-value of several metals.\(^15\)-\(^29\).

To our knowledge, ID protocols have never been applied to try and measure the lability of soil Hg. Working with Hg isotopes is a challenging task due to (i) ICP-MS low sensitivity towards Hg caused by its naturally occurring seven isotopes and its high first ionization
energy \(^{30}\), and (ii) the potential reduction of soluble Hg\(^{2+}\) to Hg\(^0\) and subsequent loss via evaporation or adsorption to glassware and ICP-MS tubing system \(^{31}\). In view of the need to accurately estimate the availability of Hg in contaminated soils and to assess the associated environmental risks, this study aims to develop and apply a working ID protocol to quantify the pool size of labile soil Hg, and to provide preliminary insights into the factors that likely control its mobility.

2. Materials and Methods

2.1. Soil sampling and characterisation

Three topsoil cores (0-10 cm) were taken in 9 residential areas in South-Switzerland where past industrial contamination with Hg is suspected (more in SI; S.1.1). Soils were air dried and sieved to <2 mm and soil properties including pH, organic carbon (Org-C), and total soil Hg (THg) were determined as described in SI (S.1.1).

2.2. Preparation of Hg stable isotope standards

Enriched mercury standard (HgCl\(_2\), Trace Sciences Inc., Texas, USA, certified isotopic abundances of 30% for \(^{196}\text{Hg}\) and 36.8% for \(^{199}\text{Hg}\)) was dissolved in 2% HNO\(_3\) and 1% HCl to prevent Hg volatilization and improve its washout during analysis \(^{30},^{31}\).

2.3. Determination of isotopically exchangeable (labile) Hg (Hge) in soil

Our ID protocol was adapted from several protocols developed for other heavy metals \(^{17},^{18},^{20},^{25}\). For all soils, two sets of soil suspensions (2 g dry soils in 30 mL 0.01 M Ca (NO\(_3\))\(_2\)), each with 4 replicates, were prepared and shaken for 72 h. Two of the four replicates were then spiked with enriched \(^{196}\text{Hg}\) or \(^{199}\text{Hg}\) before all tubes were re-shaken for another 72 h. Spiking solutions were prepared to deliver 50%, 100% and 200% of native \(^{196}\text{Hg}\) or \(^{199}\text{Hg}\) to the soil suspension in three major groups (SI, S.1.2). The volume of the acidic spike solution was minimized to avoid altering natural soil pH. Suspensions were then centrifuged (3500 rpm, 25 min) and filtered with 0.45 \(\mu\)m syringe filters. The isotopic ratios \(^{196}\text{Hg}/^{200}\text{Hg},^{196}\text{Hg}/^{201}\text{Hg},^{196}\text{Hg}/^{202}\text{Hg},^{199}\text{Hg}/^{200}\text{Hg},^{199}\text{Hg}/^{201}\text{Hg}\) and \(^{199}\text{Hg}/^{202}\text{Hg}\), in the
supernatants, were measured by an Agilent 7700x ICP-MS and the isotopic abundances of
spike and reference isotopes in soil (unspiked soil suspensions) were then inferred from
their natural abundances \(^{20, 24, 32}\) (details in SI; S.1.3.). The isotopically exchangeable Hg
do pool or HgE (mg kg\(^{-1}\)) of each soil was calculated from Equation 1 (adapted from Garforth,
et al. \(^{20}\)).

\[
HgE = \frac{M_{sl} \cdot C_{sp}}{M_{sp}} \cdot \frac{V_{sp}}{W_{sl}} \cdot \frac{({}^{sp}{IA}_{sp} - {}^{rf}{IA}_{sp} \cdot R)}{({}^{rf}{IA}_{sl} \cdot R - {}^{sp}{IA}_{sl})}
\]

where \(M_{sl}\) and \(M_{sp}\) are the average atomic masses of Hg in soil and spike, respectively. \(C_{sp}\)
is the gravimetric concentration (mg L\(^{-1}\)) of \(^{196}\)Hg or \(^{199}\)Hg in the spike solution, \(V_{sp}\) is the
volume of the spike (L) and \(W_{sl}\) is the soil weight (kg). \(^{sp}{IA}_{sp}\), \(^{rf}{IA}_{sp}\) are the spike and
reference isotopes abundances in the spike solution, respectively, and \(^{sp}{IA}_{sl}\), \(^{rf}{IA}_{sl}\) are their
abundances in soils (un-spiked solutions). \(R\) is the equilibrium ratio of the spike to the
reference isotope as measured by ICP-MS.

