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Abstract

The automatic segmentation of retinal layer structures enables clinically-relevant
quantification and monitoring of eye disorders over time in OCT imaging. Eyes with
late-stage diseases are particularly challenging to segment, as their shape is highly
warped due to pathological biomarkers. In this context, we propose a novel fully-
Convolutional Neural Network (CNN) architecture which combines dilated residual
blocks in an asymmetric U-shape configuration, and can segment multiple layers
of highly pathological eyes in one shot. We validate our approach on a dataset of
late-stage AMD patients and demonstrate lower computational costs and higher
performance compared to other state-of-the-art methods.

1 Introduction

Optical Coherence Tomography (OCT) is a non-invasive medical imaging modality that
provides micrometer-resolution volumetric scans of biological tissue [8]. Since its intro-
duction in 1991, OCT has seen widespread use in the field of ophthalmology, as it enables
direct, non-invasive imaging of the retinal layers. As shown in Fig. 1, OCT allows for
the visualization of both healthy tissue and pathological biomarkers such as drusen, cysts
and fluid pockets within and underneath the retinal layers. Critically, these have been
linked to diseases such as Age-related Macular Degeneration (AMD), Diabetic Retinopa-
thy (DR) and Central Serous Chorioretinopathy (CSC) [1, 13].

Given the widespread occurrence of these diseases, which is estimated at over 300
million people worldwide, medical image analysis methods for OCT imaging have gained
popularity in recent years. The automatic segmentation of retinal layer structures is of
particular interest as it allows for the quantification, characterization and monitoring of
retinal disorders over time. This remains a challenging task, as retinal layers can be
heavily distorted in the presence of pathological biomarkers. In this context, the present
paper focuses on providing more accurate retinal layer segmentations in pathological eyes,
at clinically-relevant speeds.
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Figure 1: Example of OCT cross-sections with retinal layer boundaries highlighted for
(left) healthy subject and (right) late-stage AMD patient. The images were manually
annotated by an expert ophthalmologist.

A number of relevant methods on this topic can be found in the literature. Mayer et
al. [12] propose the use of a series of edge filters and denoising steps to extract layers in
OCT cross-sections. In [5], a Markov Random Field (MRF)-based optimization with soft
constraints is proposed to segment 7 retinal layers using volumetric information. Chen et
al. [4] use a constrained graph-cut approach to segment layers and quantify fluid pockets
in pathological OCTs. Overall, most of these methods face difficulties in segmenting all
retinal layers accurately for subjects with pathological eyes.

To this end, we present a novel strategy to overcome the above limitations and provide
accurate results in a wider range of cases. Inspired by recent CNN approaches for semantic
segmentation [14] and image classification [6], we introduce a novel CNN architecture
that learns to segment retinal layers as a supervised regression problem. Our proposed
network combines residual building blocks with dilated convolutions into an asymmetric
U-shape configuration, and can segment multiple layers of highly pathological eyes in one
shot. Using lower computational resources, our strategy achieves superior segmentation
performance compared to both state-of-the-art deep learning architectures and other
OCT segmentation methods.

2 Methods

Our goal is to segment retinal cell layers in OCT images. The main challenge in this
task stems primarily from the highly variable and irregular shape of pathological eyes,
and secondarily from the variable image quality (i. e., signal strength and speckle noise)
of clinical OCT scans. Due to the image acquisition process, wherein each cross-section,
or Bscan is acquired separately without a guaranteed global alignment, we opt to seg-
ment retinal layers at the Bscan level. This avoids the need for computationally intensive
3-dimensional convolutions [3] and volumetric pre-processing (i. e., registration and align-
ment).

In our approach, we treat the task of segmenting retinal layers as a regression problem.
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Given a Bscan image, I, we wish to find a function T : I → L, that maps each pixel in I to
a label L ∈ {0, 1, 2, 3, 4, 5, 6} corresponding to an anatomical retinal cell layer region. As
in [5], we consider the following six retinal layers: (1) Internal Limiting Membrane (ILM)
to Nerve Fibre Layer (NFL), (2) NFL to Ganglion Cell Layer (GCL), (3) GCL and Inner
Plexiform Layer (IPL), (4) Inner Nuclear Layer (INL) and Outer Plexiform Layer (OPL),
(5) OPL to Inner Segment/Outer Segment (IS/OS) Junction and (6) IS/OS Junction to
Bruch’s Membrane (BM).

