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ABSTRACT  8	

Much of the future hydrocarbon exploration potential in the North Sea lies in locating 9	
stratigraphic traps and discrete reservoir intervals. This study assesses the potential for Lower 10	
Cretaceous reservoirs, with particular focus on the Norwegian Central Graben and proposed 11	
methods to identify future prospects over a wider area. Seismic interpretation and well data 12	
reveal the structure and sedimentology of the study area. Although the region was isolated 13	
from a large hinterland in the Early Cretaceous, potential local sediment sources, sediment 14	
transport routes and areas with possible reservoir development are identified. The greater 15	
Mandal High area, where Lower Cretaceous shoreface deposits and submarine fan systems 16	
are postulated, is suggested for primary focus. Similar deposits may have developed around 17	
the other exposed highs in the region, although several were drowned towards the end of the 18	
Early Cretaceous. Detailed seismic and stratigraphic analysis will be necessary to identify 19	
individual reservoir units. Since similar settings may have occurred in the adjacent South 20	
Viking Graben and Southern Permian Basin regions during the Early Cretaceous, further 21	
reservoir assessment is recommended for the North Sea in general. 22	
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The Central Graben of the North Sea represents a prolific and mature hydrocarbon province 36	
(e.g. Brooks 1990). Despite 50 years of exploration, further potential continues to be 37	
unlocked as demonstrated by the Upper Jurassic shoreface play (e.g. Edvard Grieg and Johan 38	
Sverdrup discoveries at the Norwegian Utsira High, Jørstad 2012; NPD 2017; Lundin 2017) 39	
and by the Upper Jurassic turbidite play in the United Kingdom (UK) Moray Firth (e.g. 40	
Buzzard field, Fraser et al. 2003; Ray et al. 2010). This paper describes further potential in 41	
another stratigraphic horizon, namely the Lower Cretaceous reservoirs of the North Sea. Here 42	
shoreface and deep water reservoir units are developed associated with discrete Mesozoic 43	
rifting phases and related localised depocenters.  44	

Lower Cretaceous deep marine sandstones represent an important play in the UK Moray Firth 45	
(e.g. Garrett et al. 2000; Johnson et al. 2005, Figs. 1a, 2), where large amounts of sand from 46	
the exposed East Orkney High and Halibut Horst were shed into adjacent basins of the Inner- 47	
and Outer Moray Firth, forming the reservoirs for various hydrocarbon fields (e.g. Scapa, 48	
Britannia, McGann et al. 1991; Ainsworth et al. 2000). Various studies have established 49	
sediment transport directions (Hailwood & Ding 2000), sediment provenance areas 50	
(Blackbourn & Thomson 2000) and a sequence stratigraphic framework (Jeremiah 2000) in 51	
this area.  52	

In contrast to the Moray Firth, the Lower Cretaceous play remains underdeveloped in the 53	
Central Graben (Copestake et al. 2003; NPD 2017). While the generalised Mesozoic 54	
sequence is visible on seismic in the Moray Firth, the thick (2000 to 4500 m) Cenozoic and 55	
Upper Cretaceous overburden in the Central Graben presents an issue for seismically driven 56	
reservoir identification within the Lower Cretaceous (up to 30 m net reservoir thickness) 57	
(Argent et al. 2000; Law et al. 2000). Further factors impeding seismic assessment include 58	
multiples (induced by the base of the overlying Upper Cretaceous chalk units) and the 59	
general low impedance contrast between sandstones and shales in this interval (Oakman 60	
2005). Although seismic imaging quality has improved considerably in recent years (e.g. 61	
Hampson et al. 2010), alternative methods are required to assess the Lower Cretaceous units 62	
and to locate potential prospects. Attempts to delineate reservoir development have been 63	
made in the UK Central Graben (UKCG) with the use of regional 3D seismic and well data 64	
(Milton-Worssell et al. 2006, Fig. 1a), indicating significant potential for Lower Cretaceous 65	
sandstone development. Currently, other than local studies (e.g. Rossland et al. 2013), no 66	
published work has established a similar overview of Lower Cretaceous reservoir potential in 67	
the Norwegian sector of the Central Graben. 68	

This study, therefore, aims to assess the potential for Lower Cretaceous sand bodies in the 69	
Norwegian Central Graben (NCG) and to link this interpretation to adjacent areas in the UK 70	
and to the Danish, German and Dutch parts of the North Sea Rift System (Southern Permian 71	
Basin area), as well as to the South Viking Graben (Fig. 1a).  72	

  73	
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GEOLOGICAL SETTING 74	

The geological history of the Central North Sea has generated a diverse stratigraphic record, 75	
which is hereby described utilising a Norwegian stratigraphic nomenclature (Isaksen & 76	
Tonstad 1989; NPD 2017, Fig. 2). The oldest known units in the Norwegian Central Graben 77	
are of pre-Permian age; Silurian to Devonian metamorphic basement overlain by Old Red 78	
sandstones (Fossen et al. 2008). These units are followed, in stratigraphic order, by varied 79	
Carboniferous deposits (NPD 2014), Lower Permian Rotliegend sandstones and thick Upper 80	
Permian Zechstein evaporites plus dolomites. The halite sequences of the Zechstein have had 81	
a profound influence on the tectonic style; decoupling underlying and overlying strata 82	
(Hodgson et al. 1992; Stewart 2007; Ge et al. 2016; Jackson & Lewis 2016; Van Winden this 83	
volume). Lower Triassic Smith Bank Shales and Middle to Upper Triassic Skagerrak 84	
Sandstone deposition coincided with Late Triassic faulting along the inherited Caledonian 85	
structural grain (Bartholomew et al. 1993; UKDD 2007). This first rifting phase formed the 86	
general Central Graben structure, as these Triassic faults were partially reactivated in the Late 87	
Jurassic and Early Cretaceous (Rattey & Hayward 1993), although the main Triassic and 88	
Jurassic to Early Cretaceous depocenters do not precisely coincide (Erratt et al. 1999). Uplift 89	
and erosion due to an Early Jurassic mantle plume formed the Mid-Cimmerian unconformity 90	
in the Central North Sea (Underhill & Partington 1993). Middle Jurassic Bryne Formation 91	
coastal plain deposits succeed the hiatus (Bergan et al. 1989), followed by a second erosional 92	
surface. Eventual dome collapse coincided with the onset of renewed extension in the 93	
Northern North Sea (Graversen 2006), propagating into the Central North Sea during Late 94	
Jurassic times (Rattey & Hayward 1993). As rifting proceeded, sediment-starved deep marine 95	
basins developed (Copestake et al. 2003). This transgression is recorded in the syn-rift 96	
Jurassic Tyne Group by the Ula Formation shoreface sandstones and subsequent deep marine 97	
shales, including Mandal Formation source rock (Gautier 2005; Nøttvedt & Johannessen 98	
2008). 99	

Major extension ceased towards the end of the Kimmeridgian (Milton 1993), although a 100	
secondary phase of rift activity may have continued into the Earliest Cretaceous or Ryazanian 101	
in the Norwegian area, especially in the NCG (Gowers et al. 1993; Sears et al. 1993; Zanella 102	
et al. 2003; Ge et al. 2016). Rifting ceased as extensional stresses shifted to the proto-North 103	
Atlantic (Coward et al. 2003, Oakman 2005). Subsequently, post-rift thermal sag initiated 104	
and sediments began to cover the rift topography above the Base Cretaceous Unconformity 105	
(BCU) (Rattey & Hayward 1993). The first of these, the Cromer Knoll Group, contains 106	
mostly shales but also marly limestones (Tuxen Formation) plus shoreface to deep marine 107	
sandstones (Ran Sandstone units, Isaksen & Tonstad 1989). The sandstones represent 108	
potential reservoir bodies but their spatial and temporal extent is poorly constrained, being 109	
encountered in only a few wells. In the Aptian, another shift in tectonics and oceanography, 110	
the “Austrian event”, occurred. This coincided with the onset of alpine compression and the 111	
opening of the North Atlantic, leading to more restricted basins and to the deposition of dark 112	
muds of the Sola Formation, overlain by calcareous Rødby Formation sediments (Garrett et 113	
al. 2000; Copestake et al. 2003). 114	
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Global sea level rise and a shift to a tropical climate in the Late Cretaceous saw the 115	
development of massive Upper Cretaceous chalk units in the North Sea sag basin (Surlyk et 116	
al. 2003). Thermal subsidence was, however, interrupted by local inversion pulses and 117	
associated Zechstein salt diapirism (Cartwright 1989; Johnson et al. 2005; Van Winden this 118	
volume). Renewed sediment input from the eroding North Atlantic rift shoulders gave rise to 119	
widespread turbidite systems in the Paleocene and Eocene. From the Oligocene onwards, 120	
thermal sag continued, concentrated in the NW of the NCG (Gowers & Sæbøe 1985), while 121	
the North Sea basin gradually filled in with thick clastic sequences. 122	

