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1. Introduction

The observed recession of galaxies1 and the existence of the cosmic microwave

background radiation (CMB)2,3 motivated the inspiration and development of the

standard model of cosmology4. According to this theory the universe is well de-

scribed by a Friedmann-Robertson-Walker geometric dynamics all the way back

from the time of electron-positron annihilation (radiation domination period) up to

the present.

More recent measurements of the microwave background temperature

anisotropies in combination with the fact that very distant objects known as super-

novae type-Ia appear much fainter than what standard matter-dominated cosmo-

logical theory predicts, point to an additional effect, the observed acceleration of

the expansion of the universe, and pose the fundamental problem of what causes

this accelerated expansion and adequately explains the observations. This observed

acceleration in the present phase of the evolution of the universe is in obvious com-

pliance with more recent data for the redshift5 and from the Hubble diagram of

Type Ia Supernovae6,7, in conjunction with various harmonic analyses of the CMB

fluctuations and anisotropies8–10 with a very adequate level of statistical precision

and confidence11–13.

These observations also point, with increasing plausibility, to an earlier, vacuum

energy dominated period in the history of the universe before the radiation period,
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where the universe was expanding with the scale factor growing more or less ex-

ponentially, a period known as cosmological inflation, cf.4,14,15. Inflation not only

resolves various of the puzzles of the standard model of cosmology but also explains

beautifully the origin of the CMB anisotropies, leading to a very persuasive theory

of cosmological fluctuations, cf., e.g.,4,16,17. It is generally accepted today that the

standard model of cosmology together with its inflationary extension describe well

the observed properties of the universe and reveal many fundamental aspects of the

universe4.

The success of the standard and inflationary cosmology is not accidental but due

to its reliance on general relativity and the quantum theory of fields respectively,

perhaps two of the most successfully established theories of theoretical physics avail-

able today18,19. However, and despite all its success, there are two fundamental,

unresolved issues associated with standard cosmological theory lacking a satisfac-

tory explanation within its realm and pointing to conceptual difficulties that lie far

beyond it. These two issues cannot be properly addressed either by the standard

cosmological model or by any of its inflationary extensions, and prevent the stan-

dard, accepted cosmological picture to be the final one, that is a complete theory

that would eventually offer us a more convincing framework to study the structure

and ultimate fate of the universe. These two issues are the cosmological constant

problem, and the singularity problem.

The cosmological constant problem20 is the question of why the cosmologi-

cally observed value of the total, effective vacuum energy, ρλ ∼ 10−47GeV 4, is

so much smaller than the expected quantum field theory estimate of the vacuum

energy (empty space), 〈ρ〉vac ∼ 2 × 1071GeV 4. In other words, the Einstein cos-

mological constant, λ, contributes a term equal to λ/8πG to ρλ, so that when

we solve the equation ρλ = λ/8πG + 〈ρ〉vac, we find the unnaturally small value

λ/8πG = 10−118GeV 4 for the cosmological constant. This is a serious problem

for theoretical physics because, since ρλ comes from general relativity and 〈ρ〉vac
from quantum field theory, it follows that there is an unexplained discrepancy be-

tween the two theories, in a regime where both are perfectly valid, unless a severe

fine-tuning of about 120 decimal places is performed.

The second problem is the so-called singularity, or initial state, problem. Ac-

cording to the singularity theorems of general relativity, spacetime singularities are

a generic prediction of the theory under very plausible assumptions of the causal

and matter character (global hyperbolicity, positivity of energy density), usually

accompanied with a blow up in the spacetime curvature and the thermodynami-

cal properties of matter21. This means that spacetime must come to an end at

generic spacetime singularities and further analyses relating to spacetime structure

and evolution beyond such a point cannot really be made. More recent complete-

ness theorems22 need to assume that various curvatures are bounded to get geodesic

completeness, and so cannot alleviate the break down of the theory predicted by the

original singularity theorems. It follows that geodesic incompleteness is tied with a
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blow up in the curvature. Therefore according to these theorems classical general

relativity must loose its predictive power as a physical theory near regimes where

the gravitational field is sufficiently strong. (We note that potential-dominated in-

flation has a similar problem, namely it cannot be past eternal23, so the inflationary

extension of the standard model of cosmology cannot solve the singularity problem.)

This state of affairs opens up a host of new possibilities, theories which may

be formulated and studied outside the realm of general relativity in an arbitrary

number of dimensions and have dynamical equations and matter fields ‘arbitrarily’

prescribed (or arbitrarily modified with respect to the standard Einstein equations

and matter fields). The new problem then becomes to examine what these new

models would imply about the ultimate nature, origin and fate of the universe.

Indeed, in this way, mathematical models of cosmological importance have in recent

decades acquired a sparkling diversity. They may be constructed using a wide

variety of cosmological spacetimes, theories of gravitation and possible matter fields,

resulting in an interesting and seemingly legitimate (at least mathematically) web

of theories as the (rather incomplete) Table below shows (cf.24).

Cosmologies

Theories of gravity Spacetimes Matterfields

General Relativity de Sitter Vacuum

Higher Derivative FRW Fluids

Scalar-Tensor, Multi-field Bianchi, Scalar fields

Quantum Cosmology Gödel n-form fields

Varying constants Generic Phantoms, tachyons

In the vast literature of cosmological models, one finds choices from this Ta-

ble of the sort GR/generic/vacuum, HD/FRW/vacuum, ST/Bianchi/fluid, and so

on. However, it is not possible that all models constructed in this more or less

ad hoc way be a priori physically realistic. In fact, each choice of a cosmology

(here meant in a somewhat scholastic way a triplet of the form ‘Theory of grav-

ity/Spacetime/Matterfield’), would be based on generally inequivalent physical as-

sumptions than any other, so that it would become impossible for them to be all

viable in the end, irrespectively of their success! To put it in another way, although

there is nothing to stop us pursuing any one of these ‘theories’-choices from the Ta-

ble above (and similarly of course many others not included here), a basic unifying

principle underlying such an approach is totally absent.