2.1 Branch Residual U-Network

Fully convolutional U-net style networks have established themselves as the state-of-the-
art for binary segmentation and have been successfully used in a variety of biomedical
applications [14]. In such architectures, input images are convolved and downsampled
level by level with exponentially increasing numbers of filters up to a predefined depth
(descending branch), from which they are subsequently upsampled and convolved to the
original size (ascending branch). Skip connections from corresponding levels transfer
information from the descending to the ascending branch.

A number of important limits arise from this architecture. First, the largest possible
object that can be segmented is defined by the cumulative receptive field of the network.
According to our experiments, a regular U-net with 3 px× 3 px convolutions and a depth
of 5 layers [14], will start exhibiting holes when segmenting objects with discontinuities
wider than 3∗25 = 96 px. Second, due to the exponential growth of trainable parameters,
the maximum depth of such a network is limited to 5-7 layers before the computational
demands become intractable. Third, the convergence rate of a U-net tends to decrease
as the network grows in depth. We attribute this to the vanishing gradient problem that
affects deeper networks.

We have designed our network to address each of these problems:

1. We use a building block based on dilated convolutions with dilation rates of {1, 3, 5}
to increase the effective receptive field of each network level and without increasing
the number of trainable parameters. We enhance this block with residual connec-
tions [7, 17] and batch normalization [10], which are summed together with the
dilated convolutions. Depending on the branch direction, each block ends with
a max-pooling or upsampling operation. We denote those blocks as BlockD and
BlockU , respectively.

2. We insert bottleneck connections between blocks to control the number of trainable
parameters [15, 16, 9]. Furthermore, we increase the number of filters based on a
capped Fibonacci sequence. We chose this sequence after experimenting with zero,
constant and quadratic growth, as a good trade-off between network capacity and
segmentation performance.

3. Finally, we add connections from the input image, downscaled to the appropriate
size, to all levels in the ascending and descending branches.

Combined, these result in a significant increase in the learning rate, segmentation ac-
curacy and, due to the reduced number of parameters, processing speed. We name the
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Figure 2: (left) Branch Residual U-Network (BRU-net). The descending branch takes
a single Bscan as input and performs consecutive BlockD operations. The ascending
branch receives the output of the descending branch and performs consecutive BlockU

operations. The numbers indicate the number of filters output by each block. Skip
connections connect each descending to each ascending level, while the original Bscan is
provided to each level for context. The final output is a regressed layer class for each
pixel of the input image.
(right) BlockD, BlockU , input and output blocks. The rectangles illustrate computations.

resulting architecture Branch Residual U-shape Network (BRU-net). The precise archi-
tecture and building blocks are illustrated in Fig. 2.

Throughout our network, we employ 3× 3 convolutional kernels with n filters where
n increases according to the Fibonacci sequence {32, 64, 96, 160, 256, 416}, capped to a
maximum of 416 parameters per level. This avoids the larger growth of parameters
encountered in traditional U-networks and allows for deeper networks. More specifically,
our network requires 21 million parameters for a depth of 5 levels and grows to 55 million
parameters for a depth of 6 levels. The corresponding U-net requires 44 million and
176 million parameters for the same depths, an increase of 2× and 3×, respectively.

2.2 Training

The block layout has been optimized using an evolutionary grid search strategy, by train-
ing two variants in parallel and selecting the best performer. To keep training time
reasonable, the grid search is performed on a 4× subsampled dataset. This process is
repeated 50 times, each one taking up to 30 minutes.