ESTABLISHED LOWER CRETACEOUS UK RESERVOIRS 123	

Three major sequences of sandstone deposits occur in the Inner Moray Firth (Copestake et al. 124	
2003, Fig. 2); Ryazanian-Valanginian Punt sandstones SW of the Halibut Horst, Wick 125	
Sandstones south of the East Orkney High and Scapa Sandstones east of the Halibut High 126	
(locations in Fig. 1). In Barremian times, Coracle Sandstones of the Wick Fm occurred south 127	
of the East Orkney High and the Halibut High, whilst Scapa Sandstones were still present in 128	
the Witch Ground Graben (Jeremiah 2000). These units of the Lowermost Cretaceous 129	
(Ryazanian-Barremian play) were deposited during a phase of low sea level due to tectonic 130	
activity related to Austrian compression, ending with a major flooding event in the Barremian 131	
(Crittenden et al. 1997; Oakman 2005). Rejuvenated tectonic activity associated with the 132	
opening of the North Atlantic led to renewed sediment influx in the Aptian (Oakman 2005). 133	
During this phase, the Kopervik fairway was established (Law et al. 2000) along which large 134	
amounts of sand were transported from the East Orkney High to the outer Moray Firth, where 135	
the Britannia Field is situated (Ainsworth et al. 2000), before an Albian transgression 136	
diminished sand influx (Oakman & Partington 1998; Jeremiah 2000). 137	

These deposits comprise of deep marine sandstones exhibiting a variety of depositional styles 138	
including hanging-wall slope-apron fans, linear channel complexes as part of a minibasin 139	
spilling system, or localised mass flow deposits and mud-dominated slurry-flow deposits 140	
(Jones et al. 1999; Argent et al. 2000). These sedimentary systems demonstrate a high degree 141	
of complexity regarding source and transport mechanisms (Eggenhuisen et al. 2010). 142	
Deposition was strongly influenced by the two Early Cretaceous tectonic phases mentioned 143	
above which uplifted and exposed highs and fault scarps, as documented to the north and 144	
northwest of the main depocenters (e.g. Halibut Horst, East Orkney High, O’Driscoll et al. 145	
1990; Copestake et al. 2003; Jeremiah 2000, Fig. 1a). Tectonic activity furthermore modified 146	
the region’s bathymetry and redirected sediment transport fairways (Jeremiah 2000; Aas et 147	
al. 2010). These deep marine sandstones represent Lower Cretaceous reservoirs in 148	
stratigraphic or combination structural/stratigraphic traps in for instance the Britannia, Scapa 149	
and Captain fields (McGann et al. 1991; Jones et al. 1999; Pinnock et al. 2003).  150	

Although the Forties-Montrose High and Marnock Terrace formed barriers that separated the 151	
UKCG depocenters from the Moray Firth during the Early Cretaceous (Fig. 1a), it is possible 152	
to extend the Lower Cretaceous Moray Firth reservoir intervals into the UKCG (Milton-153	
Worssell et al. 2006) where various wells encounter Lower Cretaceous sands. This well data, 154	
in combination with seismically-derived maps, allowed Milton-Worssell et al. (2006) to 155	
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postulate the distribution of (mainly deep marine sandstone) bodies, sourced by the Western 156	
Platform, Forties-Montrose High and Jæren High, for both a Latest Ryazanian-Barremian 157	
play and the Aptian-Albian play in the UKCG. These plays are separated by the Fischschiefer 158	
Bed (Fig. 2), an organic-rich mudstone deposited during the Barremian flooding event, that is 159	
a regional seismic marker (Ainsworth et al. 2000). In this study, a similar division has been 160	
made between a “Latest Ryazanian” interval (near BCU-level) and an “Aptian-Albian” 161	
interval (near Top Lower Cretaceous level) to extend the scope into the NCG and to acquire a 162	
North Sea-wide overview (Fig. 2). 163	

DATA AND METHODS 164	

2D and 3D seismic datasets, provided by Shell Upstream International, combined with data 165	
from 474 wells were used to establish a structural framework in the study area (Fig. 1). The 166	
3D data (extent: 11,400 km2) are a compilation of the Norwegian Carmot dataset, covering 167	
the NCG, and part of the UK Megamerge dataset, covering a limited area part of the southern 168	
UKCG (Fig. 1). The quality is variable but typically consists of dominant frequencies of ca. 169	
20-30 Hz, a wavelength of ca. 60 ms two-way travel time (TWT) with a resulting seismic 170	
resolution of ca. 15 ms TWT. This corresponds to ca. 30 m vertical resolution assuming an 171	
interval velocity of 3500 m/s. Water depths range from 40 to 100 m.  172	

Data concerning 319 Norwegian wells in the study area were obtained from the Norwegian 173	
Petroleum Directorate (NPD) Factpages (NPD 2017). Additional well data for the UK and 174	
Danish sectors (119 and 41 wells, respectively) are from released well log and completion 175	
reports, well logs in the Shell archive (e.g. Boirie & Jeannou 1984; Statoil 1991) and 176	
published material (e.g Isaksen & Tonstad 1989, see table 1). Additional occurrences of 177	
Lower Cretaceous sandstones in UKCG wells are adopted from Milton-Worssell et al. 2006).  178	

The following regional seismic horizons were mapped in two way time (TWT) on 3D seismic 179	
and calibrated with time-converted (via well checkshots and calibrated sonic logs) 180	
lithostratigraphically defined well tops from the Shell database and the NPD (Fig. 2):  181	

• Base Cenozoic, (64 Ma);  182	
• Top Lower Creteaceous (100 Ma);  183	
• Base Cretaceous Unconformity (BCU, 140 Ma);  184	
• Top Rotliegend (270 Ma).  185	

Milton-Worrsell et al. (2006) mapped the Fischerbank Schiefer Bed, which defines the 186	
boundary between their two Lower Cretaceous plays (Fig. 2). In this study this marker could 187	
not be traced due to a lack of accurately constrained well picks. The time maps of the four 188	
interpreted seismic horizons are combined with existing digital TWT seismic horizon maps 189	
provided by Shell Upstream International that allow an extension of the survey further into 190	
British and Danish territorial waters (study area, Fig. 1). A time difference assessment 191	
between the seismic horizons yields isochron maps, illustrating where the thickest sequences 192	
within the Cenozoic, Upper Cretaceous and Lower Cretaceous intervals are situated, 193	
revealing the general structural trends in the study area (Figs. 3 and 4). Due to the large study 194	
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area, no time to depth conversion was carried out which means these structural trends are 195	
somewhat qualitative. 196	

Two more lithostratigraphically-contstrained horizons have been mapped in TWT on five 197	
additional regional 2D seismic transects to provide an additional link to previous studies (S1-198	
S5, Figs. 1, 2, 5): 199	

• Base Upper Jurassic (ca. 165 Ma); 200	
• Top Zechstein (252 Ma).  201	

Although the available seismic coverage does not include Denmark, an earlier study (Møller 202	
& Rasmussen 2003) provides a useful additional transect across the Danish border (S6, Fig. 203	
5f). In combination with the seismic horizon time and isochron maps, these transects offer a 204	
detailed insight into the structural framework of the extended study area, revealing the 205	
locations of the main basins, highs, diapirs and faults (Figs. 3-5). Subsequently, the results of 206	
the seismic interpretation are integrated with published data from Copestake et al. (2003), 207	
Japsen et al. (2003), Milton-Worrsell et al. (2006) and Rossland et al. (2013) for an 208	
assessment of Lower Cretaceous reservoir potential in the extended study area, of which well 209	
data provide a first impression (Figs. 4 and 6). 210	

