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Introduction

This thesis leaps into the metapredicative and puts forward a type of ordinal analysis
that goes without “impredicative methods”. Neither does our approach involve the
use of collapsing functions nor uncountable ordinals. Furthermore, the rules of the
infinitary systems used to eliminate cuts are intrinsically sound, as opposed to e.g.
infinitary systems equipped with an Ω-rule. We are building – bottom-up – stronger
and stronger theories by applying successively stronger operations which we have
already understood to theories which we have already understood.

Metapredicative ordinal analysis

Metapredicative theories is a term coined by Jäger and his research group in Bern. A
first description of this notion is found in Strahm’s paper “First steps into metapred-
icativity in explicit mathematics” [27]:

Metapredicativity is a new general term in proof theory which describes
the analysis and study of formal systems whose proof-theoretic strength
is beyond the Feferman-Schütte ordinal Γ0 but which are nevertheless
amenable to purely predicative methods.

The distinguishing feature of a metapredicative theory is that its ordinal analysis
can be performed by abstaining from so-called impredicative methods. Or as put by
Jäger in [6]:

The collection of metapredicative systems comprises all those theories
which are not predicatively reducible and whose proof-theoretic anal-
ysis can be carried through without making use of any impredicative
methods. [...] Our experience shows that typical impredicative meth-
ods always refer to some sort of collapsing techniques and collapsing
functions, either directly applied to infinitary proofs or to the ordinals
assigned to proofs or to both.

At present, the predicative theories are thoroughly understood, and so is a large
segment of impredicative theories with the strength |ID1| and beyond. This leaves
a huge gap between the Feferman-Schütte ordinal Γ0 and the Bachmann-Howard
ordinal |ID1| = ϑεΩ+1, of which only a small initial segment is charted, namely a
couple of theories with a proof-theoretic ordinal up to ϕ1000.

Initial steps into the metapredicative were made by Strahm [27] in the framework of
explicit mathematics by analyzing theories of strength ϕ1ω0 and ϕ1ε00. Subsystems
of second order arithmetic of corresponding strength, ATR0 + (Σ1

1-DC) and ATR +
(Σ1

1-DC), have been considered by Jäger and Strahm [8]. Independently, Rathjen has
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analyzed a Martin-Löf type theory with ordinal strength ϕ1Γ00 (Rathjen [17, 16]).

The metapredicative variants of transfinitely iterated inductive definitions ÎDα were
analyzed by Jäger, Kahle, Setzer and Strahm in [7]. Their autonomous closure
corresponds to a subsystem of second order arithmetic called FTR0 (fixed point
transfinite recursion) which has ordinal strength ϕ200 (see Strahm [28]).

In a next step, various systems of strength meta-predicative Mahlo – captured by the
ordinal ϕω00 – were studied. All these systems are characterized by Π1

2-reflection on
ω-models of ACA0, Π2-reflection on admissible sets or some corresponding form of
reflection (cf. Jäger and Strahm [9], Strahm [29] and Rüede [19]). Then, Thiel and
Gibbons have researched in their dissertations [33, 5] theories with proof-theoretic
ordinal ϕ1000 (the Ackermann ordinal). These theories correspond to systems of
second order arithmetic where an ω-tower of Mahlo-universes is asserted to exist,
i.e. ACA0 + ∀Z∃X [Z∈̇X ∧ Π1

2-Refl(Σ
1
1-DC0)↾X ]. And quite recently, in Ranzi [13]

and Ranzi and Strahm [14] systems are analyzed whose proof-theoretic ordinal is the
small Veblen number ϑΩω which correspond to the theory p3(ACA0) (Π

1
3-reflection

on ω-models of ACA0). Besides, some ideas how to tackle the systems pn+3(ACA0)
(Π1

n+3-reflection on ω-models of ACA0) are sketch in Jäger and Strahm [10].

To narrow down the concept of metapredicative ordinal analysis we review the cur-
rent practice as applied in the aforementioned papers. First, we look at the upper
bound computations, then at the well-ordering proofs. Since we are interested in
developing a modular ordinal analysis for subsystems of second order arithmetic, we
specialize to subsystems of second order arithmetic, although mutatis mutandis our
observations apply to metapredicative systems in general.

To describe the general procedure to obtain upper bounds, we denote by Tǫ the
L2-theory that comprises the logical axioms for classical two-sorted predicate calcu-

lus, and axioms for the primitive recursive functions and relations.
∗

Tǫ denotes the
corresponding infinitary Tait-style system that derives formulas without free num-
ber variables: the ω-rule replaces the ∀x-rule, and its axioms are all sequents of the
form Γ, A and Γ, B,¬C, where A is a true literal, and A and B are numerically

equivalent literals (so
∗

Tǫ is a second order version of PA∗). For the time being, T

stands for some finitary (formal) theory, and
∗

T some infinitary Tait-style system.
If the depth of a derivation is less than γ and the cut-rule is restricted1 to (main

formulas of) axioms of
∗

T that are not also axioms of Tǫ, this is indicated by
∗

T
<γ

∗
Γ.

An upper bound of T is then a limit ordinal γ, so that each derivation T ⊢ Γ of an

arithmetical sequent can be transformed into a derivation
∗

Tǫ
<γ

∗
Γ, which by the

above definition is cut-free.

1The cut-rule is only applicable if one of the cut-formulas is main formula of an axiom of T.
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An upper bound of a theory T is then computed as follows. First, a procedure is

given that transforms each derivation T ⊢ Γ into an infinitary derivation
∗

T
<γ

Γ

for some limit ordinal γ. Then, the costs of eliminating cuts in
∗

T are figured out
using the following means:

(i) Partial cut-elimination:
∗

T
α

Γ =⇒
∗

T
<ϕ1α

∗
Γ.

(ii) Using (i) and other standard techniques from predicative proof-theory such as

asymmetric interpretations,
∗

T is reduced to the union of suitable2 intermediate

systems (
∗

Tξ : ξ ∈ I) for which the costs of cut-elimination are already known.
Thus, for each ξ ∈ I, there is a function fξ, so that for all η < ξ and each

sequent Γ ⊆ Fml(T̆η), consisting of formulas for which the transformation
works,

(∗)
∗

Tξ
β

∗
Γ =⇒

∗

Tη
fξ(β)

∗
Γ.

Under the additional assumption that
∗

T0 is
∗

Tǫ and Fml(
∗

Tǫ) are the arithmetical
formulas, and further, there is a function f so that for all ξ ∈ I, if β < α, then
fξ(f(β)+ω) < f(α), one obtains by induction on α, that for each η (including η = 0),

(∞-elim) If Γ ⊆ Fml(
∗

Tη) and
⋃

ξ∈I

∗

Tξ
α

∗
Γ, then

∗

Tη
f(α)

∗
Γ.

Namely, if
⋃
ξ

∗

Tξ
α

∗
Γ is obtained from Γ, ∀X¬A(X) by a cut with an axiom

∃XA(X) of
∗

Tξ for some ξ > η, then ∀-inversion and the I.H. yield
∗

Tξ
f(β)

∗
Γ,¬A(U)

for some β < α, thus
∗

Tξ
f(β)+2

∗
Γ. Now (∗) and the assumption on f yield

∗

Tη
f(α)

∗
Γ.

For an arithmetical Γ with T ⊢ Γ,
∗

Tǫ
<f(γ)

∗
Γ follows.

With regard to the well-ordering proofs, we see no clear pattern emerging. But
all well-ordering proofs seem to use a generalization of Feferman’s Lemma 5.3.1.
in “Reflection on incompleteness” [3], which states that given a suitable hierarchy
((HX)β : β < γ) of sets above some set X , and given that γ is a limit ordinal
which is “sufficiently refined w.r.t. α < γ”, expressed below by ωα+1|γ, stating that
∃ξ(γ = ωα+1ξ), then the set

C := {α : ∀γ, δ (ωα+1|γ ∧ Wo
(HX )✁γ

✁ (δ) → Wo
(HX )✁γ

✁ (ϕαδ))}

is progressive w.r.t. ✁. If for each α < γ and each set X , there is a hierarchy HX

along ✁↾γ, then Wo✁(γ) together with the progressivity of C entails Wo✁(ϕγ0).

2If η ≤ ξ, then Fml(T̆η) ⊆ Fml(
∗

Tξ), and each axiom of
∗

Tη is an axiom of
∗

Tξ; if ∀XA(X) is main

formula of an axiom of Tη, then ¬A(U) ∈ Fml(T̆η).

3



Ad hoc adjustments to the actual demands of the hierarchy, the condition ωα+1|γ
and the function ϕαβ are used to do the well-ordering proofs.

The analysis of metapredicative systems came to a momentary halt at theories of the
strength of the small Veblen number. From our point of view this is because these
theories are substantially harder to analyze, and since the currently used methods
used in metapredicative ordinal analysis are still unsatisfying in the following respect:

Carrying out the ordinal analysis of a theory T is a long-winded and
strenuous task. All the same, one is content to present as the main result
of such labor the proof-theoretic ordinal |T|, although |T| falls short
of subsuming the information gained by its computation. Hence, the
invested work cannot be efficiently reused when attempting to analyze
stronger systems.

Our modular ordinal analysis presents a solution to this problem. The information
gained by carrying out the ordinal analysis of a theory is now efficiently reused,
which allows us to compute also the proof-theoretic ordinals of most relevant systems
of ordinal strength between the small Veblen number and the Bachmann-Howard
ordinal.

Modular ordinal analysis

Although the proof-theoretic ordinal |T| is of great relevance – it is the extra ingre-
dient needed to proof the consistency of T in PRA+QF-TI✁(|T|) (cf. [2, 4, 11, 15, 21,
22, 31, 32]) – we think that the focus should be shifted towards an understanding of
the ordinal analysis of the theory T itself, which in particularly allows to efficiently
reuse the information gained in the process.

In order to address the above point, we set-up our modular ordinal analysis as
follows.

(i) If T̆ is an L2-sentence, then T denotes the theory T := Tǫ + T̆ which extends
Tǫ by the single axiom T̆. We present all theories under consideration in the
form T := Tǫ+ T̆. These theories are then manipulated by selected operations
Op, functions on sentences, that map a theory T to Op(T) := Tǫ+Op(T̆). The
focus is on operations that are build from the basic operations (pn+1 : n ∈ N),
where p1(T̆) states that above each set Z there is an ω-model X of T, and
more generally, pn+1(T̆) expresses Π

1
n+1-reflection on ω-models of T.

(ii) The main ideas of modular ordinal analysis are that we can adequately de-
scribe a theory T by a sharp bound, a normal function fT : Ω → Ω, and
accordingly, that each selected operation Op can be adequately described by

4



a corresponding functional H , to the extend, that if fT is a sharp bound of T,
then H(fT) is a sharp bound of Op(T).

The sharp bound of T, a normal function fT : Ω → Ω, describes T by quantifying the

costs of cut-elimination in the corresponding infinitary system
∗

T, that extends
∗

Tǫ

axioms Γ, A, where A ∈ inst(T̆) is an instance3 of T̆. It assigns to each limit ordinal
γ the least ordinal fT(γ), so that for each finite set Γ of arithmetical L∗2-formulas
(formula without free number variables),

∗

T
γ

+
Γ =⇒

∗

Tǫ
fT(γ)

∗
Γ.

where,
∗

T
α

+
Γ is

∗

T
α

∗
Γ, but allows cuts with additional formulas that do not

impede the cut-elimination process and can be eliminated cheaply at a later stage.

A sharp bound fT of T comprises much more information than the proof-theoretic
ordinal |T|, which – for the theories we consider in this thesis – can be characterized,
for instance, in one of the following ways: |T| is

(i) the least limit ordinal γ that is not provable in T, i.e. T 6⊢ Wo✁(γ),

(ii) the least limit ordinal γ so that for each finite set of arithmetical L∗2-formulas

T ⊢ Γ =⇒
∗

Tǫ
<γ

∗
Γ.

Since by design of the corresponding infinitary system
∗

T, T ⊢ Γ readily implies
∗

T
<ω

∗
Γ, (ii) yields that fT(ω) = |T|. Clearly, the single value at ω does not

yet determine the sharp bound fT. We will see that, for instance, the theories
p2(ACA0) (Σ

1
1-DC0) and pω1 (ACA0) (ACA0 plus the assertion that for each n, there

is an n-tower of ω-models of ACA0 above any set Z) have both proof-theoretical
ordinal ϕω0. Nevertheless, p1p2(ACA0) (ATR0) has ordinal Γ0, while p1p

ω
1 (ACA0)

(pω+1
1 (ACA0)) has ordinal ϕ(ω+1)0. Only the sharp bounds separate these theories:

fΣ1
1-DC0

(γ) = ϕγ0 and fpω1 (ACA0)(γ) = ϕωγ.

Indeed, the sharp bound fT of T stores relevant proof-theoretic information of the

infinitary system
∗

T, and therefore also of T. In terms of reusability, this is good
news. If we manipulate T by means of an operation, we can predict what happens to
fT. For instance, p1(T) proves the existence of an n-tower of ω-models of T, and its
sharp bound is obtained by applying to fT the functional It1 which iterates functions:
It1(f) is defined to be a normal function so that It1(f, α+1) = f(It1(f, α)) (we write
It1(f, α) for (It1(f))(α)). Similarly, as p2(T̆) plus enough transfinite induction proves
pα1 (T̆), it seems plausible that p2 corresponds to a type-3 functional It2 that iterates

3
inst(A ∧ B) := inst(A) ∪ inst(B), inst(∀XA(X)) :=

⋃
i∈N

inst(A(Ui)) and inst(∀xA(x)) :=⋃
s a closed term

inst(A(s)); else, inst(A) := {A}.

5



functionals, and that a similar correspondence between operations and functionals
persists in higher types.

This approach is especially interesting, because most relevant subsystems of sec-
ond order arithmetic are obtained by applying to ACA0 an operation that is com-
posed of the basic operations (pn+1 : n ∈ N). To reiterate, we have e.g. that
p2(ACA0) ≡ Σ1

1-DC0, p1p2(ACA0) ≡ ATR0, p2p1p2(ACA0) ≡ ATR0+Σ1
1-DC0 and

p22(ACA0) ≡ Σ1
1-TDC0 (Σ1

1-transfinite dependent choice, cf. Rüede [19]).

The main result of this thesis can now be summarized as follows: for each operation
pn+1, there is a type-n+2 functional Itn+1 that iterates normal functions or type-n+1
functionals, so that essentially the following holds:

if fACA0 is a sharp bound of ACA0, Op is an operation build from basic
operations (pn+1 : n ∈ N), and H is the functional build from the cor-
responding basic functionals (Itn+1 : n ∈ N), then H(fACA0) is a sharp
bound of Op(ACA0).

In particular, we obtain sharp bounds of a large number of subsystems of second
order arithmetic whose ordinals are below |

⋃
n pn+1(ACA0)| = |ID1|, the Bachmann-

Howard ordinal.

Of course, the above outline neglects many details. An obvious point is that in
contrast to functionals, there is no apparent difference between application and
composition of operations: while we can apply p2 and p1 to ACA0, the functional It2
is type-3, and thus only It2(It1) can be applied to the function fACA0 . This indicates
that e.g. p2(ACA0) should be regarded as p2p1(ACA0) (still Σ

1
1-DC0). It also suggests

that we have to elaborate on what we mean by “H is the functional build from the
corresponding basic functionals” in the above formulation of our main result.

Therefore, we introduce names for operations and functionals. The name x of the
operation Opx codes how this operation is constructed by iterated transfinite com-
position from the basic operations (pn+1 : n ∈ N), and the same applies to names
of functionals. The correspondence between operations and functionals is then
produced by a map x 7→ xH , so that Opx relates to HxH .

Our main result can now be summarized more precisely as follows.

Theorem. For each name x, let Tx := Opx(ACA0), and fxH := HxH (fACA0). Then,
fTx = fxH .

The theorem is proved by induction along some well-founded ordering on the under-
lying names. We show that fTx = fxH , assuming that fTy = fyH holds for all names
y that are “simpler” than x.

6



To check that fxH ≤ fTx , we extend the notion of a provable ordinal to that of a
provable function as follows:

T proves f : ⇔ T ⊢ Wo✁(α) ∧ TI✁(CT, α) → Wo✁(f(α)),

where CT is a class depending on T. We show that for each name x, “Tx proves fxH”,
which then yields, essentially by the Boundedness Lemma, that fxH (γ) ≤ f∗

Tx
(γ).

The converse direction, that fTx ≤ gxh, is checked by showing that for each limit

ordinal γ, and each arithmetical sequent Γ,
∗

Tx
<γ

+
Γ =⇒

∗

Tǫ
<f

xH
(γ)

∗
Γ.

Finally, we point out that we obtain also the proof-theoretic ordinals of the theories
Tx + (IN), where (IN) claims formula-induction, i.e., for each L2-formula A(u),

(IN) ∀x[A(0) ∧ ∀y(A(y) → A(y+1)) → A(x)].

As for each α < ε0, Tx + (IN) ⊢ Wo✁(α) ∧ TI✁(CTx , α), we see that “Tx proves
fxH” implies Tx + (IN) ⊢ Wo✁(fxH (α)). Therefore, |Tx + (IN)| ≥ fTx(ε0). On the
other hand, Tx + (IN) ⊢ Γ entails, using standard cut-elimination techniques, that
∗

Tx
<ε0
∗

Γ. Therefore |Tx + (IN)| ≤ fTx(ε0).

To conclude this exposition, we list some immediate consequences of the above
theorem. To denote the respective proof-theoretic ordinals, we let Ω0 := 1, Ωn+1 :=
ΩΩn , Ω0(α) := α, and Ωn+1(α) := ΩΩn(α).

Examples.

(i) |ACA0| = ε0 and |ACA| = ϕ1ε0.

(ii) |p1(ACA0)| = ϕ20 and |p1(ACA0) + (IN)| = ϕ2ε0.

(iii) |Σ1
1-DC0| = ϕω0 and |Σ1

1-DC| = ϕε00.

(iv) |ATR0| = Γ0 (Feferman-Schütte ordinal), and |ATR| = ϕ10ε0.

(v) |ATR0 + (Σ1
1-DC)| = ϕ1ω0 and |ATR+ (Σ1

1-DC)| = ϕ1ε00.

(vi) |Σ1
1-TDC0| = ϕω00 and |Σ1

1-TDC| = ϕε000.

(vii) |p1(Σ
1
1-TDC0)| = ϕ1000 (Ackermann ordinal).

(viii) |pn+2
2 (ACA0)| = ϕω 0 . . . 0︸ ︷︷ ︸

n

0, |pn+2
2 (ACA0) + (IN)| = ϕε0 0 . . . 0︸ ︷︷ ︸

n

0 and

|p1p
n+2
2 (ACA0)| = ϕ1 0 . . . 0︸ ︷︷ ︸

n+1

0.

(ix) |p3(ACA0)| = ϑΩω (small Veblen number), and

|p1p3(ACA0)| = ϑΩΩ (big Veblen number).

(x) |pn+3(ACA0)| = ϑΩn(ω), |pn+3(ACA)| = ϑΩn(ε0) and p1|pn+3(ACA)| = ϑΩn+1.
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Contents

In the first part of this thesis, we introduce sets of names Q and QH for opera-
tions and functionals, and show that for each x ∈ Q, the theory Tx := Opx(ACA0)
proves the function HxH(fACA0). In the second part, we then show that the function
HxH(fACA0) is also a bound of Tx, hence a sharp bound. This also implies that
HxH(fACA0

) is the largest normal function that is provable in Tx.
Part I consists of the chapters I–IV, and Part II of the chapters V–VI, briefly re-
viewed below. The second part is shorter, partly because most relevant notions have
already been introduced in the first part, but also partly because the computation
of bounds is simpler, as we do not have to distinguish between what is provable
in a theory and what is true in the mathematical universe outside. We work in a
meta-theory and assume a reasonable amount of transfinite induction. At the end,
however, we make precise which formal theory would allow to formalize the given
proofs.

In the first chapter, we say how we present our theories. This leads to the concept
of operations on theories. We introduce the basic operations pn+1 and collect some
elementary, but relevant properties. Then, we explain how to represent operations
by L2(P)-formulas, and formulate a representation theorem for operations. It states,
that we can define new operations from operations with known representations by
transfinite recursion, and that there is an L2(P)-formula which represents this new
operation. The proof is rather technical and thus only provided in the appendix. It is
not required on a first reading. Next, we introduce the functionals Itn+1 that iterate
functions and functionals, and in some sense correspond to the operations pn+1. We
conclude with an auxiliary and technical theorem which provides a substitute for
transfinite induction, and allows us to prove, for a well-founded relation ≺, certain
statements of the form (∀α ∈ field(≺))A(α) in Tǫ, for instance our main result.

Chapter II explains most of the ideas of our modular ordinal analysis, however,
keeps the framework still simple in that we only consider operations build from the
operations p1 and p2. After introducing names QH

2 for functionals and names Q2 for
operations, and moreover, approximations and normal forms of names, we can see
our modular ordinal analysis a first time at work.

Chapter III parallels chapter two. We now extend the concepts and results to the
general case. This time we consider operations build from the operations p1 and pN0

for arbitrary large N0’s. As the ordering on names is now more complex, a couple
of new problems surface, which are solved by providing additional structure for the
sets of names Q and QH . This also allows us to cope well with higher type behavior
of operations and functionals.

Chapter IV deals with ordinal notations, and how to construct them. We introduce
a notation system based on the functionals (Hx : x ∈ QH), the idea being that

8



(x, α) denotes the ordinal gx(α). Thereby, we use many ideas developed by Setzer
(see [25]). Further, we show how the so obtained notation system relates to more
standard ones based on the ϑ-function, or with regard to ordinals below the small
Veblen number, to a standard notation system based on the nary Veblen functions.

Chapter V now introduces Tait-style systems for the theories (Tx : x ∈ Q) and cor-

responding infinitary Tait-style systems (
∗

Tx : x ∈ Q) that are suitable to deal with
cut-elimination. Further, we extend the language by additional relation symbols
(Un+1 : n ∈ N). The corresponding class terms {x : Un+1(x)} are used to axiomatize
new theories, build from given ones, by stacking them on top of each other: T1|T0

(“T1 over T0”) is essentially the theory Tǫ+ T̆1 ∧∃X(T̆0↾X), that is, T1|T0 extends
T1 by an axiom asserting that there is an ω-model of T0. However, it proves conve-
nient to have an explicit class term for the ω-model above T0, namely {x : U1(x)}.
The need to stack theories on top of each other stems from the way we deal with
the operation p1: basically, we reduce, for a suitable Γ, a derivation p1(T) ⊢ Γ to a
derivation T| . . . |T ⊢ Γ. Further, we collect some standard results concerning cut-
elimination. Moreover, we show how to cheaply eliminate a cut with a formula A

by first replacing the derivation
∗

Tx
<γ

∗
Γ, A by a derivation

∗

Tx
<γ

∗
Γ, A′, where A′

is equivalent to A, and the cut with A′ is easier to eliminate than the cut with A.

Chapter VI is then devoted to the computation of bounds. After looking at finitary
and infinitary reduction properties, we define the notion of a bound and show that
it dominates, essentially by the Boundedness Lemma, each provable function. Next,
we give two different proofs that the function HxH(fACA0) is not only provable in
Tx, but also a bound of Tx. A first direct proof exploits the provided reduction
properties by proving the claim by transfinite induction, using a suitably defined

norm |(x, α)| of a derivation
∗

Tx
α

+
Γ. And the second and more important proof

obtains the same result by first showing a stronger one, namely a dual version of
the main result of part I, which states that there is not only a strict correspondence
between the theories Tx and the functions HxH (fACA0), but more generally, also
between the operations Opx and the functionals HxH , and even the operations Op+nx
and the functionals H+n

xH
of higher types.

Chapter VI ends with a section “Conclusion”, where we give another overview of
this thesis. Having the relevant notions at hand by then allows for a more accurate
discussion of the underlying ideas and concepts.

Finally, this thesis ends with an appendix which mainly contains the rather technical
proof of the so-called Representation Theorem. This theorem states that if we can
represent operations (Opi : i ∈ I) within Tǫ, then also all operations that are
obtained by iterated transfinite composition of these operations. This allows to
meaningfully talk within formal theories about all operations under consideration.
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Chapter I

Operations and functionals

In this chapter, we provide the basic concepts required to start a modular computa-
tion of provable functions of subsystems of second order arithmetic. After fixing the
language and the general form used to present theories in Section 1, we start Section
2 by presenting a general notion of operations on theories. A family (pn+1 : n ∈ N)
of basic operations is defined, out of whose members all operations under considera-
tion are built. Furthermore, we describe how to represent operations within formal
theories. Section 3 introduces functionals (Itn+1 : n ∈ N), which, in some sense made
precise later, correspond to the operations pn+1. In Section 4, we prove a technical
result which allows us to show already in ACA0 (and weaker theories) certain state-
ments of a specific form by transfinite induction. This is in particular relevant as
our main result of the first part is of such a form.

I.1 Theories

We consider subsystems of second order arithmetic formulated in the language L2,
which comprises the symbol ∈, a unary relation symbol U, and symbols for the
primitive recursive functions and relations. The number terms of L2, denoted by
r, s, t, . . ., are defined as usual. For each relation symbol R(~u), each set variable U
and all number terms ~s and t, R(~s) and t ∈ U are atoms of L2. If A is an atom, then
A and ∼A are literals. We write t /∈ U for ∼(t ∈ U). The formulas of L2 are build
from literals by closing under conjunction, disjunction, existential and universal
quantification in both sorts. The negation ¬A is defined using De Morgan’s laws
and the law of double negation. The remaining logical connectives are abbreviated
in the standard way. FV0(A) denotes the number variables which occur free in A,
FV1(A) the set variables which occur free in A, and FV(A) := FV0(A) ∪ FV1(A).
BV0(A), BV1(A) and BV(A) denote the corresponding sets of variables which occur
bound in A. Q either stands for ∀ or ∃, and finally, ⊤ := 0 = 0 and ⊥ := 0 6= 0.
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An L2-formula A with FV(A) = ∅ is called a sentence, and if FV1(A) = ∅, then A
is called an open sentence. Further, a formula without bound set variables is called
arithmetical formula, or alternatively Π1

0-formula or Σ1
0-formula. Further, A is a

Π1
n+1-formula [Σ1

n+1-formula], if A is a Π1
n-formula or a Σ1

n-formula or of the form

∀XB(X) [∃XB(X)], where B is a Σ1
n-formula [Π1

n-formula]. If ~X = X1, . . . ,Xn

and ~Y = Y1, . . . ,Yn are finite lists of expressions, then A[~Y/ ~X ] denotes the formula
obtained from A by substituting simultaneously all occurrences of the expressions
~X by ~Y . Further, if a formula is introduced as A(U, u), then A(X, x) is short for
A(U, u)[X, x/U, u].

We start by describing the general form of the theories that we consider in this
thesis.

Definition I.1.1. Tǫ is the L2-theory that comprises the logical axioms for classical
two-sorted predicate calculus, and axioms for the primitive recursive functions and
relations. If T̆ is an L2-sentence, then T denotes the theory T := Tǫ + T̆ which
extends Tǫ by the single axiom T̆.

Next, we introduce class terms C which we also use to code families of sets and
classes in the sense specified below.

Definition I.1.2 (Class terms). Each set variable is a class term, and if C(~U, u) is

an L2-formula and ~D are class terms, then C := {x : C( ~D, x)} is a class term. If C

is the set variable X, then x ∈ C is x ∈ X, and if C is of the form {x : C( ~D, x)},

then x ∈ C abbreviates C( ~D, x).

For each n, we have a standard primitive recursive sequence coding 〈x0, . . . , xn−1〉
with associated projections (〈x0, . . . , xn−1〉)i = xi for 0 ≤ i < n. Also, we often
regard a class C as a family {(C)n : n ∈ N} of classes, where (C)t := {x : 〈x, t〉 ∈ C}.
Moreover, (C)s,t is short for ((C)s)t and C = C′ abbreviates that C and C′ have the
same elements. Finally, ∅ denotes the class term {x : x 6= x} and N := {x : x = x}.

Definition I.1.3. The following notations allow to restrict the range of bound set
variables to the classes coded by a class term C.

(i) For each L2-formula A(U), (QX∈̇C)A(X) := QxA((C)x), where x is a fresh
variable.

(ii) A↾C := A if A is arithmetical; else (Aj B)↾C := A↾C j B↾C for j ∈ {∧,∨},
(QxB)↾C := Qx(B↾C) and (QXA(X))↾C := (QX∈̇C)(A(X)↾C).

Further, X∈̇C := ∃x[X = (C)x]. Moreover, ↾ takes precedence over quantifiers
and logical connectives: for j ∈ {∧,∨,→,↔}, Aj B↾C := Aj (B↾C), QXA↾C :=
QX(A↾C) and QxA↾C := Qx(A↾C).
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If C and D are class terms, then C = {x : C(x)} for some formula C(u), thus C↾D is
{x : C(x)↾D}. Occasionally, we also write AC for A↾C.

Remark I.1.4. Let us address a possible source of confusion. Note that if e.g. A(U)
is arithmetical, then (∀X∈̇C)A(X) is ∀xA((C)x), where in general (C)x is not a set.
Hence ∀xA((C)x) implies ∀X(X∈̇C → A(X)), but the latter formula claims A(X)
only for sets X of the form X = (C)x for some x.

Observe that in A↾C only the range of the bound set variables of A is restricted.
Below, we define the formula C |= A, which also restricts the extension of the free
set variables in FV1(A) \ FV1(C).

Definition I.1.5. Let C be a class term and A an L2-formula with FV1(A)\FV1(C) =
{U1, . . . , Un}. Then,

C |= A := (A↾C)[(C)v1/U1, . . . , (C)vn/Un],

where v1, . . . , vn are pairwise distinct fresh number variables (i.e. variables that do
not occur in A↾C). To be specific, assume that v1, . . . , vn are the first variables w.r.t.
some fixed enumeration that do no occur in A↾C.

Note that if FV1(A) \ FV1(C) = ∅, then A↾C is the same formula as C |= A. We
continue by recording some properties concerning the abbreviations X∈̇C, A↾C and
X |= A.

Lemma I.1.6. Tǫ proves the following:

(i) ∃X [X∈̇C ∧A(X)] → (∃X∈̇C)A(X).

(ii) (∀X∈̇C)A(X) → ∀X [X∈̇C → A(X)].

Proof We work informally in Tǫ. (i) If there is an X with X∈̇C → A(X), then for
some x, X = (C)x, and so also A((C)x), that is, ∃xA((C)x), which is (∃X∈̇C)A(X).
(ii) Assume that x does not occur in A(C). Then (∀X∈̇C)A(X) is ∀xA((C)x). Hence
for each x, A((C)x), in particular A(X) in case that X = (C)y for some y, so
∃y(X = (C)y) → A(X), that is X∈̇C → A(X), and ∀X [X∈̇C → A(X)] follows. ✷

There is a caveat though: ∃X [X∈̇C ∧ A(X)] claims the existence of a set, whereas
(∃X∈̇C)A(X) only claims A((C)x) for some class (C)x. The two statements are only
equivalent if we have ∀x∃Y [Y = (C)x], stating that each class (C)x is a set.

Lemma I.1.7. Tǫ proves the following: if ∀x∃Y [Y = (C)x], then

(i) ∃X [X∈̇C ∧A(X)] ↔ (∃X∈̇C)A(X).

(ii) ∀X [X∈̇C → A(X)] ↔ (∀X∈̇C)A(X).
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Next, we state two basic observations concerning class terms that are tacitly used
later. A simple direct proof of these claims is obtained analogously to the proof
of Lemma V.2.8 in the second part of this thesis. Below, just a model theoretic
arguments is given.

Definition I.1.8. A structure M = (N , S,U) for the language L2 consists of a
structure N = (N, . . .) for the first order part of L2, a non-empty collection S of
subsets of N used to interpret the set variables, and a set U ⊆ N to interpret the
relation symbol U. If M satisfies the axioms of T, M is called a model of T. Given
a structure M, V denotes a valuation that maps number variables to N and set
variables to S. If A is a formula with free variables, then as usual, MV |= A states
that M satisfies A under the variable assignment V.

Lemma I.1.9. For each open L2-sentence A and each class term C,

Tǫ ⊢ A⇒ Tǫ ⊢ A↾C.

Proof Assume that C = C(~V ), and that Tǫ ⊢ A. We show that Tǫ 6⊢ A↾C is
impossible. If this were the case, then there exists a countable model M = (N , S,U)

of Tǫ, sets ~Z ∈ S and a valuation V of the number variables, so that MV 6|= A↾C( ~Z).

Now let S′ := {X : MV |= (∃X∈̇C( ~Z))(X = X )} be the collection of sets coded by
the interpretation of the class term C, that is, the range of the quantified set variables
of A. As Tǫ contains no axioms for sets and S′ is not empty, M′ := (N , S′,U) is a
model of Tǫ. By choice of S′ and V, M′

V 6|= A, contradicting Tǫ ⊢ A. ✷

The following example shows the reason for the restriction to open L2-sentences:
Tǫ ⊢ ∃X [X = U ], but since Tǫ 6⊢ ∅ = U , also Tǫ 6⊢ (∃X∈̇∅)[X = U ].

The converse direction fails in general. For instance, let A := ∃X(X = ∅) and
C := ∅. Note that for each x, (∅)x = ∅ and that A↾C = ∃x((∅)x = ∅). Hence
Tǫ ⊢ A↾C, but Tǫ 6⊢ A.

Lemma I.1.10. For each L2-formula A with FV1(A) = {U1, . . . , Un} and each class
term C with FV1(A) ∩ FV1(C) = ∅, we have that (i)⇒(ii)⇒(iii), where

(i) Tǫ ⊢ A,

(ii) Tǫ ⊢ C |= A,

(iii) Tǫ ⊢ ~U∈̇C → A↾C.