While HgE gives the absolute amount of isotopically exchangeable Hg (mg HgE kg\(^{-1}\) soil),
Hg lability (%HgE) is the percentage of HgE to total soil Hg (THg).

For comparison with chemical extraction, ‘exchangeable’ soil Hg was extracted by
ammonium acetate and magnesium chloride \(^{10, 33, 34}\) (more details in SI; S.1.4.).

3. Results and Discussion

3.1. Soil parameters

Key soil parameters are displayed in Table S1. All soils were slightly acidic or alkaline (pH
6.2 - 8.2) with average Org-C content (2.6 to 4.5 %). Total soil Hg (THg) ranged in average
from 0.37 to 310 mg kg\(^{-1}\) (more in SI, S.2.1.).

3.2. Selection of spike and reference isotopes

Mercury is a challenging element to analyse by ICP-MS because, in addition to its seven
stable isotopes and high first ionization energy, soluble mercuric ions (Hg\(^{+2}\)) can be readily
reduced to elemental mercury (Hg0) and lost from solution by sorption to containers' walls
and/or sample introduction system walls. To eliminate cross-contamination and memory
effect, all working solutions were prepared in a 0.5% ultra-pure HCl matrix to keep Hg in
its oxidised form and thus improve its washout from the system; in addition, a triple-step washing protocol (SI, S.1.3.) was adopted. Nevertheless, results still showed
substantial cross contamination in transition from196Hg spiked samples to the periodic Hg
standard. This was likely due to the very low natural abundance of 196Hg in the periodic
standard. As a result, the natural isotopic ratio of the periodic Hg standard was significantly
distorted and fluctuated the external mass discrimination correction factors beyond
acceptable levels (0.59 - 0.93) (Table S2). In comparison, no significant cross-contamination was observed for 199Hg and the mass-bias correction factors were close to
the unity (±<0.02; Table S2) rendering it more favourable as a spike isotope than 196Hg.

Usually, unless significant isobaric interference is predicted, the ‘main’ isotope is selected
as a reference isotope for E-value calculations (Eq. 1); this is normally either the most
abundant isotope or the closest to the average mass e.g. 208Pb, 65Cu and 114Cd.16, 17, 20
The values of HgE calculated using 201Hg (average mass), 200Hg and 202Hg (most
abundant), were significantly different (paired t-test; p <0.05, Table S3). Nevertheless,
equivalence analysis (Minitab 17) showed that the differences between HgE calculated by
any two reference Hg isotopes were within a range of ± 5% of their means (95% confidence interval, Figure 1.); moreover, systematic shifts of the confidence intervals
towards the more abundant isotopes were evident (Figure 1.). In other words, the
calculated HgE was directly proportional to the natural abundance of the selected reference
isotope which is most likely due to the higher sensitivity of ICP-MS for heavier and more
abundant isotopes.35 Accordingly, the HgE values calculated using 199Hg as a spike isotope
and 202Hg as a reference isotope were regarded the most precise of all.
Figure 1. Comparison of equivalence tests (Minitab 17 package) showing the differences between the mean HgE values, at all sampling locations, measured by: A - ^{202}Hg vs ^{200}Hg, B - ^{200}Hg vs ^{201}Hg and C - ^{202}Hg vs ^{201}Hg, as reference isotopes. Dashed lines represent Lower Equivalence Limit (LEL) and Upper Equivalence Limit (UEL) set at ± 5% difference. Horizontal lines show confidence interval (95%) for the difference in HgE measured by ^{202}Hg, ^{201}Hg or ^{200}Hg. Three soil samples were taken from each location and two spiked and two un-spiked replicates were prepared for each sample.
3.3. Validation of Hg E-value