To increase convergence rate and reduce training time, we pre-initialize our network
by training it as an autoencoder for 10 epochs, using a small set of 50 OCT volumes of
healthy eyes, acquired from the same OCT device. This set is distinct from the volumes
we use for segmentation. To avoid learning the identity function, we disable the skip
connections of the network during this process.
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Figure 3: Qualitative comparison of each segmentation approach. Top row, left to right:
ground truth, BRU-net, U-net; bottom row, left-to-right: Dufour et al., Chen et al.,
Mayer et al. Only BRU-net is able to segment the BM layer under the pathological
region. The smaller receptive field of U-net results in discontinuities. Further qualitative
results are provided in the supplementary material.

The output of the network is an image with the same size as the input Bscan. Each
pixel of the output image is assigned a value between 0 and 6 which corresponds to the
identity of its corresponding retinal layer. We train the network to minimize the pixel-
wise Mean Square Error (MSE) loss between the predicted segmentation and the ground
truth. This loss penalizes anatomically implausible segmentations (e.g. class 6 next to
0) more than plausible ones (e.g. class 1 next to 0). We rely this asymmetry to ensure
segmentation continuity.i. e., The network parameters are updated via back-propagation
and the Adam optimization process with the infinity norm. [11].

Each fold is trained for a maximum of 150 epochs. We start training with an initial
learning rate of 10−3 and reduce it by a factor of 2 if the MSE loss does not improve
for 5 consecutive epochs, down to a minimum of 10−7. We interrupt the training early
if the MSE loss stops improving for 25 consecutive epochs. Using a dedicated validation
set, comprising 10% of the training set, we evaluate the MSE loss to adaptively set the
learning rate and perform early stopping. At the end of the training procedure, we use
the network weights of the epoch with the lowest validation loss to evaluate images in
the test set.
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Figure 4: Quantitative comparison of segmentation accuracy per layer, using (left) the
Chamfer distance error and (right) the Dice score.

3 Experimental Results

A trained ophthalmologist collected 20 macular OCT volumes from pathological subjects
using a Heidelberg Spectralis OCT device (Heidelberg Engineering AG, Heidelberg, Ger-
many). Each volume comprises 49, 512 × 496 Bscans, with a lateral (x-y) resolution of
15 µm and an axial (z-) resolution of 3.9 µm. No volumes or Bscans were removed from
our initial acquisition, to maintain the complete range of image quality observed in the
clinic. For each Bscan in each volume, manually segmented ground truth layers were
provided by the ophthalmologist.

We split our dataset into 5 equally sized subsets, each using 16 patients for training
and 4 for testing. We repeat this process for each of those subsets for a 5-fold cross-
validation. In each fold, the training set contains 784 training samples (Bscans), which
we double to 1568 by flipping horizontally, taking advantage of the bilateral symmetry of
the eye. The Bscans are first padded with a black border to a size of 512×512 pixels and
then augmented with affine transformations, additive noise, Gaussian blur and gamma
adjustments. Training is performed on batches of 8 Bscans at a time. Finally, the output
image is quantized to integer values (0 to 6) without further post-processing.

To evaluate BRU-net, we compare it with the 3D methods of Dufour [5], Chen et.
al. [4], and the 2D method of Mayer et. al. [12] on the same dataset. Additionally, we
train a traditional U-net configuration [14] using the procedure described above. Fig. 3
provides a qualitative comparison of the results.

To quantify those results, we make use of two metrics: (1) the Chamfer distance [2]
between each ground truth layer boundary and the boundary produced by a given method
and (2) the Dice score of each predicted layer surface. Note that BRU-net is not con-
strained to convex shapes. Since pathological retinal layers may be non-convex, other
metrics that rely on pixel distances are ill-suited for this problem. Fig. 4 demonstrates
the performance of each of the evaluated methods.

Fig. 5 displays the mean training and validation loss of the 5-folds over time for both
BRU-net and U-net. In both the training and validation sets, BRU-net achieves faster
convergence and slightly better MSE loss.

We evaluated the statistical significance of those results using paired t-tests between
BRU-net and each baseline. The resulting p-values indicate statistically significant results
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Figure 5: Training loss (left) and validation loss (right) comparison between BRU-net
and U-net. BRU-net exhibits faster convergence speed and lower loss compared to U-net.

between BRU-net and every other baseline except U-net:

U-net Dufour et.
al.