Proof If Tǫ ⊢ A(~U), then Tǫ ⊢ ∀ ~XA( ~X), so Tǫ ⊢ ∀x1, . . . , xnA((C)x1, . . . , (C)xn)↾C
by Lemma I.1.9, and thus Tǫ ⊢ A((C)v1 , . . . , (C)vn)↾C for fresh variables ~v, that is,

Tǫ ⊢ C |= A. This clearly entails Tǫ ⊢ ~U∈̇C → A↾C. ✷
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To round the picture, we also show that the statements in the above lemma are
actually all equivalent in case that the class term C is a set variable. We state this
fact as a separate lemma, since it is not required in the sequel, and since we just
give a model theoretic proof.

Lemma I.1.11. For each L2-formula A with Z /∈ FV1(A) = {U1, . . . , Un}, we have

that Tǫ ⊢ ~U∈̇Z → A↾Z implies Tǫ ⊢ A.

Proof If Tǫ 6⊢ A, then there is a countable model M = (N , S,U) of Tǫ, and sets
~Y ∈ S so that M |= ¬A(~Y). Let (Xi : i ∈ N) be an enumeration of the sets in S,
Z := {〈x, i〉 : x ∈ Xi}, S′ = S ∪ {Z} and M′ = (N, S′,U). By choice of Z, M′ is a

model of Tǫ with M′ |= ~Y∈̇Z ∧ ¬A(~Y)↾Z, contradicting Tǫ ⊢ ~U∈̇Z → A↾Z. ✷

A typical application is the following.

Corollary I.1.12. If FV(T̆) = ∅, then Tǫ + T̆ ⊢ A iff Tǫ ⊢ T̆↾X → X |= A.

Proof Tǫ + T̆ ⊢ A iff Tǫ ⊢ T̆ → A iff Tǫ ⊢ T̆↾X → X |= A. ✷

We conclude this section by giving the axioms of three important subsystems of
second order arithmetic, ACA0, Σ1

1-DC0 and ATR0. ACA0 is the weakest system
which we consider. The theories Σ1

1-DC0 and ATR0 can be obtained by applying
certain operations to ACA0, but are also of independent interest.

In order to formulate the axioms of ATR0, we introduce the abbreviation

(X)≺t := {〈x, y〉 ∈ X : y ≺ t},

and some further abbreviations which are also extensively used when dealing with
provable functions. For each binary relation symbol ≺, Wf≺(u) := ∀XTI≺(X, u)
asserts that ≺↾u :=≺↾{y : y ≺ u} is well-founded, where

Prog≺(U) := (∀x ∈ field(≺))((∀y ≺ x)(y ∈ U) → (x ∈ U)),

TI≺(U, u) := Prog≺(U) → (∀y ≺ u)(y ∈ U).

Wo≺(u) claims that Wf≺(u) and that ≺↾{y : y � u} is a strict linear order. Further,
we use the above abbreviations with a set variable in place of the relation symbol
≺. In this case, xUy is read as 〈x, y〉 ∈ U . Often, we also use ≺ as a set variable.
Moreover, Wo(U) := ∀xWoU(x) and Wf(U) := ∀xWfU(x).

The aforementioned theories as well as most second order theories with set induction
can be presented in the form Tǫ+ T̆. In this case, the axiom T̆ asserts the existence
of certain sets, and further, implies the sentence ∀X IND(X) claiming set induction,
where

IND(U) := ∀x[0 ∈ U ∧ ∀y(y ∈ U → y+1 ∈ U) → x ∈ U ].
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Occasionally, also the schema of formula induction is considered, which claims for
each L2-formula A(u),

(IN) ∀x[A(0) ∧ ∀y(A(y) → A(y+1)) → A(x)].

Definition I.1.13. The theories ACA0, Σ
1
1-DC0 and ATR0 are defined as follows.

(i) ACA0 extends Tǫ by set induction, i.e. ∀X IND(X), and an axiom

∃Z[Z = {z : A(z)}].

for each arithmetical formulas A(u).

(ii) Σ1
1-DC0 extends ACA0 by an axiom

∀X∃Y A(X, Y ) → ∃Z[W = (Z)0 ∧ ∀nA((Z)n, (Z)n+1)]

for each arithmetical formula A(U, V ).

(iii) ATR0 extends ACA0 by an axiom

Wo(≺) → ∃F∀y((F )y = {x : A((F )≺y, x)}),

for each arithmetical formula A(U, u).

The following is well-known (a specific Π1
2-sentence that axiomatizes ACA0 is given

in Section 2 of the appendix).

Lemma I.1.14. There is a Π1
2-sentence (ACA), so that ACA0 is equivalent to Tǫ +

(ACA).

To forestall future confusion, we stress that (ACA) is a L2-sentences so that Tǫ +
(ACA) is ACA0. In particular, (ACA) is not to be confused with ACA, often used in
the literature to denote the theory ACA0 + (IN).

I.2 Operation

Our focus on theories of the form T := Tǫ + T̆ allows us to regard operations on
theories as maps on L2-sentences. However, to deal also with internalized versions of
theories, we define operations to be maps on open sentences, instead. Say, we have
a family (Tn : n ∈ N) of theories. To prove that for each n, Tn ⊢ An, it might be
worth attempting to prove an internal variant Tǫ ⊢ ∀x[T̆(x) → A(x)], where T̆(u)
and A(u) are open sentences with Tǫ ⊢ T̆(n) ↔ T̆n and Tǫ ⊢ A(n) ↔ An. And in
the course of such an argument, we may want to apply an operation to T̆(u).

This is how operations are introduced in the subsection below. In the next subsec-
tion, we then show how to represent operations as L2(P)-formulas (formulas with an
additional relation symbol P(U), cf. Definition I.2.16), and how to define transfinite
iterations of operations.
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I.2.1 Operations as functions on open L2-sentences

Essentially, an operation Op maps a theory Tǫ + T̆ to the theory Tǫ + Op(T̆). For
reasons discussed below, we impose some further conditions on the map Op.

Definition I.2.1. An operation Op is a function that maps an open L2-sentence to
an open L2-sentence, so that for all open L2-sentence T̆ and T̆′,

(i) FV0(T̆) ⊆ FV0(Op(T̆)),

(ii) Tǫ ⊢ ∀X(T̆↾X → T̆′↾X) → (Op(T̆) → Op(T̆′)).

If a theory is introduced as T := Tǫ+T̆, then Op(T) := Tǫ+Op(T̆). Op0(T) := T and
Opn+1(T) := Op(Opn(T)). Further, if Op and Op′ are operations, (Op ◦ Op′)(T̆) :=
Op(Op′(T̆)).

Henceforth, T̆ and T̆′ range over open L2-sentences. Observe that if Tǫ ⊢ T̆ → T̆′,
then by Lemma I.1.9, Tǫ ⊢ T̆↾X → T̆′↾X , and thus by (ii) of the above definition,
Tǫ ⊢ Op(T̆) → Op(T̆′). Therefore, (ii) is a stronger condition than Tǫ ⊢ T̆ → T̆′ ⇒
Tǫ ⊢ Op(T̆) → Op(T̆′). On the other hand, although we have for an open sentence
A that Tǫ ⊢ A implies Tǫ ⊢ A↾X , it may of course be the case that Tǫ 6⊢ A→ A↾X .
Therefore, it is not surprising that there are T̆ and T̆′, so that

Tǫ 6⊢ (T̆ → T̆′) → ∀X(T̆↾X → T̆′↾X).

In fact, we have even Tǫ 6⊢ (T̆ → T̆′) → (p1(T̆) → p1(T̆
′)), as detailed in Remark

I.2.11. Item (ii) tries to approximate (T̆ → T̆′) → (Op(T̆) → Op(T̆′)) by replacing
Tǫ ⊢ T̆ → T̆′ by “T̆ → T̆′ holds in all models”.

Definition I.2.2. If FV0(Op(T̆)) \ FV0(T̆) = {u1, . . . , un}, then we may highlight
this by writing Op~u for Op. In this case, Op~t(T̆) := Op(T̆)[~t/~u].

All operations we are interested in are build from basic operations (pn+1 : n ∈ N),
which are defined below (cf. Definition I.2.8). Informally speaking, p1(T) claims the
existence of arbitrary large models of T: for each set Z, there is an X with Z∈̇X so
that T̆↾X . And pn+2(T) claims that there are arbitrary large models of T that are
Π1
n+2-reflecting: for each Π1

n+2-formula A(U) and each set Z, if A(Z), then there is

an X with Z∈̇X , so that T̆↾X and A(Z)↾X .

When working in pn+1(T), given sets Z1 and Z2, we also want models X of T that
contain Z1 and Z2. Therefore, we state that the theories pn+1(T) meet the axiom
pair, which allows to add a set to a family of sets; for each X and Y there is a set
Z := X+Y so that (Z)0 = X and (Z)n+1 = (Y )n for each n. Further, we need that
with X also (X)x is a set, which is ensured by the axiom trans.
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Definition I.2.3. The Π1
2-sentences trans and pair state the following:

(i) trans := ∀X, x∃Y [Y = (X)x].

(ii) pair := ∀X, Y ∃Z[Z = X+Y ], where
X+Y := {〈x, 0〉 : x ∈ X} ∪ {〈y, z+1〉 : 〈y, z〉 ∈ Y }.

To keep subsequent definitions as simple as possible, we apply operations only to
theories that imply (ACA), and henceforth stick to the following convention.

Convention I.2.4. Unless stated otherwise, an anonymous T̆ is always assumed to
be an open L2-sentences so that Tǫ ⊢ T̆ → (ACA), and an anonymous theory T is
always assumed to be of the form Tǫ + T̆. This assumption is justified by Remark
I.2.13.

Now we say that A is Π1
n, if there is a Π1

n-formula B with FV(A) = FV(B) so that
Tǫ ⊢ A ↔ B. Note that by the above convention, we have that ACA0 ⊢ T̆ ↔ T̆′ iff
Tǫ ⊢ T̆ ↔ T̆′.

Having fixed a domain of theories, we read Op ⇔ Op′ and Op ⇒ Op′ in the following
way.

Definition I.2.5. We write Op ⇔ Op′ (and also Op iff Op′), if for each T̆ (which
implies (ACA)), Tǫ ⊢ Op(T̆) ↔ Op′(T̆). Accordingly, Op ⇒ Op′ expresses that for
each T̆, Tǫ ⊢ Op(T̆) → Op′(T̆).

Lemma I.2.6. If Op′ ⇒ Op′′, then Op ◦ Op′ ⇒ Op ◦ Op′′.

Proof Fix some T̆ and assume Op′ ⇒ Op′′. Then, Tǫ ⊢ Op′(T̆) → Op′′(T̆), hence also
Tǫ ⊢ ∀X [Op′(T̆)↾X → Op′′(T̆)↾X by Lemma I.1.9. As Op is an operation, we have
that Tǫ ⊢ (Op ◦ Op′)(T̆) → (Op ◦ Op′′)(T̆) follows. ✷

The definition of the operations (pn+1 : n ∈ N) makes use of so-called universal
formulas.

Definition I.2.7 (Universal formulas). For each n > 0, we denote by π1
n(U, u, e) a

Π1
n-formula with the property that for each each Π1

n-formula A(U, u, v),

ACA0 ⊢ ∀y ∃e∀X, x[A(X, y, x) ↔ π1
n(X, x, e)].

Moreover, the index e in the universal formula π1
n is effectively computable from the

formula A and the number parameter y.

Details about universal formulas can be found e.g. in Simpson [26] (cf. Definition
VII.1.3), and Probst [12] (Corollary II.1.12).
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Definition I.2.8 (The basic operations). For each natural number n, we define
Rn+1(X,Z, x, e) := π1

n+1(Z, x, e) → π1
n+1(Z, x, e)↾X. Then,

(i) p1(T̆) := ∀Z∃X(Z∈̇X ∧ T̆↾X) ∧ pair ∧ trans, and

(ii) pn+2(T̆) := ∀Z∀x, e∃X [Z∈̇X ∧ T̆↾X ∧Rn+2(X,Z, x, e)] ∧ pair ∧ trans.

That each pn+1 is an operation is immediate by its definition, and we readiy ob-
serve that pn+1(T̆) is Π1

n+2, and that pn+2(T) ⊢ pn+1(T̆). Further note that Tǫ +

trans ⊢ π1
1(Z, x, e) → π1

1(Z, x, e)↾X , hence, over the theory Tǫ, p1(T̆) is equivalent
to ∀Z∀x, e∃X [Z∈̇X ∧ T̆↾X ∧ R1(X,Z, x, e)] ∧ pair ∧ trans.

Remark I.2.9. Note that over ACA0, pn+1((ACA)) is equivalent to the ω-model re-
flection scheme for Σ1

n+2-formulas, introduced in Simpson ([26], Definition VIII.5.1):

for each Σ1
n+2-formula A(~V ) with FV(A) = {V1, . . . , Vk},

(Σ1
n+2-RFN) ∀~Z[A(~Z) → ∃X [~Z∈̇X ∧ (ACA)↾X ∧ A(~Z)↾X ].

To see that pn+1((ACA)) implies (Σ1
n+2-RFN), let A(

~V ) = ∃WB(W, ~V ), where B is

Π1
n+1, and assume that ∃WB(W, ~Y ). Let Z so that (Z)0 = W and (Z)i+1 = Yi for

0 ≤ i ≤ k. For some e, B(W, ~Y ) iff π1
n+1(Z, e), and pn+1(ACA) provides a set X so

that (ACA)↾X and Z∈̇X (hence also W, ~Y ∈̇X), and (∃WB(W, ~Z))↾X.
For the converse direction, assume that π1

n+1(Z, x, e). Then, there is a Π1
n+1-formula

B(U) with FV(B) = {U}, so that for W := {〈z, 0〉 : z ∈ Z} ∪ {〈x, e+1〉}, B(W ) iff
π1
n+1(Z, x, e). Hence, ∃WB(W ), and Σ1

n+2 ω-model reflection yields a set X, so that
(ACA)↾X, and there is a W ∈̇X so that B(W )↾X. With W ∈̇X, also Z∈̇X, therefore
π1
n+1(Z, x, e)↾X.

Further, we recall the following well-known facts.

Lemma I.2.10. p2(ACA0) is Σ1
1-DC0 and p1p2(ACA0) is ATR0.

Proof This can be found e.g. in Simpson [26]. The first claim is Theorem VIII.5.12.
The right-to-left direction of the second claim is by Theorem VIII.4.20, and the
direction from left-to-right is by Lemma VIII.4.15 and Theorem VIII.3.15. ✷

Let (ACA) be the Π1
2-sentence provided by Lemma I.1.14. So ACA0 is Tǫ + (ACA),

Σ1
1-DC0 is Tǫ + (Σ1

1-DC) for (Σ1
1-DC) := p2((ACA)), and ATR0 is Tǫ + (ATR) for

(ATR) := p1((Σ
1
1-DC)). Observe that Σ1

1-DC0 is Π1
3, and that (ATR) is Π1

2.

Remark I.2.11. As shown in Simpson [26] Theorem VIII.5.13, there exists a model
M of ATR0 that does neither satisfy (Σ1

1-DC) nor p1((ATR)). Then,

M 6|= ((Σ1
1-DC) → (ATR)) → [p1((Σ

1
1-DC)) → p1((ATR))],

as trivially, M |= (Σ1
1-DC) → (ATR) and M |= p1((Σ

1
1-DC)). This illustrates that

there are T̆ and T̆′, so that Tǫ 6⊢ (T̆ → T̆′) → (p1(T̆) → p1(T̆
′)).
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Next, we collect some basic properties of the operations (pn+1 : n ∈ N).

Lemma I.2.12. Assume that T̆′ is an open Π1
n+2-sentence of L2. If Tǫ ⊢ T̆ → T̆′,

then Tǫ ⊢ pn+1(T̆) → T̆′.

Proof We start with a preparatory consideration. Assume that T̆′ = ∀ZC(Z) for
some Σ1

n+1-formula C(U), and that further Tǫ ⊢ T̆ → T̆′. Then also Tǫ ⊢ T̆ → C(U).

Now Lemma I.1.10 yields Tǫ ⊢ U∈̇X → [T̆↾X → C(U)↾X ], from which we readily
obtain

(∗) Tǫ ⊢ ∀X [U∈̇X ∧ T̆↾X → C(U)↾X ].

Now we show Tǫ ⊢ pn+1(T̆) → ∀ZC(Z) by induction on n. We work informally in
Tǫ, assume that pn+1(T̆) and ¬C(Z) for some Z, and argue for a contradiction. If
n = 0, p1(T̆) provides a set X so that Z∈̇X and T̆↾X . Now (∗) yields C(Z)↾X . As
C is Σ1

1 and for each z, (X)z is a set since p1(T̆) implies trans, we obtain C(Z). And
if n > 0, then ¬C is Π1

n+1, and pn+1(T̆) provides an X so that Z∈̇X and T̆↾X and
¬C(Z)↾X , contradicting (∗). ✷

We typically refer to this lemma to justify a claim such as p21 ⇒ p1: as trivially,
Tǫ ⊢ p1(T̆) → p1(T̆), and p1(T̆) is Π

1
2, the above lemma yields Tǫ ⊢ p21(T̆) → p1(T̆),

hence indeed p21 ⇒ p1.

Remark I.2.13. If T̆ is Π1
n+2, then Tǫ ⊢ pn+1(T̆) → T̆ by Lemma I.2.12. As by

Convention I.2.4, Tǫ ⊢ T̆ → (ACA), and since further (ACA) is Π1
2, we also have that

Tǫ ⊢ p1(T̆) → (ACA). Moreover, we will prove (Lemma III.6.5 (i)), that Op ⇒ p1
for each operation build from basic operations. Consequently, Tǫ ⊢ Op(T̆) → (ACA)
for all operations Op and open sentences T̆ we consider. This justifies Convention
I.2.4.

The next Lemma exhibits another key property, which is generalized later.

Lemma I.2.14. If T̆′ is Π1
m+1, then Tǫ ⊢ pm+1(T̆) ∧ T̆′ → pm+1(T̆ ∧ T̆′).

Proof By the above remark, pm+1(T̆) implies arithmetical comprehension. Now let
T̆′ be Π1

m+1. We just show the case m > 0; the case m = 0 is similar but simpler.

We assume pm+1(T̆) and T̆′, and aim for pm+1(T̆ ∧ T̆′). Assume that π1
m+1(Z, x, e).

We have to find a set X so that Z∈̇X , π1
m+1(Z, x, e)↾X , T̆↾X and T̆′↾X . As (ACA)

is at hand, there is an e′ so that π1
m+1(Z, x, e

′) iff T̆′∧π1
m+1(Z, x, e). Hence, there is a

set X so that Z∈̇X , π1
m+1(Z, x, e

′)↾X and T̆↾X . Since also (ACA)↾X , and therefore

(π1
m+1(Z, x, e

′) ↔ T̆′ ∧ π1
m+1(Z, x, e))↾X , π1

m+1(Z, x, e
′)↾X implies π1

m+1(Z, x, e)↾X

and T̆′↾X , and we are done. ✷
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I.2.2 Representation of operations

We have introduced operations as maps on open L2-sentences. Hence, with p1, also
the operation p21 = p1 ◦ p1 is explained. But what should pω1 be?

In order to answer this question, we first explain how to represent an operation Op

by an L2(P)-formula ϕ. The idea is that the formula T̆ is mapped to the formula
ϕ{T̆↾U} obtained from ϕ by replacing each occurrence of P(X ) in ϕ by the formula
T̆↾X . Before we give the general definition of when an L2(P)-formula ϕ represents an
operation, we start by presenting L2(P)-formulas so that the map T̆ 7→ ϕpn+1{T̆↾U}
coincides with the map pn+1.

Definition I.2.15.

(i) ϕp1 := ∀Z∃X [Z∈̇X ∧ P(X)] ∧ pair ∧ trans, and

(ii) ϕpn+2 := ∀Z∀x, e∃X [Z∈̇X ∧ P(X) ∧ Rn+2(X,Z, x, e)] ∧ pair ∧ trans.

Now we address the initial question of what pω1 should be. Since pω1 is an oper-
ation, pω1 (T̆) is an open L2-sentence. We emphasize that pω1 (T) is not the theory⋃
n∈N p

n+1
1 (T), where p11(T) := p1(T) and pn+2

1 (T) := p1(p
n+1
1 (T)). Instead, pω1 is the

operation T̆ 7→ ϕpω1
{T̆↾U}, where ϕpω1

:= ∀nϑ(n), and ϑ(u) is such that for all T̆
(which imply (ACA)),

(i) Tǫ ⊢ ϑ(1){T̆↾U} ↔ p1(T̆), and

(ii) Tǫ ⊢ ∀n[ϑ(n+2){T̆↾U} ↔ p1(ϑ(n+1){T̆↾U})].

That an L2(P)-formula ϑ(u) with these properties exists is a consequence of the
Representation Theorem I.2.26.

Let us summarize the above discussion.

Definition I.2.16. The language L2(P) extends L2 by a fresh relation symbol P(U).
Each set variable is a set term, and if X is a set term, then also (X )s for each
number term s. Each atom of L2 is an atom of L2(P), and for each set term X of
L2(P), P(X ) is an atom of L2(P). Further, ϕ is an L2(P

+)-formula, if ϕ contains P
only positively.

Since P((X)~s) is an atom of L2(P), the notations C↾X and X |= C lift canonically
to L2(P)-formulas (cf. Definition I.1.3). For instance, ∀XP(X)↾U is ∀xP((U)x), and
∀Y P((Y )x)↾U is ∀yP((U)y,x). Below, we let ϕ, ψ, . . . range over L2(P)-formulas.

Definition I.2.17. Let ϕ and ψ(U) be L2(P)-formulas. Then ϕ{ψ(U)} is the L2(P)-
formula obtained from ϕ by replacing each occurrence of P(X ) in ϕ by the formula
ψ(X ). We also write ϕψ(U) for ϕ{ψ(U)}. Further, for each L2(P)-formula ϑ(U),
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{ϑ(U)} takes precedence over quantifiers and logical connective: Qyϕ{ϑ(U)} :=
Qy(ϕ{ϑ(U)}), QY ϕ{ϑ(U)} := QY (ϕ{ϑ(U)}), and (ϕ j ψ){ϑ(U)} := ϕ j ψ{ϑ(U)},
where j is a connective in {∧,∨,→,↔}.

When we apply this substitution, it is always assumed that BV(ϕ)∩ FV(ψ(U)) = ∅,
FV(ϕ)∩ FV(ψ(U)) = ∅, and that if P(X ) occurs in ϕ, then FV(P(X ))∩BV(ψ) = ∅.
Observe that if A(U) is an L2-formula, then ϕ{A(U)} is an L2(P)-formula in which
the relation symbol P no longer occurs. Strictly speaking, however, ϕ{A(U)} is not
an L2-formula: if e.g. X is a set term different from a set variable, then P(X ){0 ∈ U}
is the formula 0 ∈ X , which still contains the set term X . Therefore, we identify
ϕ{A(U)} with the L2-formula obtained by regarding the set terms X occurring in
ϕ{A(U)} as abbreviations according to Definition I.1.2.

Note that in ϕ{ψ(U)}, the variable U plays the role of a place-holder that indicates
where to place the set term X . For all variables U, V , we have that ϕ{ψ(U)} =
ϕ{ψ(V )}, and FV(ϕ{ψ(U)}) = FV(ϕ) ∪ FV(ψ(U)) \ {U}.

Another immediate consequence of the definition of ϕ{ψ(U)} is that substitution
distributes over quantifiers and logical connectives.

Lemma I.2.18. For all L2(P)-formulas ϕ, ψ and ϑ, (Qyϕ){ϑ(U)} = Qyϕ{ϑ(U)},
(QY ϕ){ϑ(U)} = QY ϕ{ϑ(U)}, and for each j ∈ {∧,∨,→,↔}, (ϕ j ψ){ϑ(U)} =
ϕ{ϑ(U)} j ψ{ϑ(U)}.

The next Lemma guarantees that under mild assumptions, for each L2(P
+)-formula

ϕ, T̆ 7→ ϕ{T̆↾U} is an operation in the sense of Definition I.2.1.

Lemma I.2.19. If ϕ is an L2(P
+)-formula, and A(U), B(U) are L2-formulas, then

Tǫ + trans ⊢ ∀X(A(X) → B(X)) → (ϕ{A(U)} → ϕ{B(U)}).

Proof Assume that ∀X(A(X) → B(X)). We show ϕ→ := ϕ{A(U)} → ϕ{B(U)} by
induction on the build-up of ϕ, tacitly using the above lemma.

(i) ϕ does not contain P. Then ϕ→ = ϕ and the claim holds trivially.

(ii) ϕ = P(X ) for some set term X . Then ϕ→ is A(X ) → B(X ), which follows
from ∀X(A(X) → B(X)) as X is a set by trans.

(iii) ϕ = ϕ1 j ϕ2 for j ∈ {∧,∨}. By I.H., ϕ1{A(U)} → ϕ1{B(U)} and ϕ2{A(U)} →
ϕ2{B(U)}. The claim follows as ϕ{A(U)} = ϕ1{A(U)} j ϕ2{A(U)} implies
ϕ1{B(U)} j ϕ2{B(U)} = ϕ{B(U)}.

(iv) ϕ = ∀Y ψ(Y ). By I.H., ψ(Y ){A(U)} → ψ(Y ){B(U)}. By logic, we conclude
∀Y ψ(Y ){A(U)} → ψ(Y ){B(U)} and ∀Y ψ(Y ){A(U)} → ∀Y ψ(Y ){B(U)},
and ϕ→ readily follows.
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(v) ϕ = ∃Y ψ(Y ). By I.H., ψ(Y ){A(U)} → ψ(Y ){B(U)}, and ψ(Y ){A(U)} →
∃Y ψ(Y ){B(U)} and ∃Y ψ(Y ){A(U)} → ∃Y ψ(Y ){B(U)}, thus ϕ→.

✷

If ϕ is an open L2(P)-sentence, then Opϕ(T̆) := ϕ{T̆↾U}, and if ϕ is introduced as
ϕ(~u), then Op

ϕ
~t
(T̆) := Opϕ(T̆)[~t/~u]. The following is an easy consequence of Lemma

I.2.19.

Theorem I.2.20. Assume that ϕ := ϕ(~u) is an open L2(P)-sentence that contains
P, P occurs only positively in ϕ, and Tǫ ⊢ ϕ{⊤} → pair ∧ trans. Then Opϕ and Op

ϕ
~t

are operations in the sense of Definition I.2.1.

Proof We have Opϕ(T̆) := ϕ{T̆↾U}. Since FV1(ϕ) = ∅, the set variable in each
occurrence of P(X ) in ϕ is within the scope of a set quantifier. Therefore, this
set variable is still bound after substituting T̆↾X for P(X ). So Opϕ(T̆) is an open
L2-sentence. Since it is assumed that the variables occurring in ϕ and T̆↾U are
disjoint, we have FV0(T̆) ⊆ FV0(Op

ϕ(T̆)) and FV0(T̆) ⊆ FV0(Op
ϕ
~t
(T̆)). To show

(ii) of Definition I.2.1, let C(~u) := ∀X(T̆↾X → T̆′↾X) → (Opϕ~u(T̆) → Op
ϕ
~u(T̆

′)).

By Lemma I.2.19 (T̆↾U and T̆′↾U take the roles of A(U) and B(U)), we have that
Tǫ + trans ⊢ C. Since Tǫ ⊢ ∀X [(T̆↾X) → ⊤↾X ], also Tǫ ⊢ Opϕ(T̆) → Opϕ{⊤}. As
Opϕ{⊤} is ϕ{⊤}, Tǫ ⊢ Opϕ(T̆) → trans is by assumption. Thus also Tǫ ⊢ C(~u).
Hence Opϕ and Op

ϕ
~t
are operations. ✷

Now, we say what we mean by “ϕ represents the operation Opϕ”.

Definition I.2.21. We say that ϕ represents the operation Opϕ(T̆) := ϕ{T̆↾U},
if ϕ is an open L2(P)-sentence that contains P, P occurs only positively in ϕ, and
Tǫ ⊢ ϕ{⊤} → pair ∧ trans.

Lemma I.2.22. Assume that ϕ, ψ(U) are L2(P)-formulas, A(U), B(U) L2-formulas,
and A(U) is arithmetical. Then,

(i) (ϕ↾X ){A(U)} = ϕA(U)↾X ,

(ii) (ϕψ(V )){B(U)} = ϕ{ψ(V )B(U)}.

Proof Both claims are shown by induction on the build-up of ϕ. We just show some
cases, starting with the first claim. Thus we assume that A(U) is an arithmetical.

(i) If P does not occur in ϕ, then (ϕ↾X ){A(U)} = ϕ↾X = ϕA(U)↾X .

(ii) ϕ = [¬]P(Y) for some set term Y . Then (ϕ↾X ){A(U)} = [¬]P(Y){A(U)} =
[¬]A(Y), and also ϕA(U)↾X = [¬]A(Y)↾X = [¬]A(Y) as A is arithmetical.
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(iii) ϕ = QY ψ(Y ). Unwinding definitions and using Lemma I.2.18, we see that
ϕ↾X = (QY ψ(Y ))↾X = (QY ∈̇X )(ψ(Y )↾X ) = Qyψ((X )y)↾X , and therefore
(ϕ↾X ){A(U)} = (Qyψ((X )y)↾X ){A(U)} = Qyψ((X )y)↾X{A(U)}. Further,
(ϕA(U))↾X = ((QY ψ(Y ))A(U))↾X = (QY ψ(Y )A(U))↾X = Qyψ((X )y)A(U)↾X .
By I.H. we have

ψ((X )y)↾X{A(U)} = ψ((X )y)A(U)↾X .

Quantifying y on both sides yields the claim.

Now for the second claim. If P does not occur in ϕ, then again, the claim is readily
checked. For the induction step, we exemplarily consider the case ϕ = QY ϑ(Y ).
Then, (QY ϑ(Y ))ψ(V ){B(U)} = (QY ϑ(Y )ψ(V )){B(U)} = QY ϑ(Y )ψ(V ){B(U)} =I.H.

QY ϑ(Y ){ψ(V )B(U)} = (QY ϑ(Y )){ψ(V )B(U)} = ϕ{ψ(V )B(U)}. ✷

Example I.2.23. Assume that ϕ and ψ represent the operations Opϕ and Opψ,
respectively. Then, as a direct consequence of Lemma I.2.22, ϕ ◦ ψ := ϕ{ψ↾U}
represents Opϕ ◦ Opψ. We namely have that (ϕ ◦ ψ){T̆↾U} = ϕψ↾V {T̆↾U} =(ii)

ϕ{(ψ↾V )
T̆↾U} =(i) ϕ{ψT̆↾U↾V } = ϕ{Opψ(T̆)↾V } = (Opϕ ◦ Opψ)(T̆).

The reminder of this section is devoted to the formulation of the Representation
Theorem. It claims that we can construct from an L2(P)-formula ϑ(u) represent-
ing operations Opu, an L2(P)-formula ϕ(u) which represents new operations Op′u,
that are obtained by transfinite compositions of operations Opu. Its proof is rather
technical and was thus moved to the appendix.

The idea is the following. Assume that (Q,≺) is a primitive recursive well-founded
ordering with least element 0, that is, field(≺) = Q, and for each q ∈ Q, 0 � q and
Wo≺(q). By recursion on ≺, we want to define for each q ∈ Q∗ := Q \ {0} an
operation Opq in terms of initial operations Opϑu and some of the previously defined
operations {Opp : p ≺ q, 0 6= p}. More specifically, given an L2(P)-formula ϑ(u)

that represents initial operations Opϑu, a primitive recursive subset ❀ of ≺ and a
primitive recursive function f(u, v), then we want an L2(P)-formula ϕ(u) so that

(∗) Tǫ ⊢ Opϕu(T̆) ↔ 0 ≺ u ∧ (∀v ❀ u)[Opϑf(v,u)(Ôp
ϕ

v (T̆))],

where Ôp
ϑ

u(T̆) := (0 = u∧ T̆) ∨ (0 6= u∧Opϑu(T̆)), an abbreviation that we use since
we cannot represent directly the identity operation by an L2(P)-formula.

We prove (∗) only for relations ❀ and ≺ where ≺ is the transitive closure of ❀,
and we let good(❀,≺) be an arithmetical L2-sentence so that ∀u(0 ≺ u ∧Wo≺(u))
together with good(❀,≺) implies that ≺ is the transitive closure of ❀.
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Definition I.2.24. Let good(❀,≺) be the conjunctions of the following formulas.

(i) ∀xy[x❀ y → x ≺ y],

(ii) ∀xyz[x ≺ y ∧ y ❀ z → x ≺ z],

(iii) (∀x ≺ z)(∃y ❀ z)(x � y).

So under the assumption ∀u(0 ≺ u∧Wo≺(u)), (i) and (ii) imply that ≺ contains the
transitive closure of ❀, and (iii) yields the other direction, namely that if x ≺ z,
there is ❀-path from x to z, i.e. x = x0 ❀ x1 ❀ . . .❀ xn = x for some x0, . . . , xn ∈
field(❀). Otherwise, there is a ≺-minimal element z so that there is an x with x ≺ z
but there is no ❀-path from x to z. By (iii) however, there is a y with y ❀ z with
x � y. Clearly, x 6= y, thus x ≺ y ❀ z. By the minimality of z, there is a ❀-path
from x to y, hence also from x to z!

The following technical notion is convenient to have at hand for the proof of the
Representation Theorem.

Definition I.2.25. An L2(P)-formula ϑ strongly implies p1, if ϑ represents an op-
eration, and for each Σ1

1-formula A(U) of L2, T
ǫ ⊢ ϑ{A(U)} → ϕp1{A(U)}.

If ϑ strongly implies p1, then in particular, Opϑ ⇒ p1, since Opϑ(T̆) = ϑ{T̆↾U} and
{T̆↾U} is arithmetical and thus also Σ1

1.