This is precisely where string theory comes in and offers a fresh, new and com-

pletely revolutionary approach to this old subject. For it postulates the missing

unifying principle for all fields and interactions, in that every field interacting with

the string should be contained in the spectrum of states associated with the quan-

tization of its free oscillations, in such a way as to maintain a certain kind of

conformal invariance present in all string models25–27. As such, string theory bears

a very remarkable relation to both gravitation and cosmology, and, in particular,
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to the two problems mentioned above, namely, the cosmological constant problem

and the singularity problem. But equally important string-theoretic considerations

are for the issue of the initial state of the universe, where general relativity breaks

down and we need a new unifying principle in order to proceed. (Of course string

theory has remarkable connections with particle physics, condensed matter physics

and statistical mechanics, but these are unaffected by the arguments of relevance

here.)

String gravitation and cosmology is then a largely unexplored area of theoretical

physics of remarkable promise, to which the current review intends to shed new light

to a number of basic issues. In this paper, we aim to address systematically the

important issue of infinity inherent in both the cosmological constant problem and

the cosmological singularity problem in the unified context of string-inspired models.

It is truly remarkable that in string theory all major aspects in the web of

theories freely prescribed as discussed above, reappear but in a way that is not

free anymore. They must be consistent with the rules of string quantization and

conformal invariance, and thus are now tightly fixed under these string-theoretic

constraints. We therefore expect that these constraints will lead to interesting new

effects not only for their initial states, but also for the cosmological dynamics of

string models near any regime where the field approaches a ‘singularity’ (an example

of the latter situation arises in the so-called ‘self-tuning’ models, see below).

Hence, in this paper we will be deeply rooted in string cosmology (see31 for

a recent introduction to this general area), and more generally, in string-theoretic

models which most naturally emerge when considering:

A. Tree-level equations both in the string and the Einstein frame

B. First-order α′-corrections

C. M-theory cosmology

D. Braneworlds and self-tuning.

We aim to address below in a series of open problems some of the issues of infinity

and asymptotic structure in all four areas of string theory and cosmology referred

to above. More specifically, we will present a series of open problems relevant to

the string phase of the models and are related to:

i. the nature of cosmological ‘singularities’

ii. the asymptotic properties of regular solutions, and

iii. the genericity of the found solutions,

Before we proceed further, we make the following remark. The quotation marks used

in the word singularity above, mean to underline the fact that in string-theoretic

cosmological considerations the typical general relativistic spacetime singularities

are replaced by other regimes. A typical such asymptotic state in string cosmology

is the so-called string perturbative vacuum32, the exact opposite of a very hot,

highly curved and exceedingly dense big bang of the standard model of cosmology.
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Other string asymptotic regimes correspond to Planckian or trans-Planckian states

which emerge due to the non-perturbative nature of the string models and take

into account quantum gravity effects to all orders33. A systematic analysis of such

states is almost completely lacking at present in string theory.

In the next sections of this paper, we provide a description in terms of open

problems of various issues associated with infinities in the cosmological evolution of

string-inspired models.

2. Tree-level string and M-theory effective cosmologies: The road

ahead

String effective actions have a scalar-tensor resemblance in zeroth-order α′ expan-

sion. Typical tree-level string actions involve, except for the dilaton and the gravi-

ton, a two-form potential in the NS-NS bosonic sector, a modulus field parametrizing

the volume of the internal dimensions, and a constant term related to the central

charge deficit of string theory. There are a few known special exact solutions of such

a theory describing flat isotropic universes, starting with the so-called linear dilaton

background describing the first exact time-dependent solution of string theory28–30.

However, in general, it is unknown whether these solutions are stable or not,

or whether there exist singularities, or what happens to regimes where some of the

fields involved blow up (cf.31 and Refs. therein). Long-term stability is an issue of

supreme physical importance, and a lack of it implies that any model described by

such an unstable exact solution with respect to perturbations is devoid of physical

interest in the relevant regime. This is especially important for situations involving

strong fields, asymptotic questions, and behaviours near singularities.

A well-studied example is the pre-big bang scenario solution32, and there are

other important exact solutions known, eg., the so-called dilaton-moduli-vacuum

solution34, belonging to the class of ‘rolling radii’ solutions35. There are also some

very preliminary results on cyclic solutions36,37, in addition to well-known solutions

in the standard Brans-Dicke with Λ (cf.38, chap. 4). There is also an instability

result known in M-theory39 (apart from the process of ekpyrosis, see below). The

general area of string cosmology up to now is mainly concerned with the study of

effects that are based on these solutions.

However, although there are by now a number of exact homogeneous, isotropic

solutions in vacuum and with various matter fields in scalar-tensor cosmologies and

tree-level string models, questions of asymptotic stability such as the singularity

problem are not yet studied in such models with any serious degree of completeness.

Ideally one wishes to know the global stability behaviour of known exact string

cosmologies from every possible asymptotic point of view. Namely, a complete

qualitative classification of the various asymptotic profiles including behaviour near

singularities, the study of long-term asymptotics, and finally the question of gener-

icity of the solutions, namely, their behaviour under suitable forms of perturbation.