Chen et. al. Mayer et.
al.

p (Dice) 1.05e-01 2.03e-04 3.19e-05 1.08e-05
p (Chamfer) 1.09e-01 2.70e-04 3.18e-03 9.49e-03

Finally, we estimated the total runtime for each method. To process a single volume,
BRU-net requires 5 s (Python), compared to 7 s for U-net (Python), 85 s for Mayer et
al. (Matlab), 150 s for Dufour et al. (C++), and and 216 s for Chen et al (C++). The
results were calculated on the same system using a 3.9 GHz Intel 6600K processor and a
Nvidia 1080GTX GPU.

4 Conclusion

We have presented a method for performing layer segmentation on OCT scans of highly
pathological retinas. Inspired by recent advances in computer vision, we have designed a
novel fully-convolutional CNN architecture that can segment multiple layers in one shot.
We have compared our method to several baselines and demonstrated qualitative and
quantitative improvements in both segmentation accuracy and computational time on a
dataset of late-stage AMD patients. Given the robustness of this approach on pathological
cases, we plan to investigate how retinal layers change over time in the presence of specific
diseases.
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[3] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ron-
neberger. 3D U-net: Learning dense volumetric segmentation from sparse anno-
tation. In Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 9901 LNCS,
pages 424–432, 2016.

[4] X. Chen, M. Niemeijer, L. Zhang, K. Lee, M. D. Abramoff, and M. Sonka. Three-
dimensional segmentation of fluid-associated abnormalities in retinal oct: Proba-
bility constrained graph-search-graph-cut. IEEE Transactions on Medical Imaging,
31(8):1521–1531, Aug 2012.

[5] Pascal A. Dufour, Lala Ceklic, Hannan Abdillahi, Simon Schroder, Sandro De Zanet,
Ute Wolf-Schnurrbusch, and Jens Kowal. Graph-based multi-surface segmentation
of OCT data using trained hard and soft constraints. IEEE Transactions on Medical
Imaging, 32(3):531–543, 2013.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. Arxiv.Org, 7(3):171–180, 2015.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[8] David Huang, Eric A Swanson, Charles P Lin, Joel S Schuman, William G Stinson,
Warren Chang, Michael R Hee, Thomas Flotte, Kenton Gregory, Carmen A Puliafito,
and James G Fujimoto. Optical Coherence Tomography HHS Public Access. Science.
November, 22(2545035):1178–1181, 1991.

[9] Gao Huang, Zhuang Liu, and Kilian Q Weinberger. Densely Connected Convolu-
tional Networks. ArXiv preprint, pages 1–12, 2016.

[10] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift. Arxiv, pages 1–11, 2015.

[11] Diederik P Kingma and Jimmy Ba. Adam: {A}Method for Stochastic Optimization.
CoRR, abs/1412.6980, 2014.

[12] Markus A. Mayer, Joachim Hornegger, Christian Y. Mardin, and Ralf P. Tornow.
Retinal nerve fiber layer segmentation on fd-oct scans of normal subjects and glau-
coma patients. Biomed. Opt. Express, 1(5):1358–1383, Dec 2010.

[13] Jessica I W Morgan. The fundus photo has met its match: Optical coherence to-
mography and adaptive optics ophthalmoscopy are here to stay, 2016.

[14] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Net-
works for Biomedical Image Segmentation, pages 234–241. Springer International
Publishing, Cham, 2015.

8



[15] C Szegedy, Wei Liu, Yangqing Jia, P Sermanet, S Reed, D Anguelov, D Erhan,
V Vanhoucke, and A Rabinovich. Going deeper with convolutions. In 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–9, jun
2015.

[16] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. Inception-v4, Inception-
ResNet and the Impact of Residual Connections on Learning. Arxiv, page 12, 2016.

[17] Zifeng Wu, Chunhua Shen, and Anton van den Hengel. Wider or Deeper: Revisiting
the ResNet Model for Visual Recognition. 2016.

9


	1
	2 Methods
	2.1 Branch Residual U-Network
	2.2 Training

	3 Experimental Results
	4 Conclusion