Now the stage is set the state the theorem. Since we find it convenient to have that
Opϕu(T̆) implies 0 ❀ u and Wo≺(u), we will defined the formula ϕ so that it directly
implies these properties. Hence, if e.g. u /∈ field(≺) and thus ¬(0 ≺ u), then Opϕu(T̆)
is inconsistent and therefore proves everything.

Theorem I.2.26 (Representation Theorem). Let ϑ(u) an open L(P)-sentence that
strongly implies p1, and ≺,❀, f(v, u) primitive recursive. Then there is an open
L(P+)-sentence ϕ(u) := ϕf,≺,❀,ϑ(u) that strongly implies p1, so that for each T̆

(that implies (ACA)), Tǫ proves

(i) Opϕu(T̆) → 0 ≺ u ∧Wo≺(u) ∧ good(❀,≺),

(ii) 0 ≺ u ∧Wo≺(u) ∧ good(❀,≺) → [Opϕu(T̆) ↔ (∀v ❀ u)(Opϑf(v,u)(Ôp
ϕ

v (T̆))) ].

Example I.2.27. Let ϑ = ϕp1, ≺ some primitive recursive well-ordering and α❀ β
iff β = α+1 or β is a limit ≺-bigger than α. f is irrelevant, as ϕp1 has no free
variables. Then, for ϕ := ϕf,≺,❀,ϑ, Opϕ1 = p1, if 0 ≺ α, then Op

ϕ
α+1 ⇔ p1(Op

ϕ
α), and

if γ is a limit, then Opϕγ ⇔ (∀α ≺ γ)p1(Ôp
ϕ

1+α).

Slightly stretching Definition I.2.2, we wrote Opϕγ ⇔ (∀α ≺ γ)p1(Ôp
ϕ

1+α) to indicate

that for each T̆ (that implies (ACA)), Tǫ ⊢ Opϕγ (T̆) ↔ (∀α ≺ γ)p1(Ôp
ϕ

1+α(T̆)).
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Corollary I.2.28. If ϑ is an open L2(P)-sentence that strongly implies p1, then
there is an open L2(P)-sentence ϕ(u) which strongly implies p1, so that Opϕ1 ⇔ Opϑ,
if 0 ≺ α, then Op

ϕ
α+1 ⇔ Opϑ(Opϕα), and if γ is a limit, Opϕγ ⇔ (∀α ≺ γ)Opϑ(Opϕ1+α).

This justifies the following notation: if Op is represented by ϑ, then we write Opα(T̆)
for Opϕα(T̆), where ϕ(u) is the formula provided by the above corollary. Note also
that then Opγ ⇔ (∀α < γ)Opα+1.

I.3 The functionals (Itn+1 : n ∈ N)

In this section, we introduce the family (Itn+1 : n ∈ N) of functionals. We assume
that the reader is familiar with ordinals, normal functions and closed unbounded
sets. The used properties of these concepts are covered e.g. in Pohlers [11], Chapter
I, Section 6.

Below, Ω refers to the first uncountable ordinal. To simplify the notation, we identify
a set O ⊆ Ω with the strictly monotone function fO enumerating the elements of
O, and conversely, a strictly monotone function f : Ω → Ω is identified with its
range rng(f). Hence, if f, g : Ω → Ω are strictly monotone, then f ⊆ g is short
for rng(f) ⊆ rng(g). Further, we tacitly use that f is normal iff rng(f) is closed
unbounded, and that

⋂
i∈N fi is normal if each fi : Ω → Ω is normal.

Henceforth, we regard the ordinals in Ω also as type-0 functionals, and the functions
f : Ω → Ω as type-1 functionals. By XY we denote the set of functions from X to Y .
For X ⊆ ΩΩ, F ∈ XX is a type-2 functional. And if X is a set of type-n functionals,
then F ∈ XX is a type-n+1 functional.

Definition I.3.1. Assume that F0, . . . , Fn are functionals (or functions or ordi-
nals). We let (F0) := F0, if F1 ∈ dom(F0), then (F0, F1) := F0(F1), and fur-
ther, for 0 < i < n, if Fi+1 ∈ dom(F0, F1, . . . , Fi) := dom((F0, F1, . . . , Fi)), then
(F0, F1, . . . , Fi, Fi+1) := (F0(F1), F2, . . . , Fi+1). We also write F0[F1, . . . , Fn+1] for
(F0, F1, . . . , Fn+1).

For instance, if the function f : Ω → Ω is in the domain of the functional F ,
then (F, f, α) = F [f, α] = (F (f))(α). If F1, . . . , Fn are suitable functionals, then
(F1, . . . , Fn) always denotes the functional defined above, and never an n-tuple.

All functionals of type-n+2 that are relevant for our purpose are build from function-
als that do just one simple thing: they iterate functions and functionals, respectively.

Definition I.3.2 (Iteration). Below, γ ranges over lim(Ω), the limit ordinals in Ω.
Further, idX := {(x, x) : x ∈ X}.
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(i) For h : Ω → Ω, h0 := idΩ, h
α+1 := h ◦ hα and hγ(β) := supα<γh

α(β).

(ii) For a type-n+1 functional F , F 0 := iddom(F ), F
α+1 := F ◦ F α, and whenever

f ∈ dom(F1), F1 ∈ dom(F2), . . . , Fn ∈ dom(F ),

(F γ, Fn, . . . , F1, f) :=
⋂

α<γ

(F α, Fn, . . . , F1, f).

Furthermore, we consider only normal functions f with rng(f) ⊆ lim(Ω), and we
want that on such functions, our functionals thin out a function in the following
way: F (f) ⊆ f and f(0) /∈ F [f, 0]; hence F [f, 0] > f(0). We call such an F strictly
inclusive. Below, we lift this notion to higher types.

Definition I.3.3. By recursion on n we define the sets Ω(n) and explain when a
functional F : Ω(n) → Ω(n) is called strictly inclusive.

(i) Ω(0) := {f : Ω → Ω | f normal , f ⊆ lim(Ω)}.

(ii) F : Ω(0) → Ω(0) is strictly inclusive, if (∀f ∈ Ω(0))(f(0) /∈ F (f) ⊆ f).

(iii) Ω(n+1) := {F ∈ Ω(n)
Ω(n) : F is strictly inclusive }.

(iv) [F0, . . . , Fn] ∈ Ω(≤n) :⇔ F0 ∈ Ω(n), . . . , Fn ∈ Ω(0).

(v) F ∈ Ω(n+1)
Ω(n+1) is strictly inclusive, if for all [ ~H, h] ∈ Ω(≤n),

( ~H, h, 0) /∈ (F, ~H, h) ⊆ ( ~H, h).

It is readily observed that for each n, Ω(n) is closed under composition.

Lemma I.3.4. For each n, Ω(n) is closed under composition.

Proof This is trivial for n = 0. If F,G ∈ Ω(n+1), then clearly F ◦ G : Ω(n) → Ω(n).
It remains to check that F ◦ G is strictly inclusive. Let [H, ~H, h] ∈ Ω(≤n). Then,

(F ◦ G,H, ~H, h) = (F,G(H), ~H, h) ⊆ (G(H), ~H, h) = (G,H, ~H, h) ⊆ (H, ~H, h), and

(H, ~H, h, 0) /∈ (G,H, ~H, h) ⊇ (F ◦G,H, ~H, h). ✷

Convention I.3.5. Unless stated otherwise, f, g range over Ω(0), n ranges over finite
ordinals, α, β, . . . range over ordinals in Ω, and γ, γ′ range over lim(Ω). Further,

f ≤ g := ∀α[f(α) ≤ g(α)], and for F,G ∈ Ω(n+1), F ⊆ G iff for all [ ~H, h] ∈ Ω(≤n),

(F, ~H, h) ⊆ (G, ~H, h), and F ≤ G iff for all [ ~H, h] ∈ Ω(≤n), (F, ~H, h) ≤ (G, ~H, h).

Iterating a normal function f does not lead very far as fω = f ′ := {α : f(α) = α}
(cf. Lemma I.3.15), and hence fω+1 = fω. Therefore, we iterate the fixed point free
companion f− of f instead.
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Definition I.3.6 (Fixed point free companion). For a function h : Ω → Ω, we
denote by fix(h) := h′ := {α : h(α) = α} the set of fixed points of h, and h− := h\h′

is the fixed point free companion of h (so h− is the function that enumerates the set
rng(h) \ {α : h(α) = α}).

We start with a simple observation regarding fixed points, and then state how f
relates to its fixed point free companion.

Lemma I.3.7. If α /∈ f ′, then f(α) /∈ f ′. If f ∈ Ω(0), then f(α)+1 < f(α+1),
f(α+1) /∈ f ′ and f(α+1) ∈ f−.

Proof If α /∈ f ′, then α < f(α), so f(α) < f(f(α)), thus f(α) /∈ f ′. If f ∈ Ω(0), then
f(α)+1 < f(α+1). Since α+1 /∈ f ′ ⊆ f , we have f(α+1) /∈ f ′ and f(α+1) ∈ f−. ✷

Remark I.3.8. As f ∈ Ω(0) entails ωα ≤ f(α), each fixed point γ of f satisfies
ωγ ≤ f(γ) = γ ≤ ωγ, and is therefore of the form γ = ωωβ for some β > 0.

Next, we see that f and f− differ only on ordinals α of the form γ+n for some
γ ∈ f ′.

Lemma I.3.9. For each f ∈ Ω(0),

f−(α) =

{
f(α) : α < ω ∨ α = γ+n for some γ /∈ f ′ and some n < ω,

f(α+1) : α = γ+n for some γ ∈ f ′ and some n < ω.

Proof The claim is shown by transfinite induction on α. As f(0) /∈ f ′, f(0) = f−(0).
Next, we show the limit case. Fix some γ and assume that the claim holds for each
α < γ. First observe, that then {f−(β) : β < γ} = {f(β) : β < γ}∩f−, and since for
β < γ, f(β) ≤ f−(β) ≤ f(β+1), also sup({f−(β) : β < γ}) = sup({f(β) : β < γ}).
We show that the claim holds for γ by distincting the cases γ /∈ f ′ and γ ∈ f ′.

(i) γ ∈ f ′. Then f(γ) /∈ f−, and γ < f−(γ) = min(f− \ {f−(β) : β < γ}) =I.H.

min(f− \ {f(β) : β < γ}) = min(f \ ({f(β) : β ≤ γ} ∪ f ′)) = f(γ+1), since
f(γ+1) /∈ f ′.

(ii) γ /∈ f ′. Then f(γ) ∈ f−. As f ≤ f−, there is some δ ≤ γ so that f−(δ) =
f(γ) = sup{f(β) : β < γ} =I.H. sup{f−(β) : β < γ}. Thus δ = γ, and
f−(γ) = f(γ).

The successor case causes no problems: if for some m ∈ {0, 1}, f−(α) = f(α+m),
then, as f(α+m+1) ∈ f−, also f−(α+1) = f(α+m+1). ✷

Now the stage is set to define the functionals (Itn+1 : n ∈ N). Further, we introduce
an auxiliary functional sh which shifts the domain of a function from Ω to lim(Ω),
and nicely relates the functionals it and fix.
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Definition I.3.10 (The type-n+2 functionals Itn+1).

(i) sh[f, α] := f(ω(1+α)).

(ii) it[f, α] := (f−)
2+α(0), and It1 := it.

(iii) Itn+2[F0, . . . , Fn, f, α] := (F 2+α
0 , F1, . . . , Fn, f, 0), for all [~F, f ] ∈ Ω(≤n+1), and

It := It2.

We defined it[f, 0] := (f−)
2(0) = f 2(0) to have f(0) < it[f, 0] (i.e. it[f, 0] /∈ f).

For the same reason, we set Itn+2[F, ~F, f, α] := (F 2+α, ~F, f, 0). Had we defined

Itn+2[F, ~F, f, α] to be (F 1+α, ~F, f, 0), then Itn+2[F, ~F, f, 0] = (F, ~F, f, 0), and Itn+2

would not be strictly inclusive.

Next, we show that sh and it are in Ω(1), and that Itn+2 ∈ Ω(n+2).

Lemma I.3.11. sh ∈ Ω(1) and it ∈ Ω(1).

Proof The first claim is obvious, so we just show that it ∈ Ω(1). Assume that
f ∈ Ω(0). Firstly, we show that it(f) is strictly inclusive. We have already discussed
that it(f, 0) /∈ f . That it(f) ⊆ f is readily seen by induction on α. If α is zero or a
successor, this follows from f− ⊆ f and the definition of it, and if α is a limit and
for each β < α, it(f, β) ∈ f , then it(f, γ) ∈ f follows as rng(f) is closed. Secondly,
we show that it(f) ∈ Ω(0). it(f) is continuous by definition, and it(f) is strictly
monotone since α < f−(α) (α ≤ f(α) ≤ f(α) and α = f−(α) is impossible). ✷

Now, we show that also Itn+2 ∈ Ω(n+2).

Lemma I.3.12. If F ∈ Ω(n+1), then F 1+α ∈ Ω(n+1). Further, for all [~F, f ] ∈ Ω(≤n)

and dF, ~F,f(α) := (F α, ~F, f, 0), we have dF, ~F,f ∈ Ω(0).

Proof We just consider the case n = 0, as the proof works exactly the same for n > 0.
The first claim is shown by transfinite induction. The case α = 0 is trivial, and the
successor case follows since Ω(n+1) is closed under composition. For the limit case,
observe that if for each α < γ, f(0) /∈ F α(f) ⊆ f , then also f(0) /∈

⋂
α<γ F

α(f) =
F γ(f) ⊆ f . And because F α(f) is closed unbounded for each α < γ, so is F γ(f).
Further, as F α[f, 0] /∈ F α+1(f), it follows that d := dF,f is strictly monotone. It
remains to show that d is continuous: for α < γ, d(α) ≤ (

⋂
α≤ξ<γ F

ξ(f))(0) = d(γ),

so δ := supα<γd(α) ≤ d(γ). On the other hand, F β(f) is club for each β < γ.
Therefore, δ = supβ≤α<γd(α) ∈ F β(f) for each β < γ, i.e. δ ∈ F γ(f), and so
δ ≥ F γ[f, 0]. ✷

Corollary I.3.13. Itn+1 ∈ Ω(n+1).
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Proof The case n = 0 is due to Lemma I.3.11. As Itn+2[F, ~F, f, α] = dF, ~F,f(2+α),

Itn+2 ∈ Ω(n+1)
Ω(n+1). As with F ∈ Ω(n) also F 1+α ∈ Ω(n+1), Itn+2(F, ~F, f, α) =

(F 2+α, ~F, f, 0) ∈ (F 2+α, ~F, f) ⊆ (F, ~F, f). Since Itn+2[F, ~F, f, 0] = (F 2, ~F, f, 0) /∈

(F, ~F, f), Itn+2 is also strictly inclusive. ✷

Lemma I.3.14. Let F ∈ Ω(n+1). Then, F α◦F β = F β+α, in particular F γ ◦F = F γ.

Proof For each β, we show the claim by induction on α: for α = 0 there is nothing to
show, F α+1 ◦F β =I.H. F ◦F β+α = F β+α+1, and for [~F, f ] ∈ Ω(≤n), (F γ ◦ F β, ~F, f) =⋂
ξ<γ(F

ξ ◦ F β, ~F, f) =I.H.

⋂
ξ<γ(F

β+ξ, ~F, f) = (F β+γ, ~F, f). ✷

Next, we relate the functionals it and sh to fix and prove some simple properties.
Among other things, the next lemma tells us that (sh ◦ it) = fix: consequently,
it[g, γ] = g(it[g, γ]), and if α /∈ lim(Ω), it[g, α] /∈ g′ and so it[g, α+1] = g(it[g, α]).

Lemma I.3.15. (i) (fix ◦ sh) = fix, (ii) (sh ◦ it) = fix and (iii) it ⊆ sh.

Proof (i) γ ∈ (fix ◦ sh)(f) iff γ = ωγ ∧ f(γ) = γ iff γ ∈ f ′ (cf. Remark I.3.8).
(ii) Note that β+1 < f−(β), and thus also fα+1

− (0)+1 < fα+2
− (0). Using Lemma

I.3.9, we conclude that f(fα+1
− (0)) ≤ f−(f

α+1
− (0)) ≤ f(fα+2

− (0)). Hence, it(f, γ) =
supα<γf

α+2
− (0) = supα<γf−(f

α+1
− (0)) = supα<γf(f

α+1
− (0)), and since f is normal,

supα<γf(f
α+1
− (0)) = f(supα<γf

α+1
− (0)) = f(it[f, γ]). To see that each γ′ ∈ f ′ is

of the form it[f, γ], we show that no fixed point of f is strictly between it[f, γ]
and it[f, γ+ω]. Thereto, we let γ0 := it[f, γ], and show that by induction on n
that fn+1(γ0+1) = it[f, γ+n+1] /∈ f ′. For n = 0, f(γ0+1) /∈ f ′ and f(γ0+1) =
f−(γ0) = f−(it[f, γ]) = it[f, γ+1]. Next we address the induction step. Since by I.H.,
fn+1(γ0+1) /∈ f ′, also fn+2(γ0+1) /∈ f ′. Using Lemma I.3.9 yields f(fn+1(γ0+1)) =
f−(f

n+1(γ0+1)) =IH f−(it([f, γ+n+1]) = it[f, γ+n+2]. (iii) If α is not a limit, then
the definition of it and Lemma I.3.9 yield that there is a β > 0 with it[f, α] =
f(ω(1+β)) = sh[f, β]. And if α is a limit, then α = ω(β+1) for some β, therefore
it[f, α] = (sh◦ it)[f, β] =(ii) fix[f, β] =(i) (fix◦sh)[f, β]. Hence, it[f, α] ∈ (fix◦sh)(f) ⊆
sh(f). ✷

Lemma I.3.16. Let f, g ∈ Ω(0). If f ≤ g, then sh(f) ≤ sh(g) and it(f) ≤ it(g).

Proof The first claim is obvious. The second is shown by induction on α. it[f, 0] =
f(f(0)) ≤ f(g(0)) ≤ g(g(0)) = it[g, 0]. The limit case is by the continuity of
it(f) and it(g). Next, we consider successors of the form γ+1. By I.H., γ0 :=
it[f, γ] ≤ it[g, γ] =: γ1. By Lemma I.3.15 we have that γ0 ∈ f ′ and γ1 ∈ g′.
Using Lemma I.3.9, we obtain that it[f, γ+1] = f−(γ0) = f(γ0+1) ≤ g(γ1+1) =
g−(γ1) = it[g, γ+1]. Finally, we consider successors of the form α+2. By I.H.,
γ0 := it[f, α+1] ≤ it[g, α+1] =: γ1. By Lemma I.3.15 we have that γ0 /∈ f ′ and
γ1 /∈ g′. Hence, it[f, α+2] = f−(γ0) = f(γ0) ≤ g(γ1) = g−(γ1) = it[g, α+2]. ✷

We also have the following variant.

32



Lemma I.3.17. Let f, g ∈ Ω(0). If f ⊆ g, then f ′ ⊆ g′ and sh(f) ⊆ sh(g).

Proof Suppose that f ⊆ g. If γ ∈ f ′, then γ ≤ g(γ) ≤ f(γ) = γ, thus γ ∈ g′. For
the second claim, assume that for some γ, f(γ) /∈ sh(g), that is, f(γ) = g(γ′+n+1)
for some n, and argue for a contradiction: since f is normal, there is some δ < γ,
so that g(γ′+n) < f(δ) < g(γ′+n+1), which contradicts f ⊆ g! ✷

Since e.g. itγ0(g) =
⋂
ξ<γ0

itξ(g), we also consider the more general situation where
f =

⋂
ξ<γ0

fξ for a family (fξ : ξ < γ0) of normal functions, and wonder how to
approximate f(α). As f is normal, fγ0(α) = supβ<αfγ0(β) if α is a limit. Otherwise,
we approximate fγ0(α) using the normal functions defined below.

Definition I.3.18. Let (fξ : ξ < γ0) a family of normal functions. Depending on
this family and a start value β, we define a continuous function sβ : γ0+1 → Ω as
follows:

(i) sβ(0) := β+1,

(ii) sβ(ξ+1) := fξ(sβ(ξ)),

(iii) sβ(γ) := supξ<γsβ(ξ).

To formulate the next lemma, we let next(g, β) := min{δ ∈ g : δ > β} be the next
ordinal in the range of g above β. For instance, g(α+1) = next(g, β) for β := g(α).

Lemma I.3.19. Assume that fγ0 :=
⋂
ξ<γ0

fξ, and for each ξ < η < γ0, fξ ∈ Ω(0),
fη ⊆ fξ, and fξ+2 ⊆ f ′

ξ. Further, sβ : γ0+1 → Ω are the functions from Definition
I.3.18. Then, we have for each β and each limit γ ≤ γ0,

(i) sβ(γ) = next(fγ , β),

(ii) sβ is strictly increasing.

In particular, s0(γ) = fγ(0), and for β := fγ(α), sβ(γ) = fγ(α+1).

Proof (i) As sβ(ξ+1) = fξ(sβ(ξ)), we have sβ(ξ+1) ∈ fξ, and since for each ξ′ < γ,
sβ(γ) = supξ′<ξ<γsβ(ξ) ∈ fξ′, we also have sβ(γ) ∈

⋂
ξ<γ fξ = fγ as fγ is closed.

As β < sβ(γ), sβ(γ) = next(fγ , β) follows, if sβ(ξ) < next(fγ , β) for all ξ < γ,
which is shown by transfinite induction on ξ. sβ(0) = β+1 < next(fγ , β), and if
sβ(ξ) < next(fγ, β), then sβ(ξ+1) = fξ(sβ(ξ)) < fξ(next(fγ, β)) = next(fγ, β), since
fγ ⊆ fξ+2 ⊆ f ′

ξ. The limit case is by the continuity of sβ.
(ii) By definition, sβ is strictly increasing, if for all ξ ≤ γ0, sβ(ξ) /∈ f ′

ξ. We show this
by induction on ξ. Clearly, sβ(0) = β+1 /∈ f ′

0. If sβ(ξ) /∈ f ′
ξ, then by Lemma I.3.7,

sβ(ξ+1) = fξ(sβ(ξ)) /∈ f ′
ξ. As fξ+1 ⊆ fξ and Lemma I.3.17 yield f ′

ξ+1 ⊆ f ′
ξ, we also

have sβ(ξ+1) /∈ f ′
ξ+1. In the limit case, we have sβ(γ) =(i) next(fγ , β). Therefore,

sβ(γ) = fγ(δ) for some δ /∈ lim(Ω). So δ /∈ f ′
γ , and thus sβγ /∈ f ′

γ. ✷
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I.4 A substitute for transfinite induction

We aim to prove certain statements of the form (∀α ∈ field(≺))A(α) in Tǫ, for
instance our main result, which states that for each name x, the operation Opx
proves the functional Hx, by transfinite induction along the well-founded ordering
≺. We start by the following simple observation.

Lemma I.4.1. For each L2-formula A, if Tǫ ⊢ A ∨ (ACA) and ACA0 ⊢ A, then
Tǫ ⊢ A.

The theorem below can be regarded as an internal variant of the following.

If for all β, Tǫ ⊢ A(β) follows if Tǫ ⊢ A(α) for all α < β, then for all α, Tǫ ⊢ A(α).

The statement Tǫ ⊢ A(β) is approximated by the formula ∀X(A(β)↾X), expressing
that A(β) holds in all models X . Therefore, the following convention is very useful:
if a capital letter, say C, denote an L2-formula, then the corresponding lower case
letter c denotes the Π1

1-formula ∀XC↾X .

Now we can state the theorem which is proved at the end of this section.

Theorem I.4.2. Let A(u) be an L2-formulas without free set variables, and ≺ a
binary relation symbol. Assume that

(i) Tǫ ⊢ A(x) ∨ ((ACA) ∧Wo≺(x)).

(ii) ACA0 ⊢ ∀x[(∀y ≺ x)a(y) → A(x)].

Then, Tǫ ⊢ (∀x ∈ field(≺))A(x).

Usually, the theorem is applied to formulas A(x) of the form Opϕx(T̆) → C(x), for
some specific L2(P)-formula ϕ(u) := ϕf,≺,❀,ϑ(u). That is, if ¬A(x), then we have
Opϕx(T̆), which by the Representation Theorem I.2.26 entails Wo≺(x) and (ACA)
(as T̆ implies (ACA) by convention, and by the Representation Theorem, Opϕx(T̆)
implies p1(T̆), which further implies p1((ACA)) and (ACA)). Therefore, assumption
(i) is guaranteed.

At times, we require a slight strengthening of the above theorem, namely the
corollary below. There, we apply the theorem to a formula A(u) of the form
B ∧ b ∧ d → C(u), where u /∈ FV0(B ∧ b ∧ d). Due to the special form of A,
we have the following.

Corollary I.4.3. Let A(u) := B ∧ b ∧ d → C(u) be an L2-formulas without free set
variables and u /∈ FV0(B ∧ b ∧ d), and ≺ a binary relation symbol. Assume that

(i) Tǫ ⊢ A(x) ∨ ((ACA) ∧Wo≺(x)).
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(ii) ACA0 ⊢ B ∧ b ∧ d ∧ (∀y ≺ x)c(y) → C(x).

Then, Tǫ ⊢ (∀x ∈ field(≺))A(x).

Let us collect some auxiliary properties needed for the proof of the above theorem.
First, note that ACA0 proves that each set is contained in a transitive one.

Lemma I.4.4. ACA0 ⊢ ∀Z∃X [Z∈̇X ∧ trans↾X ].

Proof Having arithmetical comprehension at hand, given a set Z, we let X :=
{〈x, s〉 : s ∈ seq ∧ x ∈ (Z)(s)0,...,(s)lh(s)−1

}, where seq ( N are the sequence numbers.
Then Z = (X)〈〉, and if ∅ 6= V ∈̇W ∈̇X and V = (W )v and W = (X)s, then x ∈ V
iff 〈x, v〉 ∈ (X)s iff 〈x, v〉 ∈ (Z)s0,...,(s)lh(s)−1

iff x ∈ (Z)s0,...,(s)lh(s)−1,v iff x ∈ (X)s∗〈v〉. If
∅∈̇W ∈̇X , then also ∅∈̇X , as seq ( N. Technically, we define X as follows: Let h be
a primitive recursive function so that h(x, 〈〉) = x and h(x, 〈(s)0, . . . (s)n, sn+1〉) =
h(〈x, sn+1〉, 〈(s)0, . . . (s)n〉). Then X = {〈x, s〉 : s ∈ seq ∧ h(x, s) ∈ Z}. ✷

The next lemma needs an assumption ∀Y ∃X(Y ∈̇X) which follows readily from pair,
as Z∈̇(Z+Z) (cf. Definition I.2.3).

Lemma I.4.5. If A is Π1
1, then Tǫ + trans ⊢ A→ a, and Tǫ + pair ⊢ a→ A.

Proof Let A = ∀Y B(Y ) for some arithmetical B(U). If A, then also B((X)y), since
trans implies that (X)y is a set. Therefore a. For the second claim, fix some set Y .
As there is a set X with Y ∈̇X , B(Y ) follows from A↾X . ✷

For later reference, we also record the following.

Lemma I.4.6. If Tǫ ⊢ a ∧ B → C, then Tǫ + trans ⊢ a ∧ b→ c.

Proof If Tǫ ⊢ a ∧ B → C, then also Tǫ ⊢ ∀X(a ∧ B → C)↾X , thus by logic, also
Tǫ ⊢ ∀X(a↾X) ∧ b→ c. Now Lemma I.4.5 yields Tǫ + trans ⊢ a ∧ b→ c. ✷

Lemma I.4.7. If A is Π1
1, then ACA0 ⊢ ∀X(trans↾X → A↾X) → A.

Proof Let A = ∀Y D(Y ) for some arithmetical D(U). If ∀X(trans↾X → A↾X), but
¬D(Z) for some set Z, then by Lemma I.4.4 there were a transitive X with Z∈̇X ,
thus ¬A↾X ! ✷

Proof [Theorem I.4.2] Assume (i) and (ii). Because of (i), it suffices to show that
ACA0 ⊢ Wo≺(x) → A(x). By (ii), ACA0 ⊢ (∀y ≺ x)a(y) → A(x), hence by (i),
Tǫ ⊢ (∀y ≺ x)a(y) → A(x). Thus, Tǫ ⊢ [(∀y ≺ x)a(y) → A(x)]↾X by Lemma I.1.9,
which further yields Tǫ ⊢ (∀y ≺ x)a(y)↾X → A(x)↾X . Now we first quantify the
X on the left side of the implication, then the X on the right, and we obtain Tǫ ⊢
(∀y ≺ x)∀Xa(y)↾X → ∀XA(x)↾X , that is Tǫ ⊢ (∀y ≺ x)∀Xa(y)↾X → a(x). Next,
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Lemma I.4.5 and the fact that a(y) is Π1
1 yields Tǫ + trans ⊢ (∀y ≺ x)a(y) → a(x),

that is, for C := {x : a(x)}, Tǫ ⊢ trans → Prog≺(C).

Again by Lemma I.1.9, Tǫ ⊢ trans↾X → Prog≺(C↾X). Since ACA0 implies that C↾X
is a set, ACA0 ⊢ Wo≺(x) → [trans↾X → (∀y ≺ x)(y ∈ C↾X)]. By Lemma I.4.7,
ACA0 ⊢ Wo≺(x) → (∀y ≺ x)(y ∈ C), therefore ACA0 ⊢ Wo≺(x) → (∀y ≺ x)a(y).
Now (ii) implies ACA0 ⊢ Wo≺(x) → A(x). ✷

Proof [Corollary I.4.3] We show that condition (ii) of the corollary is actually equiv-
alent to condition (ii) of the theorem, given that A(u) is of the form C0 → C(u)
with C0 := B∧b∧d and u /∈ FV0(C0). For each formula F , ACA0 ⊢ ∀Xf↾X ↔ f , by
Lemma I.4.5. Hence, (∀y ≺ x)a(y) iff b∧ d→ (∀y ≺ x)c(x), and so all the following
formulas are equivalent over ACA0

(i) ∀x[(∀y ≺ x)a(y) → A(x)],

(ii) ∀x[(b ∧ d→ (∀y ≺ x)c(y)) → (C0 → C(x))],

(iii) ∀x[C0 → ((∀y ≺ x)c(y) → C(x))],

(iv) C0 → ∀x((∀y ≺ x)c(y) → C(x)),

(v) C0 ∧ (∀y ≺ x)c(y) → C(x).

✷
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Chapter II

Provable functions: the case N0 = 2

In this chapter, we first introduce sets Q2 and Q
H
2 of names to address all operation

(Opx : x ∈ Q2) and all type-2 functionals (Hx : x ∈ QH
2 ) that play a role in the

reduction process of p3(ACA0). Then, we define when “Opx proves HxH”, and show
that this holds for all x ∈ Q2, where ·H : Q2 → QH

2 assigns to each name x of an
operation the name xH of its corresponding functional (as a first approximation,
think of xH as the identity).

A name indicates how a functional or operation is constructed by iterated transfinite
composition from the basic functionals It := It2 and it := It1 and the basic operations
p2 and p1, respectively. The subscript ·2 indicates that we restrict to names of level
two; QH and Q will then be used to denote the respective names of all finite levels.
In the sequel, we also restrict to names of arbitrary large levels N0.

In order to give a first provisional description of what “Opx provesHxH” is to express,
we say that “T proves f”, if Tǫ proves

Prv0(x) := T̆ → ∀α[Wo✁(α) ∧ TI✁(CT, α) → Wo✁(f(α))],

which state that T̆ impliesWo✁(f(α)) upon the assumptionsWo✁(α) and TI✁(CT, α),
where CT is some class depending on x, and ✁ is a primitive recursive well-ordering.
“Op proves H” then states that for all T and f so that “T proves f”, we also have
“Op(T) proves H(f)”.

We treat the case N0 = 2 first, although this is not yet the generic case: many
problems do not surface at all, or only in a trivial form, so that no extra machinery
is required in order to solve them. Therefore, the goal of this chapter is not to
provide the simplest possible proof, but one that neatly extends to the general case.

Names for operations and functionals are ordered sets (Q2, <2) and (QH
2 , <

H
2 ). Com-

pared to the general case, the names QH
2 and Q2 are quite simple and manageable.
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Having names at hand will allow us to define Opx using the Representation The-
orem, and to prove “Opx proves HxH” by transfinite induction along a suitable
well-founded relation ❀∗ on Q2.

Names are special nested sequences. Since the names QH
2 for functionals are some-

what simpler than the names Q2 for operations, we first have a brief look at QH
2 .

q0 := 〈〉 is the only name of level 0, and 〈(α, q0)〉 with 0 < α are the names of level
one, and (α, q0) <

H
2 (β, q0) iff α < β. Names of level two may be sequences of length

bigger than one: if x1 < . . . < xk are names of level one and 0 < αi (1 ≤ i ≤ k), then
〈(α1, x1), . . . (αk, xk)〉 is a name of level two. Functionals of type-2 are then named
in the following manner: H(α,q0) := itα, H(β,(α,q0)) := (Itα(it))β, and if 〈x1, . . . , xk〉 is
a name of level two with k > 1, then H〈x1,...,xk〉 := Hx1 ◦ . . . ◦Hxk .

Each x ∈ QH
2 also names an operation Opx. The naming schema for operations is

similar, however, there are some differences that are discussed in the next section. In
particular, QH

2 ( Q2, since we need more names for operations than for functionals.
We still have that Op(α,q0) iff pα1 , and Op(n,(α,q0)) iff (pα2p1)

n. But e.g. Op(γ,(α,q0)) iff
(p1p

α
2p1)

γ and Op(γ+n+1,(α,q0)) iff (pα2p1)
γ+n.

The organization of this chapter is as follows. First, we introduce names for opera-
tions and functionals. Then, we have a closer look at names and define approxima-
tions and normal forms, which leads to the definition of the relations ❀ and ❀∗,
and a formal definitions of Opx by means of the Representation Theorem. After
collecting relevant properties of the functionals Hx and the operations Opx, we are
then in position to show that for each x ∈ Q∗

2 := Q2 \ {q0}, “Opx proves HxH”.