 T
he

 F
ou

rt
ee

nt
h 

M
ar

ce
l G

ro
ss

m
an

n 
M

ee
tin

g 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
B

E
R

N
 o

n 
12

/1
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



June 29, 2017 17:41 ws-procs961x669 MG-14 – Proceedings (Part A) A041 page 762

762

We are particularly interested in classifying past singularities of string cosmolo-

gies and their behaviour at early times, where all exact solutions are dominated by

a scalar field and so it is like having a vacuum. It will also be useful to compare

this with the analogous situation in general relativity, perhaps using the conformal

equivalence between the string frame dynamics and the Einstein frame models.

We expect to have remarkable results here, both with respect to theorems giv-

ing sufficient and necessary conditions for singularity formation in FRW or simple

anisotropic models, thus leading to a classification of the possible singularity forms

(according to their Bel-Robinson energies etc), as well as with respect to the struc-

ture of infinity in these models, that is how the various fields decompose and balance

near singularities, eventually to obtain detailed information as to what their global

phase portraits look like (Poincaré method of central projection).

Armed with a classification of possible asymptotic forms, another important di-

rection for future studies is to include interacting fluids in the basic string actions

(using both the viewpoint of the asymptotic splittings and that of the central pro-

jection methods) in an effort to obtain valuable asymptotic information at early

times, in particular, in regimes where the scalar field that couples nonminimally (as

predicted by string theory) to the curvature dominates. This resembles the evolu-

tion in vacuum, and it is particularly important that it is analyzed thoroughly first.

It will be very interesting to see how the various known exact solutions fit into this

scheme.

We further note that most scalar-tensor cosmologies utilize the standard cou-

pling of the scalar field φ to the curvature R in the action, but in string theory

the scalar field is not universally coupled to all matter fields present in the theory.

However, the conformal transformation of these theories to the Einstein frame usu-

ally introduces such a coupling, and the matter lagrangian becomes a function of

the scalar field φ as well as the rest of the matter components, cf.40.

There are exact solutions corresponding to flat universes in this case41, but due

to non-geodesic motion of test particles (due to possible violations of the equiva-

lence principle) one has to very carefully choose the couplings of φ to the matter,

something which is a prerequisite in string theory. The interest here is in obtaining

general results about the early and late time attractors to these string cosmologies,

through the application of asymptotic methods, in an effort to see whether or not,

and in what sense, they tend to known limits.

One would also like to know the degree of genericity of the stable string cos-

mology solutions obtained from previous asymptotic analyses. An obvious first

candidate to perturb is the pre-big bang solution31, or the cyclic universe42, or

other singular solutions which are long suspected to be generic43. The aim here is

to use the degree of genericity of the aforementioned exact solutions as a means to

decide about their physical significance. In general relativity, such decisions have

been made using experimental facts such as the synthesis of light elements in the

early universe and their manifestations in the standard solar system tests of general
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relativity44. In our string-theoretic framework, we propose the relative degree of

genericity of two solutions as a measure of their physical usefulness.

We expect the discussion in this section to naturally break in parts as follows:

A. Classification of extreme states

B. Asymptotics of tree-level cosmologies

C. Asymptotics of universes in M-theory

D. Genericity of string cosmologies

We may further formulate specific problems related to the discussion so far.

2.1. Asymptotics of specific tree-level string actions I

The aim here is to describe the detailed asymptotic limits of universes obeying the

basic gravi-dilaton effective string action, neglecting higher order and loop correc-

tions. The plan to give a complete asymptotic analysis of the NS-NS models and

first results about the asymptotic stability of the known solutions (dilaton-moduli-

vacuum and axion solutions). This is a first necessary step in order to study the

more advanced asymptotic analysis problems given below.

2.2. Asymptotics of specific tree-level string actions II

The problem here is to study the asymptotic properties of universes with RR fields.

This asymptotic analysis will tell us about the stability of the known solutions,

whether they are unique. It is possible that there are solutions which exist only sub-

dominantly asymptotically and these are expected to be identified by our analysis.

This conjecture relates to a similar phenomenon previously observed in cosmologies

with interacting fluids, namely, the so-called curvature exchange term entering sub-

dominantly during the evolution to strong field states, cf45,46. This would constraint

the types of singular asymptotic solutions.

2.3. Asymptotics of specific tree-level string actions III

The next step is to incorporate anisotropies into the asymptotic regimes and study

simple anisotropic models with NS-NS and/or RR fields. There will be many de-

compositions of the vector field asymptotically and there may be solutions with a

smaller number of arbitrary constants which still attract other families of solutions.

We expect here the phenomenon of asymptotic cancellations to occur, an effect first

noticed in Ref47 (see also48). This will provide a detailed map of the solution space

of string cosmologies.

2.4. Asymptotics of M-theory cosmology

It is very important that there are some exact cosmological solutions in heterotic

M-theory and Horava-Witten cosmology (with nontrivial Ramond fields) found in
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the papers of Lucas-Ovrut-Waldram (cf.49 and references therein), and so there are

some basic regimes to perturb. An asymptotic analysis along the lines mentioned

in this paper is expected to reveal for the first time the full significance of these

solutions and especially the dimension of the asymptotic attractor they form.

2.5. Asymptotics of M-theory cosmology II

This is an extension of the previous problem in a different direction. The plan is

to examine the stability of those cosmological solutions that are associated with a

BPS state cf.50. This requires the solutions to be inhomogeneous, and so may also

have a significant role to play in the ambient cosmological construction (cf. below).