In principle, E-value estimation is based on the assumption that the sorption reaction of the spiked isotopes is reversible and that the isotopes in soil solution and solid phases are in dynamic equilibrium \(^15, 16, 28, 29\). Hamon, et al. \(^36\) and Marzouk, et al. \(^25\) demonstrated that the spiked isotopes may disturb the natural isotopic equilibrium leading to a systematic variation in the measured E-values at higher spike levels. Moreover, in elements with several oxidation states e.g. As, Se, interspecies conversion may produce an error in the measured E-values rendering it no longer represents the ‘isotopically exchangeable’ pools \(^37, 38\). Since Hg is known to interact significantly with organic matter \(^3, 4, 39\) and may undergo interspecies conversion e.g. evasion \(^40, 41\) and methylation \(^1, 42, 43\), validation of the measured HgE was essential.

We examined the validity of the proposed protocol by comparing HgE in all soils at different spike levels. Results showed that the apparent %HgE was consistent against different \(^199\)Hg spike concentrations (Figure 2 & Table S4). This indicates that the dominant process is the reversible adsorption of Hg and that the potential chemical transformations of the spiked Hg did not preclude the accurate determination of HgE. This is also true for the expected disturbance in natural isotopic equilibrium at greater spike levels which seems to have minimal effect on the measured HgE.

202
Figure 2. Hg lability (% HgE) in nine different soil from all sampling locations. Black, light grey and dark grey columns represent %HgE estimated at 50%, 100% and 200% ratios of spike to native 199Hg, respectively. Error bars are standard error between 2 spiked (for each spike ratio) and 2 unspiked replicates. More data in Table S4.
3.4. Mercury lability and soil properties

Across the whole range of data, both HgE (mg kg$^{-1}$) and %HgE showed good correlations (r= 0.96, 0.63, respectively) with THg while they showed no significant correlation with any other soil parameter (Table S5). Stepwise regression, performed by Minitab 17, confirmed that THg is solely the best predictor of both HgE and %HgE accounting for 96 and 63 % of the variance, respectively (Table S6). Figures S1 and S2 show that although a very good ‘power’ relationship (R^2=0.97) between HgE and THg is evident, there is only a very broad ‘logarithmic’ relationship (R^2=0.18) between THg and %HgE. For HgE (mg kg$^{-1}$), the strong correlation with THg is expected since THg spanned across four orders of magnitude while falls within a relatively narrow range of pH (6.2 - 8.2) and Org-C (2.63 – 4.48 %) (Table S1). The broad correlation of THg with %HgE may reflect that anthropogenic Hg remains more mobile than geogenic Hg or indicates a greater Hg reactivity due to weaker adsorption at higher THg. However, this relationship could possibly be an artefact especially that THg is used to calculate %HgE. To investigate this, we used the ‘lognorm.inv’ function in Microsoft Excel to produce random distributions of THg and %HgE at 10000 values. In addition, %HgE was estimated against ln(THg) assuming that HgE (mg kg$^{-1}$) values are constant around their means ± standard deviation. Figure 3 clearly shows that, opposite to the experimental data, the calculated random relationships between THg and %HgE displayed negative trends.
Figure 3. Relationship between ln (THg; mg kg\(^{-1}\)) and experimentally measured %HgE values is displayed as grey circles and the dashed line is the linear regression of the data. The dotted line represents linear regression of 10000 random pairs of %HgE and ln(THg) allocated using the ‘lognorm.inv(rand)’ function of Microsoft Excel. The two solid curves assumes that HgE values are fixed at the means of ln(HgE)±SD, thus resulting in a variation of %HgE with ln(THg).