The basic methodology applied by Milton-Worssell et al. (2006) has been adopted. 211	
Combined isochron maps of the extended study area indicate zones with thin Lower 212	
Cretaceous deposits, which were potentially exposed and prone to erosion during the Early 213	
Cretaceous (Fig. 7). At these places, well data provides the true thickness of the Lower 214	
Cretaceous sequence and the lithology in subcrop below the BCU. Devonian metamorphic 215	
rocks and volcanics, Rotliegend, Triassic Skagerrak, Middle Jurassic Bryne and Upper 216	
Jurassic Ula sandstones (Fig. 2) in subcrop indicate whether a specific locality was part of a 217	
potential sand source area during the Earliest Cretaceous. The presence of sand provenance 218	
areas is considered the most important factor controlling sandstone development since the 219	
Early Cretaceous was dominated by pelagic mud deposition (Fig. 2). This exercise is repeated 220	
for the Aptian-Albian reservoir interval, where the sand-prone lithologies in subcrop below 221	
the Top Lower Cretaceous horizon are charted (Fig. 8). The isochron maps subsequently 222	
allow the tracing of possible sediment transport fairways, by interpreting depocenters as 223	
drainage areas and barriers separating them as watersheds. Sediment transport is assumed to 224	
have followed the bathymetry given by the isochron maps, leading sediments from the highs 225	
to the depocenters. Thus, combining the isochron map, drainage and sand source areas; 226	
potential sand transport routes for the Latest Ryazanian and the Aptian-Albian are mapped 227	
(Figs 7 and 8). Well data allows a qualitative check of these interpretations: where sandstones 228	
occur in wells, a plausible link with a nearby sand source area can be inferred. If no such well 229	
data is available, sediment transport between source and depocenter remains speculative. It is 230	
recognised that the sandstones recorded in these wells are not necessarily linked to the 231	
postulated source areas and that those links would need to be proven via further investigation 232	
involving advanced seismic and well analysis techniques that are beyond the scope of this 233	
study. 234	
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STRUCTURAL FRAMEWORK INTERPRETATION  235	

In general, a series of NNW-SSE orientated en-echelon (rift) basins, normal faults and tilted 236	
fault blocks follow the larger NW-SE Central Graben trend (Fig. 1, 3-5). The NCG structure 237	
is bounded by the Sørvestlandet High and the Ringkøbing-Fyn High to the east and by the 238	
Mid North Sea High to the south-west (Figs. 3-4).  239	

The main depocenters, as identified on the isochron maps, are situated in the Breifflab Basin 240	
in the NW (Fig. 4a, 5, S1), where up to 8 km of subsidence has occurred (NDD 2012). 241	
However, the locations of these depocenters do not coincide with the thickest Upper Jurassic 242	
deposits in the SE part of the Feda Graben, Søgne Basin and Gertrud Graben (Erratt et al. 243	
1999, Fig. 5, S5, S6). This discrepancy is a result of later differential thermal subsidence and 244	
sediment infill (Gowers & Sæbøe 1985). Normal faults are omnipresent in the area, but major 245	
differences in structural style occur between the Pre-Zechstein units, Triassic, Upper Jurassic, 246	
Lower Cretaceous syn-rift strata and post-rift infill. The Josephine High (Fig. 5, S1), Hidra 247	
High (Fig. 5, S2), Border High (Fig. 5, S4), Mandal High (Fig. 5, S5, S6) Cod Terrace (Fig. 248	
5, S1) and Piggvar Terrace (Fig. 5, S5) represent Pre-Zechstein basement blocks forming 249	
major structural highs or terraces. Several large salt domes occur within the area (e.g. Fig. 5, 250	
S1).  251	

Late Jurassic-Early Cretaceous rift structures 252	

Due to Mid-Jurassic thermal doming and associated erosion, few Lower Jurassic units are 253	
preserved in the study area. In contrast, significant Upper Jurassic sediments, recording the 254	
latest North Sea rift phase, occur locally in extensional basins. These units are best developed 255	
in the south of the study area, where the Feda Graben, Gertrud Graben and Søgne Basin half-256	
graben accommodate some 2 km of Upper Jurassic sequences (Fig. 5, S5, S6) as part of the 257	
large-scale left-stepping en-echelon Central Graben structure (Erratt et al. 1999, Fig. 1a). 258	
Many Triassic faults affect Upper Jurassic strata, indicating fault reactivation, e.g. the 259	
Skrubbe Fault and Coffee Soil Fault bounding the Feda Graben and Søgne Basin, 260	
respectively (Fig. 5, S5, S6). Rifting caused salt movement and diapirism which impacted 261	
Upper Jurassic sedimentation e.g. in the Søgne Basin. 262	

Subsequently, the major Lower Cretaceous deposits are shifted westward compared to the 263	
Upper Jurassic depocenters (Figs. 5, S1, S3, S4). A distinct feature is the Early Cretaceous 264	
reactivation of the Pre-Zechstein half-graben west of the Border High, where Upper Jurassic 265	
or Triassic units are absent (Fig. 5, S4). Also striking is the lack of Early Cretaceous tectonic 266	
activity in the Søgne Basin; in contrast to significant Triassic and Upper Jurassic syn-tectonic 267	
units, little to no Lower Cretaceous sediments occur (Fig. 4b, 5, S5, S6). 268	

The character of the Early Cretaceous basins varies considerably. The Border High and 269	
Breiflabb Basins are fault-bounded and show thickening towards the boundary faults, 270	
indicating syn-rift deposition (Fig. 5, S1, S4). Other rift-bounded basins are found west of the 271	
Hidra High (Fig. 5, S2), at well NO 2/4-10 (Fig. 5, S3) and west of the Mandal High (Fig. 5, 272	
S6). Yet the filling of pre-existing deep underfilled Jurassic basins as well as sediment 273	
compaction effects could partially account for these observations (Rattey & Hayward 1993; 274	
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Coward et al. 2003). At various localities, salt motion affected Early Cretaceous deposition: 275	
e.g. above the Hidra High (Fig. 5, S2) and at well NO 2/4-3 (Fig. 5, S4). In other parts of the 276	
study area, depocenters exhibit sag-type geometries, e.g. east of well UK 30/17B-3 and above 277	
the Hidra High (both in Fig. 5, S2), west of the NO 1/6-5 diapir (Fig. 5, S3) and in the Ål 278	
Basin (Fig. 5, S5, S6). Faults do not generally continue to the top of the Early Cretaceous, 279	
except for those associated with later tectonic inversion.  280	

As such, cessation of rifting is shown to be diachronous. The westward shift of the Early 281	
Cretaceous depocenters with respect to the Jurassic rifts might indicate a change in 282	
extensional regime near the start of the Cretaceous, as proposed by previous authors (e.g. 283	
Erratt et al. 1999), before extension activity ceased altogether due to the opening of the 284	
young North Atlantic (Rattey & Hayward 1993). 285	

Post-rift and tectonic inversion structures 286	

The Late Cretaceous and Cenozoic units dominantly show gentle sag geometries along the 287	
NW-SE trend of the NCG, indicating further post-rift thermal subsidence. At the Breiflabb 288	
basin on the UK/Norwegian border, thermal subsidence was strongest creating a major Late 289	
Cretaceous/Cenozoic depocenter (Figs. 4a, 5, S1, 6a, Gowers & Sæbøe 1985). However, 290	
signs of inversion are also noted, for instance at the Lindesnes Ridge where Early Cretaceous 291	
syn-rift deposits are uplifted along Skrubbe Fault, (Figs. 5, S1, 6e). Inversion-related 292	
structures (inverted grabens and diapirs/salt domes) disturb not only the Upper Cretaceous 293	
deposits, but also Cenozoic strata (Figs. 3-5), indicating multiple inversion phases (Gowers et 294	
al. 1993).  295	

LOWER CRETACEOUS RESERVOIR INTERPRETATION 296	

Sandstone occurrences in Norwegian and Danish wells 297	

In contrast to the UKCG, where numerous wells encounter Lower Cretaceous sandstones 298	
(Milton-Worssell et al. 2006), only three wells in the NCG area (from a total of 160 Lower 299	
Cretaceous penetrations) are reported to contain similar deposits (NPD 2017, Figs. 4b, 6). 300	
The sandstones in these wells are lithostratigraphically defined as Ran Sandstone units (NPD 301	
2017) and, in contrast with the deep marine character of most equivalent Lower Cretaceous 302	
sandstones in the UK, are interpreted as shallow submarine fans (Isaksen & Tonstad 1989; 303	
Milton-Worssell et al. 2006).  304	