2.6. Genericity issues in string and M-theory cosmology

For stable solutions found in the previous two problems, a genericity analysis to

the full inhomogeneous perturbations may be applied. One expects in this way

to discover what any generic solution sharing such characteristics will look like,

at least for the analytic case. The genericity question in cosmology has a long

history, starting with the studies of Khalatnikov-Lifshitz51,52, and continuing with

Starobinski et al53–55 for inflationary and other fluids. In higher-order gravity, a

first analysis using Fuchsian series of arbitrary expansions for the metric was done

in56 in the context of sudden singularity theory. A complete analysis along these

lines for a higher-order gravitational action in vacuum was performed in Ref.57.

3. Universes with α′ corrections

Perturbing to the linear order the low-energy equations, string theory predicts the

appearances of α′ (higher-derivative) corrections modifying the effective action by

adding terms proportional to

Sα′ ∼ α′
∫

duge
−φ(R2

GB − (∇φ)4), (1)

where R2

GB = R2 − 4Ric2 + Riem2 is the Gauss-Bonnet invariant58. For an FRW

metric, this has been recently examined for asymptotic stability (without the dilaton

term and coupling, but with curved universes allowed) as an R+α′R2 theory in the

cases of radiation and vacuum in47,59. The results in this context show that there

are basically two attractors, the t1/2 solution, and a Milne-type solution.

There are two ‘obvious’ extensions of these results to the following directions:

First to include the dilaton term and couplings in the string effective action, and

secondly, to do the asymptotic analysis for any admissible value of the fluid param-

eter, p = wρ. We note that already in vacuum, tracing the asymptotes was a highly

nontrivial asymptotic problem, because one needed to choose the right variables for

the vacuum to dominate asymptotically, cf. e.g.,47.

There are also a number of situations in string cosmology, for instance during

the passage from pre- to post-big bang, that require, in addition to tree-level and
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α′ terms, interaction matter termsa 31 as well as quantum loop correction terms60

in the string action. We can, however, imitate some the effects of such terms as two

or more interacting fluids present in the string action and study the asymptotics of

solutions by adding two interacting arbitrary fluids in the theory (1) that exchange

energy at rates depending linearly on their densities and expansion rate. Only

partial results are known45,46,61–63 for the behaviour of particular exact solutions

in general relativity. Any results here will be the first known ever to a similar

situation in string cosmology. Useful tools for such qualitative and exact geometric

asymptotics include the method of asymptotic splittings and the dynamical system

method of Poincaré compactification, suitable for these strong coupling corrections.

The various problems relevant to the marerial in this section fall naturally in

the following three areas:

A. Dilaton case asymptotics

B. General fluid

C. Interactions

3.1. Asymptotics of gravi-dilaton flat FRW cosmologies

The plan in this project is to extend relevant asymptotic analysis and stability

results known separately in general relativity, higher-order gravity or pure scalar-

tensor actions relating to the flat and curved FRW universes, to the case of the full

action (1), that is including the dilaton term and its coupling to the higher-order

curvature terms. This will provide especially important results for the stability of

the vacuum in this effective string theory.

3.2. Extensions to general tree-level cosmology for any fluid

parameter

For the basic string effective theory with quantum corrections, find all stable asymp-

totic solutions with a general fluid coupled to the dilaton. This involves several

technical difficulties because of the nonlinearity of the equations, but we expect

remarkable physical results to emerge from this project.

3.3. Interacting fluids in flat string cosmology

The aim of this project is to examine how all known single fluid results in flat string

cosmologies generalize to the case of two interacting, more or less general fluids

which exchange energy. This is very important because it will reveal which results

remain in such a generalized situation, thus offering another clue to the physical

viability of string cosmology. It will also compare with first results of interacting

bulk fluids in brane theory as in64 (see the work on mixtures in64).

aSuch terms are also typically generated in the Einstein frame representation of a string effective
theory that contains matter terms.
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3.4. Curved string cosmologies with interactions

This deals with the important case of curved universes with interacting fluids in

string cosmologies with higher order curvature corrections. We expect to see the

effects of dominant as well as subdominant curvature asymptotically (cf. Ref.45 for

the situation without a dilaton).

3.5. Stability of 11-dimensional supergravity cosmology I

The aim of this project is to see whether the properties of M-theory cosmologies

studied in other projects above are stable with respect to perturbations formed

when the M-theory action contains higher order corrections. We know that when

the M-theory action is further deformed to include Lovelock and Weyl terms65,66,

there are several exact solutions not present in standard M-theory cosmologies. Are

these solutions stable? In this problem one expects to trace all possible asymptotic

modes of the fields, and in this way to give the first reliable results about the

possibility of a no-hair theorem for an inflationary stage in M-theory.

3.6. Stability of 11-dimensional supergravity cosmology II

Here the plan is to study the asymptotic stability of the deformed M-theory power-

law cosmological solutions65,66. This is especially important for the naturalness of

inflation in M-theory cosmology.

4. Braneworlds

The possibility that our universe is described by a braneworld (brane in a large,

higher dimensional bulk), motivated by the mass hierarchy within string theory,

was instated in Ref.67. There are at least two areas here where interesting research

programs may be grounded. The first is the extension of the works68,69 (see next

Section for a brief description of that work) from Minkowski (or dS or AdS) branes

to general Robertson-Walker ones (for a background on the latter cf.70, where em-

beddings, geodesics and fluctuations are worked out in detail). Since the equations

of an RW brane in a 5-dimensional bulk are not envelopable by singular solutions,

it is expected that they will in general contain regular asymptotic solutions. First

promising results in this direction were presented in71, first for the scalar field case

and then for more general fluids. In all cases, one needs to perform detailed stud-

ies of asymptotic stability of the solutions using generalized asymptotic methods

similar to those in71. A stable, regular solution which would respect the energy

conditions and localize gravity on the brane would be important and open the way

to possible genericity questions, that is stability under generic perturbations.