Overall, the observed range of %HgE (12.2 – 24.7; Figure 4) was very narrow as opposed to the very wide range of THg (0.37 - 310 mg kg\(^{-1}\); Table S1) and was considerably lower than other heavy metals’ labilities e.g. Cd (up to 80%), Pb (up to 60%), and Zn (up to 40%)\(^{17, 18, 20, 23, 24}\). The exceptional affinity of Hg toward soil organic matter among heavy metals is well documented\(^3, 45\). This highlights the extraordinarily large capacity of top soils and sediments with low/average organic content to scavenge high concentrations of Hg and mitigate its environmental mobility\(^7, 46-48\).
Figure 4. Values of % Hg lability (% HgE of total Hg) in all sampling locations. The 'box and whisker' plot shows median (horizontal lines), mean (black circle symbols). The box demarcates the boundaries of the second and third quartile; the whiskers extend to the furthest data point within 1.5 box heights (of the box). Locations are arranged according to their mean %HgE values in an ascending order. Each sampling location is represented by three soil samples and 4 replicates (two spiked and two un-spiked). Numbers above or below boxes are average total Hg (THg) in each location (mg kg$^{-1}$).

3.5. Comparison with extraction methods

Ammonium acetate and magnesium chloride extractable Hg (exchangeable Hg) in our soils was only detectable in VS1 soils with pools of 0.01 to 0.25 % and 0.01 to 0.32 %, respectively, which is substantially lower than the labile Hg estimated by ID for the same location (19 – 33.7 %). This very low extractability was in line with previous findings (usually 0-5%) $^{10, 34, 48}$ but was substantially lower than those of Pb, Zn and Cd (up to 30 % at similar pH range) $^{17, 23-25}$. This reveals the clear distinction between Hg as a classic example of soft metal that has high affinity toward soft ligands e.g. S-bearing groups and organic matter as opposed to hard metals which tend to react with hard ligands such as O-bearing groups and Fe, Mn and Al hydrous oxides $^{3, 47, 49, 50}$. Therefore, in case of hard
acids (hard metals and protons), competition with Mg$^{2+}$ and NH$_4^+$ on negatively charged oxygen sites may displace large amounts of sorbed metals especially in acidic soils. On the other hand, as a soft metal attached to soft ligands, Hg will face no such competition and the amounts released to soil solution will be minimal over the whole natural soil pH range47.

3.6. Highlights, limitations and outlooks

The soils used in this study were sampled at sites relatively close to each other that had been contaminated by one industrial Hg point source. They were thus relatively homogenous in their Hg speciation and this may have contributed to the apparent consistency of HgE at different spike levels. Highly acidic/alkaline soils or those Org-C enriched that are simultaneously highly mineralized with Hg are scarce and the investigation of HgE in pristine soils will require an analytical system that offers greater detection limits e.g. by using a cold vapour introduction system and/or higher resolution ICP-MS. This may also help in overcoming the196Hg carryover issues we encountered enabling its usage as a spike isotope at much lower levels than199Hg.

Nevertheless, our set of soils covered the pH (slightly acidic to slightly basic) and Org-C (c. 2-5%) ranges mostly found in nature and the results demonstrated clearly that, under common circumstance, THg was the most decisive factor for both HgE and %HgE and highlighted the great capacity of surface soils and sediments to immobilize large quantities of Hg. However, future work on Hg contaminated soils with wider range of parameters, and studies that link HgE to bioavailable and reactive Hg (uptake by plants and animals, migration and evasion) will be of great importance.
Acknowledgments

Waleed H. Shetaya acknowledges postdoctoral fellowship from the Swiss Government Federal Department of Economic Affairs, Education and Research (EAER). Waleed H. Shetaya likes also to thank Dr. Scott Young and Dr. Liz Bailey, the University of Nottingham, UK, for the development of the original statistical random distribution models used to generate Figure 3.

Reference

45. Tipping, E., Modelling the interactions of Hg(II) and methylmercury with humic substances using WHAM/Model VI. *Applied Geochemistry* 2007, 22, (8), 1624-1635.