Differences between operations and functionals

In this section, we (still somewhat informal) explain in what sense operations and
functionals behave differently. We start by reviewing some basic properties of oper-
ations that are constantly used in the sequel. Recall that Op ⇒ Op′ states that for
all T̆, Tǫ ⊢ Op(T̆) → Op′(T̆).

Firstly, recall (cf. Definition I.2.1) that if T̆ and T̆′ are open L2-sentences so that
Tǫ ⊢ T̆ → T̆′, then also Tǫ ⊢ Op(T̆) → Op(T̆′) for each operation Op. In particular,
since trivially Tǫ ⊢ T̆ ∧ T̆′ → T̆ and Tǫ ⊢ ∀xT̆(x) → T̆(u) (u /∈ FV(∀xT̆)), we have
that Tǫ ⊢ Op(T̆ ∧ T̆′) → Op(T̆) and Tǫ ⊢ Op(∀xT̆(x)) → ∀xOp(T̆(x)).

Secondly, as (ACA) is Π1
2, Lemma I.2.12 yields that Tǫ ⊢ p1((ACA)) → (ACA).

Thus, as p2 ⇒ p1, also Tǫ ⊢ p2((ACA)) → (ACA). Since p1 is an operation, we
obtain Tǫ ⊢ p1p2((ACA)) → p1(ACA), and further, as Tǫ ⊢ p1((ACA)) → (ACA), we
conclude that also Tǫ ⊢ p1p2((ACA)) → (ACA).

Thirdly, if T̆ is Π1
2, then Tǫ ⊢ p2(T̆) ↔ p2p1(T̆). To see this, we work informally in
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Tǫ and assume p2(T̆). Then we have also p1(T̆), which is Π1
2. Using Lemma I.2.14

yields p2p1(T̆). Conversely, as T̆ is Π1
2, T

ǫ ⊢ p1(T̆) → T̆, thus, as p2 is an operation,
also Tǫ ⊢ p2p1(T̆) → p2(T̆).

Next, we elaborate on some differences of the operation p2 and the functional It.
A first thing to observe is that we can compose the functional It with any other
type-3 functional F to obtain the type-3 functional (It ◦ F ). Alternatively, we can
apply the type-3 functional It to a type-2 functional G to obtain a type-2 functional
It(G). However, we cannot apply It to F , or compose It with G. For the operation
p2 there is no such distinction: p2 ◦p2 and p2 ◦p1 are both well-defined compositions
of operations.

Example II.0.8. Recall that p2(ACA0) is Σ1
1-DC0 and that p1p2(ACA0) is ATR0

(cf. Lemma I.2.10). Hence, p2(p2(ACA0)) is a theory that claims Π1
2-reflection

on ω-models of Σ1
1-DC0. p2(p2(ACA0)) is equivalent to a theory with Σ1

1-transfinite
dependent choice (cf. Rüede [19]) of ordinal strength ϕω00 (cf. Rüede [20]).

Next, we look at the theory ATR0 + (Σ1
1-DC), analyzed in Jäger and Strahm [8] and

shown to have ordinal strength ϕ1ω0. We see that p2(ATR0) is ATR0 + (Σ1
1-DC).

Since p1p2((ACA)) implies (ACA), p2p1p2((ACA)) implies p2((ACA)), i.e. (Σ1
1-DC).

And p2(p1p2(ACA0)) proves p1p2((ACA)) by Lemma I.2.12. Conversely, since ATR0+
(Σ1

1-DC) proves p2((ACA))∧ p1(p2((ACA)), and p1p2((ACA)) is Π
1
2, we obtain, using

Lemma I.2.14, p2p1p2((ACA)).

Summing up, we have the following.

(i) p2(p1p2(ACA0)) is a theory of strength ϕ1ω0,

(ii) p22(ACA0) is a theory of strength ϕω00.

Since p2((ACA)) iff p2p1((ACA)), we can present these theories also in the following
slightly different way, which immediately reveals its connection the the corresponding
functionals. Namely, p22(ACA0) is p

2
2p1(ACA0), and according to the above discussion,

ATR0+(Σ1
1-DC) is (p2p1)(ATR0) is (p2p1)(p2p1)(ACA0). Indeed, it turns out that p

2
2p1

corresponds to It2(it), and that (p2p1)
2 corresponds to (It(it))2.

This suggests that “p2 applies to p1” and that “p2 composes with p2”. To keep this
distinction visible, we build our operations from the components p1+α2 p1 and p1. This
corresponds to the situation with functionals: the functionals with names in QH

2 \{q0}
are build from components It1+α(it) and it.

Next, we explain why we need more names for operations than for functionals. For
this discussion, we work informally in Tǫ. Observe that pω2p1(T̆) implies Op(T̆) for
Op := ∀n(p1pn2p1) (the operation which maps T̆ to ∀n(p1pn2p1(T̆))). As Op(T̆) is Π

1
2,

m-fold use of Lemma I.2.14 yields (∀n(p1pn2p1))
m(T̆) for each m ∈ N. Obviously,
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the operation Op is different from pω2 p1. On the other hand, one readily obtains
that Itn+1(it) ⊆ it ◦ Itn(it) ⊆ Itn(it) (cf. Lemma II.1.6 and Convention I.3.5), and
hence H :=

⋂
n(it ◦ It

n(it)) = Itω(it). While we therefore need no extra name for the
functional H , an extra name is needed for the “corresponding” operation Op. We
pick (1, (ω, q0)

−) as a name for Op, i.e. ∀n(p1pn2p1) (recall that Op(1,(ω,q0)) is pω2 p1
and H(1,(ω,q0)) is It

ω(it)).

As expected, it turns out that “∀n(p1pn2p1) proves It
ω(it)”, in other words, we have

that “Op(1,(ω,q0)−) proves H(1,(ω,q0))”. Further, we will see that “p
ω
2p1 proves It

ω+1(it)”,
that is, “Op(1,(ω,q0)) proves H(1,(ω+1,q0))”. So the correspondence is slightly skewed.
We do not have that Opx is the counterpart of Hx; only “Opx proves HxH”, where
map ·H : Q2 → QH

2 (cf. Definition II.2.17) restores the correspondence. For instance,
(1, (ω, q0)

−)H = (1, (ω, q0)), and (1, (ω, q0))
H = (1, (ω+1, q0)).

Next, we explain why (ω, (1, q0)) is a name for the functional (It(it))ω, but only
(ω+1, (1, q0)) is a name for the operation (p2p1)

ω. To begin with, we anticipate that
for each n, “(p2p1)

n proves (It(it))n”. Hence, it is plausible that “∀n(p1p2p1)
n prove⋂

(it ◦ It(it))n”. However,
⋂
(it ◦ It(it))n is (It(it))ω. So “∀n(p1p2p1)n prove (It(it))ω”,

and we thus use (ω, (1, q0)) as a name for the operation ∀n(p1p2p1)n. As shown in
the next Lemma, the operation (p2p1)

ω is stronger.

Lemma II.0.9. (p2p1)
ω ⇔ (p2p1) ◦ ∀n(p1p2p1)

n.

Proof We work informally in Tǫ. For each n, (p2p1)
ω(T̆) implies (p2p1)(p2p1)

n(T̆)
which implies p1(p2p1)

n(T̆) by Lemma I.2.12. Thus, (p2p1)
ω ⇒ ∀n(p1p2p1)n. So

(p2p1)
ω(T̆) implies p2(p1(T̆)) ∧ ∀n(p1p2p1)n(T̆)). Now (p2 ◦ ∀n(p1p2p1)n)(T̆) follows

by Lemma I.2.14. Conversely, as ∀n(p1p2p1)
n is Π1

2, (p2 ◦ ∀n(p1p2p1)
n)(T̆) implies

(p2p1 ◦ ∀n(p1p2p1)n)(T̆), which in turn implies for each n, ((p2p1) ◦ (p2p1)
n)(T̆).

Hence, (p2p1)
ω ⇔ p2 ◦ ∀n(p1p2p1)n ⇔ (p2p1) ◦ ∀n(p1p2p1)n. ✷

Having fixed (ω, (1, q0)) as a name for the operation ∀n(p1p2p1)n, the above lemma
states that (p2p1)

ω iff Op(1,(1,q0)) ◦ Op(ω,(1,q0)). Further, it turns out that “(p2p1)
ω

proves (It(it))ω+1”. Since, (It(it))ω+1 is H((1,(1,q0)) ◦ H((ω,(1,q0)), which goes by the
name H((ω+1,(1,q0)), it makes sense to assign (p2p1)

ω the name (ω+1, (1, q0)).

More generally, we have the following Lemma, which can be proved analogously to
the previous one. We will give a proof later, using the proper definition of Opx (cf.
Theorem II.4.20).

Lemma II.0.10.

(i) (p2p1)
γ ⇔ (p2p1)(∀ξ < γ)(p1p2p1)

ξ, and

(ii) (p2p1)
γ+n+1 ⇔ (p2p1)

n(∀ξ < γ)(p1p2p1)
ξ.
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A further thing to keep in mind is that the Representation Theorem should yield a
formula ϕ(u) that represents Opx for each name x, (that is, ϕ(u){T̆↾U} iff Opx(T̆)),
where we regard just p1 and p2 as basic operations. Using Lemma II.0.9, we can
regard (p2p1)

ω as p2(∀n(p1p2p1)n), and ∀n(p1p2p1)n is ∀np1(p2p1)n, which allows us
to define (p2p1)

ω using the Representation Theorem form the basic operations p1
and p2 (cf. Definition II.4.1).

II.1 Names

In this section, we introduce names. Q2 and Q
H
2 are then instances of this definition,

as are Q and QH . In order to keep subsequent definitions as simple as possible, we
make use of the following notions.

For a setX , we denote byX<ω the set of finite sequences with elements fromX . Such
a sequence of length n is usually depicted by 〈x1, . . . , xn〉, and if σ := 〈x1, . . . , xn〉,
then (σ)i := xi (1 ≤ i ≤ n). The function lh : X<ω → N returns the length of such a
sequence, and 〈〉 stands for the empty sequence with length 0. Further, x∗y denotes
the concatenation of the finite sequences x and y.

An ordered set is a pair (X,<), consisting of a set and a strict and total ordering
< on X . Occasionally, we consider orderings < with X ( field(<), in which case
(X,<) is short for (X,<↾X), where <↾X := {(x, y) ∈ X ×X : x < y}.

Definition II.1.1. Let (X,<) be an ordered set. Then <lex is the least ordering on
X<ω with the following properties: for all σ, σ′, τ ∈ X<ω, and x, y ∈ X,

(i) if 〈〉 6= σ, then τ <lex σ ∗ τ ,

(ii) if x < y, then σ ∗ 〈x〉 ∗ τ <lex σ
′ ∗ 〈y〉 ∗ τ .

Hence, if there is a first position form the right where the two sequences differ, then
the sequence with the <-bigger element at this position is the <lex-larger one. And
if there is no such position, then the longer sequence is the <lex-larger one.

II.1.1 Names for functionals

In this subsection, we reiterate, now in a more formal manner, what we have outlined
at the beginning of this chapter about names for functionals.

Definition II.1.2 (Names for functionals). Let q0 := 〈〉 and QH
0 := {q0}.

(i) (QH
1 , <

H
1 ) is the ordered set with QH

1 := QH
0 ∪ {〈(α, q0)〉 : 0 < α}.

For x, y ∈ QH
1 , we have

x <H
1 y :⇔ (x = q0 ∧ x 6= y) ∨ ∃α, β[α < β ∧ x = 〈(α, q0)〉 ∧ y = 〈(β, q0)〉].
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(ii) (QH
2 , <

H
2 ) is the ordered set with

QH
2 := {〈(α1, x1), . . . , (αk, xk)〉 : ~x ∈ QH

1 , x1 <
H
1 . . . <H

1 xk},

and <H
2 := ⋖lex, where ⋖ orders (Ω \ {0}) × QH

1 : for x, y ∈ QH
1 and ordinals

0 < α, β < Ω, q0 ⋖ (α, x), and (α, x)⋖ (β, y) iff x <H
1 y ∨ (x = y ∧ α < β).

We point out that q0 ∈ QH
2 (i.e. in the definition of the set QH

2 , ~x may be empty).

As names are used quite frequently in the sequel, we stick to the following abbrevi-
ations and the next convention in order to increase readability.

Convention II.1.3. If the context indicates that we work with names, then we write
(α, x) for 〈(α, x)〉. So we write e.g. (α, (β, q0)) for 〈(α, 〈(β, q0)〉)〉. Further, if f is
a function defined on names, then we write f(α, x) for f(〈(α, x)〉). Moreover, we
read (0, q0) as the name q0.

Definition II.1.4. We utilize q1, q
α
1 and q2, to denote the following names. q1 :=

(1, q0), q2 := (1, q1) and q
α
1 := (α, q0).

Next, we assign to each x ∈ QH
1 a type-3 functional H+

x , and to each name x ∈ QH
2

a type-2 Hx functional as follows.

Definition II.1.5. Hq0 is the identity on Ω(0), H+
q0

is the identity on Ω(1), and for
0 < α, β < Ω and k > 1,

(i) H(α,q0) := itα, H+
(α,q0)

:= Itα,

(ii) H(β,x) := (H+
x (it))

β (x 6= q0),

(iii) H〈x1,...,xk〉 := Hx1 ◦ . . . ◦Hxk .

Further, if f ∈ Ω(0), then fx := Hx(f).

The general form of a name x ∈ QH
2 for a functional is hence (α0, q0) ∗ y for

y := 〈(1+α1, (1+β1, q0)), . . . , (1+αk, (1+βk, q0))〉 with β1 < . . . < βk, and the corre-
sponding functional is Hx = itα0 ◦ (It1+β1(it))1+α1 ◦ . . . ◦ (It1+βk(it))1+αk .

Lemma II.1.6. For each x ∈ QH
2 \ {q0} and each y ∈ QH

1 \ {q0},

(i) Hx ∈ Ω(1) and H+
y ∈ Ω(2),

(ii) Hx ⊆ it and H+
y ⊆ It.
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Proof Recall that if F ∈ Ω(n+1), then F is strictly inclusive, that is, F (G) ⊆ G for
each G ∈ Ω(n), and further, F 1+α ∈ Ω(n+1) for each α (cf. Lemma I.3.12). Moreover,
F 1+α ⊆ F , as is readily seen by induction on α, and if β ≤ α, then F α ⊆ F β. Hence,
both claims are obvious if y ∈ QH

1 \ {q0}, as then, y = (1+β, q0) and H+
x = It1+β,

and It ∈ Ω(2) by Corollary I.3.13.

For x ∈ QH
2 \{q0}, the two claims are shown simultaneously by induction on the build

up of QH
2 . H(1+α,q0) = it1+α ∈ Ω(1) and it1+α ⊆ it. If y 6= q0 and (1+α, y) ∈ QH

2 \{q0},
then y ∈ QH

1 \ {q0} and H+
y ∈ Ω(2) and H+

y ⊆ It by (i), hence H+
y (it) ∈ Ω(1) and

H(1+α,y) = (H+
y (it))

1+α ⊆ H+
y (it) ⊆ It(it) ⊆ it.

And if both claims hold for xk, and x = 〈x1, . . . , xk〉 and k > 1, then H〈x1,...,xk〉 =
Hx1 ◦ . . . ◦Hxk ⊆ Hxk ⊆ it, and H+

〈x1,...,xk〉
∈ Ω(1) as Ω(1) is closed under composition.

✷

Lemma II.1.7. For each x ∈ QH
2 \ {q0}, It(Hx) ⊆ it ◦Hx.

Proof It[Hx, f, α] ∈ (Hx)
2+α(f) ⊆ (Hx)

2(f) ⊆L.II.1.6 (it ◦Hx)(f). ✷

Finally, the following is readily observed.

Lemma II.1.8. For each x ∈ QH
1 , H(α,x) ◦H(β,x) = H(β+α,x).

II.1.2 Names for operations

We have already discussed that we need different names for the operations pγ2p1 and
(∀ξ < γ)(p1p

1+ξ
2 p1), and that we plan to use (1, (γ, q0)) as a name for the former, and

(1, (γ, q0)
−) as a name for the latter operation. The following auxiliary definition

helps us to implement such a naming schema.

Definition II.1.9. Given a set X, then we denote by X− a disjoint copy of X, and
by ι : X− → X a corresponding bijection. If (X,<) is an ordered set and Y ⊆ X−,
then j : X ∪ Y → X, j(x) := x if x ∈ X, and j(y) := ι(y) if y ∈ Y . (X ∪ Y,<) is
the ordered set with field(<) = X ∪ Y , and

z < z′ :⇔ j(z) < j(z′) ∨ (j(z) = j(z′) ∧ z ∈ Y ∧ z′ ∈ X).

Further, we write x− for ι−1(x).

The set of names Q2 for operations is a superset of the names QH
2 for functionals.

Names of level two are now not only formed using names ~x ∈ Q1 of level one, but
also so-called prenames, elements of Q−

1 of the form (γ, q0)
−.

Definition II.1.10 (Names for operations). q0 := 〈〉 and Q0 := {q0}, and
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(i) (Q1, <1) := Q0 ∪ {〈(α, q0)〉 : 0 < α} and P1 := {(γ, q0)− : γ ∈ Lim(Ω)} ⊆ Q−
1 .

Now (Q1 ∪ P1, <1) is the ordered set explained by Definition II.1.9.

(ii) (Q2, <2) is the ordered set with

Q2 := {〈(α1, v1), . . . (αk, vk)〉 : ~v ∈ P1 ∪Q1, v1 <1 . . . <1 vk},

and <2:= ⋖lex, where ⋖ orders (Ω\{0})×Q1∪P1 as follows: for v, w ∈ Q1∪P1

and ordinals 0 < α, β, we have q0 ⋖ (α, v), and further, (α, v) ⋖ (β, w) iff
v <1 w ∨ (v = w ∧ α < β).

Further, Q∗
1 := Q1\{q0} and Q∗

2 := Q2\{q0}. Again, Q1 ⊆ Q2 (i.e. in the definition
of the set Q2, ~v may be empty).

Note that if z− ∈ P1, then z is the <2-least element above z−. Further, it is readily
seen that (Q2, <2) and (Q2 ∪ P1, <2) are well-orderings.

Convention II.1.11. We let x, y, z range over Q2, and v, w over Q2 ∪P1. If f is a
function defined on names, then we write f(α, x) for f(〈(α, x)〉). For instance, we
write (γ, q0)

− for 〈(γ, q0)〉
−.

Provisional definitions of the operations (Opx : x ∈ Q∗
2)

Below, we assign to each x ∈ Q∗
2 an operation Opx, and to each x ∈ Q∗

1 an operation
Op+x . The definition is provisional, as this assignment is semantical: given x ∈ Q∗

2,
Opx is an operation, and it is assumed that we can represent this operation by
an L2(P)-sentence, by using some way to code x as a natural number. Later, this
assignment is superseded by Definition II.4.1, the proper definition of the operations
(Opx : x ∈ Q∗

2) and (Op+x : x ∈ Q∗
1), which provides L2(P)-formulas ϕ(u) and ϕ+(u)

so that Opϕx represents Opx, and Opϕ
+

x represents Op+x . There, it is assumed that we
have a primitive recursive relation which codes Q∗

2, which is also denoted by Q∗
2.

Definition II.1.12. For all 0 < α, β < Ω, and k > 1,

(i) Op(α,q0) := pα1 and Op+(α,q0) := pα2 ,

(ii) Op(n,(α,q0)) := (pα2p1)
n and Op(γ+n+1,(α,q0)) := (pα2p1)

γ+n,

(iii) Op(γ,(α,q0)) := (p1p
α
2p1)

γ and Op(α,(γ,q0)−) := ((∀ξ < γ)(p1p
1+ξ
2 p1))

α,

(iv) Op〈x1,...,xk〉 := Opx1 ◦ . . . ◦ Opxk .
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We see that for all x ∈ Q∗
1,

Op(n,x) ⇔ (Op+x p1)
n and Op(γ+n+1,x) ⇔ (Op+x p1)

γ+n and Op(γ,x) ⇔ (p1Op
+
x p1)

γ,

which matches almost (cf. discussion prior to Lemma II.0.10) the corresponding
Definition II.1.5 for functionals. Further, we also have the following lemma which is
the counterpart of Lemma II.1.8. A proof (cf. Lemma II.4.4 (iv)) is only given after
the proper definition of Opx is presented.

Lemma II.1.13. For each v ∈ Q1∪P1 and all 0✁α, β, Op(α,v)◦Op(β,v) ⇔ Op(β+α,v).

II.2 Approximations and normal forms

In this section, we have a closer look at the names in Q2, which we use to name
operations. In particular, we define normal forms and two kinds of approximations,
x[α] and x(α). Finally, we define ·H : Q2 → QH

2 so that Opx corresponds to HxH .

Before we hint at a relevant property of the approximation x[α] in the next para-
graph, we give the definition of degree deg(x) and ordinal o(x) of a name right
away. A look at Definition II.1.12 then readily confirms that Opx(T̆) is Π1

m+2 if
deg(x) = m+1 (where m ∈ {0, 1}). The role of o(x) will become clearer later. For
now, just note that for names x with deg(x) = 1, we have o(x) = 1 if x is a successor,
and o(x) ∈ Lim(Ω) if x is a limit w.r.t. (Q2, <2).

Definition II.2.1. For x ∈ Q2 and f ∈ {deg, o}, we let f(x) := f((x)0) and
f(α+1, v) := f(1, v). Further,

(i) deg(q0) := 0, deg(1, x−) := 1, deg(1, x) := deg(x)+1 and deg(γ, v) := 1.

(ii) o(q0) := 1, o(1, x−) := o(x), o(1, x) := o(x) and o(γ, v) := γ.

We extend deg and o to Q2 ∪ P1 by setting, deg(x−) := 0 and o(x−) := o(x).

A key property of the approximation x[α] is the following (cf. Lemma II.4.2), which
yields to a definition of Opx by means of the Representation Theorem.

(i) If o(x) = 1 and deg(x) = m+1, then Opx ⇔ pm+1 ◦ Opx[0],

(ii) if o(x) = γ and deg(x) = m+1, then Opx ⇔ (∀α < γ)(pm+1 ◦ Opx[α]).

Let us illustrate this with an example. If x := (1, (2, q0)) and y := (1, (ω, q0)), then
x[0] = (1, (1, q0)) and y[n] = (1, (n, q0)), and by Definition II.1.12, Opx[0] iff p2p1,

and Opy[n] iff pn+1
2 p1. Now a) and b) (see next page) are instances of (i) and (ii),

respectively.
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a) Opx iff p22p1 iff p2 ◦ p2p1,

b) Opy iff pω2p1 iff (∀n < ω)(p2 ◦ p
n+1
2 p1).

Next, we define a partial function ◦ : Q2 ×Q2 → Q2, so that if x ◦ y is defined, then
Opx◦y ⇔ Opx ◦ Opy, and if further x ◦ y ∈ QH

2 , then Hx◦y = Hx ◦Hy.

Definition II.2.2. If 〈〉 ∈ {x, y}, then x ◦ y := x ∗ y, and if x = 〈x1, . . . , xk〉 with
xk = (α, v), and y = 〈y1, . . . , yl〉 with y1 = (β, w), then

x ◦ y :≃





x ∗ y : if x ∗ y ∈ Q2,

〈x1, . . . , xk−1, (β+α, v), y2, . . . , yl〉 : if v = w,

undefined : else.

If x and y are names and x ◦ y is defined, then x ◦ y is a name, too. Also observe
that ◦ is associative. Further note, that the reading of (0, v) as an abbreviation
for q0 helps to avoid case distinctions: in the sequel, we often use that (α+1, v) is
(1, v) ◦ (α, v), which thus also holds for α = 0.

The following property is essentially trivial, yet important enough to phrase it as a
lemma.

Lemma II.2.3. If x ◦ y ∈ Q2, then deg(x ◦ y) = deg(x) and o(x ◦ y) ∈ Lim(Ω) iff
o(x) ∈ Lim(Ω).

Definition II.2.4. We say that x ◦ y is an expression in normal form, if lh(x) = 1,
and either

(i) x = (1, v), or

(ii) x = (γ, v) and x ◦ y = x ∗ y.

We write z =NF x◦y if z = x◦y and x◦y is an expression in normal form. Further,
if x ◦ y is an expression in normal form, then we call x simple.

So if x ∈ Q2, and z =NF x ◦ y, then x = (1, v) or x = (γ, v), where v ∈ Q1 ∪ P1

and thus is either q0, or of the form (1+β, q0), (γ, q0) or (γ, q0)
−. Also note that a

simple name of degree two is of the form (1, (1+β, q0)). Each name x ∈ Q∗
2 can be

uniquely written in normal form.

Lemma II.2.5. If x ∈ Q2, then there are unique y ∈ Q∗
2 and z ∈ Q2, so that

x =NF y ◦ z.
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Proof If deg(x) = 1, then either (x)0 = (α+1, q0), (x)0 = (1+β, (γ, q0)
−), or (x)0 =

(γ, v) with v ∈ Q1 ∪ P1. Therefore, if x = (x)0 ∗ x
′, then either x = q1 ◦ z for

z := (α, q0) ∗ x′, or x = (1, (γ, q0)
−) ◦ z for z := (β, (γ, q0)

−) ∗ x′, or x = (γ, v) ∗ z
for z := x′. Further, these representations are unique. And if deg(x) = 2 and
x = (x)0 ∗ x′, then (x)0 is of the form (α+1, y′), and x =NF (1, y′) ◦ z. Again, y′ and
z are uniquely determined. ✷

We use this unique normal form to assign approximations x[α] to each x ∈ Q∗
2.

Clauses (i)–(iii) address names of degree one, clauses (iv)–(v) names of degree two.

Definition II.2.6. Let x =NF y ◦ z ∈ Q∗
2. Then, x[α] := y[α] ◦ z, where

(i) (1, q0)[α] = q0.

(ii) (γ, v)[α] := (1+α, v) if α ≤ γ, and else (γ, v)[α] := (γ, v).

(iii) (1, (γ, q0)
−)[α] := (1, (γ, q0)[α]).

(iv) (1, (β+1, q0))[α] := (1+α, (β, q0)).

(v) (1, (γ, q0))[α] := (1, (γ, q0)[α]).

It is immediate by this definition, that x[α] ≤2 x, and if α < o(x), then x[α] <2 x.
Actually, if o(x) = γ, then only approximations x[α] for α < γ will matter in the
sequel. The case distinction in clause (ii) just assures that x[α] is always defined
and in Q2 (setting (γ, v)[α] := (1+α, v) for all α would mean that e.g. for x :=
(2, (ω, q0)) =NF (1, (ω, q0)) ◦ (1, (ω, q0)), x[ω+1] ≃ (1, (ω+1, q0)) ◦ (1, (ω, q0)) is not
defined).

Definition II.2.7. If v ∈ Q2 ∪ P1, then we denote by v+1 its successor w.r.t. the
ordering (Q2 ∪ P1, <2) (cf. Definition II.1.9): if x ∈ Q2, then x+1 := q1 ◦ x, and if
x− ∈ P1, then x

−+1 := x.

Note that (α, q0)+1 = (α+1, q0). Further, 〈x1, . . . , xk〉+1 = 〈x1+1, . . . , xk〉.

The following properties of x[α] are immediate by the definition. Recall that v
ranges over Q2 ∪ P1, while x, y range over Q2.

Lemma II.2.8. We have the following.

(i) (x+1)[α] = x and (1, x+1)[α] = (1+α, x).

(ii) if x = (x)0 ∗ y, then x[α] := (x)0[α] ∗ y,

(iii) (β+1, v)[α] := (1, v)[α] ◦ (β, v),

(iv) (1, v)[α] := (1, v[α]) if v 6= y+1 (for some y ∈ Q2).
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We also record the following simple fact, as it is used later in some proofs.

Lemma II.2.9. Assume that x ∈ Q∗
2 and x ◦ y ∈ Q∗

2, and let

δ0 :=

{
δ : x = (γ, v) ∧ (y)0 = (δ, v),

0 : otherwise.

Then, for each α, x[α] ◦ y = (x ◦ y)[δ0+α], and o(x ◦ y) = δ0+o(x). In particular, if
deg(x) = 2, then x[α] ◦ y = (x ◦ y)[α].

Proof The claim obviously holds if x = (γ, v). If x = (β+1, v), then we have two
cases: x ◦ y = x ∗ y, hence (x ∗ y)[α] = x[α] ∗ y, or (y)0 = (δ, v) and x ◦ y =
(1, v) ◦ (δ+β, v) ∗ z, where y = (y)0 ∗ z. If lh(x) > 1, then x = (x)0 ∗ z and
(x◦y) = (x)0 ∗ (z ◦y). Hence, (x◦y)[α] = x0[α]∗ (z ◦y) = (x0[α]∗ z)◦y = (x◦y)[α].
The second claim is also readily checked. ✷

The next Lemma tells us in what cases we have that x = sup<2
{x[α] <2 x : α ∈ Ω}.

Lemma II.2.10. If deg(x) = 1 and o(x) = γ, and deg(y) = 2 and o(y) = 1, then

x = sup<2
{x[α] : α < γ} and y = sup<2

{y[α] : α < Ω}.

Proof By the above Lemma, if x =NF y◦z, then x[α] = y[α]◦z, and supα∈I(y◦z)[α] =
(supα∈Iy[α]) ◦ z, readily follows. Thus, it suffices to show the claim for simple
names. So assume that x and y are as assumed in the lemma, but simple. If x
is of the form (γ, z), then the claim is readily observed, and if x is of the form
(1, z−) with z = (γ, q0), then x′ <2 (1, z−) entails that x′ <2 x′′, where x′′ =
〈(β1, v′1), . . . , (βi, v

′
i)〉 <1 (1, z−) and v′1 <1 . . . < v′i <1 z

−. Hence, there is an α so
that x′′ <2 (1, (1+α, q0)) = (1, z−)[α] = x[α]. The first claim follows. As y is of the
form (1, (β+1, q0)), it is immediate that if z <2 y, then already z <2 (1+α, (β, q0))
for some α. This yields the second claim. ✷

If deg(x) = 2 with o(x) = γ, then x =NF (1, (γ, q0))◦z. Then, for y := (1, (γ, q0)
−)◦z,

we have x[α] = y[α]. By the above lemma, y = supα<γy[α] = supα<γx[α] <2 x. This
is where the approximation x(α) := (1+α, (γ, q0)

−) ◦ z takes over.

The approximation x(α) is only defined for names x with deg(x) = 2. It is defined
so that if o(x) ∈ Lim(Ω), then supαx[α] = x(0) and supαx(α) = x. Further, it is
arranged that deg(x(α)) = 1.

Definition II.2.11. If deg(x) = 2 and x is simple, then

(i) (1, (γ, q0))(α) := ((1+α, (γ, q0)
−), and

(ii) if o(x) = 1, then x(α) := x[α]+1.
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If deg(x) = 2 and x =NF y ◦ z ∈ Q∗
2, then x(α) := y(α) ◦ z.

The next lemma lists some easy consequences of this definitions.

Lemma II.2.12. If deg(x ◦ y) = 2, then x(α) ◦ y = (x ◦ y)(α), and if deg(z) = 2
and o(z) = 1, then z(α) = z[α]+1.

Below, we summarize the properties of the approximations x[α] and x(α) for names
of degree two. The proofs are simple and along the line of the proof of Lemma
II.2.10, and therefore omitted.

Lemma II.2.13. If x ∈ Q2 with deg(x) = 2 and o(x) = γ, and q0 6= y ∈ QH
2 is not

a successor, then

(i) x(0) = sup<2
{x[α] : α < γ}, and x = sup<2

{x(α) : α < Ω},

(ii) y = sup<H
2
{y[α] <H

2 y : α ∈ Ω}.

The following straightforward observation will prove very useful once we have proper
definitions of the theories (Tx := Opx(ACA0) : x ∈ Q∗

2), to see that e.g. for names of
degree two, Tǫ ⊢ T̆x → T̆x(0).

Lemma II.2.14. Assume that x is a simple name with deg(x) = 2. Then,

(i) If o(x) ∈ Lim(Ω), then deg(x(α)) = 1, o(x(0)) = o(x), x(0)[α] = x[α],
o(x(γ)) = γ and x(γ)[α] = x(α) for α < γ. Further, x(0) ◦ x(α) = x(α+1).

(ii) If o(x) = 1, then deg(x[γ]) = 1, o(x[γ]) = γ and x[γ][α] = x[α] for α < γ.
Further, x[0] ◦ x[α] = x[α+1].

We conclude this section by introducing the relation ❀ on Q2 whose transitive
closure ❀∗ will take the role of the relation ≺ in the Representation Theorem when
we define internal representations of the operations (Opx : x ∈ Q∗

2), and by defining
the map ·H : Q2 → QH

2 , which adjust the skewed correspondence between Opx and
Hx and is tailored so that Opx corresponds to HxH .

Definition II.2.15. All all x, y ∈ Q2, y ❀ x :⇔ (∃α < o(x))(y = x[α]). Further,
❀∗ is the transitive closure of ❀, and ❀∗

r is the reflexive closure of ❀∗.

Note that e.g. q0 ❀ q1, q1 ❀ q2 and q1 ❀ q21, and that further, q2 and q21 are
incomparable w.r.t. ❀∗. Further relevant properties of ❀∗ are collected below.

Lemma II.2.16.

(i) (Q2,❀
∗) is well-founded.
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(ii) q0 ❀
∗
r x.

(iii) If y ❀∗ x, then either y ❀ x or y ❀∗ x[α] for some α < o(x).

(iv) If y ◦ z ∈ Q2 and x ◦ z ∈ Q2, then y ❀
∗ x⇒ y ◦ z ❀∗ x ◦ z.

(v) If 1 ≤ α < β, then (α, v) ❀∗ (β, v).

(vi) If y ❀∗ x, then (1, y) ❀∗ (1, x).