Secondly, it is very well-known that the existence of higher-order terms plays

an important role in the process of ekpyrosis, in particular, in deciding about the

asymptotic stability of the cyclic universe in string theory31. In the work47 it was
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shown that the existence of the Milne singularity and the attractor properties of

our solutions bear a potential significance for the ekpyrotic scenario and its cyclic

extension. In that regime, the passage through the singularity, ‘the linchpin of

the cyclic picture’, depends on the stability of a Milne-type state under various

kinds of perturbations72–75. In particular, during the brane collision, it is found

that spacetime asymptotes to Milne and so it is expected that higher derivative

corrections will be small during such a phase, cf.76–78. The results of the work47

implies that such Milne states may indeed dynamically emerge as stable asymptotes

during the evolution, in any theory with higher-order corrections in vacuum or

with a radiation content. What remains is an interesting issue (that can be fully

addressed with the asymptotic methods used in Ref.47) as follows: Find whether

the ‘compactified Milne mod Z2 × R3 space’ monitoring the reversal phase in the

ekpyrotic and cyclic scenarios, also emerges asymptotically as a stable attractor

in the dynamics of higher-order gravity when the matter content is a fluid with a

general equation of state.

The following research problems fall into categories as follows:

A. Asymptotics of scalar field RW branes

B. Asymptotics perfect fluid RW branes

C. Genericity and stabiblity of ekpyrotic and cyclic scenarios

4.1. RW branes and scalar fields

The singularity structure and the corresponding asymptotic behavior of a 3D RW

brane coupled to a scalar field in a five-dimensional bulk can be analyzed in full

generality using the method of asymptotic splittings. One central issue is to examine

the existence of regular solutions, and in accordance with the self-tuning proposal,

to address the cosmological constant problem. Here the effects of curvature will

play a role to see whether such solutions exist or whether the situation resembles

that of a Minkowski brane which we referred to above.

4.2. RW branes with perfect fluid

This is a continuation of the previous problem to the case of the inclusion of a

perfect fluid. This is a more general case which in the Einstein frame representation

(meaning the brane action we considered previously), brane cosmology includes, for

a special choice of the fluid parameter, the previous case of scalar field. New results

in this direction are given in79. However, the issue of finding a regular bulk solution

is further complicated by the existence of extra constraints, namely, how to localize

gravity on the brane and at the same time meet the requirements of the null energy

condition in the bulk. The content of the paper79 shows that this is not possible

for single fliuds, a result that points to our next problem.
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4.3. RW branes with interactions

In this project we consider the standard gravi-dilaton string affective bulk action

in the S-frame, in this case the vacuum is inequivalent to a p = −ρ fluid and so we

may have interactions. We may also take the Einstein frame representation of the

theory and directly couple the scalar field with the fluid. This project will search the

question as to whether regular asymptotics are the result of the interactions between

the scalar field and the fluid. It would be interesting to test whether interacting

fluids can meet all three conditions discussed in the previous problem.

4.4. Genericity of the asymptotic solutions

In this project the aim is to examine, through a generic perturbation analysis,

whether the found solutions are stable when we consider general inhomogeneous

perturbations. Through function counting, we may be able to conclude about the

degree of generality of the found brane asymptotics. We note that the Landau-

Lifshitz perturbation method discussed in previous sections can be applied to both

regular as well as singular asymptotics.

4.5. Ekpyrosis and the Milne state with asymptotically

subdominant higher-order terms

This project aims to examine the global asymptotic stability of the Milne state in

string theories with higher-order corrections in an effort to decide as to whether or

not this state is a viable representative of the passage through the singularity in

models with an ekpyrotic or cyclic phase. In the prospective asymptotic analysis

of this problem there will be hundreds of decompositions and dominant balances

to consider one-by-one due to the combined effects of the general fluid and brane

geometry. The plan is to start here covering first separately all those cases that

have the relevant terms entering subdominantly. This will give a first indication of

the possible stability. Subdominant evolution is more subthe than having all terms

dominant, and it is known that it generally leads to surprising results.

4.6. Ekpyrosis and the Milne state with asymptotically dominant

higher-order terms

This is a continuation of the previous problem concerning the asymptotic global

stability of the Milne state in the Ekpyrotic and cyclic scenarios in M-theory. How-

ever, this time one is interested in the effects of the higher-order terms now entering

dominantly in the evolution. This is the most nonlinear case. Upon completion,

this project will bring new light not only to the process of ekpyrosis but one hopes

to the whole of M-theory cosmology.
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5. Miscellanious results

To appreciate the ambient construction and related issues developed in the following

Sections, we outline here several distinct pieces of background, namely, various

results from AdS5/CFT4 geometry, and more generally the ambient construction

in conformal geometry, as well as various asymptotic limits of braneworlds. These

results also have an independent interest and importance in their own right.

5.1. AdS5/CFT4 geometry: The simplest ambient metric

Witten in his work82 gives various proofs and implications of the following basic

result: The 4−dimensional Minkowski spacetime M4 is the boundary of AdS5. A

summary of the simplest properties associated with this construction is given below

in a sequence of steps.