Well NO 2/1-8 on the Cod Terrace contains a 4 m interval of Ran Sandstones, but no further 305	
details on lithology, or reservoir properties are publicly available (Fjellanger 1986; NPD 306	
2013). These sandstones appear below the Hauterivian-Barremian Tuxen Fm and are, 307	
therefore, assigned to the Ryazanian reservoir interval (Fig. 2). Reference well NO 2/7-15 in 308	
the Feda Graben (Isaksen & Tonstad 1989, Fig. 4b) contains a 48 m thick Ran Sandstone 309	
sequence. Cores taken from the lowermost part of this succession are described as 310	
dominantly clay-rich siltstones with occasional micro-porosity and fractures with minor 311	
hydrocarbon shows (Phillips 1981). However, drill stem tests demonstrated the section to be 312	
tight (NPD 2017). The age of these Ran Sandstones is poorly constrained, but they are 313	
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attributed to the Albian-Aptian reservoir interval due to their occurrence directly below the 314	
Aptian-Albian Sola Fm (Isaksen & Tonstad 1989, Fig. 2).  315	

In well NO 3/7-3, east of the Mandal High (Fig. 4b), a 107 m thick Ran Sandstone sequence 316	
occurs on top of the BCU (NPD 2017). These deposits consist of a lower unit of dolomitic 317	
and glauconitic sandstones, interbedded with dolomitic and shaley layers, and an upper unit 318	
of massive coarse-grained sandstones with occurrences of chalky, sandy limestone, capped 319	
by carbonates containing some lignite (Verolles 1982). The massive sandstones (60-70% 320	
quartz) are cemented but represent good reservoir potential with porosities and permeabilities 321	
between 20-28 % and 0.5 to 10 D respectively (Verolles 1982; Boirie & Jeannou 1984). The 322	
NO 3/7-3 Ran Sandstones were deposited as lenticular sheets or slope apron bodies in a 323	
restricted and proximal, relatively shallow marine environment (100-200 m water depth, 324	
Verolles 1982), which evolved into an open marine setting towards the end of the Early 325	
Cretaceous (Boirie & Jeannou 1984). Since the Ran Sandstones are of Ryazanian age (Boirie 326	
& Jeannou 1984), they belong to the Latest Ryazanian reservoir interval.  327	

Four other Norwegian wells encountering Ran Sandstone are situated to the NE, in block 17, 328	
at a considerable distance from the North Sea rift basins and outside the extended study area. 329	
The implications of these sandstone occurrences will be addressed in the South Viking 330	
Graben regional overview below. 331	

In the Tail End Graben (Denmark), 9 m thick Lower Cretaceous subangular to subrounded 332	
and poor to moderately sorted, fine grained “Kira Sandstones” are found above BCU-level in 333	
the Amalie-1 well, probably deposited as part of a submarine fan system (Statoil 1991, Fig. 334	
6). These sandstones are oil-bearing and of excellent reservoir quality with high porosities 335	
and permeabilities (0.213 and 319 mD, respectively) and a net-to gross ratio of 0.339 (Statoil 336	
1991). Further Latest Ryazanian sandstones, although thinner, occur in the Tabita-1, Svane-1 337	
and Iris-1 wells south of the Amalie-1 well (Figs. 4b). The Tabita-1 “Kira Sandstone 338	
equivalent” at the base of the Lower Cretaceous contains mostly claystone with very fine 339	
grained silt- and (quartz) sandstone striae (1-3 cm), as well as cross bedding with erosional 340	
surfaces (Bonde et al. 1994). A core from this interval contains conglomeratic intervals of 341	
unweathered, angular clasts of metamorphic basement material, as well as folded and 342	
disturbed mudstone beds. Both facies are indicative of slope process, whilst the lack of wave-343	
related structures in the core suggests a depositional environment below storm wave base 344	
(Bonde et al. 1994). In the Svane-1 well, very fine to fine grained, subrounded, poorly sorted 345	
calcareous quartz sandstones with an argillaceous matrix and net-to-gross ratios up to 0.85 346	
are found above the BCU (Thorsrud et al. 2002). The Iris-1 well contains various levels of 347	
thin sandstone in the Valhall Fm overlying the BCU which are “a few” meters thick (Britoil 348	
1985). The cored material from this well is predominantly fine-grained and similar to that in 349	
the Tabita-1 well (Bonde et al. 1994). Further to the west, Lower Cretaceous (Latest 350	
Ryazanian-Early Hauterivian) fine to medium grained, poorly sorted sandstones, belonging to 351	
the Latest Ryazanian reservoir interval, are present in the Sten-1 well (Kern et al. 1983), 352	
making a total of 5 wells encountering Lower Cretaceous sandstones in the Danish part of the 353	
study area (Fig. 4b). 354	

 355	
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Latest Ryazanian reservoir distribution 356	

An interpretation of the Latest Ryanazian reservoir interval is presented in Fig. 7 and depicts 357	
the sandstone occurrences in wells, potential source areas with sand-prone lithologies 358	
subcropping the BCU and sediment transport fairways to depocenters identified on the Lower 359	
Cretaceous isochron map. 360	

Milton-Worrsell et al. (2006) demonstrated the potential for marine sandstone development 361	
in the Ryazanian-Barremian interval of the UKCG, with the Forties-Montrose High and 362	
Western Platform interpreted as provenance areas. Closer to the Norwegian-British border, 363	
sand-prone lithologies are found in subcrop below the BCU at the Josephine High (Skagerrak 364	
Fm), Auk Ridge (Rotliegend) and Argyll Field at the Mid North Sea High (Rotliegend, Ula 365	
Fm and Skagerrak Fm). These represent potential sand source areas for the surrounding 366	
depocenters where multiple well penetrations occur (Milton-Worrsell et al. 2006). The Auk 367	
Ridge is also the likely provenance area for the Lower Cretaceous Devil’s Hole Sandstones to 368	
its west (Milton-Worssell et al. 2006). These scattered deposits are considered similar to the 369	
Norwegian Ran Sandstones (Isaksen & Tonstad 1989) and possibly represent a continuation 370	
of the Upper Jurassic syn-rift Fulmar/Ula shoreface or shelf deposits (Bisewski 1990; 371	
Johnson & Lott 1993; Copestake et al. 2003, Fig. 2). The UK Flora-Fife Trend area and the 372	
Danish Inge High contain Ula Fm and Rotliegend units in subcrop below the BCU. These are 373	
potential source areas for the sandstones in the Danish Sten-1 well (Kern et al. 1983), which 374	
is situated in a Lower Cretaceous depocenter (Fig. 7) and is postulated to be a deep marine 375	
deposit. 376	

The 4 m thick unspecified sandstone layer in well NO 2/1-8 (NPD 2013) represents an 377	
isolated Ran Sandstone occurrence on the Cod Terrace (Fig. 2, 6). The most probable origin 378	
would be either the Mandal High or the Cod terrace, where well 7/11-8 encounters the 379	
Skagerrak Fm. in subcrop below the BCU (NPD 2017), indicating a possible small-scale 380	
sediment provenance area. Any material originating from the Scandinavian mainland to the 381	
NE would most likely be caught in the Norwegian-Danish Basin region, where major Lower 382	
Cretaceous depocenters are situated (Copestake et al. 2003, Fig. 1a). Similarly, sediments 383	
from the Josephine High would first have had to cross the Breifflab Basin depocenters (Fig. 384	
7). However, the exact nature and provenance of these Ran Sandstones cannot be established 385	
with the data currently available. 386	

The thickest Ran sandstones in the study area occur in well NO 3/7-3 (107 m, Fig. 6) and 387	
these relatively shallow to open marine sandstones were deposited just in the Søgne Basin 388	
(Verolles 1982; Boirie & Jeannou 1984), which was tectonically inactive during the Lower 389	
Cretaceous (Rossland et al. 2013, Figs. 5, S5, S6). The adjacent Mandal High and its 390	
metamorphic basement units were largely exposed during the Early Cretaceous (Verolles et 391	
al. 1982; Copestake et al. 2003; Rossland et al. 2013, Fig. 7, 9) and are the probable source 392	
for these proximal Ran Sandstones (Verolles 1982). Alternatively, Rossland et al. (2013) 393	
suggest, on the basis of dip directions, that these sandstones are related to a turbidite system 394	
sourced from the Rynkøbing-Fyn High to the east. It should however be stressed that their 395	
dip-meter data may be affected by post-sedimentary salt movement associated with the large 396	
salt dome below the Søgne Basin (Verolles 1982, Figs. 5, S5, S6), or could simply represent a 397	
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deviation in transport direction as frequently observed within local submarine fan systems 398	
(e.g. Normark et al. 1979).  399	