(vii) If α < β < o(x) = γ, then x[α] ❀∗ x[β].

(viii) If y ❀∗ x and z ❀∗ x, then y ❀∗ z ∨ y = z ∨ z ❀∗ y.

(ix) If deg(x) = 2 and α < β, then x(α) ❀ x(β).

(x) Wo❀∗(x).

Proof (i) If y ❀ x, then y <2 x, therefore, as (Q2, <2) is well-founded, also (Q,❀∗).
(ii) Immediate by induction on x along ❀∗, using that for q0 6= x, x[0] ❀ x. (iii)
Directly by definition of❀∗. (iv) By induction on x along❀∗: if y ❀∗ x, then either
y ❀ x, that is y = x[α] for some α < o(x), and then for some δ0 (cf. Lemma II.2.9),
x[α] ◦ z = (x ◦ z)[δ0+α] ❀ x ◦ z, or y ❀∗ x[α] ❀ x for some α < o(x) = o(x ◦ z),
hence y ◦ z ❀∗

IH x[α] ◦ z, and as above, x[α] ◦ z ❀ x ◦ z. (v) By induction on
β > α. If β = γ is a limit, then (α, v) ❀ (γ, v) by definition. For the successor
case, note that, using (iv), (β, v) ❀∗

r (1, v)[0] ∗ (β, v) = (β+1, v)[0] ❀∗ (β+1, v).
(vi) By induction on x along ❀∗: if y ❀ x, then y = x[α] for some α < o(x), and
if x = y+1, then α = 0 and (1, y) = (1, y+1)[0] ❀ (1, x), and if x 6= y+1, then
(1, y) = (1, x[α]) = (1, x)[α] ❀ (1, x); and if y ❀∗ x[α], then (1, y) ❀∗

IH (1, x[α]),
and the claim follows as above. (vii) By (iv), it suffices to consider simple names.
Then x[α] is either of the form (1+α, y) and the claims is by (v), or x[α] is of
the form (1, (1+α, q0)), and the claim is by (iv). (viii) If y ❀∗ x and z ❀∗ x,
then there are α, β < o(x) so that y ❀∗

r x[α] and z ❀∗
r x[β]. By (v) y ❀∗

r z
or z ❀∗

r y. (ix) Let α < β. By (iv), it suffices to consider simple names, so
either (1, y+1)(α) = q1 ◦ (1, y+1)[α] ❀∗

(vi),(iv) (1, y+1)[0] ◦ (1, y+1)[α] =L.II.2.14(ii)

(1, y+1)[α+1] ❀∗
r (1, y+1)[β] ❀

∗ q1 ◦ (1, y+1)[β] = (1, y+1)(β), or (1, (γ, q0))(α) =
(1+α, (γ, q0)

−) ❀∗ (1+β, (γ, q0)
−) = (1, (γ, q0))(β). (x) By (i) and (viii). ✷

Finally, we define xH . As already mentioned, we have that e.g. Op(α,q0) (p
α
1 ) corre-

sponds to H(α,q0) (it
α
1 ), and that Op(1,(n,q0)) (p

n
2p1) corresponds to H(1,(n,q0)) (It

n
2 (it)).

As discussed in the first section of this chapter, Op(1,(ω,q0)−) corresponds to H(1,(ω,q0)),
Op(1,(ω,q0)) corresponds to H(1,(ω+1,q0)), and as we will see Op(1,(ω+n,q0)) corresponds
to H(1,(ω+n+1,q0)).
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We word the definition of ·H so that is directly extends to the general case. Therefore,
we make use of a “correction” corr(x) ∈ {0, 1}. For the case N0 = 2, we need corr(x)
only for x ∈ Q1, and if x ∈ Q1, then corr(x) = 1 iff (ω, q0) ≤ x, that is, if x is of the
form (γ+n, q0). Recall that all names in Q∗

1 have length one. However, with regard
to the general case, we define corr for each x ∈ Q2. The idea is that corr(x) = 1 if
x = (γ, y) ∗ z, and it is taken care that corr(x+1) = corr(x)+1.

Definition II.2.17. We define corr : Q2 → {0, 1} and ·H : Q2 → QH
2 as follows.

(i) corr(x) := 1 if ∃y, n[x = y+n ∧ deg(y) = 1 ∧ o(y) ∈ Lim(Ω)]; else corr(x) := 0.

(ii) qH0 := q0, (α, y
−)H := (α, yH) and (α, y)H := (α, yH+corr(y)),

(iii) if k > 1, then 〈x1, . . . , xk〉
H := 〈xH1 , . . . , x

H
k 〉.

It is easily checked that indeed ·H : Q2 → QH
2 . Also note that (α, q0)

H = (α, q0),
(α, (γ, q0)

−)H := (α, (γ, q0)) and (α, (γ+n, q0))
H := (α, (γ+n+1, q0)). Moreover, if

deg(x) = 2, then o(xH) = 1 and by Lemma II.2.10, x = supαx
H [α].

Also the following is an easy consequence of the above definition.

Lemma II.2.18. If x, y ∈ Q∗
2, then (x ◦ y)H = xH ◦ yH.

We close by a technical lemma, which will allows us show that if deg(x) = 1 and
o(x) = γ, then gxH [α]✂g(x[α])H ✂g(xH [α+1]), and if deg(x) = 2, then gxH [α]✂g(x(α))H ✂

gxH [α+1].

Lemma II.2.19. Let x ∈ Q2.

(i) If deg(x) = 1 and o(x) ∈ Lim(Ω), then xH [α] ❀∗
r (x[α])

H ❀∗
r x

H [α+1].

(ii) If deg(x) = 2, then xH [α] ❀∗
r (x(α))

H ❀∗
r x

H [α+1].

Proof Let x =NF y ◦ z. Then xH = yH ◦ zH . Hence xH [α] = yH[α] ◦ zH , (x[α])H =
(y[α])H ◦ zH and (x(α))H = (y(α))H ◦ zH . By Lemma II.2.16 (iv), it thus suffices
to check the claims for simple names. We just check the first claim of (ii), i.e. that
xH [α] = (x(α))H or xH [α]+1 = (x(α))H . The rest is verified similarly. For n < ω
and limits γ,

(1, (n+1, q0))
·H

//

·(α)
��

(1, (n+1, q0))

·[α]+1
��

(1+α, (n, q0))+1
·H

// (1+α, (n, q0))+1

(1, (γ, q0))
·H

//

·(α)
��

(1, (γ+1, q0))

·[α]
��

(1+α, (γ, q0)
−) ·H

// (1+α, (γ, q0))
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And for β > ω,

(1, (β+1, q0))
·H

//

·(α)
��

(1, (β+2, q0))

·[α]+1
��

(1+α, (β, q0))+1
·H

// (1+α, (β+1, q0))+1

✷

II.3 Properties of the functionals (Hx : x ∈ QH
2 )

In this short section, we collect some basic properties of our functionals. Below, we
write also H+0

x for Hx and H+1
x for H+

x .

The next claim states an expected property of ◦ and is an immediate consequence
of its definition and Definition II.1.5.

Lemma II.3.1. For n ∈ {0, 1}, if x ◦ y ∈ QH
n+1, then H

+(1−n)
x◦y = H

+(1−n)
x ◦H+(1−n)

y .

We have already seen that for q0 6= x ∈ QH
2 , Hx ∈ Ω(1) and Hx ⊆ it and for

q0 6= y ∈ QH
1 , H

+
x ∈ Ω(2), and Hy ⊆ It. More generally, we have the following.

Lemma II.3.2. If y ❀∗
r x ∈ QH

1 , then H+
x ⊆ H+

y , and if y ❀∗
r x ∈ QH

2 , then
Hx ⊆ Hy.

Proof Since It ∈ Ω(2), we have for each β ≤ α, Itα ⊆ Itβ, which yields (i), since
x ∈ QH

1 means that x = (α, q0), and if further y ❀∗ (α, q0), then y = (β, q0) for
some β < α.
The second claim is by induction along ❀∗. If x = y, the claim holds trivially, hence
assume that y ❀∗ x. We do a case distinction on the form of x.

(i) y ❀∗ x =NF (1, x′) ◦ z. If x′ = q0, then y ❀∗
r z and by I.H. Hz ⊆ Hy. Thus,

Hx = it ◦Hz ⊆ Hz ⊆ Hy. If x′ = q1, then y ❀∗
r (1, q0) ∗ z = x[0]. Using the

I.H. and that It(it) ⊆ it, Hx ⊆ Hx[0] ⊆ Hy. If x′ 6= q0 and x′ 6= q1, then there
is an α < o(x), so that y ❀∗

r x[α] = (1, x′[α]) ∗ z. By (i), H+
x′ ⊆ H+

x′[α], and so

Hx = H+
x′(it) ◦Hz ⊆ H+

x′[α](it) ◦Hz = Hx[α] ⊆IH Hy.

(ii) y ❀∗ x =NF (γ, x′) ∗ z. Then there is an α < o(x), so that y ❀∗
r x[α] =

(1+α, x′) ◦ z. Since H+
x′(it) ∈ Ω(1), (H+

x′(it))
γ ⊆ (H+

x′(it))
1+α, and so Hx =

(H+
x′(it))

γ ◦Hz ⊆ (H+
x′(it))

1+α ◦Hz ⊆IH Hy.

✷

Next, we let f ∈ Ω(0), and collect some properties of the functions (fx : x ∈ QH
2 ).

Recall that fx := Hx(f), f is identified with its range and that f ′ = {α : f(α) = α}.
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Lemma II.3.3. If deg(x) = 2 and o(x) = 1, then fx(α) = fx[1+α](0).

Proof If deg(x) = 2 and o(x) = 1, then x is of the form x =NF (1, (β+1, q0)) ◦ z,
and fx(α) = Hx[f, α] = (Itβ+1(it) ◦ Hz)[f, α] = Itβ+1[it, fz, α] = (Itβ(it))2+α[fz, 0] =
f(2+α,(β,q0))◦z(0) = fx[1+α](0). ✷

Lemma II.3.4. For each x ∈ QH
2 with o(x) = γ, we have

(i) if ξ < γ, then fx[ξ+1] ⊆ fx[ξ]+1,

(ii) if ξ < γ, then fx[ξ+2] ⊆ f ′
x[ξ],

(iii) fx =
⋂
ξ<γ fx[ξ] =

⋂
ξ<γ f

′
x[ξ].

Proof (i) x =NF y ◦ z for either y = (γ, (β, q0)), and then Hy[ξ+1] = Itβ(it) ◦Hy[ξ] ⊆

it◦Hy[ξ] = Hy[ξ]+1, since It
β(it) ⊆ it by Lemma II.1.6, or y = (1, (γ, q0)), andHy[ξ+1] =

It ◦Hy[ξ] ⊆ it ◦Hy[ξ] = Hy[ξ]+1 by Lemma II.1.7. The claim the follows. (ii) By (i),
and since it ⊆ sh (cf. Lemma I.3.15), we have fx[ξ+2] ⊆ it(fx[ξ+1]) ⊆ sh(fx[ξ+1]). And
as sh is monotone by Lemma I.3.17, sh(fx[ξ+1]) ⊆ (sh◦ it)(fx[ξ]) = f ′

x[ξ]. (iii) The first

equality is by definition of iteration of functionals, and the second follows using (ii)
and that f ′ ⊆ f , and therefore fx[α+2] ⊆ f ′

x[α] ⊆ fx[α]. ✷

Lemma II.3.5. For each x ∈ QH
2 and each y ∈ QH

2 with o(y) = δ0+γ, we have

(i) fx(γ) = sup{fx(δ0+ξ) : ξ < γ},

(ii) fy(0) = sup{s0(ξ) : ξ < γ} and fy(α+1) = sup{sfy(α)+1(ξ) : ξ < γ}, where
sβ(0) = β+1, sβ(ξ+1) := fy[δ0+ξ](sβ(ξ)) and sβ(γ

′) := supξ<γ′sβ(ξ).

Proof (i) By Lemma II.1.6, fx ∈ Ω(0) and thus normal. (ii) By Lemma II.3.4 (iii),
we have that fy[δ0+ξ+2] ⊆ f ′

y[δ0+ξ]
and fy =

⋂
ξ<γ fy[δ0+ξ]. Now the claim is due to

Lemma I.3.19. ✷

II.4 The operations (Opx : x ∈ Q∗
2)

In this section, we first provide the proper definition of the operations (Opx : x ∈ Q∗
2)

and (Op+x : x ∈ Q∗
1). This allows us to prove a collection of properties of these

operations in ACA0 required for the modular ordinal analysis in the next section.
We like to highlight the following two: (i) is a useful generalization of Lemma I.2.14,
and (ii) singles out an essetial step of the modular ordinal analysis.

(i) for each open Π1
2-sentence T̆′, Tǫ ⊢ y ∈ Q∗

1 ∧Op(1,y)(T̆) ∧ T̆′ → Op(1,y)(T̆
′), (cf.

Corollary II.4.7).

53



(ii) Tǫ ⊢ deg(x) = 2 ∧ T̆x → Prog
✁
({α : T̆x(α)}) (cf. Lemma II.4.9).

Then, we show that the proper Definition II.4.1 of Opx and the provisional Definition
II.1.12 indeed agree.

From now on, it is assumed that we have primitive recursive relations that are
formalized versions of α < β, (Q2, <2), ❀, ❀∗, and primitive recursive functions
formalizing deg(x), ◦ and ·H . To emphasis that we now work within a formal theory,
we write α✁ β for α < β. The other function- and relationsymbols are overloaded.
It is further assumed that we have a recursive function, provably total in ACA0, that
computes the ordinal notation v(x, α) of gx(α) from a code of the ordinal α and a
code of the name x. How to find notations for the ordinals used in this chapter, and
how to compute the ordinal notation v(x, α) of gx(α), is detailed in Chapter IV.

II.4.1 The proper definition of (Opx : x ∈ Q∗
2)

To employ the Representation Theorem I.2.26, we have to coach the definition of
the operation Opx into the following form:

Opx(T̆) ↔ (∀y ❀ x)(Opϑf(y,x)(Ôpy(T̆))).

Recall that Ôp
ϑ

u(T̆) := (0 = u∧ T̆) ∨ (0 6= u∧Opϑu(T̆)), an abbreviation that we use
since we cannot represent directly the identity operation by an L2(P)-formula (cf.
page 26). Further, y ❀ x iff (∃α ✁ o(x))(y = x[α]). Since we have for names of the
form x := (1, (β+1, q0)) that o(x) = 1, only x[0] = (1, (β, q0)) ❀ x. And for names
of the form z := (1, (γ, q0)) where o(z) = γ, we have that z[α] = (1, (1+α, q0)) ❀ z
for each α✁ γ.

Next observe, that by the provisional definition of the operations Opx, (Definition
II.1.12), we have the following.

(i) Opx+1 ⇔ p1Opx and Op+(1+α,q0) ⇔ p1+α2 ,

(ii) Op(1,(β+1,q0)) ⇔ p
β+1
2 p1 ⇔ p2 ◦ Op(1,(β,q0)),

(iii) Op(1,(γ,q0)) ⇔ p
γ
2p1 ⇔ (∀α✁ γ)(p2 ◦ Op(1,(1+α,q0))),

(iv) Op(1,(γ,q0)−) ⇔ (∀α ✁ γ)(p1p
1+α
2 p1) ⇔ (∀α✁ γ)(p1 ◦ Op(1,(1+α,q0))).

This allows us to read off the ingredients of the proper definition of Opx and Op+x
which supersedes the provisional Definition II.1.12 (ϕp1 and ϕp2 are as fixed in
Definition I.2.15).
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Definition II.4.1. Let ϑ(u) := (u = 1 ∧ ϕp1) ∨ (u = 2 ∧ ϕp2), f(y, x) := deg(x),
f+(y, x) := deg(x)+1, and

ϕ(u) := ϕf,❀
∗,❀,ϑ(u) and ϕ+(u) := ϕf

+,❀∗↾Q1,❀↾Q1,ϑ(u),

where ϕf
+,❀∗↾Q1,❀↾Q1,ϑ(u) is the formula claimed to exists in Theorem I.2.26, and

defined in the Appendix (see Theorem A.1.2 and Definition A.1.11). Then,

Opx(T̆) := Opϕx(T̆) and Op+x (T̆) := Opϕ
+

x (T̆) and T̆x := Ôp
ϕ

x(T̆).

Note that T̆x iff (x = 0∧T̆) ∨ (x 6= 0∧Opx(T̆x)). The following Lemma is an instance
of the Representation Theorem and reviews the properties of Opx and Op+x .

Lemma II.4.2. The maps T̆ 7→ Opx(T̆) and T̆ 7→ Op+x (T̆) are operations that satisfy
the following properties (provable in Tǫ). Below, m ∈ {0, 1}.

(i) Opx(T̆) → x ∈ Q∗
2 ∧Wo❀∗(x), and Op+x (T̆) → x ∈ Q∗

1 ∧Wo❀∗(x),

(ii) if q1 ❀
∗ x ∈ Q1, then Op+x ⇔ (∀α✁ o(x))(p2 ◦ Op

+
x[α]).

(iii) if q1 ❀
∗ x ∈ Q2 and deg(x) = m+1, then Opx ⇔ (∀α✁ o(x))(pm+1 ◦ Opx[α]).

Further, as ϕ(u) strongly implies p1 (this is also by the Representation Theorem),
we have that Tǫ ⊢ (∀x ∈ Q∗

2)(Opx ⇒ p1).

Since pn+1(T̆) is Π
1
n+2, also the following is readily observed.

Lemma II.4.3. If x ∈ Q∗
1, then Op+x (T̆) is Π

1
3; if x ∈ Q∗

2, then Opx(T̆) is Π
1
1+deg(x).

II.4.2 Properties of Opx and Op+x

In this subsection, we prove properties of the operations Opx in ACA0. Recall that
we write e.g. Opx ⇒ Opy, if for all open L2-sentences T̆, T

ǫ ⊢ Opx(T̆) → Opy(T̆).

The next couple of lemmas are all proved by induction along ✁ or along ❀∗ using
Theorem I.4.2 or Corollary I.4.3. For all these proofs, we let A(x) express the
claim, and show, working informally in ACA0, that (∀y ❀∗ x)a(x) → A(x), or
that B ∧ b ∧ (∀y ≺ x)c(y) → C(x) in case that A(u) := B ∧ b → C(u). We
refer to the assumption (∀y ❀∗ x)a(x) also as I.H. (in the sense of Theorem I.4.2).
Since Tǫ ⊢ ¬T̆x ∨ ((ACA) ∧ Wo❀∗(x)) (and trivially, Wo❀∗(α, v) implies Wo✁(α)),
it is in all cases readily observed that indeed Tǫ ⊢ A(x) ∨ ((ACA) ∧ Wo❀∗(x)) (or
Tǫ ⊢ A(α) ∨ ((ACA) ∧ Wo✁(α))), so that Theorem I.4.2 applies and allows us to
conclude (∀y ❀∗ x)A(x).

Lemma II.4.4. The following is provable in Tǫ. For all x, y ∈ Q∗
2,
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(i) if 0✁ β ✁ α, then Op+(α,q0) ⇒ Op+(β,q0),

(ii) if y ❀∗ x ∈ Q∗
2, then T̆x → p1T̆y,

(iii) if x, y ∈ Q∗
1 and x ◦ y ∈ Q∗

1, then Op+x◦y ⇔ Op+x ◦ Op+y ,

(iv) if x, y ∈ Q∗
2 and x ◦ y ∈ Q∗

2, then Opx◦y ⇔ Opx ◦ Opy,

(v) if x ∈ Q∗
1, then Op(1,x) ⇔ Op+x p1.

Proof (i) Let A(α) := 0✁β✁α∧Op+(α,q0)(T̆) → Op+(β,q0)(T̆). If α✂β, there is nothing to

show. So assume that β✁α. If α = α′+1, then Op+(α,q0)(T̆) iff p2Op
+
(α′,q0)

(T̆). By I.H.,

we have that for each X , Op+(α′,q0)
(T̆)↾X → Op+(β,q0)(T̆)↾X . Since p2 is an operation,

p2Op
+
(α′,q0)

(T̆) → p2Op
+
(β,q0)

(T̆) follows. As further, Op+(β,q0)(T̆) is Π1
3, p2Op

+
(β,q0)

(T̆)

implies Op+(β,q0)(T̆) by Lemma I.2.12. Hence A(α) follows. And if α is a limit, then

Op+(α,q0)(T̆) iff (∀ξ ✁ α)p2Op
+
(1+ξ,q0)

(T̆), and since β ✁ α by assumption, Op+(α,q0)(T̆)

implies p2Op
+
(β,q0)

(T̆), and Op+(β,q0)(T̆) follows as above.

(ii) Let A(x) := y ❀∗ x ∈ Q∗
2 ∧ T̆x → p1T̆y. If x = y+1, then x[0] = y, and the

claim is by definition of T̆x. Otherwise, there is an α ✁ o(x) so that y = x[α] or
y ❀∗ x[α]. In the first case, T̆x → p1T̆y by definition of T̆x and since, in any case,

pdeg(x) ⇒ p1. And if x[α] ❀∗ x, then the I.H. yields for each X , T̆x[α]↾X → p1T̆y↾X .

Since p1 is an operation, we obtain p1T̆x[α] → p21T̆y. As T̆x iff (∀α✁ o(x))pdeg(x)T̆x[α]
and p2 ⇒ p1, we have also T̆x → p1T̆x[α]. By Lemma I.2.12, p21T̆y → p1T̆y, hence

T̆x → p1T̆y follows.
(iii) As (vi), but simpler.
(iv) Let A(x) := q0 6= x ∧ x ◦ y ∈ Q∗

2 → [T̆x◦y ↔ Opx(T̆y)]. If x or y is q0,
then the claim is trivial, so assume otherwise. Now let m so that m+1 = deg(x),
and δ0 so that (∀α ✁ o(x))((x ◦ y)[δ0+α] = x[α] ◦ y), and therefore o(x ◦ y) =
δ0+o(x) (cf. Lemma II.2.9). As T̆x◦y iff (∀α ✁ o(x ◦ y))pm+1(T̆(x◦y)[α]), we have

that T̆x◦y implies (∀α ✁ o(x))pm+1(T̆x[α]◦y). For each α ✁ o(x) and each X , the

I.H. yields Opx[α]◦y(T̆)↾X ↔ Opx[α](T̆y)↾X . Since pm+1 is an operation, we obtain

(pm+1 ◦ Opx[α]◦y)(T̆) iff (pm+1 ◦ Opx[α])(T̆y). Now T̆x◦y → Opx(T̆y) follows. For the

converse direction, note that (∀α✁γ)pm+1Opx[α](T̆y) yields (∀α✁γ)pm+1(T̆(x◦y)[δ0+α]).

Using (ii) yields (∀α ✁ δ0+γ)pm+1(T̆(x◦y)[δ0+α]). (v) Similar, using that deg(1, x) =
deg(x)+1, o(1, x) = o(x), and (1, x)[α] = (1, x[α]). ✷

The next Lemma generalizes Lemma I.2.14.

Lemma II.4.5. For each open Π1
2-sentence T̆′,

Tǫ ⊢ x ∈ Q∗
1 ∧ Op+x (T̆) ∧ T̆′ → Op+x (T̆

′).
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Proof Let T̆′ be an open Π1
2-sentence, and A(x) := x ∈ Q∗

1∧Op+x (T̆)∧T̆′ → Op+x (T̆
′).

Trivially, A(q0), and if x = q1, then by Lemma I.2.14, p2(T̆)∧T̆′ yields p2(T̆
′). If x =

y+1, then by definition, Op+y+1(T̆) iff p2(Op
+
y (T̆)). By Lemma I.2.14, p2(Op

+
y (T̆))∧T̆

′

yields p2(Op
+
y (T̆)∧ T̆′). By I.H.,∀X [(Op+y (T̆)∧ T̆′)↾X → Op+y (T̆

′)↾X ]. Since p2 is an

operation, we obtain p2(Op
+
y (T̆) ∧ T̆′) → p2(Op

+
y (T̆

′)). Hence, Op+x (T̆) ∧ T̆′ implies

Op+x (T̆
′). The limit case is shown analogously. ✷

The following observations are essentially trivial, but nonetheless important.

Lemma II.4.6. Let (1, y) ∈ Q2 be a simple name of degree two (so y ∈ Q∗
1). Then,

(i) Op+y ⇒ Op(1,y).

(ii) Op(1,y) ⇔ Op(1,y)p1.

Proof (i) Op+y (T̆) implies p1(T̆) which is Π1
2, thus by the above lemma, Op+y (T̆)

implies Op+y p1(T̆), that is Op(1,y)(T̆) by Lemma II.4.4 (v). (ii) Op(1,y) ⇔ Op+y p1, so

(i) implies Op(1,y)p1. For the converse direction, note that Op(1,y)p1 ⇔ Op+y p
2
1. As

p2 ⇒ p1 by Lemma I.2.12, also Op+y p
2
1 ⇒ Op+y p1, and the claim is by (i). ✷

This allows us to state the following useful variant of Lemma III.6.6.

Corollary II.4.7. For each open Π1
2-sentence T̆′,

Tǫ ⊢ y ∈ Q∗
1 ∧ Op(1,y)(T̆) ∧ T̆′ → Op(1,y)(T̆

′).

Proof Since Op(1,y) ⇔ Op+y p1, Op(1,y)(T̆) ∧ T̆′ implies Op+y (p1(T̆)) ∧ T̆′, which by

Lemma II.4.5 yields Op+y (T̆
′), which in turn yields Op(1,y)(T̆

′) by Lemma II.4.6. ✷

The lemma following the next auxiliary lemma is a key step in our modular ordinal
analysis.

Lemma II.4.8. Assume that x is a simple name with deg(x) = 2. Then,

(i) Opx ⇒ Opx(0),

(ii) Opx(0) ◦ Opx(α) ⇒ Opx(α+1),

(iii) if o(x) = 1, then for each limit γ, Opx[γ] ⇔ (∀α✁ γ)Opx(α),

(iv) if o(x) ∈ Lim(Ω), then Opx(γ) ⇔ (∀α✁ γ)Opx(α).

Proof We use that if deg(y) = m+1, then Opx iff (∀α ✁ o(y))pm+1Opx[α] (Lemma
II.4.2 (iii)), and that if y ◦ z ∈ Q∗

2, then Opy◦z ⇔ Opy ◦ Opz (Lemma II.4.4 (iv)).
Now assume that x is simple and deg(x) = 2. By Definition II.2.11, deg(x(α)) = 1,
and if o(x) = 1 then x(α) = q1 ◦ x[α].
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(i) If o(x) = 1, then Opx iff p2Opx[0]. As x(0) = q1 ◦ x[0], p1Opx[0] iff Opx(0). As
further, p2 ⇒ p1, Opx ⇒ p1Opx[0], thus the claim.
If o(x) = γ, then o(x) = o(x(0)) and x(0)[α] = x[α] by Lemma II.2.14 (i). Further,
Opx(0) iff (∀α ✁ o(x(0)))p1Opx(0)[α] iff (∀α ✁ o(x))p1Opx[α]. Again, as p2 ⇒ p1, Opx
(that is (∀α✁ o(x))p2Opx[α]) implies Opx(0).

(ii) If o(x) ∈ Lim(Ω), then x(0) ◦ x(α) = x(α+1) by Lemma II.2.14 (i). Thus,
Opx(0) ◦ Opx(α) ⇔ Opx(α+1). And if o(x) = 1, then x[0] ◦ x[α] = x[α+1] by Lemma

II.2.14 (ii). Further, either x = q2, and the claim reads p21 ◦ pα+1
1 ⇒ pα+2

1 , which
holds, or x = (1, y+1) for y ∈ Q∗

1. Then x[0] = (1, y), and Op(1,y)p1 ⇔ Op(1,y) by
Lemma II.4.6. Hence, Opx(0) ◦ Opx(α) ⇔ p1Opx[0] ◦ p1Opx[α] ⇔ p1Opx[0] ◦ Opx[α] ⇔
p1Opx[α+1] ⇔ Opx(α+1).

(iii) If o(x) = 1, then deg(x[γ]) = 1 and so T̆x[γ] iff (∀α ✁ γ)p1T̆x[α]. As further,

p1T̆x[α] iff T̆x(α), the claim follows.

(iv) Since deg(x(γ)) = 1, we have Opx(γ) iff (∀α ✁ o(x(γ)))p1Opx(γ)[α]. As o(x) ∈
Lim(Ω), Lemma II.2.14 (i) states that o(x(γ)) = γ, x(α) = x(γ)[α] for α ✁ γ,
and x(0) ◦ x(α) = x(α+1). Hence Opx(γ) iff (∀α ✁ γ)p1Opx(α). Clearly, we have
(∀α✁γ)p1Opx(α) ⇒ (∀α✁γ)Opx(α), and since Opx(α+1) ⇔ Opx(0)◦Opx(α) ⇒ p1Opx(α),
also (∀α✁ γ)Opx(α) ⇒ (∀α✁ γ)p1Opx(α) follows. ✷

Lemma II.4.9. Tǫ ⊢ deg(x) = 2 ∧ T̆x → Prog
✁
({α : T̆x(α)}).

Proof Assume that x =NF (1, y) ◦ z, and so Opx iff Op(1,y) ◦ Opz and Opx(α) iff
Op(1,y)(α) ◦ Opz. By (i) the above lemma, Op(1,y) ◦ Opz ⇒ Op(1,y)(0) ◦ Opz ⇒ Opx(0).

For the successor case, note that deg(x(α)) = 1 and so T̆x(α) is Π
1
2. Therefore, T̆x ∧

T̆x(α) iff Op(1,y)(T̆z) ∧ T̆x(α), and Corollary II.4.7 yields Op(1,y)(T̆x(α)). As Op(1,y) ⇒

Op(1,y)(0), (ii) of the above lemma now yields Op(1,y)(α+1)(T̆z), that is T̆x(α+1). Now
to the limit case. If o(x) = 1, then x(γ) = x[γ]+1. By (iii) of the above lemma
we obtain that (∀α ✁ γ)T̆x(α) iff T̆x[γ]. Since deg(x[γ]) = 1 and thus T̆x[γ] is Π

1
2, we

obtain Op(1,y)(T̆x[γ]) as in the successor case, which further implies p1T̆x[γ], that is,

T̆x(γ). And if o(x) ∈ Lim(Ω), then by (iv) of the above lemma, (∀α ✁ γ)T̆x(α) iff

T̆x(γ). ✷

II.4.3 The proper and provisional Definition of Opx agree

Our next goal is to prove that the proper Definition II.4.1 agrees with the provi-
sional Definition II.1.12. From a technical point of view, none of the results in the
remainder of this section are used in the sequel.

We start with a simple observation.
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Lemma II.4.10. The following is provable in Tǫ.

(i) For all x ∈ Q∗
2, Opxp1 ⇒ Opx.

(ii) If q1 6= x ∈ Q∗
2, then Opx ⇒ Opxp1.

Proof Both claims are readily shown by induction using Theorem I.4.2. For (i), note
that p1 ◦ p1 ⇒ p1 is by Lemma I.2.12. The induction step causes no problems. For
(ii), recall that if T̆ is Π1

2if T̆ is Π1
2, then Tǫ ⊢ p2(T̆) ↔ p2p1(T̆) (cf. page 39), thus

also Opq2 ⇔ p2p1 ⇔ p2p
2
1. To apply the I.H., just note that if x /∈ {q0, q1, q2}, then

q1 6= x[0] ∈ Q∗
2. ✷

Recall also that Opγx is an operation formed according to the convention following
Corollary I.2.28, so that we have Opγx ⇔ (∀β✁γ)Opβ+1

x (note that on the right hand
side, the exponent is always a successor). That we also have Opγx ⇔ (∀β ✁ γ)Op1+βx

turns out to be a consequence of the next lemma.

Lemma II.4.11. Tǫ proves: for all x ∈ Q∗
2, Opx ◦ Opx ⇒ Opx.

Proof Since Opx ⇒ p1 and Opx is an operation, we have Op2x ⇒ Opxp1. As further
by Lemma II.4.10 (i), Opxp1 ⇒ Opx, Opx ◦ Opx ⇒ Opx follows. ✷

Lemma II.4.12. Tǫ proves: if 0✁ α, then (Opx)
α+1 ⇒ (Opx)

α.

Proof Let A(α) := 0 ✁ α ∧ Opα+1
x (T̆) ⇒ Opαx(T̆). We just show the limit case.

Opγ+1
x ⇔ Opx ◦ Op

γ
x ⇒ (∀β ✁ γ)Opβ+2

x ⇒IH (∀β ✁ γ)Opβ+1
x ⇔ Opγx. ✷

Corollary II.4.13. For each n ∈ N, Tǫ proves: if 0✁β✁α, then (Opx)
α ⇒ (Opx)

β.

Proof Let A(α) := 0✁β✁α∧Opβ+αx (T̆) ⇒ Opαx(T̆). We just show the successor case.
If α = β+1, then A(α) is by the previous lemma. If β ✁ α and Opβ+α+1

x (T̆), then
the I.H. and the fact that Opx is an operation yields (Opx ◦Op

β
x)(T̆), and (Opβx)(T̆)

is by the previous Corollary. ✷

Corollary II.4.14. Tǫ proves: for all x ∈ Q∗
2, Op

γ
x ⇔ (∀ξ ✁ γ)Op1+ξx .

Proof Since Opγx iff (∀ξ ✁ γ)Opξ+1
x , the claim is by Lemma II.4.12. ✷

Lemma II.4.15. Tǫ proves: if q2 ❀
∗
r x and 0✁ α, then

(i) p1(Opx)
α ⇒ (p1Opx)

α,

(ii) (p1Opx)
α+1 ⇒ p1(Opx)

α.
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Proof By induction on α (in the sense of Theorem I.4.2). For both claims, we just
consider the limit cases, as the successor cases follow readily from the I.H.
(i) p1(Opx)

γ ⇒ p1(∀α✁γ)(Opx)
α+1 ⇒ (∀α✁γ)p1(Opx)

α+1, since p1 is an operation.
Using the I.H. and that p1Opx is an operation, we obtain (p1Opx)(p1(Opx)

α+1) ⇒
(p1Opx)(p1Opx)

α+1 for each α✁γ. By Lemma II.4.12 we obtain (∀α✁γ)(p1Opx)
α+1,

that is, (p1Opx)
γ.