• The symmetry groups of bulk and brane agree on the boundary of bulk.

• Construct (AdS5, g+) metric as the Poincaré (hyperbolic) metric on unit

open ball B5 of R
5 (
∑4

i=0
y2i < 1 there),

g+ :=
4|y|2

(1− |y|2)2 , |y|2 =

4∑
i=0

dy2i , y0, y1, · · · , y4 coordinates of R
5. (2)

• g+ does not extend everywhere on B5 ∪ S4, because it is singular on the

boundary ∂B5 = S4.

• Pick a function Ω = 1− |y|2 > 0 on B5, and Ω = 0 on S4.

• g+ is conformal to a complete metric g̊ = Ω2g+ that extends smoothly on

∂AdS5 = S4.

• g̊|S4 is a metric in [g4]. The conformal infinity IAdS5
= S4, that is its

boundary.

• While B5 has a unique, well-defined metric, its boundary ∂B5 = S4 has only

a conformal structure (both preserved under the actions of their symmetry

groups).

• Any function on S4 extends uniquely to AdS5 that has the given boundary

values and satisfies the field equation.

• A conformal field theory on (S4, [g4]) should be well-behaved.

• Maldacena conjecture: A string theory on AdS5 × S5 is equivalent to a

certain SUSY Yang-Mills theory defined on IAdS5
.

• A black hole is then defined as a thermal state on the boundary, and the

whole construction makes calculations easier because S4 is conformally flat.

We conclude from this that one may proceed from the Poincaré metric gAdS5
=

4(1−|y|2)−2gE , to g̊ = Ω2gAdS5
, and then restricting g̊|S4 to finally get a conformal

structure on the boundary spacetime.
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5.2. The Fefferman-Graham fundamental theorem

We now consider the inverse problem: Starting from a conformal space-time mani-

fold (M, [g4]), is there a metric on V such that when we perform the construction

we get the given conformal structure that we started with? This is the problem

that occupied the fundamental work Ref. 83, concerned with the construction of

conformal invariants. It was shown in Ref. 83 that there exists a well-defined am-

bient metric (this is the Fefferman-Graham metric) g+ on M × R (points (xμ, y))

with the following properties (cf. Ref. 83):

• Locally around M ×{0} in M ×R, there is a smooth (non-unique) function

Ω with Ω > 0 on V , Ω = 0 on M , and such that Ω2g+ extends smoothly

on V .

• (Ω2g+)|TM is non-degenerate onM (that is its signature remains (−++++)

on M).

• (Ω2g+)|TM ∈ [g4]. (M is the conformal infinity of V .)

• g+ satisfies the Einstein equations with a cosmological constant Λ to infinite

order on M .

• g+ is in normal form with respect to g4:

g+ = y−2(gy + dy2).

Here, gy stands for a suitable formal power series with g0 = g4. (We may

also use y as Ω.)

• g+ is unique: Given any two ambient metrics g1+, g
2
+ for (M, [g4]), their

difference g1+ − g2+ vanishes to infinite order everywhere along M × {0}.

5.3. Braneworld solutions, asymptotic limits

As we discussed in previous sections of this paper, it is possible to have a complete

profile of all asymptotic situations that emerge when we have a bulk 5-geometry

(V, g5) containing an embedded 4-dimensional braneworld (M, g4) that is either a

4-dimensional Minkowski, or de Sitter, or Anti-de Sitter spacetime, cf. Ref. 64. In

general, all asymptotic solutions have a form dictated by the method of asymptotic

splittings84. This may be described in a series of steps:

• We have bulk space (V, g5) (coordinates A = (xμ, y)) containing embedded

4-dimensional braneworld (M, g4) (coordinates xμ, signature (− + ++))

filled with an analogue of perfect fluid p(y) = γρ(y) and satisfying the

5-dimensional Einstein equations in the bulk, GAB = κ5TAB.

• We then assume the ansatz,

g5 = a2(y)g4 + dy2, for g5 solutions on V,

and look for solutions with (M, g4) being either a Minkowski, or de Sit-

ter, or Anti-de Sitter spacetime.
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• In this case, the Einstein equations reduce to the generic form ẋ = f(x),

where f is a smooth vector field and the solution vector is such that x =

(a, ȧ, ρ)

• Solutions are then of the general form given by method of asymptotic split-

tings:

a(y) = yp
∞∑
i=0

ciy
i/s, y → 0, p ∈ Q, s ∈ N, ci ∈ R,

and similarly for the density ρ.

• g5 cannot be continued to arbitrary values in the y-dimension without some

sort of matching; all flat brane solutions are singular at a finite, arbitrary

y−distance from the position of the brane located at y = 0. The generic

curved problem is under investigation.

From these results, it is not difficult to conclude that the following properties apply

in fact to a great variety of different models of braneworlds (cf. e.g., Refs. 85–91

and refs. therein):

• The properties of the metric g4 do not follow from those of the bulk metric

g5 but are dictated by field equations valid on the 4-‘brane’ itself.

• There is no conformal infinity for the 5-dimensional geometry (the brane is

certainly a kind of boundary to the bulk, but it can never be a conformal

boundary).

• No holographic interpretation is possible and there is no way to realize a

boundary CFT.

In what follows, we present a novel approach in which all of the above difficulties

are absent. For more details and developments, the reader is advised to look at

Refs. 80, 81.

6. Ambient cosmology

We have discussed in previous Sections of this paper, various research problems

which if studied will shed lights in tree-level string cosmology, in M-theory models

of the universe, as well as in higher-order correction terms in the string action, and

lastly in the extension to braneworlds. However, this is one more step to take and

this is a further recent extension of brane theory to a regime where all defaults

mentioned above are absent. This is a geometric construction we call ambient

cosmology.