The presence of the thick Ran Sandstones in well NO 3/7-3 (Boirie & Jeannou 1984) indicate 400	
promising reservoir development in the area, yet none of the other wells in the vicinity 401	
encounter Lower Cretaceous sandstones (NPD 2017, Fig. 9). This is in accordance with the 402	
depositional character of the Ran Sandstone units described by Verolles (1982) and Boirie & 403	
Jeannou (1984), who suggest that reservoir bodies in the area, although potentially of 404	
significant thickness, may have a restricted lateral extent (Figs. 9). Furthermore, the Mandal 405	
High area is little studied, potentially harbouring reservoirs in various other stratigraphic 406	
intervals (Rossland et al. 2013, Fig. 10) and detailed analysis will be required to identify 407	
these.  408	

In the east of the study area, the Kira Sandstones and their equivalents in the Amalie-1 and 409	
Tabita-1 wells (Fig. 6) probably represent submarine fan or slope deposits (Statoil 1991), 410	
associated with erosion at BCU-level and the nearby boundary fault between the Tail End 411	
Graben and the Ringkøbing-Fyn High (Bonde et al. 1994, Fig. 7). Although no rock samples 412	
are available from the Amalie-1 well, the metamorphic clasts in cores from the Tabita-1 well 413	
are reported to be similar to the basement rocks on the Ringkøbing-Fyn High and on the 414	
Mandal High (well NO 3/7-1) (Bonde et al. 1994). Possible supply from the Ringkøbing-Fyn 415	
High may have involved submarine erosion of the footwall basement, whereas alternative 416	
sediment transport from the Mandal High may have by-passed the NO 3/7-3 well and 417	
Amalie-1 well before reaching the Tabita-1 well location (Bonde et al. 1994, Fig. 7). The 418	
sand-prone intervals in the Svane-1 and Iris-1 wells are possibly correlatable to the Kira 419	
Sandstones (Bonde et al. 1994; Thorsrud et al. 2002), which, if correct, may indicate a 420	
regional deep marine fan system (Fig. 7). It should be noted however, that except for the 421	
Amalie-1 well, no Lower Cretaceous reservoir-quality sandstones are found. Yet a few 422	
localised sandy apron or lobe units may have developed as a continuation of the Jurassic deep 423	
marine sandstones in the area (Bonde et al. 1994; Nielsen et al. 2015). Similar deposits could 424	
also have developed in the Gertrud Graben and Feda Graben to the South and SW of the 425	
exposed Mandal High (Rossland et al. 2013), but there is currently no evidence to support 426	
this interpretation and identifying such reservoirs, if present, will be highly challenging. 427	

In contrast to the UK and Danish Central Graben areas, no Latest Ryazanian sandstones 428	
appear in wells within the NCG proper (NPD 2017) and most Lower Cretaceous depocenters 429	
are isolated from the identified sand source areas (Fig. 7). However, various faults were still 430	
active, of which some could have exposed sand-prone lithologies to erosion. Of these, the 431	
Hidra High block next to the Breifflab Basin, where Rotliegend units are present in the 432	
footwall, is the best example (Figs. 5b, 7). However, it is possible that such smaller sand 433	
source areas (e.g. Argyll Field area: 10−100 km2 and less for exposed fault scarps) might not 434	
have produced enough sand-prone material for reservoir-size deposits (sensu McArthur et al. 435	
2016a). By contrast, the exposed Mandal High amounts to 500−600 km2 and is associated 436	
with the thick Ran sandstones in well NO 3/7-3 and the postulated Amalie fan system, thus 437	
representing significant reservoir potential. 438	

 439	
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Aptian-Albian reservoir distribution 440	
 441	
The interpretation of the Latest Ryazanian reservoir interval is presented in Fig. 8 and depicts 442	
the sandstone occurrences in wells, potential source areas with sand-prone lithologies 443	
subcropping the Top Lower Cretaceous and sediment transport fairways to depocenters 444	
identified on the Lower Cretaceous isochron map. 445	

Towards the end of the Early Cretaceous, sandstone occurrences are rarely seen in UKCG 446	
wells (Milton-Worssel et al. 2006). However, important sediment provenance areas (e.g. the 447	
Forties-Montrose High, Auk Ridge, Josephine High) were still in place and exposed, 448	
providing sand influx into the adjacent depocenter as recorded in some penetrations (Milton-449	
Worssell et al. 2006, Fig. 8). However, several of the smaller source areas were flooded and 450	
covered with Lower Cretaceous deposits (Cod Terrace and Inge High) and potential sourcing 451	
from fault scarps was strongly diminished with the cessation of rift activity. Other Ryazanian 452	
provenance areas were reduced but remained partially exposed towards the end of the Early 453	
Cretaceous as indicated by subcrop data (e.g. the Argyll Field area, Flora-Fife Trend, 454	
compare Fig. 8 with Fig. 7), yet no sandstone well occurrences are recorded in the adjacent 455	
Aptian-Albian depocenters. 456	

Ran Sandstone units belonging to the Aptian-Albian reservoir interval are found in only one 457	
Norwegian well: NO 2/7-15 (Isaksen & Tonstad 1989, NPD 2017, Figs. 6, 8). These clay-rich 458	
silt/sandstones are somewhat isolated from the interpreted sediment provenance areas. The 459	
Flora Field area, where the Rotliegend is found in subcrop below the Upper Cretaceous chalk 460	
deposits, is proposed as the most likely origin of these units (Fig. 8). However, the character 461	
of NO 2/7-15 Ran Sandstones remains poorly constrained and demands further assessment. 462	

It should be noted that the wells in the Søgne Basin area, where thick Ryazanian Sandstones 463	
were previously deposited (well NO 3/7-3), record only mudstone and chalky deposits 464	
(Rossland et al. 2013; NPD 2017). Also, the potential Amalie fan system in the Danish Tail 465	
End Graben to the south is absent in well reports. Yet the Mandal High was still prone to 466	
erosion during the Aptian-Albian, as indicated by metamorphic basement and Bryne Fm 467	
subcropping the Upper Cretaceous chalk units (wells NO 2/6-5, NO 3/7-1 and West-Lulu 4, 468	
Mærsk 1987; NPD 2017). In addition, large parts of the Ringkøbing-Fyn High have no or 469	
thin (a few meters) Lower Cretaceous cover (Japsen et al. 2003). Both highs may, therefore, 470	
have produced sand-prone material leading to localised reservoir development (Fig. 8), 471	
although there is currently no evidence to support this suggestion. 472	

Overall, the Aptian-Albian reservoir interval provides significantly less potential for Lower 473	
Cretaceous sandstone deposits than the Latest Ryazanian, due to the drowning of sand source 474	
areas. Still, the Ran Sandstone present in well NO 2/7-15 and the sandstone occurrences in 475	
various other wells in the UKCG indicate some reservoir potential. 476	
 477	
 478	

 479	

 480	
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POTENTIAL ANALOGUE SETTINGS IN THE SOUTHERN PERMIAN BASIN 481	
AREA 482	

This study shows that the UKCG and NCG harbour potential for Lower Cretaceous sandstone 483	
reservoir units suggesting further exploration possibilities. As the Central Graben structure 484	
continues south into Danish, German and Dutch territorial waters (Figs. 1, 11), where the 485	
geological setting was quite similar during the Early Cretaceous (Voigt et al. 2008; Pharaoh 486	
et al. 2010), it would be worthwhile to extend the scope of a future case study to these areas.  487	

In Denmark for example, the Ringkøbing-Fyn High along the Eastern margin of the Tail End 488	
Graben has no or limited Upper Jurassic to Lower Cretaceous sedimentary cover (Japsen et 489	
al. 2003), and is known to have been the source of various Late Jurassic fan deposits 490	
(Johannessen & Andsbjerg 1993; Andsbjerg & Dybkjær 2003). Such conditions are likely to 491	
have continued into at least the Earliest Cretaceous, as illustrated by the deposition of Vyl 492	
sandstones (Figs. 2, 11a). These submarine fan units with moderate reservoir potential are 493	
found adjacent to the Coffee Soil Fault and were supplied by the Ringkøbing-Fyn High 494	
(Michelsen et al. 2003, Fig. 11a). In addition, the Lower Cretaceous chalks of the Tuxen Fm. 495	
form the reservoirs in the Danish Valdemar and Adda fields (Copestake et al. 2003; Jakobsen 496	
et al. 2005, Fig. 2) indicating another attractive target for continued exploration in the area. 497	