(ii) We have that (p1Opx)
γ+1 ⇒ p1Opx(∀α ✁ γ)(p1Opx)

α+1. By I.H., and as by
Lemma II.4.2, p1Opxp1 ⇒ p1, we obtain for each 0✁α✁γ that (p1Opx)(p1Opx)

α+1 ⇒
(p1Opx)p1(Opx)

α ⇒ p1(Opx)
α. Further, if A(u), B(u) are open L2-sentences so that

∀α(A(α) → B(α)), then also ∀αA(α) → ∀αB(α), and thus for each operation
Op, Op(∀αA(α)) → Op(∀αB(α)). Therefore, we obtain p1Opx(∀α ✁ γ)p1(Opx)

1+α,
and we further conclude p1(∀α ✁ γ)Opxp1(Opx)

1+α ⇒ p1(∀α ✁ γ) Opx(Opx)
1+α ⇒

p1(∀α✁ γ)(Opx)
α+1 ⇒ p1(Opx)

γ. ✷

Next, two auxiliary properties of the operations Op+x .

Lemma II.4.16. Tǫ proves: if x ∈ Q∗
1, then Op+x p1 ⇔ Op+x p

2
1.

Proof With p21 ⇒ p1 also Op+x p
2
1 ⇒ Op+x p1. As further, Op

+
x ⇒ p1, Op

+
x p1(T̆) yields

p21(T̆) which is Π1
2, hence Op+x p

2
1(T̆) is by Lemma II.4.5. ✷

Lemma II.4.17. Tǫ proves: for all x ∈ Q∗
1, Op

+
x p1 ⇔ Op(1,x).

Proof If x = (1, q0), then Op+x p1 is p2p1 is Op(1,x). Otherwise, (1, x)[α] = (1, x[α])

and deg(x) = 2. Then, Op+x p1 ⇔ (∀ξ ✁ γ)p2Op
+
x[ξ]p1 ⇔IH (∀ξ ✁ γ)p2Op(1,x[ξ]) ⇔

(∀ξ ✁ γ)p2Op(1,x)[ξ] ⇔ Op(1,x). ✷

Now we can prove the aforementioned equivalence of our definitions of Opx. Most
of the work is done by proving the next two lemmas.

Lemma II.4.18. Tǫ proves the following: if 0✁ β, then

p
β
2p1 ◦ (p1p

β
2p1)

γ ⇔ (pβ2p1)
γ.

Proof Recall that (pβ2p1)
γ ⇔ (∀ξ ✁ γ)(pβ2p1)

1+ξ (cf. Corollary II.4.14). To show the
⇒-direction, fix an η ✄ 0. Since p

β
2p1 iff p

β
2p

2
1 (cf. Lemma II.4.10), and (p1p

β
2p1)

γ ⇒
(p1p

β
2p1)

η+1 ⇒L.II.4.15 p1(p
β
2p1)

η, we have p
β
2p1 ◦ (p1p

β
2p1)

γ ⇒ (pβ2p1)
η+1 ⇒L.II.4.12

(pβ2p1)
η. For the converse direction observe that (pβ2p1)

γ ⇒ (∀ξ ✁ γ)(pβ2p1)
ξ+1 ⇒

(∀ξ✁ γ)p1(p
β
2p1)

ξ ⇒ (∀ξ✁ γ)(p1p
β
2p1)

ξ. Let C := (∀ξ✁ γ)(p1p
β
2p1)

ξ(T̆), which is Π1
2,

and note that (pβ2p1)
γ(T̆) implies pβ2 (p1(T̆))∧C. Hence Lemma II.4.5 further yields

p
β
2 (C), therefore also p

β
2p1(C), that is, p

β
2p1 ◦ (p

β
2p1)

γ(T̆). ✷

Lemma II.4.19. Tǫ proves the following: if x ∈ Q∗
1, then
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(i) Op(m+1,x) ⇔ (Op(1,x))
m+1, and Op(γ+m+1,x) ⇔ (Op(1,x))

γ+m.

(ii) Op(γ,x) ⇔ (p1Op(1,x))
γ.

Proof Using Theorem I.4.2. We let A(α) so that A(m+1) and A(γ+m+1) express
(i), and A(γ) expresses (ii). First, we show A(γ+1), i.e., Op(γ,x) ⇔ (Op(1,x))

γ+1.

By I.H. we have Op(γ,x)(T̆)↾X ⇔ (p1Op(1,x))
γ(T̆)↾X . As Op(1,x) is an operation,

Op(1,x) ◦ Op(γ,x) ⇔ Op(1,x) ◦ (p1Op(1,x))
γ follows. By Lemma II.4.4 (iv) and Lemma

II.4.18, we obtain Op(γ+1,x) ⇔ (p1Op(1,x))
γ . A(1) holds trivially, and A(m+1) and

A(γ+m+2) are directly from the I.H.

Now we show A(γ). Using the definition of Op(γ,x) and Corollary II.4.14, this
amounts to show that

(∀ξ ✁ γ)p1Op(1+ξ,x) ⇔ (∀ξ ✁ γ)(p1Op(1,x))
1+ξ.

To show that ⇒-direction, fix a η ✁ γ with η ✄ 0. (∀ξ ✁ γ)p1Op(1+ξ,x) entails
p1Op(η+1,x). Using the I.H. yields p1(Op(1,x))

η, and (p1Op(1,x))
η follows by Lemma

II.4.15. For the converse direction, also fix an η ✁ γ with η ✄ 0. Note that
(∀ξ✁γ)(p1Op(1,x))

1+ξ entails (p1Op(1,x))
η+1. Lemma II.4.15 yields p1(Op(1,x))

η. Using
the I.H. and possibly Lemma II.4.4 (iv) and Lemma II.4.12 yields p1Op(η,x). ✷

Theorem II.4.20.

(i) Op(α,q0) ⇔ pα1 and Op+(α,q0) ⇔ pα2 .

(ii) Op(α,(γ,q0)−) ⇔ (Op(1,(γ,q0)−))
α.

(iii) Op(n,(β,q0)) ⇔ (Op+(β,q0)p1)
n and Op(γ+n+1,(β,q0)) ⇔ (Op+(β,q0)p1)

γ+n.

(iv) Op(γ,(β,q0)) ⇔ (p1Op
+
(β,q0)

p1)
γ.

Proof (i) By definition and our convention of how to read pα1 and pα2 .

(ii) Let v := (γ, q0)
− and A(α) := Op(α,v)(T̆) ↔ (Op(1,v))

α(T̆). If α = α′+1, then
Op(α,v) iff Op(1,v) ◦Op(α′,v), and A(α) follows using the I.H. If α =: γ is a limit, then

Op(γ,v) iff (∀ξ✁γ)p1Op(1+ξ,v). The I.H. implies that Op(γ,v) iff (∀ξ✁γ)p1(Op(1,v))
1+ξ.

As (Op(1,v))
1+ξ is Π1

2, for 0 ✁ ξ ✁ γ, p1(Op(1,v))
ξ ⇒ (Op(1,v))

ξ, and Op(1,v))
ξ+1 ⇒

p1(Op(1,v))
ξ, hence A(γ) follows.

(iii) and (iv) are by Lemma II.4.19. ✷
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II.5 Modular ordinal analysis at work

In this section, we prove one of the main results of this theses for the case N0 = 2.
We fix T̆ := (ACA) and g(α) := ω1+α, and show in particular that the following is
provable in Tǫ: for each x ∈ Q2, T̆x implies Wo✁(g1+xH (α)), under the assumption
that Wo✁(α) and TI✁(Cx, α) for a suitable class Cx. We refer to this statement as
“Tx proves g1+xH := H1+xH(g)”.

Remark II.5.1. The theory ACA0 can be presented as p̃1(Π
0
1-CA

−
0 ), where p̃1 is

a variant of the operation p1, and Π0
1-CA

−
0 is a finitely axiomatized version of the

theory that extends Tǫ by Π0
1-comprehension with a positive set parameters U and set

induction (see Appendix, Section 2). It can be argued that “Π0
1-CA

−
0 proves g(α)”,

which is the underlying reason why “p̃1(Π
0
1-CA

−
0 ) proves it(g)”, or put differently,

that “T̆′
q1

proves gq1” for T̆′ := Π0
1-CA

−
0 .

With a slightly more general notion of operation at hand, we would prove that for
all x ∈ Q∗

2, “Opx(Π
0
1-CA

−
0 ) proves gxH”, thus we had also that “Op1+x(Π

0
1-CA

−
0 )

proves g(1+x)H” (where 1+x := x+1 if x <2 (ω, q0), and 1+x := x otherwise). The
point is that Op1+x(Π

0
1-CA

−
0 ) iff Opx(ACA0). As xH = x for x <2 (ω, q0), and thus

(1+x)H = 1+xH , this explains why we show that “Tx proves g1+xH”.

II.5.1 The definition of “Opx proves HxH ”

The above discussion suggest to think of 1+xH as xh, where xh is the name of the
function which corresponds to the theory Tx.

Definition II.5.2. For x ∈ Q2, x
h :=

{
(x+1)H : x <2 (ω, q0),

xH : else.

Thus, xh 6= xH only if x is of the form (n, q0). In particular, xh = xH if o(x) ∈ Lim(Ω)
or deg(x) > 1. As (x ◦ y)H = xH ◦ yH by Lemma II.2.18, also (x ◦ y)h = xH ◦ yh.
We show that for each x ∈ Q∗

2, “Opx proves HxH”, which states essentially, that
if x ◦ z ∈ Q2 and “T̆z proves gzh”, then “Opx(T̆z) proves HxH (gzh)”. Observe that
Opx(T̆z) iff T̆x◦z, and that HxH(gzh) = g(x◦z)h .

We begin by defining when a theory proves a function, and when an operation proves
a functional. Thereto, we fix the auxiliary classes (Cx : x ∈ Q2). Since deg(x) = 2
implies deg(x(α)) = 1 and thus T̆x(α) is Π

1
2 (cf. Definition II.2.11 and Lemma II.4.3),

we have the following: if deg(x) = 1, then Cx is Π1
1, and if deg(x) = 2, then Cx is Π1

2.

Definition II.5.3. Cx := {α : [(deg(x) ≤ 1∧Wo✁(gxh(α))] ∨ [deg(x) = 2∧ T̆x(α)]}.

Next, we say when “Tx proves gy”.
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Definition II.5.4. We say that Tx proves gy, if T
ǫ ⊢ Prv0(x, y), where

Prv0(x, y) := T̆x ∧ y ∈ QH
2 → ∀α[Wo✁(α) ∧ TI✁(Cx, α) → Wo✁(gy(α))].

Since we just show that Tx proves gxh, we only need the one-parameter version
Prv0(x) := Prv0(x, x

h). Further, we define when an operation proves a functional.
The formal definitions are given below, the idea (neglecting some details) is the
following. If Prv1(x) and Prv0(y), then also Prv0(x ◦ y). Since things are set up so
that Prv0(q0), i.e. T̆ proves gqh0 (ACA0 proves it(g)), Prv1(x) implies Prv0(x). More

verbosely, Prv1(x) states that if “T̆y proves gyh”, then “Opx(T̆y) proves HxH(gyh)”.

Similarly, Prv2(x) states that if “Opy(T̆z) proves HyH(gzh)”, then “Op+x (Opy)(T̆z)
proves H+

x∗ [HyH , gzh]”, where x
∗ := xH+corr(x).

To avoid a logic of partial terms, we deal with the partial function ◦ as follows.
We assume that “undefined” is some fixed natural number n that does not coded a
name. For this n, let gn := g. Further, as by its definition, T̆x → x ∈ Q2, T̆n ↔ ⊥.

Definition II.5.5. We fix the following formulas.

Prv0(x) := T̆x → ∀α[Wo✁(α) ∧ TI✁(Cx, α) → Wo✁(gxh(α))],

Prv1(x) := ∀y[prv0(y) → Prv0(x ◦ y)],

Prv2(x) := ∀y[prv1(1, y) → Prv1(1, x ◦ y)].

Further, for n ∈ {0, 1, 2}, prvn(x) := ∀XPrvn(x)↾X.

Moreover, we say that Opx proves HxH , if T
ǫ ⊢ Prv1(x), and that Op+x proves H+

x∗,
if Tǫ ⊢ Prv2(x) (where y∗ := yH+corr(y)).

Let us discuss this definition. Firstly, we point out that by definition of T̆u (cf.
Definition II.4.1 and Lemma II.4.2), T̆u → u ∈ Q2, and therefore, Prv0(u) is trivially
true if u /∈ Q2. Consequently, Prv1(x) iff ∀y[x ◦ y ∈ Q2 ∧ prv0(y) → Prv0(x ◦ y)], and
Prv2(x) iff ∀y[x◦y ∈ Q1∧prv1(1, y) → Prv1(1, x◦y)]. Often, we use these equivalent
forms to focus on the non-trivial instances of these definitions. Moreover, note that
Prv1(q0), i.e. ∀y[prv0(y) → Prv0(y)] is not provable as prv0(y) may hold trivially if
there are no ω-models of T̆y.

Secondly, we elaborate on Opx proves HxH . For this purpose, let

jCx(gxh) := ∀α[Wo✁(α) ∧ TI✁(Cx, α) → Wo✁(gxh(α))]

express that with TI✁(Cx, α) at hand, we can jump from Wo✁(α) to Wo✁(gxh(α)).
Now assume Tz ⊢ jCz(gzh). Then, T

ǫ ⊢ T̆z → jCz(gzh), that is, T
ǫ ⊢ Prv0(z), and thus

also Tǫ ⊢ prv0(z) by Lemma I.1.9. Next, we further assume Tǫ ⊢ Prv1(y) (so again,
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also Tǫ ⊢ prv1(y)). The definition of Prv1(y) implies Opy(T̆z) → jCy◦z(HyH (gzh)) (as

Opx(T̆y) iff T̆x◦y and HxH (gyh) = gxH◦yh = g(x◦y)h). This illustrates why we read
Tǫ ⊢ Prv1(x) as “Opy proves HyH”.

Thirdly, we have a closer look at Prv2(x). The point of letting y∗ := yH+corr(y) is
that now (1, y)H = (1, y∗) (cf. Definition II.2.17). Further, it is easily verified that for
x, y ∈ Q1, (x◦ y)∗ = x∗ ◦ y∗. Next assume Prv2(x) and that Tǫ ⊢ Prv1(1, y) (and still
Tz ⊢ jCz(gzh)). The definition of Prv2(x) implies that Prv1(1, x ◦ y). As we have seen
above, this yields Op(1,x◦y)(T̆z) → jC(1,x◦y)◦z(H(1,x◦y)H (gzh)). Using basic properties of
operations and functionals (cf. Lemma II.4.4 (iii) and (v), and Definition II.1.5) we
see that Op(1,x◦y) iff Op+x ◦ Op+y p1 iff Op+x ◦ Op(1,y), and H(1,x◦y)H =(H+

x∗ ◦H
+
y∗)(it)=

H+
x∗(H(1,y)H ). Summing up, we have that

Op+x (Op(1,y)(T̆z)) → jC(1,x◦y)◦z(H
+
x∗(H(1,y)H )(gzh)).

Therefore, we read Tǫ ⊢ Prv2(x) as Op
+
x proves H+

x∗ . For instance, we will see that
Op+(n,q0) proves H

+
(n,q0)

, and that Op+(ω,q0) proves H
+
(ω+1,q0)

. In other words, we have

that pn+1
2 proves Itn+1, and pω2 proves Itω+1.

II.5.2 Elementary properties of Prvm(x) (m ∈ {0, 1, 2})

Since by the very form of the formula Prv0(x), T
ǫ ⊢ Prv0(x) ∨ (ACA), it suffices

to show that ACA0 ⊢ Prv0(x): then also Tǫ ⊢ (ACA) → Prv0(x), and since Tǫ ⊢
Prv0(x)∨ (ACA), Tǫ ⊢ Prv0(x) follows. The same holds true for Prv1(x) and Prv2(x).
In fact, we even have that for m ∈ {0, 1, 2}, Tǫ ⊢ Prvm(x)∨((ACA)∧Wo❀∗(x)). This
immediately follows from the next lemma which unwinds the definition of Prv2(x).

Lemma II.5.6. Tǫ ⊢ Prv2(x) ↔ ∀y, z[prv1(1, y) ∧ prv0(z) → Prv0((1, (x ◦ y)) ◦ z)].

As T̆x implies Wo❀∗(x) ∧ (ACA), and by inspection of Definition II.5.5 and the
above lemma, for each m ∈ {0, 1, 2}, Prvm(x) is equivalent to a formula of the form
T̆x → B, we have the Lemma below, which puts us into the position to prove e.g.
(∀x ∈ Q∗

2)Prv1(x) by transfinite induction along ❀∗ using Theorem I.4.2.

Lemma II.5.7. For each n ∈ {0, 1, 2}, Tǫ ⊢ Prvn(x) ∨ ((ACA) ∧Wo❀∗(x)).

One more thing we like the recall is that if e.g. ACA0 ⊢ A ∧ b → Prvm(x) (where
b = ∀XB↾X), then as Tǫ ⊢ (ACA) ∨ Prvm(x), we also have Tǫ ⊢ A → Prvm(x), and
thus Tǫ ⊢ a∧∀Xb↾X → prvm(x). By Lemma I.4.5, ACA0 ⊢ a∧ b→ prvm(x) follows.
We refer to this as the “small variant” of ACA0 ⊢ A ∧ b → Prvm(x). For instance,
we have the following.

Lemma II.5.8. The following is provable in ACA0:
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(i) x ◦ y ∈ Q∗
2 ∧ prv1(x) ∧ prv0(y) → prv0(x ◦ y).

(ii) x ◦ y ∈ Q∗
1 ∧ prv2(x) ∧ prv1(1, y) → prv1(1, x ◦ y).

Proof Note that the assumptions x ◦ y ∈ Q∗
2 and x ◦ y ∈ Q∗

1 are superfluous, as e.g.
prv0(x ◦ y) entails trivially x ◦ y ∈ Q∗

2. However, we like to focus on the relevant
instances. (i) and (ii) are the “small variants” of Prv1(x) ∧ prv0(y) → Prv0(x ◦ y)
and Prv2(x) ∧ prv1(1, y) → Prv1(1, x ◦ y), which hold by definition of Prv1(x) and
Prv2(x), respectively. ✷

Also the following simple observations are used tacitly in the sequel.

Lemma II.5.9. The following is provable in ACA0:

(i) x ◦ y ∈ Q∗
2 ∧ Prv1(x) ∧ prv1(y) → Prv1(x ◦ y),

(ii) x ◦ y ∈ Q∗
1 ∧ Prv2(x) ∧ prv2(y) → Prv2(x ◦ y).

Proof (i) Prv1(x ◦ y) holds, if prv0(z) implies Prv0(x ◦ y ◦ z). To verify the claim,
assume prv0(z), and further Prv1(x) and prv1(y). By (i) of the above lemma, prv1(y)
and prv0(z) yield prv0(y ◦ z), and Prv0(x ◦ y ◦ z) follows from Prv1(x). (ii) is shown
analogously. ✷

Finally, we move a last technicality out of the way, concerning the interplay of ·[α],
·(α) and ·H . We will use (i) in the proof of Lemma II.5.13 (ii), and (ii) in the proof
of Lemma II.5.15.

Lemma II.5.10. Let z ∈ Q∗
2. Then we have the following.

(i) If deg(z) = 1 and o(z) = γ, then gzH [α] ✂ g(z[α])H .

(ii) if deg(z) = 2, then gzH [α] ✂ g(z(α))H .

Proof By Lemma II.2.19, we have in case (i) zH [α] ❀∗ (z[α])H , and in case (ii)
zH [α] ❀∗ z(α))H . Thus the claim follows by Lemma II.3.2. ✷

II.5.3 A sketch of the proof

In this subsection, we sketch how we prove (∀x ∈ Q∗
2)Prv1(x). Thereby, we neglect

the difference between Prvm(x) and prvm(x) (m ∈ {0, 1, 2}), and we occasionally
embezzle some details. In the next subsection, this sketch is then turned into a
correct proof.

For this sketch, we are pretending that for m ∈ {0, 1}, Prvm(x) ∧ Prvm(y) implies
Prvm(x ◦ y) (our current reading of Lemma II.5.9). Further, we assume for the
moment the following.
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(a) if deg(x) = 1 then (∀α✁ o(x))Prv1(x[α]) implies Prv1(x),

(b) if deg(x) = 2, then ∀αPrv1(x(α)) implies Prv1(x),

(c) if deg(x) = 1, then T̆x ∧ (∀α✁ o(x))Prv0(x[α]) → Prog
✁
(Cx).

(a) and (b) provide means to conclude Prv1(x), depending on the degree of the name.
We will justify these claims below. Moreover, we rely on (c) which hides technical
details (cf. Lemma II.5.13).

In order to obtain (∀x ∈ Q∗
2)Prv1(x), we first show Prv1(1, q0) and Prv2(1, q0). Then,

we prove by induction on β that Prv2(1+β, q0), that is, (∀y ∈ Q∗
1)Prv2(y). Finally,

an easy induction along ❀∗ yields (∀x ∈ Q∗
2)Prv1(x); the possible cases are discussed

below.

(i) deg(x) = 1∧x 6= (1, q0). By I.H., (∀α✁ o(x))Prv1(x[α]), and Prv1(x) is by (a).

(ii) deg(x) = 2. Then x =NF (1, (1+β, q0)) ◦ y. As y ❀∗ x by Lemma II.2.16
(iv), the I.H. yields Prv1(y). Further, Prv2(1+β, q0) and Prv1(1, q0) yield
Prv1(1, (1+β, q0)) by definition of Prv2(·), which together with Prv1(y) yields
Prv1(x).

Now we explain how to obtain Prv1(1, q0). Note that Prv1(1, q0) states that Prv0(x)
implies Prv0(x+1), or in other words, if Tx proves gxh, then T̆x+1 proves gxh+1 (i.e.

p1(T̆x) proves it(gxh)). To show Prv1(1, q0), we hence assume Prv0(x) and aim for
Prv0(x+1). For that, we further assume T̆x+1, Wo✁(α) and TI✁(Cx+1, α), and verify
that Wo✁(gxh+1(α)). By (c), T̆x+1 and Prv0(x) yield Prog

✁
(Cx+1). Together with

TI✁(Cx+1, α), we conclude α ∈ Cx+1, which says Wo✁(gxh+1(α)) due to the definition
of Cx+1.

More work goes into Prv2(1, q0): we have to verify that Prv1(1, y) → Prv1(1, y+1). To
do so, we prove by induction on α that Prv1(1, y) implies ∀αPrv1(1+α, y). Then, as
(1+α, y)+1 = (1, y+1)(α), and since we already have Prv1(q0), ∀αPrv1((1, y+1)(α))
is readily obtained, and Prv1(1, y+1) is by (b). Back to the induction on α: as
Prv1(1, y)∧Prv1(α, y) implies Prv1(α+1, y), the successor case is immediate, and the
limit case is by (a), since deg(γ, y) = 1, and (γ, y)[α] = (1+α, y).

The induction on β which establishes ∀βPrv2(1+β, q0) makes use of a characteristic
two-step approximation in the limit case (again, the successor step is for free). It
is assumed that (∀β ✁ γ)Prv2(1+β, q0), and we aim for Prv2(γ, q0). For that, we
further assume that Prv1(1, y), and verify Prv1(1, z) for z := (γ, q0) ◦ y. We point
out that deg(1, z) = 2. The first step uses (a). To be in position to do so, we
consider the name (1, z−) which is of degree one. Note that (1, z)[α] = (1, z−)[α].
The assumptions (∀β✁γ)Prv2(1+β, q0) and Prv1(1, y) yield (∀β✁γ)Prv1((1, z−)[β]).
Now (a) yields Prv1(1, z

−). For the second step, observe that another induction on
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α yields ∀αPrv1(1+α, z−): the successor case causes no problems, and the limit
case is again by (a), as deg(γ′, z−) = 1 and (γ′, z−)[α] = (1+α, z−). Hence we
have ∀αPrv1((1, z)(α)), as (1, z)(α) = (1+α, z−), and (b) implies Prv1(1, z). Hence
Prv2(γ, q0).

Next, we address (a). Assume deg(x) = 1, and (∀α ✁ o(x))Prv1(x[α]), and aim for
Prv1(x). For that, we further assume Prv0(y), and verify that for z := x◦ y, Prv0(z),
i.e. that

(∗) T̆z ∧Wo✁(β) ∧ TI✁(Cz, β) → Wo✁(gzh(β)).

For each α ✁ o(x), Prv1(x[α]) and Prv0(y) yield Prv0(x[α] ◦ y), that is, Prv0(z[α]).
Now T̆z and (c) yields Prog

✁
(Cz), so Wo✁(β) and TI✁(Cz, β) imply β ∈ Cz, thus the

definition of Cz says Wo✁(gzh(β)). This concludes the verification of Prv0(z).

Eventually, we look at (b). Similar to (a), assume deg(x) = 2 and ∀αPrv1(x(α)), and
aim for Prv1(x). For that, we further assume Prv0(y), and again verify (∗) for z :=
x◦y. Thereto we fix a set Y and check that TI✁(Y, gzh(β)) follows from T̆x∧Wo✁(β)∧
TI✁(Cz, β) (say β ≥ ω, so 1+β = β). Since Prog

✁
(Cz) follows from T̆z (cf. Lemma

II.4.9), Wo✁(β)∧TI✁(Cz, β) yields β+1 ∈ Cz, so T̆z(β+1), which implies p1(T̆z(β)) (cf.

Lemma II.4.4 (ii)). Further, T̆z(β+1) entails Wo✁(β). Working in a model X of T̆z(β)
that contains Y , we also have Wo✁(β)↾X and TI✁(Cz(β)↾X, β) (as Cz(β)↾X is a set).
By assumption we have Prv1(x(β)) and Prv0(y), thus also Prv0(z(β)). Actually, we
want prv0(z(β)), as we need Prv0(z(β))↾X . However, this is indeed what we get,
if we take care of the distinction of Prvm and prvm. Summing up, the model X
satisfies T̆z(β) ∧Wo✁(β) ∧ TI✁(Cz, β) and Prv0(z(β)), which yields WoX

✁
(g(z(β))h(0))

by the definition of Prv0(z(β)). As Y ∈̇X , we also have TI✁(Y, g(z(β))h(0)), and as
gzh(β) = gzh[β](0)✂ g(z(β))h(0) (cf. Lemma II.5.10 (ii)), TI✁(Y, gzh(β)) follows. This
concludes the verification of Prv0(z).

II.5.4 Proof of the main result (for the case N0 = 2)

Eventually, we can observe our modular approach at work. First, we show that T̆
proves it(g) (i.e. that T̆q0 proves gqh0 ).

Lemma II.5.11. ACA0 ⊢ Prv0(q0).

Proof Assume (ACA), Wo✁(α) and TI✁(C) for C := {ξ : Wo✁(f(ξ))} and f := it(g).
It suffices to show that Prog

✁
(C). Clearly, 0 ∈ C. Assume α ∈ C and Prog

✁
(Y ).

Then, by Gentzen’s observation, Prog
✁
(Y ∗) for Y ∗ := {β : (∀ξ ⊆ Y )(ξ+ωβ ⊆ Y )}.

With α ∈ C, f(α) ⊆ Y ∗, so f(α)+1 ∈ Y ∗ and Y ⊇ ωf(α)+1 = g(f(α)+1)☎ f(α+1)
(as f = it(g) and by Lemma I.3.9). The limit case is by the continuity of f . ✷
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The next has auxiliary character. It states that if Tx proves gxh, then T̆x+1 and
Wo✁(α) implies already Wo✁(gxh(α)). With enough transfinite induction at hand,
this allows to jump from α to it(gxh, α) = gxh+1(α).

Lemma II.5.12. ACA0 ⊢ (∀x ∈ Q2)[T̆x+1 ∧ prv0(x) ∧Wo✁(α) → Wo✁(gxh(α))].

Proof Suppose T̆x+1, Wo✁(α) and prv0(x). Further, we fix a set Y that is progressive
w.r.t. ✁, and aim to show that gxh(α) ⊆ Y . As T̆x+1 iff p1(T̆x), there is an X with
Y ∈̇X and T̆x↾X . Further, Cx↾X is a set. Hence Wo✁(α) implies TI✁(Cx↾X,α).
Now T̆x↾X ∧ TI✁(Cx↾X,α) together with prv0(x) implies WoX

✁
(gxh(α)). As Y ∈̇X ,

this yields TI✁(Y, gxh(α)), and gxh(α) ⊆ Y is by Prog
✁
(Y ). ✷

The next lemma is a refined variant of (c) of the sketch in the previous subsection.
If o(x) is a limit of the form δ0+γ, then the assumption is slightly weakened to
(∀α✁ γ)prv0(x[δ0+α]).

Lemma II.5.13. ACA0 proves the following.

(i) x ∈ Q2 ∧ T̆x+1 ∧ prv0(x) → Prog
✁
(Cx+1).

(ii) x ∈ Q∗
2∧deg(x) = 1∧o(x) = δ0+γ∧ (∀α✁γ)prv0(x[δ0+α])∧ T̆x → Prog

✁
(Cx).

Proof (i) We assume T̆x+1 and prv0(x), and aim to show Prog
✁
(Cx+1), that is,

Prog
✁
({α : Wo✁(it(gxh, α))}). If γ ⊆ Cx+1, then γ ∈ Cx+1 as it(gxh) is continu-

ous. Next assume that α ∈ Cx+1, i.e. Wo✁(it(gxh, α)). Then also Wo✁(it(gxh, α)+1).
By Lemma II.5.12 we have ∀α[Wo✁(α) → Wo✁(gxh(α))]. Therefore, Wo✁(gxh(β))
for β := it(gxh, α)+1 follows. As it(gxh, α+1)✂ gxh(it(gxh, α)+1) (cf. Lemma I.3.9),
α+1 ∈ Cx+1 follows.

(ii) Assume (∀α✁ γ)prv0(x[δ0+α]), T̆x, deg(x) = 1 and o(x) = δ0+γ. Hence x =NF

y ◦ z where either y = (γ, v) or y = (1, (γ, q0)
−), so o(xh) = o(xH) = o(x). We

aim for Prog
✁
(C), where C := Cx = {α : Wo✁(gxh(α))}. Since gxh is normal, it

suffices to show that α ∈ C implies α+1 ∈ C, and that 0 ∈ C. Assume that α ∈ C.
Let (sξ : ξ ✁ γ) be a sequence with supξ✁γsξ = gxh(α+1) as in Lemma II.3.5 (iii),
i.e. s0 := gxh(α)+1, sξ+1 := gxh[δ0+ξ](sξ) and sγ′ := supξ✁γ′sξ (to show that 0 ∈ C,
start with s0 := 0 and proceed similar as below). Now α+1 ∈ C follows if Wo✁(sξ)

for each ξ ✁ γ. To show this, fix a ξ0 ✁ γ and a progressive set Y . As T̆x entails
p1(T̆x[δ0+ξ0+1]) by definition of T̆x, there is an X so that Y ∈̇X and T̆x[δ0+ξ0+1]↾X , so

also T̆x[δ0+ξ0]+1↾X by Lemma II.4.4 (ii). Next, we show that

(∗) C := {ξ ✂ ξ0 : WoX
✁
(sξ)} is progressive w.r.t. ✁ .

Since C is a set and T̆x implies Wo❀∗(x) which in turn yields Wo✁(γ), (∗) implies
TI✁(Y, sξ0). Since Y was arbitrary, we have Wo✁(sξ0), therefore Prog

✁
(C).
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For (∗), we again just show the successor case (the limit case is by the continuity of
η 7→ sη). Let ξ ∈ C, so 0✁ ξ ✂ ξ0 ✁ γ. By the premise of (ii) we have prv0(x[δ0+ξ]),

Now T̆x[δ0+ξ]+1↾X and the “small variant” of Lemma II.5.12 yields ∀α[WoX
✁
(α) →

WoX
✁
(g(x[δ0+ξ])h(α))]. Since by Lemma II.5.10 (i), sξ+1 = gxh[δ0+ξ](sξ)✂g(x[δ0+ξ])h(sξ),

WoX
✁
(sξ) implies WoX

✁
(sξ+1), i.e. ξ+1 ∈ C. ✷

As a consequence of Lemma II.5.13 (i), we obtain that p1 proves it.

Lemma II.5.14. ACA0 ⊢ Prv1(q1).

Proof Let x ∈ Q2, assume prv0(x) and aim for Prv0(x+1). For that, further as-
sume T̆x+1, Wo✁(α) and TI✁(Cx+1, α). Now T̆x+1 and prv0(x) yield Prog

✁
(Cx+1) by

Lemma II.5.13 (i). Together with TI✁(Cx+1, α) we conclude α ∈ Cx+1, which says
Wo✁(gxh+1(α)). ✷

The next lemma corresponds to (b) of the sketch and shows that for names of degree
two, the approximation x(α) goes well with Prv1(x). Note that the proof only looks
simpler than in the sketch, as part of the proof is hidden in the proof of Lemma
II.5.12.

Lemma II.5.15. ACA0 ⊢ (∀x ∈ Q∗
2)[deg(x) = 2 ∧ ∀αprv1(x(α)) → Prv1(x)].

Proof Assume that x ∈ Q∗
2 with deg(x) = 2, and ∀αprv1(x(α)), and aim for Prv1(x).

For that, further assume that prv0(y) and z := x ◦ y ∈ Q2, and aim for Prv0(z). To
verify Prv0(x ◦ y), note that (x ◦ y)(α) = x(α) ◦ y (cf. Lemma II.2.12), and suppose

T̆z ∧Wo✁(β) ∧ TI✁(Cz , β).