In this Section, we present a brief summary of the main points of this construc-

tion to produce a situation where generic spacetimes will end up having improved

properties over those we may meet in the theory of hypersurfaces in general relativ-

ity (or in its higher-dimensional extensions as above). In the proposal below, a new
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bounding hypersurface, the conformal infinity of a new cosmological metric in 5-

dimensional ‘ambient’ space will be the result. One aspect of our results developed

in Refs. 80, 81 may be stated as follows:

Theorem 6.1. Let (M, [g4]) be a 4-dimensional spacetime with a conformal struc-

ture. Any 4-metric g ∈ [g4] has an ambient 5-metric g+ on spacetime V = M × R

such that:

• It satisfies the 5-dimensional Einstein equations with a fluid source on V

• V has M as its conformal infinity, (Ig+ , g̊|M )

• Any two conformally related 4-metrics on M , g1 = Ω2g2, have ambient

metrics differing by g̊1|M (0)− g̊2|M (0) = g1. Hence, Ig+ has a homothetic

symmetry, g̊|M = cg4

6.1. The ambient cosmological metric

Our construction is generally one belonging to conformal geometry (cf. Ref. 92),

and may be summarized as follows (cf. 80 for more discussion).

(1) Take a 4-dimensional, non-degenerate ‘initial’ metric gin(x
μ) on spacetime M .

This step essentially involves the Penrose conformal method.

(2) Conformally deform gin to a new metric g4 = Ω2gin by choosing a suitable

conformal factor Ω. This step connects the ‘bad’ metric gin with the ‘nice’,

non-degenerate, and non-singular metric g4(x
μ).

(3) Using the method of asymptotic splittings for the 5-dimensional Einstein equa-

tions with an arbitrary (with respect to the fluid parameter γ) fluid, solve for

the 5-dimensional metric g5 = a2(y)g4 + dy2 and the matter density ρ5.

(4) Transform the solutions of step 3 to suitable factored forms of the general type,

(divegent part) × (smooth part).

(5) Construct the ‘ambient’ metric in normal form, g+, for the 5-dimensional Ein-

stein equations with a fluid. This is given by the following form,

g+ = w−n
(
σ2(w)g4(x

μ) + dw2
)
,

n ∈ Q
+, as w → 0, with σ(w) a smooth (infinitely differentiable) function such

that σ(0) is a nonzero constant.

(6) (M, [g4]) is the conformal infinity of (V, g+), that is I = ∂V = M .

(7) The metric g+ is conformally compact. This means that a suitable metric g̊

constructed from g+ extends smoothly to V , and its restriction to M , g̊|M , is

non-degenerate (i.e., maintains the same signature also on M).

(8) The conformal infinity M of the ambient metric g+ of any metric in the confor-

mal class [g4] is controlled by the behaviour of a constant rescaling of the ‘nice’

metric g4.

However, uniqueness of the ambient cosmological metric is not achieved like in the

Fefferman-Graham construction83. Instead, we find80 an asymptotic condition valid
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on the conformal infinity of the ambient space after taking suitable limits of the

various possible geometric asymptotics of the problem. This method lies in the

heart of the whole construction, and is treated briefly in the next subsection.

6.2. The asymptotic condition

For any two conformally related 4-metrics g1, g2 in the conformal geometry of M ,

g1 being the ‘good’ (roughly meaning ‘regular’) and g2 the ‘bad’ metric on the

boundary, their ambient metrics g̊1|M , g̊2|M differ by a homothetic transformation,

g̊2|M (0) = c g̊1|M (0), c : const. (3)

Conclusion: Starting from a conformal geometry on the spacetime M , the

ambient cosmological metric returns a 4-geometry on M (its conformal infinity

metric g̊|M ) that has a homothetic symmetry.

Therefore according to our proposal, as this is substantiated by the asymptotic

condition, our 4-dimensional world is the conformal infinity of the ambient 5-space

discussed above. What are the basic implications of this proposal? We may sum-

marize some of them as follows.

(1) As a conformal manifold, (M, [g4]) can have no singularities.

(2) Cosmic censorship on (M, [g4]) is equivalent to the validity of ambient 5-metric

construction, the asymptotic condition satisfied by the ambient metric g̊|M .

(3) Global stability, asymptotic flatness.

(4) Relation to PN twistor space.

Below, we treat (1) in some detail, and give a few comments about the rest towards

the end of this paper.

6.3. The Zeeman topology on the boundary

Let us first state a celebrated result of C. Zeeman about the true topology of

Minkowski space93.

Theorem 6.2. For Minkowski spacetime M , the group of homothetic symmetries

(that is Lorentz transformations with dilatations) coincides with the group of all

homeomorphisms of M provided that its topology is not the usual Euclidean metric

topology (that is M is locally Euclidean) but a new one, called the fine topology Z.

The Zeeman topology has the following properties:

• It is strictly finer than the Euclidean topology

• It possesses improved properties

• It extends to curved spacetimes

Description:
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• For x ∈ M , an open ball in Z has the form

B
Z
(x; r) = (B

E
(x; r) \N(x)) ∪ {x},

where B
E
(x; r) is the Euclidean-open ball, and N(x) the null cone at x (we

remove N(x) and put back only the point x).

• Then B
Z
(x; r) is Z-open, but not E-open.

• Hence, a set A ⊂ M is Z-open if A ∩ B as a subset of B is E-open, for every

spacelike plane and timelike line B.