Further to the south, the German and Dutch sectors of the Central Graben are flanked by the 498	
Schill Grund High to the east and the Step Graben and Cleaver Bank High to the west (Fig. 499	
11a), areas which were exposed highs during the Late Jurassic and the Early Cretaceous 500	
(Pharaoh et al. 2010). However, intense Late Cretaceous and Cenozoic basin inversion has 501	
caused significant erosion (De Jager 2007) and most of the Lower Cretaceous in the southern 502	
sector of the Dutch Central Graben was removed. In the northern sector of the Dutch Central 503	
Graben, where inversion and associated erosion was less drastic (Dronkers & Mrozek 1991), 504	
Lower Cretaceous sediments are better preserved and hydrocarbon-bearing Scruff sandstones 505	
are found (De Jager 2003; De Jager & Geluk 2007, Fig. 2). Additionally, the adjacent 506	
Terschelling Basin, where moderate inversion is recorded (Verweij & Witmans 2009) 507	
contains relatively thick Lower Cretaceous deposits (Duin et al. 2006; EBN et al. 2015). 508	

On the southern fringes of the Southern Permian Basin, the Broad Fourteens Basin and West 509	
Netherlands Basin form a continuation of the Lower Cretaceous North Sea basins (Fig 11a). 510	
Although these basins also underwent strong post-rift inversion (Van Wijhe 1987; De Jager 511	
2003), significant parts of the Lower Cretaceous deposits are preserved in the area (over 900 512	
m thick locally, Duin et al. 2006) and contain various hydrocarbon fields (De Jager & Geluk 513	
2007). Similar to the situation in the Moray Firth, the associated reservoirs are documented to 514	
be visible on seismic due to a relatively thin Upper Cretaceous-Cenozoic overburden 515	
(Oakman 2005). The Early Cretaceous depositional environment was, however, rather 516	
different from the situation in the Central Graben and Moray Firth. Instead of isolated shale-517	
dominated basins, receiving limited sand influx from small exposed highs nearby, the area 518	
received ample sediment input from the large London-Brabant Massif to the south (Jeremiah 519	
et al. 2010, Fig. 11a). Therefore, extensive continental to shallow marine shelf clastics were 520	
deposited in relatively shallow basins, in contrast with the deep marine basin settings in the 521	
Central and Northern North Sea (Figs. 2, 11). The abundance of sand-prone material in the 522	
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depositional systems on the fringe of the Southern Permian Basin could potentially have fed 523	
submarine fans in the rift depocenters further north. The area experienced tectonically-524	
induced rejuvenation of clastic input, progradation and the development of a widespread shelf 525	
system at the K30 sequence boundary, which is associated with increased Hauterivian deep 526	
marine reservoir development in the Moray Firth (DeVault & Jeremiah 2002). However, 527	
except for the Lower Barremian (Wanneperveen) turbidite units found in association with the 528	
Friesland Platform near the Dutch-German border (Jeremiah et al. 2010, Fig. 11a), no such 529	
deposits are recorded in the Southern Permian Basin. This scarcity of deep marine sand 530	
development may be related to the area’s relatively gentle bathymetry during the Early 531	
Cretaceous (Fig. 11a) although various other factors are known to affect turbidite systems 532	
such as shelf width, surrounding geomorphology and hinterland lithologies (Martinsen et al. 533	
2005; Mudge 2014). 534	

 535	

ANALOGUE SETTINGS IN THE SOUTH VIKING GRABEN AREA 536	

 537	
Another potential analogue region to the NCG is the South Viking Graben (SVG, Fig. 11). In 538	
contrast to the Southern North Sea, the area was associated with a deep marine setting 539	
(flanked by exposed highs) during the Earliest Cretaceous (Fig. 11a). Shallow marine or 540	
terrestrial sandstones were deposited on the Utsira High, forming parts of the reservoirs in the 541	
Edvard Grieg and Johan Sverdrup fields (NPD 2017) and may be directly comparable to the 542	
Mandal High in the NCG (Rossland et al. 2013). The SVG is documented to include Upper 543	
Jurassic turbidites (Partington et al. 1993; Fraser et al. 2003; Jackson et al. 2011). The 544	
associated Fladen Ground Spur, Crawford Spur and Utsira High sand provenance areas 545	
continued to be exposed in the earliest Cretaceous (Copestake et al. 2003, Fig 11a). However, 546	
no Earliest Ryazanian deep marine sands are reported from the SVG area, potentially 547	
providing exploration opportunities.  548	

The situation was different during the Aptian, where Skiff Sandstone units are reported along 549	
the fringes of the Fladen Ground Spur and the Crawford Spur (Johnson & Lot 1993; Johnson 550	
et al. 2005, Fig. 11b). To the south, the Kopervik fairway supplied the reservoirs of the giant 551	
Britannia Field with sands derived from the East Orkney High in the west (Jeremiah 2000). 552	
Oakman (2005) suggests that these deep marine sands represent a fundamentally different 553	
depositional system for the Aptian-Albian interval, rather similar to the Cenozoic situation 554	
and involving sediment transport over long distances sourced by the exposed North Atlantic 555	
rift shoulders, in contrast to the preceding confined Upper Jurassic turbidite fans. The 556	
Kopervik system is, however, separated from the SVG by a halokinetically-induced high that 557	
was in place throughout the Early Cretaceous, so that potential sandstone deposits in the SVG 558	
can only be derived from the adjacent highs (Bisewski 1990, Fig, 11). Further to the north, in 559	
the North Viking graben, deep marine slumps of Albian age form reservoirs of the Agat field 560	
Skibeli et al. 1995) but these deposits were derived from the main Scandinavian massif 561	
(Gulbrandsen & Nyborkken 1991), whereas the SVG remained relatively isolated. 562	

Other wellbore calibrated sandstone occurrences in the area are reported from the Åsta 563	
Graben, SE of the Utsira High (3-6 in Fig. 11b, Table 1). These Ran Sandstone units all occur 564	
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in the uppermost part of the Lower Cretaceous, directly underneath the Upper Cretaceous 565	
chalk deposits and were likely deposited in a shallow marine environment (Olsen 1979; 566	
Isaksen & Tonstad 1989).  567	

 568	
POTENTIAL METHODS FOR FURTHER DETAILED RESERVOIR 569	

INTERPRETATION 570	

As demonstrated by Milton-Worssell et al. (2006), detailed seismic analysis is required to 571	
distinguish potential reservoir units. However, the presence of thick Upper Cretaceous chalk 572	
and the low impedance contrasts between Cromer Knoll shales and sandstones renders 573	
seismic imaging of any relatively thin (typically less than 30 m) Lower Cretaceous sandstone 574	
reservoir problematic. To do so requires good quality 3D seismic data combined with an 575	
understanding of the likely depositional systems to be encountered (Crittenden et al. 1998; 576	
Law et al. 2000; McKie et al. 2015). With such data available, sedimentary systems such as 577	
deep marine fans may be traceable on time slice amplitude maps (e.g. Posamentier & Kolla 578	
2003; Martinsen et al. 2005; Kilhams et al. 2011; 2014a). Amplitude versus offset (AVO) 579	
techniques could help to distinguish differences in lithology and reservoir fluid content (e.g. 580	
Oakman 2005; Veeken & Rauch-Davies 2006; Milton-Worssell et al. 2008; Othman et al. 581	
2017). Such a study would be recommended for the Tail End Graben area, as there is 582	
potential for small-scale reservoir development. Furthermore, the seismic response of Lower 583	
Cretaceous sandstone well occurrences in the NCG, as well as the UKCG where sandstones 584	
are more common (Milton-Worssell et al. 2006), should be compared to seismic facies in 585	
undrilled depocenters. Detailed seismic sequence stratigraphy of Lower Cretaceous 586	
depocenters could allow the identification of sea-level driven erosional unconformities on 587	
highs, associated with lowstand fans systems in basinal areas (sensu Posamentier & Vail 588	
1988).  589	