We have to show Wo✁(gzh(β)). T̆z and Lemma II.4.9 yield Prog
✁
(Cz). Together

with Wo✁(β) and TI✁(Cz, β), we obtain T̆z(β′+1), where β
′ := 1+β, which by Lemma

II.4.4 (ii) gives T̆z(β′)+1. By assumption, we have prv1(x(β
′)) and prv0(y), thus

prv0(x(β
′) ◦ y), that is, prv0(z(β

′)). Since trivially Wo✁(0), T̆z(β′)+1 and prv0(z(β
′))

yield Wo✁(g(z(β′))h(0) by Lemma II.5.12. As gzh(β) = gzh[1+β](0) = gzh[β′](0) ✂
g(z(β′))h(0) (cf. Lemma II.5.10 (ii)), Wo✁(gzh(β)) follows. ✷

The first claim of the next Lemma corresponds to (a) of the sketch, and the second
is an immediate consequence, which readily entails Prv2(q1) (cf. Lemma II.5.18).

Lemma II.5.16. ACA0 proves the following: for each x ∈ Q∗
2 with deg(x) = 1 and

o(x) = δ0+γ, and each (1, v) ∈ Q∗
2,

(i) (∀α✁ γ)prv1(x[δ0+α]) → Prv1(x).

(ii) Prv1(1, v) ∧ prv1(1, v) → ∀αPrv1(1+α, v).
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Proof (i) Assume x ∈ Q∗
2 with deg(x) = 1, o(x) = δ0+γ, and (∀α✁ γ)prv1(x[δ0+α]),

and aim for Prv1(x). For that, further assume that prv0(y) and z := x ◦ y ∈ Q∗
2,

and aim for Prv0(z). Thereto, let δ1 so that for each β, x[β] ◦ y = z[δ1+β], and so
o(z) = δ1+δ0+γ (cf. Lemma II.2.9). To verify Prv0(z), we suppose that

T̆z ∧Wo✁(β) ∧ TI✁(Cz, β).

We show Wo✁(gzh(β)). First, note that for α ✁ γ, prv1(x[δ0+α]) and prv0(y) yield
prv0(x[δ0+α] ◦ y), that is, prv0(z[δ1+δ0+α]). Now T̆z and (∀α✁ γ)prv0(z[δ1+δ0+α])
yield Prog

✁
(Cz) by Lemma II.5.13 (ii). Finally, Wo✁(β) and TI✁(Cz, β) imply β ∈ Cz.

The definition of Cz yields Wo✁(gzh(β)). This concludes the verification of Prv0(x).
(ii) By induction on α (in the sense of Corollary I.4.3). For α = 0, the claim holds
by assumption. For the successor case, note that Prv1(1, v) and prv1(1+α, v) yield
prv1(1+α+1, v). In the limit case, we need to show that (∀α✁γ)prv1(1+α, v) implies
Prv1(γ, v), which is by (i). ✷

The next Lemma elaborates on the argument from the sketch that ∀βPrv2(1+β, q0)
follows from Prv2(1, q0) by induction on β. The first claim of the lemma addresses
the limit case. Observe that the Lemma is a special case (v = q0) of the one-up
variant of II.5.16 where Prv1 and prv1 are replaced by Prv2 and prv2, respectively.

Lemma II.5.17. ACA0 proves the following:

(i) (∀α✁ γ)prv2(1+α, q0) → Prv2(γ, q0).

(ii) Prv2(1, q0) ∧ prv2(1, q0) → ∀αPrv2(1+α, q0).

Proof Assumed that (∀β ✁ γ)Prv2(1+β, q0), and aim for Prv2(γ, q0). Thereto, fur-
ther assume that prv1(1, y), and verify Prv1(1, z) for z := (γ, q0) ◦ y. Observe that
deg(1, z) = 2, deg(1, z−) = 1 and (1, z)[α] = (1, z−)[α]. Further, note that the
assumptions (∀β ✁ γ)Prv2(1+β, q0) and prv1(1, y) yield (∀β ✁ γ)Prv1((1, z

−)[β]).
Hence Lemma II.5.16 (i) yields Prv1(1, z

−), and its “small variant” yields prv1(1, z
−).

Now Lemma II.5.16 (ii) implies ∀βprv1(1+β, z
−), that is ∀βprv1((1, z)(β)). Finally

Prv1(1, z) is by Lemma II.5.15.
(ii) Again, this is shown using Theorem I.4.2: the case α = 0 and the successor case
are shown as in the proof of Lemma II.5.16 (ii), and the limit case is by (i). ✷

Lemma II.5.18. ACA0 ⊢ Prv2(q1)

Proof To show Prv2(q1), assume that y ∈ Q1 and prv1(1, y), and aim for Prv1(x) for
x := (1, y+1). Note that deg(x) = 2. Once we know that ∀αprv1(x(α)), the claim
is by Lemma II.5.15. By the small variant of Lemma II.5.16 (ii), prv1(1, y) yields
∀αprv1(1+α, y). Further, prv1(1+α, y) and prv1(q1) yield prv1((1+α, y)+1), that is,
prv1(x(α)). Thus indeed ∀αprv1(x(α)). ✷
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Theorem II.5.19. Tǫ ⊢ (∀x ∈ Q∗
1)Prv2(x) and Tǫ ⊢ (∀x ∈ Q∗

2)Prv1(x).

Proof The first claim is immediate Lemma II.5.18 and Lemma II.5.17 (ii) (recall
that with ACA0 ⊢ Prv2(q1) also Tǫ ⊢ Prv2(q1), hence Tǫ ⊢ prv2(q1)). The second
claim is shown by induction on ❀∗ (in the sense of Theorem I.4.2). We consider the
following possible cases.

(i) x = y+1. If x = q1, this is Lemma II.5.14. Else, we have prv1(y) by I.H.
Together with Prv1(q1), this yields Prv1(x).

(ii) deg(x) = 1 and o(x) = γ. Then by I.H., (∀α ✁ γ)prv1(x[α]), and the claim is
by Lemma II.5.16 (i).

(iii) deg(x) = 2. In this case, x =NF (1, (1+β, q0)) ◦ y. Then y ❀∗ x (cf. Lemma
II.2.16 (iv)), thus by I.H., prv1(y). Further, we have Prv2(1+β, q0) by the
first claim, which together with prv1(1, q0) yields Prv1(1, (1+β, q0)). Now,
Prv1(1, (1+β, q0)) and prv1(y) yield Prv1(x).

✷

Corollary II.5.20. Tǫ ⊢ (∀x ∈ Q2)Prv0(x).

Proof Tǫ ⊢ Prv0(q0) is by Lemma II.5.11, and if x ∈ Q∗
2, then Prv1(x) is by Theorem

II.5.19, which together with prv0(q0) yields Prv0(x). ✷

The corollary immediately provides lower bounds for the proof-theoretic ordinal of
a theory of the form Tx or Tx+(IN) (formula induction, see page 18). Having (IN) at
hand, TI✁(Cx, α) is provable for each x ∈ QN0 and each α < ε0. Thus, if Tx proves
gxh, then for each α < ε0, Tx ⊢ Wo✁(gxh(α)).

Below, we list a few instances of the above corollary. The presentation of the ordinals
in the form ϕ~α is due to Definition IV.5.14 and Corollary IV.5.16. Also recall (see
Example II.0.8) that p2((ACA)) is (Σ

1
1-DC), p1p2((ACA)) is (ATR) and p2p1p2((ACA))

is p1p2((ACA)) ∧ (Σ1
1-DC).

Example II.5.21.

(i) |ACA0| ≥ gqh0 (ω) = gq1(ω) = ϕ10 = ε0.

(ii) |ACA0 + (IN)| ≥ gq1(ε0) = ϕ1ε0.

(iii) |p1(ACA0)| ≥ gqh1 (ω) = g(2,q0)(ω) = ϕ20.

(iv) |p1(ACA0) + (IN)| ≥ g(2,q0)(ε0) = ϕ2ε0.

(v) |p2(ACA0)| ≥ gqh2 (ω) = gq2(ω) = gq2[ω](0) = ϕω0.
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(vi) |p2(ACA0) + (IN)| ≥ gq2(ε0) = gq2[ε0](0) = ϕε00.

(vii) |p1p2(ACA0)| ≥ gq2+1(ω) = ϕ100 = Γ0 (Feferman-Schütte ordinal).

(viii) |p1p2(ACA0) + (IN)| ≥ gq2+1(ε0) = ϕ10ε0.

(ix) |p2p1p2(ACA0)| ≥ g(2,q1)(ω) = ϕ1ω0.

(x) |p2p1p2(ACA0) + (IN)| ≥ g(2,q1)(ε0) = ϕ1ε00.

(xi) |p1p22(ACA0)| ≥ g(1,q21)+1(ω) = ϕ1000 (Ackermann ordinal).

(xii) |pn+2
2 (ACA0)| ≥ g(1,qn+2

1 )[ω](0) = g(ω,qn+1
1 ) = ϕω 0 . . . 0︸ ︷︷ ︸

n

0.

(xiii) |pn+2
2 (ACA0) + (IN)| ≥ g(ε0,qn+1

1 )(0) = ϕε0 0 . . . 0︸ ︷︷ ︸
n

0,

(xiv) |p1p
n+2
2 (ACA0)| ≥ g(1,qn+2

1 )+1(ω) = ϕ1 0 . . . 0︸ ︷︷ ︸
n+1

0.

(xv) |p1p
n+2
2 (ACA0) + (IN)| ≥ g(1,qn+2

1 )+1(ε0) = ϕ1 0 . . . 0︸ ︷︷ ︸
n+1

ε0.

(xvi) |
⋃
n p

n+1
2 (ACA0)| ≥ supnϕ1 0 . . . 0︸ ︷︷ ︸

n

0 (small Veblen number).

A tiny extension of the above procedure gives now a lower bound for p1p3(ACA0).
We pick q3 as a name for p3p1, and let

Prv0(q3) := T̆q3 ∧ ∀α[Wo✁(α) ∧ TI✁(Cq3 , α) → Wo✁(gq3(α))],

where gq3 := [It3, It, it, g] and C := {α : p1+α2 p1((ACA))}. Exactly as in the proof
of Lemma II.4.9, one shows that p3p1(ACA0) ⊢ Prog

✁
(Cq3). Then, ACA0 ⊢ Prv0(q3)

is easily obtained: Assume that p3p1((ACA)), Wo✁(α) and TI✁(Cq3 , α), and aim
for Wo✁(gq3(α)). For that, pick an ✁-progressive set Y . p3p1((ACA)) implies
Prog

✁
(Cq3), hence 2+α ∈ Cq3 , that is p

2+α
2 p1((ACA)), which is Π1

3. Since Π
1
3-reflection

is at hand, there is an ω-model X of ACA0 with Y ∈̇X and p2+α2 p1((ACA))↾X . As
x := (1, (2+α, q0)) ∈ Q∗

2, Theorem II.5.19 yields prv1(x). Further, Cx↾X is a set.
Therefore, WoX

✁
(gxh(0)), in particular, WoX

✁
(It2+α[it, g, 0]), that is, TI✁(Y, gq3(α)).

As Y was arbitrary, Wo✁(gq3(α)) follows.

The proof of Prv1(q1) immediately yields that p1p3p1((ACA)) proves it(gq3), and
therefore, p1p3p1((ACA)) ⊢ Wo✁(it[gq3, n]) for each n, so |p1p3(ACA0)| ≥ it(gq3, ω).
We will see that this bound is indeed sharp, and that it[gq3, ω] = g′q3(0) = ϑΩΩ (big
Veblen number).
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Chapter III

The general case

This chapter extends what we have done in the previous one to the general case,
where now all operations and functionals are considered which are built by iterated
transfinite composition from the basic functionals (Itn+1 : n ∈ N) and the basic
operations (pn+1 : n ∈ N). All these operations play a role in the reduction process
of pn+1(ACA0).

In order to have enough names to address these operations and functionals, we first
extend the ordered sets (QH

2 , <
H
2 ) and (Q2, <2) to (Q

H , <H) and (Q,<), respectively.
Then, all the related concepts are generalized so that its relevant properties are
preserved, in particular, we still have that if deg(x) = m+1

Opx ⇔ (∀α✁ o(x))(pm+1 ◦ Ôpx[α]).

To state and prove the main result of this chapter, we also have to lift the notion
of Opy proves HyH to higher types. Recall that we said that Op+x proves H+

x∗ , if
whenever Op(1,y) proves H(1,y)H , then Op+x (Op(1,y)) proves H

+
x∗(H(1,y)H ). Accordingly,

we say that Op+(m+1)
x proves H

+(m+1)
x∗ , if for each i ≤ m, Op+i(1,yi)

proves H+i
(1,yi)H

,
then

Op+(m+1)
x ◦ Op+m(1,ym) ◦ . . . ◦ Op

+0
(1,y0)

proves (H
+(m+1)
x∗ , H+m

(1,ym)H
, . . . , H+0

(1,y0)H
),

where Op+m and H+m are essentially obtained from Op and H by replacing each
pn+1 and each Itn+1 by pm+n+1 and Itm+n+1, respectively. We use Prvm+2(x) to

formalize the statement “Op+(m+1)
x proves H

+(m+1)
x∗ ”.

The main result of the previous chapter can be summarized as Tǫ ⊢ Prv0(q0) and
Tǫ ⊢

∧
m≤2(∀x ∈ Q∗

2)Prvm(x). Now, we show that Tǫ ⊢ Prv0(q0), and for each N0,

Tǫ ⊢
∧

m≤N0

(∀x ∈ Q∗
N0
)Prvm(x).
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Since this is true for each N0, we have in particular, that for each n ∈ N, pn+1 proves
(Itn+1, . . . , It1), and so |pn+1(ACA0)| ≥ (Itn+1, . . . , It1, g, ω) (where g(α) := ω1+α).
The bound N0 is given from outside, since there is no L2(P)-formula ϑ(u) so that
for all n, Opϑn+1 ⇔ pn+1 (there is only an L2(P)-formula ϑ(u) so that for each N0,

(∀n < N0)(Op
ϑ
n+1 ⇔ pn+1)). Hence all the following is relative to some arbitrary

large but fixed N0 ∈ N, as we have to restrict to operations and functionals with
names in QN0 when it comes to proofs within ACA0 or Tǫ.

This chapter is structured analogously to the previous one, and again it is assumed
that we know how to translate ordinals of the form gx(α) into ordinal notations
(cf. Chapter IV). However, instead of discussing differences between operations
and functionals, we start with an outline of how the various concepts extend to the
general case.

How to extend things

We first say how we extend the name structure for operations and functionals. Then,
we provide examples that illustrate relevant points. As we aim to draw the general
picture, some details are still suppressed.

The extension of (QH
2 , <2) to (QH , <) is rather straightforward. Instead of names

of level at most two, we now consider names of all finite level. So suppose that we
have already defined names of level n and know how to compare them. Then, if
x1 < . . . < xk are names of level n, 〈(α1, x1), . . . , (αk, xk)〉 is a name of level n+1.
Further, we assign to each n and each x ∈ QH a type-n+2 functional H+n

x . For
each n, each k > 1 and each α > 0, we set

(i) H+n
(α,q0)

:= Itαn+1,

(ii) H+n
(α,x) := (H

+(n+1)
x (Itn+1))

α, and

(iii) if 〈x1, . . . , xk〉 is a name of level n, then H+n
〈x1,...,xk〉

:= H+n
x1

◦ . . . ◦H+n
xk

.

Further, Hx := H+0
x and H+

x := H+1
x .

Next, we extend (Q2, <2) to (Q,<). Note that e.g. (1, (γ, q0)
−) ∈ Q2 \QH

2 . We refer
to (γ, q0)

− as a prename of level 1, and let P1 := {(γ, q0)− : γ ∈ Lim(Ω)}. Names of
level n+1 are now build form names and prenames of level n as described below.

Suppose that we have already defined names and prenames of level n and know
how to compare them. Then, if v1 < . . . < vk are names or prenames of level n,
〈(α1, v1), . . . , (αk, vk)〉 is a name of level n+1. Further, if x is a name of level n with
(x)0 = (γ, v) or (x)0 = (β+1, y−), then x− is a prename of level n+1. Observe that
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now prenames may have length bigger than one; e.g., 〈(1, (ω, q0)−), (1, (ω, q0))〉− and
((ω+1, (ω, q0)

−))− are prenames of level two.

To assign operations to names, we lift deg(v), o(v), x[α] and ❀∗ straightforwardly.
We keep the definition of deg(v) and o(v) literally unchanged. One way to generalize
the definition of x[α] is the following:

(i) q1[α] := q0, and if x = (x)0 ∗ y, then x[α] := (x)0[α] ∗ y,

(ii) (β+1, v)[α] := (1, v)[α] ◦ (β, v),

(iii) (1, x+1)[α] := (1+α, x), and (1, x)[α] := (1, x[α]) if x 6= y+1,

(iv) (γ, v)[α] := (α, v) if α < γ, and else (γ, v)[α] := (γ, v),

(v) (1, x−)[α] := (1, x[α]).

With x[α] at hand, the relation ❀∗ is defined as before. This allows us to keep
what we called the proper definition of the operations (seemingly) unchanged (it
is changed of course, since the underlying relation ❀↾QN0 is a proper extension of
❀↾Q2). That is, if deg(x) = m+1, then

Op+nx ⇔ (∀α✁ o(x))pm+n+1Ôp
+n

x[α].

where the L2(P)-formula ϑ(u) so that for all n ≤ N0, Op
ϑ
n+1 ⇔ pn+1. Again, we have

that T̆x := Ôpx(T̆) is Π
1
m+2 if deg(x) = m+1.

As in the case N0 = 2, Opq1 iff p1, Op(n+1,q1) iff pn+1
2 p1, and also Op+nx◦y iff Op+nx ◦Op+ny .

To get an idea how the above definition works, we have a look at the operation with
name x := (α+1, (ω, q0)

−). We have that deg(x) = 1 and o(x) = ω, therefore Opx iff
∀n(p1Opx[n]). So let us figure out what Opx[n] is. According to the above definition,
we find that x[n] = (1, (ω, q0)

−)[n] ◦ (α, (ω, q0)
−) = 〈(1, (n+1, q0)), (α, (ω, q0)

−)〉.
Hence we have that Opx iff ∀n(p1p

n+1
2 p1 ◦Op(α,(ω,q0)−)) iff Op(1,(ω,q0)−) ◦Op(α,(ω,q0)−).

Further, let x1 := (1, (1, (ω, q0))), x2 := (1, (1, (ω, q0)
−)) and x3 := (1, (1, (ω, q0)

−)−).
We have that o(x1) = o(x2) = o(x3) = ω, deg(x1) = 3, deg(x2) = 2, deg(x3) = 1,
and

(i) Opx1 iff pω3 p2p1 iff pω3p1,

(ii) Opx2 iff ∀n(p2pn3p2)p1, and

(iii) Opx3 iff ∀n(p1pn3p1).
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As in the case N0 = 2, an operation Opx corresponds to the type-2 functional
HxH , and behaves as a type-2 object, while Op+(m+1)

x corresponds to the type-m+3

functional H
+(m+1)
x∗ , and behaves as a type-m+3 object. Due to the higher type

nature of Op+my , Corollary II.4.7, which stated that for each open Π1
2-sentence T̆′,

Tǫ ⊢ y ∈ Q∗
1 ∧ Op(1,y)(T̆) ∧ T̆′ → Op(1,y)(T̆

′),

canonically extends to the following (cf. Corollary III.6.8): for each open Π1
n+2-

sentence T̆′,

(∗) Tǫ ⊢ y ∈ Q∗
N0−n−1 ∧ Op+n(1,y)(T̆) ∧ T̆′ → Op+n(1,y)(T̆

′).

This allows us to prove that if deg(x) > 1, then T̆ → Prog
✁
{α : T̆x(α)}, analogously

as in the previous chapter, which is a key result that helps us lift the entire proof.

Let us look at an instance of (∗). Thereto, observe that pω3p1 iff Op+(1,y)p1 for y =

(ω, q0) and that pω3p1 implies ∀n(p2pn3p2)p1, in other words, Op+(1,y)p1 ⇒ Op+(1,y)(0)p1

(we still have that (1, y)(α) := (1+α, (ω, q0)
−)). Further, with enough transfinite

induction at hand, pω3 p1 implies Op+(1,y(α))p1, that is, (∀n(p2pn3p2))
αp1: suppose we

have that Op+(1,y)p1 ⇒ Op+(1,y)(α)p1; since Op+(1,y)(α)p1(T̆) is Π1
3, Op

+
(1,y)p1(T̆) implies

(Op+(1,y) ◦Op
+
(1,y)(α))p1(T̆) using (∗), which in turn yields (Op+(1,y)(0) ◦Op

+
(1,y)(α))p1(T̆),

which is Op+(1,y)(α+1)p1(T̆).

Now, let us anticipate that for each n, “(pn3p1) proves (It
n
3 , It, it)”. Hence, it is plausi-

ble that “∀n(p2pn3p2)
np1 prove

⋂
n(It ◦ It

n
3 (It), It, it)”. However,

⋂
n(It ◦ It

n
3 (It), It, it) is

(Itω3 , It, it). This indicates that (∀n(p2pn3p2))
αp1 could prove (Itω3 (It))

α(it), which we
take as evidence that p3p1 corresponds to (Itω+1

3 , It, it). That is, the operations with
name (1, (1, (ω, q0))) corresponds to the functional with name (1, (1, (ω+1, q0))).

To conclude, we hint at some further extension. We defined the partial function ◦
so that Opx ◦ Opy iff Opx◦y, and Hx ◦Hy = Hx◦y. Now we further consider partial
functions ◦m for each m ∈ N so that (given x◦m y is defined) Op+mx ◦Opy iff Opx◦my.
We will see that if deg(x) = 1, then Opx iff Opy ◦ Opz, and if deg(x) = m+2, then
Opx iff Op+my ◦Opz, where in the first case, y is a simple name of degree one (of the
form q1 or (γ, v) or (1+β, y−1 ), and in the second case, y is a simple name of degree
two (of the form (1, y′), where deg(y′) = 1).

With functionals, application and composition are different. Therefore, we cannot
directly form a new functionals out of e.g. H+2

x and Hy. When working with
functionals, it proves useful to write a name as x = L(x0◦1(1, y0) . . .◦1(1, ym)) ∈ QH ,
where L(y1 ◦1 . . . ◦1 ym) indicates that we associate to the left. Then, it turns out
that

H+n
x = (H+(n+m)

x0
, H

+(n+m−1)
(1,y0)

, . . . , H
+(n+0)
(1,ym) ).
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This form also works nicely with operations, where we have that for x = L(x0 ◦1
(1, y0) ◦1 (1, y1) ◦1 . . . ◦1 (1, ym)) ∈ Q,

Op+nx ⇔ Op+(n+m)
x0 ◦ Op+(n+m−1)

(1,y0)
◦ . . . ◦ Op+n(1,ym).

This will help to lift the notion “Op+x proves H+
x∗” to “Op+nx proves H+n

x∗ ” as men-
tioned at the beginning of this chapter.

III.1 Names

Now we introduce names in a more general form, still relying on Definition II.1.9 and
Definition II.1.1 from Section II.1: names over an ordered set (X,<) are finite se-
quences 〈(α1, x1), . . . , (αk, xk)〉 of pairs (αi, xi) ∈ (Ω\{0})×X , so that x1 < . . . < xk.

Definition III.1.1. Let (X,<) be an ordered set, and (Ω×X,⋖) the ordering with
〈〉⋖ (α, x)⋖ (β, y) iff x < y ∨ (x = y ∧ α < β). Then,

name(X) := {〈(1+α1, x1), . . . , (1+αk, xk)〉 ∈ (Ω×X)<ω : x1 < . . . < xk},

and name(X,<) is the ordered set (name(X),⋖lex).

Note that the empty sequence 〈〉 is a name above any set. The following is readily
observed.

Lemma III.1.2. If (X,<) is a well-ordering, then also (name(X),⋖lex).

If x and y are names over X , then x∗y is the concatenation of these finite sequences
over (Ω×X). In general, this is only a finite sequence, but not a name.

As in the case N0 = 2, we will assign functionals to names so that H〈(α,x)〉◦H〈(β,x)〉 =
H〈(β+α,x)〉, and accordingly for operations. This motivates to extend the partial
function ∗ : name(X)2 → name(X) to a partial function ◦ : name(X)2 → name(X),
so that 〈(α, x)〉 ◦ 〈(β, x)〉 = 〈(β+α, x)〉.

Definition III.1.3. Let x and y be names over X. If 〈〉 ∈ {x, y}, then x◦y := x∗y,
and if x = 〈x1, . . . , xk〉 with xk = (α, v) and y = 〈y1, . . . , yl〉 with y1 = (β, w), then

x ◦ y :≃





x ∗ y : if x ∗ y ∈ name(X),

〈x1, . . . , xk−1, (β+α, v), y2, . . . , yl〉 : if v = w,

↑ : else.
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Observe that if x and y are names and x ◦ y is defined, then x ◦ y is a name. Also
the following is readily checked.

Lemma III.1.4.

(i) ◦ is associative, that is, (x ◦ y) ◦ z ≃ x ◦ (y ◦ z).

(ii) If y 6= 〈〉, then (x ∗ y) ◦ z ≃ x ∗ (y ◦ z) and (x ◦ y) ∗ z ≃ x ◦ (y ∗ z).

Note that the assumption y 6= 〈〉 in (ii) is required, as for y = 〈〉, the claim reads
x ◦ z ≃ x ∗ z, which does not hold in general.

The ordered set (QH , <H) and (Q,<), which will be used to name functionals and
operations, respectively, are such that (QH , <H) = name(QH , <H), and slightly more
general, (Q,<) = name(Q′, <′), where Q ⊆ Q′, and <=<′↾Q (you may want to peek
at Definitions III.2.1 and III.3.1). With such a situation in mind, we define partial
operations ◦n : name(X)2 → name(X) as follows.

Definition III.1.5. ◦0 := ◦, and for each n ∈ N and all x, y ∈ name(X),

x ◦n+1 y :≃
{
〈(1, x ◦n z)〉 ◦ w : if y = 〈(1, z)〉 ∗ w and z ∈ name(X),

For instance, if x 6= 〈〉 and y := 〈(1, 〈〉), (1, x)〉, then y = 〈(1, 〈〉)〉 ∗ 〈(1, x)〉. By
definition, x ◦1 y = 〈(1, x ◦ 〈〉)〉 ◦ 〈(1, x)〉 which equals 〈(2, x)〉. This illustrates the
reason for writing 〈(1, x ◦n z)〉 ◦w (as opposed to 〈(1, x ◦n z)〉 ∗w) in the first clause
of the above definition.

By induction on n, it is readily seen that if x and y are names and x ◦n y is defined,
then x ◦n y is a name. Further, x ◦n+1 (〈(1, z)〉 ∗w) is defined iff v := 〈(1, x ◦n z)〉 is
defined and if v ◦ w is defined.

Lemma III.1.6. Assume that (X,<) = name(X ′, <′) with X ⊆ X ′ and <=<′↾X.
Then, we have for all x′, x, y ∈ X and all m ∈ N,

if x ◦m y is defined and x′ < x, then x′ ◦m y < x ◦m y (so x′ ◦m y is defined, too).

Proof By induction onm. If x◦0y is defined, either x∗y ∈ X , and then also x′∗y ∈ X
and x′ ∗y < x∗y, or (x)lh(x)−1 is of the form (α, z) and (y)0 is of the form (β, z), and
then x′ < x implies (x′)lh(x′)−1 ≤ (x)lh(x′)−1, hence x

′ ◦ y is defined and x′ ◦ y < x ◦ y.
And if x ◦m+1 y is defined, then y is of the form 〈(1, y′)〉 ∗ w for some y′ ∈ X , and
x ◦m+1 y = 〈(1, x ◦m y′)〉 ◦w. By I.H., x′ ◦m y′ is defined and x′ ◦m y′ < x ◦m y′. Since
<=<′↾X , also x′ ◦m y′ <′ x ◦m y′, hence 〈(1, x′ ◦m y′)〉 < 〈(1, x ◦m y′)〉, and by the
case m = 0, 〈(1, x′ ◦m y′)〉 ◦ w < 〈(1, x ◦m y′)〉 ◦ w. The claim follows. ✷
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Lemma III.1.7. Assume that (X,<) = name(X ′, <′) with X ⊆ X ′ and <=<′↾X,
and that x, y, w ∈ Xwith x 6= 〈〉. Then,

〈(1, x ◦m y)〉 ◦ w is defined iff x ◦m+1 (〈(1, y)〉 ∗ w) ∈ X.

Proof If 〈(1, x ◦m y)〉 ◦ w is defined, then (w)0 is of the form (α, z) with x ◦m y ≤′

z, thus also x ◦m y ≤ z. Since 〈〉 < x, we have 〈〉 ◦m y = y < x ◦m y by the
above lemma. Since <=<′↾X , also y <′ x ◦m y ≤′ z. Thus 〈(1, y)〉 ∗ w ∈ X . It
follows that x ◦m+1 (〈(1, y)〉 ∗ w) is defined and an element of X . Conversely, if
x ◦m+1 (〈(1, y)〉 ∗w) ∈ X and hence defined, then it equals 〈(1, x ◦m y)〉 ◦w which is
thus defined, too. ✷

Lemma III.1.8. Assume that (X,<) = name(X ′, <′) with X ⊆ X ′ and <=<′↾X.
For all x, y, z ∈ X with x 6= 〈〉, and all m,n ∈ N,

(i) (x ◦m y) ◦ z ≃ x ◦m (y ◦ z),

(ii) (x ◦m y) ◦n z ≃ x ◦m+n (y ◦n z).

Proof (i) For m = 0 the claim is by Lemma III.1.4. If (x ◦m+1 y) ◦ z is defined, then
there are names y′, w so that y = 〈(1, y′)〉 ∗w. If w 6= 〈〉, then, using Lemma III.1.4
(i), we obtain (x ◦m+1 y) ◦ z = ((1, x ◦m y′) ◦ w) ◦ z = (1, x ◦m y′) ◦ (w ◦ z) =L.III.1.7

x◦m+1 ((1, y
′) ∗ (w ◦ z)) = x◦m+1 (y ◦ z). Conversely, if x◦m+1 (y ◦ z) is defined, then

y ◦ z is of the form 〈(1, y′)〉 ∗w′, and it is readily checked that then w′ is of the form
w ◦ z for some w. Thus, x ◦m+1 (y ◦ z) = x ◦m+1 ((1, y

′) ∗ (w ◦ z)), and the other
direction follows as above. If w = 〈〉, the claim is shown similar but simpler. (ii) By
induction on n. The case n = 0 is by (i). For the induction step, observe that if z is
not of the form 〈(1, z′)〉 ∗ w, then both sides are undefined. So we can assume that
z = 〈(1, z′)〉∗w and that z′ ∈ X . Then, (x◦m y)◦n+1 z ≃ (x◦m y)◦n+1 〈(1, z′)〉∗w) ≃
〈(1, (x◦my)◦nz′)〉◦w ≃IH 〈(1, x◦m+n (y◦n z′))〉◦w ≃ (x◦m+n+1 〈(1, y◦nz′)〉)◦w ≃(i)

x◦m+n+1(〈(1, y◦nz
′〉)◦w) ≃L.III.1.7 x◦m+n+1(y◦n+1(〈(1, z

′)〉∗w)) ≃ x◦m+n+1(y◦n+1z).
✷

As ◦n+1 is not associative, it matters whether we associate to the left or to the right.
To deal with both cases, we introduce the following abbreviations.

Definition III.1.9.

(i) L() := R() := 〈〉, L(x) := R(x) := x and
L(x1 ◦m1 x2) := R(x1 ◦m1 x2) := (x1 ◦m1 x2).

(ii) L(x1 ◦m1 . . . ◦mk+2
xk+3) := (L(x1 ◦m1 . . . ◦mk+1

xk+2) ◦mk+2
xk+3).

(iii) R(x1 ◦m1 . . . ◦mk+2
xk+3) := (x1 ◦m1 R(x2 ◦m2 . . . ◦mk+2

xk+3)).
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Further, if m > n, then e.g. L(xm ◦1 . . . ◦1 xn) := L().

The next lemma collects various properties that allow us to move from L(. . .) to
R(. . .), and to compute x ◦n L(. . .) and R(. . .) ◦n x.

Lemma III.1.10. Assume that (X,<) = name(X ′, <′) with X ⊆ X ′ and <=<′↾X.
For all ~x ∈ X,

(i) R(x0 ◦m1 . . . ◦mk
xk) ◦n xk+1 ≃ R(x0 ◦m1+n . . . ◦mk+n xk ◦n xk+1),

(ii) L(x0 ◦m1 . . . ◦mk
xk) ≃ R(x0 ◦Mk

1
x1 . . . ◦Mk

k
xk),

where Mk
k := mk for 1 ≤ i < k, Mk

i := mk+ . . .+mi.

(iii) x0 ◦Mk
1
L(x1 ◦m2 . . . ◦mk

xk) ≃ L(x0 ◦m1 x1 ◦m2 . . . ◦mk
xk).

(iv) L(x0 ◦m1 . . . ◦mk
xk) ≃ R(x0 ◦M i

1
. . . ◦M i

i
xi) ◦Mk

i+1
L(xi+1 ◦mi+2

. . . ◦mk
xk).

Proof (i) By induction on k. For k = 0 this is trivial and for k = 1 this is Lemma
III.1.8 (ii). The induction step is shown as follows.

R(x0◦m1 . . .◦mk+1
xk+1)◦nxk+2 ≃ (x0◦m1R(x1◦m2 . . .◦mk+1

xk+1))◦nxk+2 ≃L.III.1.8 (ii)

x0 ◦m1+n (R(x1 ◦m2 . . . ◦mk+1
xk+1) ◦n xk+2) ≃IH

x0◦m1+nR(x1◦m2+n . . .◦mk+1+nxk+1◦nxk+2) ≃ R(x0◦m1+n . . .◦mk+1+nxk+1◦nxk+2).