Zeeman also conjectured in93 that an extension to the curved spacetimes of gen-

eral relativity should be possible, that is for a general spacetime the homothetic

group must be isomorphic to the homeomorphism group of the Zeeman topology, a

conjecture that was shown to be correct by Göbel94.

6.4. Zeeman-Göbel theorem

Theorem 6.3. For a general spacetime, the homothetic group is isomorphic to the

group of homeomorphisms of the Zeeman topology.

We make the following comments.

• Amongst all possible generalized topologies, the Zeeman topology is the unique

one having this property, all others having homeomorphism groups isomorphic

to the conformal group.

• For any spacetime M in general relativity we have the freedom to choose either

the standard Euclidean metric topology, giving M the usual manifold topology,

or the Zeeman topology. It is of course the former that is used in all standard

discussions of relativity.

• For our bounding spacetime M - the conformal infinity of the ambient space V

- however, we do not have this freedom because we have shown the existence of

a homothetic symmetry on M .

6.5. Non-convergence of causal curves

One notion that plays a key role in many theorems in global causal structure and

the singularity thorems in general relativity is the convergence of a sequence of

causal curves. Looking carefully at the proofs of various such results, we note the

following (cf.81 for a more complete discussion of this).

• For the convergence of a sequence of causal curves to a limit curve, one uses

in an essential way the Euclidean balls with their Euclidean metric and their

compactness in order to extract the necessary limits.

• Since the Zeeman topology is strictly finer than the Euclidean metric

topology, such sequences will be Zeno sequences and their convergence in the

Euclidean topology will not guarantee the existence of a limit curve in the

Zeeman topology.
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6.6. Impossibility of singularities on M

The non-convergence of sequences of causal curves has the following implication,

cf.81.

• In the proofs of the singularity theorems, a contradiction appears when assum-

ing the existence of a curve of length greater than some maximum starting

from a spacelike Cauchy surface Σ (on which the mean curvature is negative)

downwards to the past.

• One extracts a limit curve γ (which locally maximizes the length between Σ

and an event p), and no curve can have length greater than that of γ.

• Here we cannot extract such a limit.

This result and also the more elaborate work95 along these lines, opens the way

for the construction of complete spacetimes as the conformal infinities of physical

theories in higher dimensional ambient space.

6.7. Cosmic censorship

We propose that the choice of metric in the conformal class [g4] (g4 is the metric

obtained after the conformal ‘cleaning’ of the initial metric onM (the latter is taken

to satisfy the constraints of the Penrose conformal method), must be made such

that it does not spoil the non-degeneracy of the g̊ metric when restricted along the

boundary M . The only way then left for which the five-dimensional ambient metric

will lose its non-degeneracy on M is when a timelike or null hypersurface forms

somewhere in g̊|M , that is when there are naked points at infinity on the boundary

spacetime. This would then make the ambient cosmological metric g̊|M degenerate,

contradicting the asymptotic condition. Therefore it seems that a choice must be

made of those metrics g4 in step 2 of the ambient procedure that respect cosmic

censorship.

Conversely, the absence of naked singularities that follows from the validity of

the asymptotic condition on the ambient cosmological metric (in the sense of being

valid on IV ) has important implications, for it follows that a naked singularity

may not be the end product of the process of Hawking evaporation of a black hole

through thermal radiation. In this case, future null infinity will generically meet

the vertical line coming out of the spacelike singularity of the black hole due to the

evaporation in the suitable Penrose diagrams, thus allowing material from inside the

spacelike singularity to be seen by an observer sitting at infinity. This is sometimes

interpreted, as is well-known, as a possible violation of cosmic censorship at the

quantum level. The deeper reason of why this works in the ambient framework we

have developed is presently unknown.
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6.8. Global stability issues

In this work, we have reviewed the idea (firstly advanced in Refs. 80, 81) that

towards the Planck epoch classical spacetime becomes the conformal infinity of the

ambient cosmological 5-metric, its conformal boundary. According to our proposal,

spacetime achieves this by gradually (as we approach the Planck time) acquiring a

conformal structure, this might correspond to some kind of conformal invariant -

for instance the Weyl curvature - developed on M . In our construction, as we have

already discussed, this is directly possible because of the existence of one extra

dimension, the appearance of the ambient metric.

The key result here is the validity of the asymptotic condition (3), instead of

the usual uniqueness of the standard Fefferman-Graham ambient metric. This then

is obviously related to some kind of stability of the original spacetime M endowed

with some metric away from the Planck time. For, any other metric g′4 conformally

related to g4 is a perturbation of g4 keeping the ambient construction unspoiled.

If, for instance, we are interested in the global stability of the Minkowski space,

and consider some perturbation of it, then what we have shown here implies that

we may replace it with any other, conformally related perturbation of it without

disturbing the ambient construction. Therefore it seems that our construction is

admitted by all conformally related perturbations of Minkowski space. This is

something left to future work.

6.9. Relation to twistors

It is possible (although not clear at present) that our construction bears some

relation to twistor space, in particular, the space PN - the null projective twistor

5-space.

There are also other known constructions in twistor theory, like the H-space

with cosmological constant, cf. [96], where a real 3-manifold with a spacetime

metric becomes the conformal infinity of another 4-manifold that satisfies the self-

dual Einstein equations with a cosmological constant −1.

In our case, we have a fluid in the 5-space, not a Λ, and the validity of the

asymptotic condition is not so clear. Also the meaning of non-locality on our am-

bient space is not yet clear.
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