Methods to further assess sand source areas and to localise associated shallow to deep marine 590	
sandstones might include palynological (or similar biostratigraphic) analysis of cored wells to 591	
determine to what degree a high was exposed (e.g. O’Driscoll et al. 1990; Mudge & Jones 592	
2004; McArthur et al. 2016a). Since cores from wells NO 2/7-15 and NO 3/7-3 are available 593	
(NPD 2017), magnetic analysis could provide sediment transport directions of these specific 594	
Early Cretaceous sandstone occurrences (Hailwood & Ding 2000). Additional petrological 595	
and geochemical analysis of heavy minerals (e.g. garnets or zircons) might reveal their 596	
provenance area (e.g. Morton et al. 2005; Kilhams et al. 2014b; Nielsen et al. 2015), if 597	
cuttings/cores of nearby sand source areas are available (e.g. well NO 3/7-1 on the Mandal 598	
High and wells NO 3/7-3 and Tabita-1 in the Søgne Basin and Tail End Graben, respectively; 599	
Verolles 1982; Bonde et al. 1994, Fig. 7). Furthermore, it will be important to consider the 600	
factors influencing the behaviour and geometries of shoreface systems and deep marine fans 601	
(e.g. sand-to-mud ratio, flow discharge, slope gradient, sea level changes and fault activity) 602	
and where sand deposits occur in these systems (e.g. Posamentier & Kolla 2003; Martinsen et 603	
al. 2005; McKie et al. 2015; McArthur et al. 2016b). Recently developed software for the 604	
simulation of turbidite deposition in combination with paleorelief reconstructions on 3D 605	
seismic could be a powerful tool to predict the distribution of deep marine fans (Aas et al. 606	
2010). 607	



Zwaan,	Lower	Cretaceous	reservoirs,	North	Sea	Central	Graben	

CONCLUSIONS 608	

Here a structural framework of the NCG area has been presented. This reflects a diverse 609	
geological history including Triassic extension and salt movement, Late Jurassic to Early 610	
Cretaceous rifting and subsequent basin inversion with salt diapirism. Late Jurassic rifting 611	
was most intense in the south of the study area, while Early Cretaceous rifting was more 612	
important in the north, possibly representing an Early Cretaceous change in tectonic regime 613	
before rifting halted altogether. An assessment of the Lower Cretaceous indicates fair 614	
potential for reservoir development. Although the study area is isolated from a large 615	
hinterland, local sediment sources and potential sediment transport routes are identified. Most 616	
potential is expected around the exposed highs in Ryazanian times, while many sand source 617	
areas were drowned at the end of the Early Cretaceous (Aptian-Albian). The underexplored 618	
Mandal-High area, where restricted shallow marine sandstone deposits around the exposed 619	
Mandal High and in the Søgne Basin provide the best potential, is suggested for further focus. 620	
Similar depositional environments could have existed around other exposed highs (e.g. 621	
Josephine High, Auk Ridge), although they may have been too small to have produced 622	
significant reservoir units. Furthermore, the postulated Amalie fan system in Denmark 623	
illustrates the possibilities for good quality deep marine sandstones, which may have also 624	
formed in the depocenters south and SW of the Mandal High. Analogous settings to those in 625	
the study area are also recognised in the Southern Permian Basin area to the south and the 626	
South Viking Graben to the north, further analysis of the Lower Cretaceous reservoir 627	
intervals of these areas would be an interesting next step. A detailed effort including the use 628	
of advanced seismic techniques and detailed well analysis will be necessary to accurately 629	
define such reservoirs, if present. The discovery of the Edvard Grieg and Johan Sverdrup 630	
fields illustrates the importance of continued exploration, especially the re-assessment of 631	
available well and seismic data, in the context of this mature hydrocarbon province (Jørstad 632	
2012).  633	
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TABLE CAPTION 1215	

Table 1. List of sources for well data  1216	

Type	of	data	 Well	 Datasource	

Lithostratigraphic		tops	
for	seismic	
interpretation	

Norway	 NPD	2017,	Shell	database	

UK		 Shell	database	

Denmark	 Shell	database	

Well	shown	in	well	
panel	Fig.	6	

UK 30/11b-1, UK 29/5a-5	 Milton-Worssell	et	al.	2006 
NO 2/1-8	 Fjellanger	1986;	NPD	2013 
NO 2/7-15	 Phillips 1981; Isaksen & Tonstad 

1989 
NO 3/7-3	 Verolles 1982; Boirie & Jeannou 

1984; NPD 2017 
Amalie-1	 Statoil 1991 

Other	well	data	
described	in	text	and	
other	images 

Norway	 NPD	2017	

NO	7/3-1	 NPD	1979a;	Strass	1979	

NO	17/10-1	 NPD	1979b;	Olsen	1979	

NO	17/11-1	 A/S	Norske	Shell	1968	

NO	17/11-2	 Provan	1976	

UKCG	 Milton-Worssell	et	al.	2006	

Denmark	(general)	 Shell	database	

Sten-1	 Kern	et	al.	1983	

Tabita-1	 Bonde	et	al.	1994	

Iris-1	 Britoil	1985;	Bonde	et	al.	1994	

Svane	 Thorsrud	et	al.	2002	

West	Lulu-4	 Mærsk	1987	
BCU	and	Top	Lower	
Cretaceous	subcrop	
data 

e.g.	NO	7/11-8,	NO	3/7-1 NPD	2017;	Shell	database 

 1217	
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FIGURE CAPTIONS 1219	

 1220	

Fig. 1. (a) Structural map of the Late Jurassic Central Graben depicting the study area 1221	
(Norwegian Central Graben area and parts of the UK Central Graben) and the adjacent UK 1222	
Central Graben study area of Milton-Worssell et al. (2006), that in combination define the 1223	
extended study area. (b) Detailed map of the study area, indicating seismic coverage (blue) 1224	
and the extent of available seismic depth maps (thick dotted outline). Dotted lines indicate 1225	
interpreted seismic sections S1-S6 (Fig. 5). CBH: Cleaver Bank High, DCG: Dutch Central 1226	
Graben, EOH: East Orkney High, NDB: Norwegian-Danish Basin, ECG: East Central 1227	
Graben, FG: Feda Graben, FGS: Fladen Ground Spur, FMH: Forties-Montrose High, HH: 1228	
Halibut High, IMF: Inner Moray Firth, JH: Jæren High, MNSH: Mid North Sea High, MT: 1229	
Marnock Terrace, OMF: Outer Moray Firth, RFH: Ringkøbing-Fyn High, SB: Søgne Basin, 1230	
SH: Sørvestlandet High, SG: Step Graben, SGH: Schill Ground High, TEG: Tail End Graben, 1231	
UH: Utsira High, WCG: West Central Graben, WGG: With Ground Graben, WP: Western 1232	
Platform. Modified after Fraser et al. (2003), Milton-Worssell et al. (2006) and Pharaoh et al. 1233	
(2010). 1234	
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 1235	

Fig. 2. Norwegian lithostratigraphy for the study area (left) and overview of Lower 1236	
Cretaceous reservoirs in the Central North Sea (right). CrKn: Cromer Knoll Group, FB: 1237	
Fischerbank Schiefer, NS: North Sea, SPB: Southern Permian Basin. Seismic horizon 1238	
abbreviations from top to bottom: BC: Base Cenozoic, TLC: Top Lower Cretaceous, BCU: 1239	
Base Cretaceous Unconformity, TMJ: Top Middle Jurassic, TZ: Top Zechstein, TR: Top 1240	
Rotliegend. Modified after Vollset & Doré (1984), Van Wijhe (1987), Isaksen & Tonstad 1241	
(1989), Wong et al. (1989), Copestake et al. (2003), Milton-Worssell et al. (2006), De Jager 1242	
& Geluk (2007), Jakobsen et al. (2005); Herngreen & Wong (2007), UKDD (2007), Wong 1243	
(2007), NDD (2012). Geological timescale dates after Walker et al. (2012).  1244	
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 1245	

 1246	
Fig. 3. Time depth maps of four regional horizons in the study area: (a) Base Cenozoic; (b) 1247	
Top Lower Cretaceous; (c) Base Cretaceous Unconformity (BCU); (d) Top Rotliegend. Note 1248	
that the Base Cenozoic time depth map (a) is also the Cenozoic isochron map and that the 1249	
Top Rotliegend map is incomplete due to locally poor seismic quality. Dotted lines indicate 1250	
the trace of interpreted transects S1-S6 and white dots indicate well locations along these 1251	
transects (see Fig. 5). Solid outlines indicate the extent of the 3D seismic survey. Dashed 1252	
outlines indicate the extent of the available previously interpreted seismic horizons in the UK 1253	
and Denmark (see Fig. 1). BB: Breiflabb Basin, CT: Cod Terrace, FG: Feda Graben, HH: 1254	
Hidra High, JoH: Josephine High; FMH: Forties-Montrose High; MNSH: Mid North Sea 1255	
High, LR: Lindesness Ridge, PT: Pigvarr Terrace, RFH: Ringkøbing-Fyn High, SH: 1256	
Sørvestlandet High, ST: Steinbit Terrace. 1257	
  1258	

 1259	
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 1260	

Fig. 4. Isochron maps showing the location and geometry of depocenters in the study area in 1261	
Two-way travel time. (a) UC: Upper Cretaceous isochron map; (b) LC: Lower Cretaceous 1262	
(Cromer Knoll Group). Dotted lines indicate the trace of interpreted transects S1-S6 and 1263	
wells along these transects (see Fig. 5). Solid outlines indicate the extent of the 3D seismic 1264	
survey. Dashed outlines indicate the extent of the available previously interpreted seismic 1265	
horizons in the UK and Denmark (see Fig. 1). The larger yellow dots indicate >3 m sand 1266	
occurences in wells within the study area, whereas crosses indicate sandstone traces (<3 m 1267	
thickness). Wells: (1) UK 29/5a-5, (2) UK 30.11b-1, (3) NO 2/1-8, (4) NO 2/7-15, (5) NO 1268	
3/7-3, (6) Sten-1, (7) Amalie-1, (8) Tabita-1, (9) Iris-1, (10) Svane-1. BB: Breiflabb Basin, 1269	
CT: Cod Terrace, FG: Feda Graben, FMH: Forties-Montrose High, HH: Hidra High, JoH: 1270	
Josephine High, MH: Mandal High, MNSH: Mid North Sea High, LR: Lindesness Ridge, PT: 1271	
Pigvarr Terrace, RFH: Ringkøbing-Fyn High, SB: Søgne Basin, SH: Sørvestlandet High. 1272	
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 1274	

Fig 5. Interpreted seismic sections S1-S3. UK: United Kingdom. For section locations see 1275	
Fig. 1b. Reference datum is mean sea level. 1276	
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 1277	

Fig 5. (continued) Interpreted seismic sections S4-S6. UK: United Kingdom. For section 1278	
locations see Fig. 1b. Section S6 modified after Møller & Rasmussen (2003). Reference 1279	
datum is mean sea level. 1280	

 1281	
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 1283	

  1284	

Fig. 6. Well data from wells UK 30/11b-1 and UK 29/5a-5 (modified after Milton-Worssell 1285	
et al. 2006), NO 2/1-8 (modified after NPD 2013), NO 2/7-15 (modified after Isaksen & 1286	
Tonstad 1989), NO 3/7-3 (modified after Boirie & Jeannou 1984) and Amalie-1 (DK, 1287	
modified after Statoil 1991), all containing Lower Cretaceous (Ran/Kira) Sandstone units and 1288	
hung off Top Lower Cretaceous level (Fig. 2). No lithology data are available for well NO 1289	
2/1-8. No Gamma Ray data available for well Amalie-1. Locations shown in Fig. 4b. 1290	
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 1291	
 1292	

 1293	

Fig. 7. Interpretation of reservoir potential in the extended study area for the Latest 1294	
Ryazanian (BCU-level). Well data, possible sand source areas, Ryazanian fault activity, 1295	
possible sediment transport fairways and areas of possible sandstone development are 1296	
projected on top of the Lower Cretaceous isochron map. Well identifiers are Ir: Iris-1, St: 1297	
Sten-1, Sv: Svane-1, Ta: Tabita-1, (1): well NO 3/7-1. AR: Auk Ridge, ArF: Argyl Field, CT: 1298	
Cod Terrace, FBB: Fisher Bank Basin, FFT: Flora-Fife Trend, FMH: Forties-Montrose High, 1299	
GG: Gertrud Graben, HH: Hidra High, IH: Inge High, JH: Jæren High, JoH: Josephine High, 1300	
MH: Mandal High, MT: Marnock Terrace, PT: Piggvar Terrace, RFH: Ringkøbing-Fyn High, 1301	
SB: Søgne Basin, SBB: South Buchan Basin, SH: Sørvestlandet High, TEG: Tail End 1302	
Graben, WP: Western Platform. Modified after Japsen et al. (2003), Milton-Worssell et al. 1303	
(2006) and Rossland et al. (2013). 1304	
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 1306	

Fig. 8. Interpretation of reservoir potential throughout the extended study area for the Aptian-1307	
Albian (near-Top Lower Cretaceous level). Well data, possible sand source areas, interpreted 1308	
possible sediment transport fairways and areas of possible sandstone development are 1309	
projected on top of the Lower Cretaceous isochron map. AR: Auk Ridge, ArF: Argyl Field 1310	
CT: Cod Terrace, FBB: Fisher Bank Basin, FF: Flora Field, FMH: Forties-Montrose High, 1311	
GG: Gertrud Graben; HH: Hidra High, IH: Inge High, JH: Jæren High, JoH: Josephine High, 1312	
MH: Mandal High, MT: Marnock Terrace, PT: Piggvar Terrace; RFH: Ringkøbing-Fyn 1313	
High, SB: Søgne Basin, SBB: South Buchan Basin, SH: Sørvestlandet High, TEG: Tail End 1314	
Graben, WP: Western Platform. Modified after Japsen et al. (2003), Milton-Worssell et al. 1315	
(2006) and Rossland et al. (2013). 1316	
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Fig. 9. Proposed Early Cretaceous paleogeographic situation around the Mandal High area. 1319	
Image modified after Rossland et al. (2013).  1320	
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Fig. 10. Idealised cross section proposing the main potential reservoirs and traps in the 1323	
Mandal High-Søgne Basin area. C: Cenozoic, UC: Upper Cretaceous, LC: Lower Cretaceous, 1324	
UJ: Upper Jurassic. LJ: Lower Jurassic, Tr: Triassic, Z: Zechstein (evaporites), R: 1325	
Rotliegend, B: Pre-Permian sediments and/or (metamorphic) Basement. Image modified after 1326	
Rossland et al. (2013).  1327	
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Fig. 11. (a) Gross depositional environment overview of the Central and Southern North Sea 1331	
in Ryazanian times (K10). (b) Gross depositional environment of the South Viking Graben 1332	
area in Aptian times (K40-50), corresponding to the Aptian-Albian reservoir interval. Lower 1333	
Cretaceous sand presence: (1) Edvard Grieg field, (2) Johan Sverdrup field, (3) well NO 1334	
7/10-1, (4) well NO 7/11/-1, (5) well NO 7/11-2, (6) well NO 7/3-1, ÅG: Åsta Graben, BF: 1335	
Britannia Field, BFB: Broad Fourteens Basin, CBH: Cleaver Bank High, COS: Central 1336	
Offshore Saddle, CS: Crawford Spur, CVG: Central Viking Graben, DCG: Dutch Central 1337	
Graben, EOH: East Orkney High, ESP: East Shetland Platform, FP: Friesland Platform, HH: 1338	
Halibut High, IMF: Inner Moray Firth, JH: Jæren High, FMH: Forties-Montrose High, KF: 1339	
Kopervik Fairway, MH: Mandal High, MT: Marnock Terrace, NCG: Norwegian Central 1340	
Graben, NDB: Norwegian-Danish Basin, OMF: Outer Moray Firth, RFH: Ringkøbing-Fyn 1341	
High, RVG: Roer Valley Graben, SG: Step Graben, SGH: Schill Grund High, SPB: Sole Pit 1342	
Basin, TB: Terschelling Basin, TEG: Tail End Graben (Danish Central Graben), UH: Utsira 1343	
High, UKCG: UK Central Graben, WGG: Witch Ground Graben, WNB: West Netherlands 1344	
Basin. Modified after Copestake et al. (2003), NPD (2017) for the South Viking Graben area, 1345	
after Milton-Worsell et al. (2006), Copestake et al. (2003), Rossland et al. (2013) for the 1346	
UKCG and NCG, after Vejbæk et al. (2010), after Pharaoh et al. (2010) for the Danish, 1347	
German and (parts of) the Dutch Central Graben, and after Jeremiah et al. (2010) for the 1348	
Southern North Sea.  1349	
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