(ii) By induction on k ≥ 1. For k = 1, the claim is obvious, thus we show the
induction step: L(x0 ◦m1 . . . ◦mk+1

xk+1) ≃ L(x0 ◦m1 . . . ◦mk
xk) ◦mk+1

xk+1 ≃IH

R(x0 ◦Mk
1
. . . ◦Mk

k
xk) ◦mk+1

xk+1 ≃(i) R(x0 ◦Mk+1
1

x1 . . . ◦Mk+1
k

xk ◦Mk+1
k+1

xk+1).

(iii) z := L(x1 ◦m2 . . . ◦mk
xk) ≃(ii) R(x1 ◦Mk

2
. . . ◦Mk

k
xk).

x0 ◦Mk
1
z ≃ x0 ◦Mk

1
R(x1 ◦Mk

2
. . . ◦Mk

k
xk) ≃

x0 ◦Mk
2+m1

(x1 ◦Mk
2
R(x2 ◦Mk

3
. . . ◦Mk

k
xk)) ≃L.III.1.8(ii)

(x0 ◦m1 x1) ◦Mk
2
(R(x2 ◦Mk

3
. . . ◦Mk

k
xk)) ≃ R((x0 ◦m1 x1) ◦Mk

2
. . . ◦Mk

k
xk).

Using (ii) again yields the claim.

(iv) By induction on i. If i = 0, then we have L(x0 ◦m1 . . . ◦1 xk) ≃(iii) R(x0) ◦Mk
1
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L(x1 ◦m2 . . . ◦mk
xk). And if 0 < i = j+1, we have for z := R(x0 ◦Mj

1
. . . ◦Mj

j
xj),

L(x0 ◦m1 . . . ◦mk
xk) ≃IH z ◦Mk

j+1
L(xj+1 ◦mj+2

. . . ◦mk
xk) ≃(iii)

z ◦Mk
i
(xj+1 ◦Mk

i+1
L(xi+1 ◦mi+2

. . . ◦mk
xk)) ≃L.III.1.8

(z ◦mi
xj+1) ◦Mk

i+1
L(xi+1 ◦mi+2

. . . ◦mk
xk) ≃(i)

R(x0 ◦Mj+1
1

. . . ◦Mj+1
j+1

xj+1) ◦Mk
i+1

L(xi+1 ◦mi+2
. . . ◦mk

xk).

✷

The following corollary singles out what is actually need in the sequel.

Corollary III.1.11. Under the assumptions of the above lemma,

(i) L(x1 ◦1 x2 ◦1 . . . ◦1 xm−1 ◦1 xm) ◦ z ≃ R(x1 ◦m−1 x2 ◦m−2 . . . ◦2 xm−1 ◦1 xm) ◦ z,

(ii) x0 ◦m+n L(x1 ◦1 . . . ◦1 xm+1) ◦ z ≃ L((x0 ◦n x1) ◦1 . . . ◦1 xm+1) ◦ z.

III.2 Names for functionals

First, we introduce an ordered set (QH , <H) of names. Essentially by its definition,
we have that name(QH , <H) = (QH , <H). Then, we assign to each x ∈ QH a
functional Hx.

Definition III.2.1. (QH
0 , <

H
0 ) := ({〈〉}, ∅), and (QH

n+1, <
H
n+1) := name(QH

n , <
H
n ).

Then, (QH , <H) := (
⋃
nQ

H
n ,

⋃
n <

H
n ). Further, the least n so that x ∈ QH

n is called
the level lv(x) of x.

That is, QH
n+1 = {〈(1+α1, x1), . . . , (1+αk, xk)〉 : x1 <H

n . . . <H
n xk; x1, . . . , xk ∈ QH

n },
and <H

n+1= ⋖lex↾Q
H
n+1, where by Definition II.1.1, ⋖ is the ordering on Ω×QH

n with
(α, x)⋖ (β, y) iff x <H

n y ∨ (x = y ∧ α < β).

By induction on n it is immediate that QH
n ⊆ QH

n+1 ⊆ QH , thus <H
n =<

H↾QH
n , and

further, if lv(x) < lv(y) = n, then x <H
n y. We just look at the induction step of

the last claim: if y ∈ QH
n+1 \ Q

H
n and x 6= 〈〉, then x = 〈(α1, x1), . . . , (αk, xk)〉 and

y = 〈(β1, y1), . . . , (βl, yl)〉 with y1 <
H
n . . . <H

n yl. Since y ∈ QH
n+1 \ Q

H
n , the I.H.

implies that yl ∈ QH
n . Again by I.H., xk <

H
n yl, so x <

H
n+1 y. And if x = 〈〉, then

x <H
n y is directly by definition of <H

n .

As names are used quite frequently in the sequel, in order to increase readability,
we stick to the following abbreviations, and further, to Convention II.1.3.

Definition III.2.2. We let q0 := 〈〉, qn+1 := 〈(1, qn)〉 and qα1 := 〈(α, q0)〉.
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Since q0 is the only name with lv(q0) = 0, also the names of level 1 are very simple.

Lemma III.2.3. If x ∈ QH with lv(x) = 1, then x = 〈(α, q0)〉 for some α. In
particular, lh(x) = 1.

Now we assign to each name x ∈ QH and each n ∈ N a functional of type-n+2,
using our basic functionals Itn+1 (cf. Definition I.3.10).

Definition III.2.4. For each n, H+n
q0

is the identity on Ω(n), and for 0 < α, β < Ω
and k > 1,

(i) H+n
(α,q0)

:= Itαn+1.

(ii) H+n
(β,x) := (H

+(n+1)
x (Itn+1))

β (x 6= q0),

(iii) H+n
〈x1,...,xk〉

:= H+n
x1 ◦ . . . ◦H+n

xk
.

Further, if f ∈ Ω(0), then fx := Hx(f), and Hx := H+0
x and H+

x := H+1
x .

Next, we check that H+n
x ∈ Ω(n+1), and that H+n

x ⊆ Itn+1 (cf. Convention I.3.5), a
simple but useful property. Then, we verify that H+n

x◦y = H+n
x ◦ H+n

y . Finally, we
reveal a point of writing a name in the form x = L(y0 ◦1 . . . ◦1 ym+1).

Lemma III.2.5. For each n ∈ N and each x ∈ QH \ {q0}, H+n
x ∈ Ω(n+1) and

H+n
x ⊆ Itn+1.

Proof Recall that if F ∈ Ω(n+1), then F is strictly inclusive, that is, F (G) ⊆ G for
each G ∈ Ω(n), and further, F 1+α ∈ Ω(n+1) for each α (cf. Lemma I.3.12). Moreover,
F 1+α ⊆ F , as is readily seen by induction on α, and if β ≤ α, then F α ⊆ F β.

The two claims are shown simultaneously by induction on the build up of QH .
By Corollary I.3.13, Itn+1 ∈ Ω(n+1). Hence, H+n

(1+α,q0)
= (Itn+1)

1+α ∈ Ω(n+1) and

(Itn+1)
1+α ⊆ Itn+1. If both claims hold for x ∈ QH \ {q0}, then H

+(n+1)
x ∈ Ω(n+2)

and H
+(n+1)
x ⊆ Itn+2, hence also H

+(n+1)
x (Itn+1) ∈ Ω(n+1) and

H+n
(1+α,x) = (H+(n+1)

x (Itn+1))
1+α ⊆ H+(n+1)

x (Itn+1) ⊆ Itn+2(Itn+1) ⊆ Itn+1.

And if both claims hold for xk, and x = 〈x1, . . . , xk〉 and k > 1, then H+n
〈x1,...,xk〉

=

H+n
x1 ◦ . . . ◦ H+n

xk
⊆ H+n

xk
⊆ Itn+1, and H+n

〈x1,...,xk〉
∈ Ω(n+1) as Ω(n+1) is closed under

composition. ✷

Lemma III.2.6. For each x ∈ QH \ {q0}, Itn+2(H
+n
x ) ⊆ Itn+1 ◦H+n

x .
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Proof

(Itn+2(H
+n
x ), . . . , f, α) = Itn+2[H

+n
x , . . . , f, α] ∈ ((H+n

x )2+α, . . . , f) ⊆

((H+n
x )2, . . . , f) ⊆L.III.2.5 ((Itn+1 ◦Hx), . . . , f) = (Itn+1 ◦Hx)[. . . , f ].

✷

Lemma III.2.7. For all x0, . . . , xm+2 ∈ QH \ {q0},

Itm+2[H
+m
xm , . . . , H+0

x0
] ⊆ it ◦ (H+m

xm , . . . , H+0
x0

).

Proof By induction on m. For m = 0 this is by the above lemma, and

Itm+3[H
+(m+1)
xm+1

, . . . , H+0
x0 ] = (Itm+3(H

+(m+1)
xm+1

), . . . , H+0
x0 ) ⊆L.III.2.6

((Itm+2 ◦H
+(m+1)
xm+1

), . . . , H+0
x0

) = Itm+2[H
+(m+1)
xm+1

(H+m
xm ), . . . , H+0

x0
] ⊆IH

it ◦ (H+(m+1)
xm+1

(H+m
xm ), . . . , H+0

x0
) = it ◦ [H+(m+1)

xm+1
, . . . , H+0

x0
].

✷

Lemma III.2.8. If x ◦ y ∈ QH , then H+n
x◦y = H+n

x ◦H+n
y .

Proof Immediate by Definition III.2.4 and the observation that for any functional
F ∈ Ω(n+1), F α ◦ F β = F β+α (cf. Lemma I.3.14). ✷

Lemma III.2.9. Let x = L(y0 ◦1 . . . ◦1 ym) ∈ QH with lh(yi) = 1 (0 ≤ i ≤ m).
Then,

H+n
x = (H+(n+m)

y0
, H+(n+m−1)

y1
, . . . , H+(n+0)

ym ).

Proof By induction on m. For m = 0 there is nothing to show. And if x =
L(y0 ◦1 . . . ◦1 ym+1) ∈ QH , then x = L(y0 ◦1 . . . ◦1 ym) ◦1 ym+1. Since this is defined,
ym+1 is of the form (1, z), and therefore x = (1, L(y0 ◦1 . . . ◦1 ym) ◦ z). Hence,

H+n
x = H+n

(1,L(y0◦1...◦1ym)◦z) = H
+(n+1)
L(y0◦1...◦1ym)◦z(Itn+1)

= (H
+(n+1)
L(y0◦1...◦1ym) ◦H

+(n+1)
z )(Itn+1) = H

+(n+1)
L(y0◦1...◦1ym)(H

+(n+1)
z (Itn+1))

= H
+(n+1)
L(y0◦1...◦1ym)(H

+n
(1,z)) = H

+(n+1)
L(y0◦1...◦1ym)(H

+n
ym+1

)

=IH (H+(n+m+1)
y0 , H+(n+m)

y1 , . . . , H+(n+1)
ym )(H+n

ym+1
)

= (H+(n+m+1)
y0 , H+(n+m)

y1 , . . . , H+(n+1)
ym , H+n

ym+1
).

✷
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III.3 Names for operations

In this section, we present an ordered set (Q,<) of names for operations, and assign
to each q0 6= x ∈ Q an operation Opx. However, as the situation with operations is
more complex than with functionals, we no longer have that name(Q,<) = (Q,<),
but only that name(Q ∪ P,<) = (Q,<), where P ⊆ Q− (cf. Definition II.1.9) is a
set of prenames. Prenames are not names, but used to form names.

Definition III.3.1. (Q0, <0) := ({〈〉}, ∅), and (Qn+1, <n+1) := name(Qn ∪ Pn, <n),
where P0 = ∅, and Pn+1 ⊆ Q−

n+1 so that

Pn+1 = {z− : (z)0 = (γ, y), y ∈ Qn} ∪ {z− : (z)0 = (1+α, v) : v ∈ Pn}.

Then, we set (Q,<) := (
⋃
nQn,

⋃
n <n) and (P,<) := (

⋃
n Pn,

⋃
n <n). Further,

Q∗
n := Qn \ {q0}, Q∗ := Q \ {q0}, and the least n so that v ∈ Qn ∪ Pn is called the

level lv(v) of v.

Note that when switching from (Qn, <n) to (Qn ∪ Pn, <n), the ordering <n is ex-
tended according to Definition II.1.9, and that <n+1= ⋖lex↾(Qn+1 ∪Pn+1), where ⋖
is the ordering on Ω× (Qn ∪ Pn) with (α, v)⋖ (β, w) iff v <n w ∨ (v = w ∧ α < β).

This time, Qn+1 = {〈(1+α1, v1), . . . , (1+αk, vk)〉 : v1 <n . . . <n vk ∈ Qn ∪ Pn}, and
x− ∈ Pn+1 iff x ∈ Qn+1 and (x)0 is either of the form (γ, z) with z ∈ Qn, or of the
form (1+α, v) with v ∈ Pn ⊆ Q−

n .

As with QH , we have that Qn ⊆ Qn+1 ⊆ Q, Pn ⊆ Pn+1 ⊆ P , <n=<↾Qn, and
(Qn ∪ Pn, <n) is according to Definition II.1.9. If lv(v) < lv(w) = n, then v <n w.
Also note that if x ∈ Q with lv(x) ≤ 1, then x ∈ QH . Further, if z− ∈ P , then z
is the <-least element above z−. Moreover, if <n↾(Qn ∪ Pn) is a well-ordering, then
⋖lex is a well-ordering on Ω×(Qn∪Pn), and so <n+1↾(Qn+1∪Pn+1) is a well-ordering,
too. Therefore, (Q,<) and (Q ∪ P,<) are well-orderings.

We extend Convention II.1.3 as follows.

Convention III.3.2. We let x, y, z range over Q, and v, w over Q∪P . If we write
v− ∈ P , then it is understood that v ∈ Q and v− ∈ P . Further, we write (α, v)−

for 〈(α, v)〉−, and moreover, if z− ∈ P and x ∈ Q, then z− ∗ x := (z ∗ x)−.

Definition III.3.3. We let q0 := 〈〉 and qn+1 := (1, qn).

Provisional definitions of the operations (Opx : x ∈ Q∗)

As in the case N0 = 2, we give first a provisional definition of the operations (Opx :
x ∈ Q∗). Again, this definition is semantical: given x ∈ Q∗, Opx is an operation, and
it is assumed that we can represent this operation by an L2(P)-sentence, by using
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some way to code x as a natural number. Later on (after introducing approximations
and normal forms for names in Q), it is superseded by Definition III.6.1, the proper
definition of the operations (Op+nx : x ∈ Q∗), which provides for each n ∈ N an
L2(P)-formulas ϕ+n(u) so that T̆ 7→ ϕ+n(x){T̆↾U} is the operation Op+nx . There, it
is assumed that we have a primitive recursive relation which codes Q∗, which is also
denoted by Q∗.

From a technical point of view, none of the remainder of this section is henceforth
required. It purpose is solely to convey some intuition of how the operations Opx
look like. Therefore, some proofs are a bit sketchy.

The next definition is by recursion on the build-up of Q ∪ P , and is structured as
follows. The first group of clauses says what operation is assigned to a name in Q,
the second says what operation is assigned to a prename in P . But the two groups
are interdependent.

Definition III.3.4. For each n, all 〈x1, . . . , xk〉, x ∈ Q∗ (k > 1), each y− ∈ P , each
v ∈ Q∗ ∪ P and each α > 0, we have

(i) Op+nq1 := pn+1,

(ii) Op+n(m+1,x) := (Op+(n+1)
x pn+1)

m+1 and Op+n(γ+m+1,x) := (Op+(n+1)
x pn+1)

γ+m,

(iii) Op+n(γ,x) := (pn+1Op
+n
(1,x))

γ,

(iv) Op+n(1+α,y−) := (Op
+(n,n+1)

y− pn+1)
1+α

(v) Op+n〈x1,...,xk〉
:= Op+nx1 ◦ . . . ◦ Op+nxk ,

and for all m,n with 0 ≤ m < n, we have

(iii)’ Op
+(m,n)
(γ,v)− := (∀α < γ)pm+1(Op

+n
(1,v))

1+α,

(vi)’ Op
+(m,n)
(α+1,y−)− := Op

+(m,n+1)
y− pn+1 ◦ Op

+n
(α,y−),

(v)’ Op
+(m,n)
〈y1,...,yk〉−

:= Op
+(m,n)

y−1
◦ Op+ny2 ◦ . . . ◦ Op+nyk .

Further, Opx := Op+0
x , and Op+x := Op+1

x .

(i)-(v) and (iii)’ generalize Definition II.1.12; the clauses (vi)’ and (v)’ have no
correspondence, as x− ∈ P1 iff x = (γ, q0). The role of the extra parameter m

becomes visible in clause (iii)’. Also note that Op
+(m,n)
(α+1,y−)− ⇔ Op

+(m,n)
(1,y−)− ◦ Op+n(α,y−),

that is, would we extend ◦ to Q∪P , then (1, v)− ◦ (α, v) := (α+1, v)−. Similar with
clause (v)’, which is the reason for letting z− ∗x := (z ∗x)− (cf. Convention III.3.2).
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Lemma III.3.5. Let y− ∈ P and x ∈ Q∗ with deg(x) = m+1. Then,

(i) for all 0 ≤ k < n, Op
+(k,n)
y− (T̆) is Π1

k+2,

(ii) for all n, Op+nx (T̆) is Π1
m+n+2.

Proof (i) By induction on the definition of Op
+(k,n)

y− . Note that Op
+(k,n)

(γ,v)− (T̆) is Π
1
k+2

by definition, since Op
+(k,n)

x− (T̆) is of the form ∀αA(α), where A is Π1
k+2. In the other

cases, the I.H. applies directly. (ii) By induction on the definition of Op+nx using (i).
✷

To gain some intuition for the operations Op+nx , we state some relevant properties.
For the time being, we just add some proof-sketches. Rigorous proofs are provided
once we have introduced the proper definition of these operations.

Lemma III.3.6.

(i) If 0 < k ≤ m < n, then pnpk ⇔ pnpmpk.

(ii) If x ∈ Q∗, then Op+nx ⇒ pn+1.

Proof (i) If 0 < k ≤ m < n, then pnpk(T̆) implies pm(pk(T̆)) which is Π1
m+1, thus

Lemma I.2.14 yields pnpmpk(T̆). Conversely, pmpk ⇒ pk is by Lemma I.2.12, and
since pn is an operation, pnpmpk ⇒ pnpk follows. (ii) By induction on the definition
of Op+nx . ✷

For instance, p3p2p1 ⇔ p3p1.

The following is relevant in particular for n > 0. It generalizes Lemma I.2.14. For
a proof, we refer to Lemma III.6.6.

Lemma III.3.7. For each open Π1
2+n-sentence C, T

ǫ ⊢ Op+n(T̆) ∧ C → Op+nx (C).

A typical application of this lemma is the proof of the right-to-left direction of the
following lemma, which is the critical case in showing that Opx ◦ Opx ⇔ Opx◦y (see
Lemma III.3.9).

Lemma III.3.8. If (1, v) ∈ Q∗, then Op(1,v) ◦ Op(γ,v) ⇔ Op(γ+1,v).

Proof By definition, we have Op(1,v) ⇔ Op+v p1, Op(γ,v) ⇔ (∀ξ < γ)p1(Op
+
v p1)

1+ξ, and

Op(γ+1,v) ↔ (Op+v p1)
γ. As Op+v p1 is an operation, Op+v p1 ◦ (∀ξ < γ)p1(Op

+
v p1)

1+ξ

implies (∀ξ < γ)Op+v p1p1(Op
+
v p1)

1+ξ, which in turn yields (∀ξ < γ)(Op+v p1)
1+ξ+1, so

(Op+v p1)
γ follows.

For the converse direction, note that (∀ξ < γ)(Op+v p1)
ξ+1 ⇒ (∀ξ < γ)p1(Op

+
v p1)

ξ+1,
so Op(γ+1,v)(T̆) implies Op(γ,v)(T̆). And clearly, (∀ξ < γ)(Op+v p1)

ξ+1 ⇒ (Op+v p1). By
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the above lemma, Op(1,v)(T̆)∧Op(γ,v)(T̆) → (Op(1,v) ◦Op(γ,v))(T̆), as Op(γ,v)(T̆) is Π
1
2

and Op(1,v)(T̆) iff Op+v (p1(T̆)). The claim follows. ✷

Recall that x ◦ (1, v) is only defined if v ∈ Q. Then, x ◦ (1, v) = (1, (x ◦ v)).

Lemma III.3.9. Let x, y, x ◦ y ∈ Q∗. Then,

(i) Op+nx◦y ⇔ Op+nx ◦ Op+ny , and

(ii) Op+nx◦my ⇔ Op+(m+n)
x ◦ Op+ny .

Proof (i) is readily shown by induction on the definition of Opx using Lemma III.3.8.
(ii) By induction on m. The case m = 0 is by (i). For the induction step, note that
if x ◦m+1 y ∈ Q∗, then y = (1, z) or y = (1, z) ∗ z′ for some z, z′ ∈ Q. It suffices
to show the claim for y = (1, z), the general case is then by (i). If z 6= q0, we
have Op+nx◦m+1y = Op+n(1,x◦mz)

⇔ Op+(n+1)
x◦mz pn+1 ⇔IH (Op+(m+n+1)

x ◦ Op+(n+1)
z )pn+1 ⇔

Op+(m+n+1)
x ◦ Op+n(1,z). If z = q0, then m = 1, and the claim follows as Op+nx◦1y =

Op+n(1,x) ⇔ Op+(n+1)
x ◦ pn+1 ⇔m=1 Op

+(m+n)
x ◦ Op+ny . ✷

The following corresponds to Lemma III.2.9. Note that below, no assumption lh(yi)
is required. This is owed to the fact that in contrast to functionals, with operation
there is no difference between composition and application, i.e. (Op+x ◦Opy)◦Opz ⇔
Op+x ◦ (Opy ◦ Opz), whereas H

+
x (Hy) ◦Hz may be different from H+

x (Hy ◦Hz).

Lemma III.3.10. Let x = R(y0 ◦m y1 ◦m−1 . . . ◦1 ym) ∈ Q∗. Then,

Op+nx ⇔ Op+(n+m)
y0 ◦ Op+(n+m−1)

y1 ◦ . . . ◦ Op+(n+0)
ym .

Proof By induction on m. For m = 0 there is nothing to show. And if x =
R(y0 ◦m+1 . . . ◦1 ym+1), then x = y0 ◦m+1 R(y1 ◦m . . . ◦1 ym+1), hence

Op+nx ⇔ Op+ny0◦m+1R(y1◦m...◦1ym+1)
⇔L.III.3.9 Op

+n+(m+1)
y0

◦ Op+nR(y1◦m...◦1ym+1)

⇔IH Op+n+(m+1)
y0 ◦ Op+(n+m)

y1 ◦ Op+(n+m−1)
y2 ◦ . . . ◦ Op+nym+1

.

✷

Corollary III.3.11. Let x = L(y0 ◦1 . . . ◦1 ym) ∈ Q∗. Then,

Op+nx ⇔ Op+(n+m)
y0

◦ Op+(n+m−1)
y1

◦ . . . ◦ Op+nym .

Proof By Lemma III.1.10 and Lemma III.3.10 ✷

We conclude by looking at some examples of operations.

87



Exercise III.3.12. Consider the names x′ := (2, (3, (4, q0))), y
′ := (γ, (γ1, (γ2, q0))),

x := (2, (3, (4, q0))), y := (2, (3, (γ, q0)
−)) and z := (2, (3, (γ, q0)

−)−). Compute Opx′,
Opy′, Opx, Opy and Opz.

Solution III.3.12. Below, we just give the solutions to (i)–(iv), (v) is explained in
detail. To obtain these solutions, we have used that (∀ξ < γ)pnp

ξ
npn ⇔ pγn, that p

γ
3p1

iff p
γ
3p

n
2p1.

(i) Opx′ ⇔ ((p43p2)
3)p1)

2.

(ii) Opy′ ⇔ (p1(p2p
γ2
3 )γ1p2)

γp1.

(iii) Opx ⇔ ((pγ3p2)
3p1)

2.

(iv) Opy ⇔ [(∀ξ < γ)(p2p
1+ξ
3 p2)

3p1]
2.

(v) Opz ⇔ [((∀η < γ)(p1p
1+η
3 )p2 ◦ ((∀ξ < γ)(p2p

1+ξ
3 )p2)

2)p1]
2.

We details for (v). Let y := (3, (γ, q0)
−) and x := (γ, q0). Then, z = (2, y−) and

y = (3, x−). Thus, Opz ⇔ Op(2,y−) ⇔ (Op
+(0,1)
y− p1)

2. By definition,

a) Op
+(0,1)
y− ⇔ Op

+(0,1)
(1,x−)− ◦ Op+1

(2,x−),

b) Op
+(0,1)
(1,x−) ⇔ Op

+(0,2)
x− p2 ⇔ Op

+(0,2)
x− p2, and Op+1

(2,x−) ⇔ (Op
+(1,2)
x− p2)

2,

c) Op
+(0,2)

x− ⇔ (∀η < γ)(p1p
1+η
3 ) and Op

+(1,2)

x− ⇔ (∀ξ < γ)(p2p
1+ξ
3 ).

Putting the pieces together, we obtain that

Op
+(0,1)
y− ⇔ (∀η < γ)(p1p

1+η
3 )p2 ◦ ((∀ξ < γ)(p2p

1+ξ
3 )p2)

2,

which confirms (v).

III.4 Approximations and normal forms

In this section, we have a closer look at the names in Q, which we use to name oper-
ations. First, we lift the notions degree, ordinal, normal forms and approximations
defined for names in Q2 in Section II.2 to Q. We will see that all relevant properties
are preserved. For instance, we will have again for each name x with deg(x) = m+1,
T̆x iff (∀α✁ o(x))(pm+1(T̆x[α])) (cf. Lemma III.6.2). Then, we lift the well-founded
relations ❀ and ❀∗ from Q2 to Q, and the map H : Q2 → QH

2 to H : Q→ QH , so
that Opx corresponds to HxH .

Often, the definitions look exactly the same as in the case N0 = 2. However, as the
underlying names (Q,<) are different, properties have to rechecked.
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Definition III.4.1. For x ∈ Q and f denoting one of the function symbols in
{deg, o}, we let f(x) := f((x)0) and f(α+1, v) := f(1, v). Further,

(i) deg(q0) := 0, deg(1, x−) := 1, deg(1, x) := deg(x)+1 and deg(γ, v) := 1.

(ii) o(q0) := 1, o(1, x−) := o(x), o(1, x) := o(x) and o(γ, v) := γ.

We extend deg and o to Q∪P by setting, deg(x−) := 0 and o(x−) := o(x). Further,
we read a name (0, v) as an abbreviation for q0.

As with names and prenames in Q2∪P1, if v ∈ Q∪P , then v+1 denotes its successor
w.r.t. the ordering (Q ∪ P,<). Again, x+1 := q1 ◦ x, if x− ∈ P , then x−+1 := x,
and 〈x1, . . . , xk〉+1 = 〈x1+1, . . . , xk〉.

We start with some simple properties of deg(x) and o(x).

Lemma III.4.2.

(i) o(x+1) = 1, and x− ∈ P iff o(x) ∈ Lim(Ω) ∧ deg(x) = 1.

(ii) If x◦y ∈ Q and x 6= q0, then deg(x) = deg(x◦y), and o(x) = 1 iff o(x◦y) = 1,
and o(x) ∈ Lim(Ω) iff o(x ◦ y) ∈ Lim(Ω).

(iii) If x = L(x0 ◦1 (1, y1) ◦1 . . . ◦1 (1, ym)) and x0 6= q0, then deg(x) = deg(x0)+m,
and o(x0) = 1 iff o(x) = 1, and o(x0) ∈ Lim(Ω) iff o(x) ∈ Lim(Ω).

Proof (i) x+1 is of the form (α+1, q0) ∗ z, hence o(x) = o(α+1, q0) = o(1, q0) = 1.
The second part is by induction on lv(x). If lv(x) = 1, the x− ∈ P iff x = (γ, q0).
And if lv(x) > 1, then x− ∈ P if either (x)0 = (γ, v) or (x)0 = (β+1, y−) with
lv(y) < lv(x), so o(x) = o(y) ∈IH Lim(Ω). Hence in both cases o(x) ∈ Lim(Ω)
and deg(x) = 1. And if o(x) ∈ Lim(Ω) ∧ deg(x) = 1, then also (x)0 = (γ, v) or
(x)0 = (β+1, y−), and x− ∈ P by definition of P . (ii) If x ◦ y = x ∗ y or lh(x) > 1,
then the claim is directly by the definition of deg and o. Otherwise, x = (α, v) and
y = (β, v) ∗ y′, and deg(x ◦ y) = deg(β+α, v), and o(x ◦ y) = o(β+α, v). Since
β+α ∈ lim(Ω) iff α ∈ lim(Ω), the claim follows. (iii) By induction on m: for
m = 0, there is nothing to show, and if m = m′+1, and say xm = (1, ym), then,
for z := L(x0 ◦1 . . . ◦1 xm′), x = z ◦1 (1, ym), and deg(x) = deg(z ◦1 (1, ym)) =
deg(z ◦ ym))+1 = deg(z)+1 =IH deg(x0)+m

′+1, and o(x) = o(z ◦ ym), and the
claim is by (ii) and the I.H. ✷

We consider L(x0 ◦1 (1, y1) . . .◦1 (1, ym))◦ym+1 an expression in normal form, if x0 is
either q1, or of the form (1, z−) or (γ, v). In the third case, we want that γ is largest
possible: (ω+ω, q0) ◦1 (1, q0) is in normal form, but (ω, q0) ◦1 (1, (ω, q0)) is not. This
is why we additionally ask for x0 ∗ y1 ∈ Q in this case.
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Definition III.4.3. L(x0 ◦1 . . . ◦1 xm) ◦ ym+1 ∈ Q is an expression in (long) normal
form, if either m = 0 and x0 = q1 ∨ x0 = (1, z−) ∨ (x0 = (γ, v) ∧ x0 ∗ y1 ∈ Q), or
m > 1 and x1 = (1, y1),. . . , xm = (1, ym) and

(i) x0 = q1 or x0 = (1, z−), or

(ii) x0 = (γ, v) and x0 ∗ y1 ∈ Q.

We write z =NF L(x0 ◦1 . . . ◦1 xm) ◦ ym+1 if z = L(x0 ◦1 . . . ◦1 xm) ◦ ym+1 and
L(x0 ◦1 . . . ◦1 xm) ◦ ym+1 is an expression in normal form.

When we introduced normal forms in the previous chapter, we did not yet have the
partial function ◦1 at hand. Thus, we considered (1, (γ, q0)) and (1, (α+1, q0)) as
normal forms. Now, we have (1, (γ, q0)) =NF (γ, q0)◦1 (1, q0) and (1, (α+1, q0)) =NF

q1 ◦1 (1, (α, q0)).

Each name x ∈ Q∗ has a unique normal form.

Lemma III.4.4. If deg(x) = m+1, then there are unique x0, . . . , xm+1 ∈ Q, so that
x =NF L(x0 ◦1 . . . ◦1 xm) ◦ ym+1.

Proof By induction on m. If deg(x) = 1, then either (x)0 = (α+1, q0) = q1 ◦ (α, q0),
(x)0 = (1+β, y−0 ), or (x)0 = (γ, y0). Therefore, if x = (x)0 ∗ z, then either x = q1 ◦ y1
for y1 := (α, q0) ∗ z, or x = (1, y−0 ) ◦ y1 for y1 := (β, y−0 ) ∗ z, or x = (γ, y0) ∗ y1 for
y1 := z. Further, these representations are unique.

If deg(x) = m+2 and x = (x)0 ∗ z, then (x)0 is of the form (α+1, y), and x =
(1, y) ◦ ym+2 for ym+2 := (α, y) ∗ z, where deg(y) = m+1. Note that y and ym+2

are uniquely determined. By I.H., we have y =NF L(x0 ◦1 x1 ◦1 . . . ◦1 xm) ◦ ym+1.
Then, (1, y) = (1, L(x0 ◦1 x1 ◦1 . . . ◦1 xm) ◦ ym+1) = L(x0 ◦1 . . . ◦1 xm) ◦1 (1, ym+1),
and x =NF (L(x0 ◦1 . . . ◦1 xm) ◦1 (1, ym+1)) ◦ ym+2. The conditions on x0 and x1 are
also immediate by the I.H. ✷

The following observations allow us to define short normal forms.

Lemma III.4.5. Let x =NF L(x0 ◦1 . . . ◦1 xm) ◦ ym+1 and k ≤ m.

(i) zk := L(x0 ◦1 . . . ◦1 xk) is in normal form and deg(zk) := k+1.

(ii) If 0 < n ≤ m, then x = L(x0 ◦1 . . . ◦1 xm−n) ◦n L(xm−n+1 ◦1 . . . ◦1 xm) ◦ ym+1.

Proof (i) By Definition III.4.3 and Lemma III.4.2 (iii). (ii) By Corollary III.1.11. ✷

Definition III.4.6. Let x =NF L(x0 ◦1 . . . ◦1 xm) ◦ ym+1 (so deg(x) = m+1). Then,
we write for each n < deg(x),

x =NF y ◦n z,

if y = L(x0 ◦1 . . .◦1 xm−n) and z = L(xm−n+1 ◦1 . . .◦1 xm)◦ym+1. We then call y ◦n z
the short normal form of x. Further, we call y a simple name of degree m−n+1.
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For the following discussion let x =NF L(x0 ◦1 . . . ◦1 xm) ◦ xm+1, so deg(x) = m+1.
Note that x =NF y ◦0 z is always available; then y = L(x0 ◦1 . . .◦1xm) and z = xm+1.
If deg(x) > 1, then we most often use the short normal form x =NF y ◦m−1 z; in this
case, y = L(x0◦1x1) is a simple name of degree two, and z = L(x2◦1 . . .◦1xm)◦ym+1.
Further, if x =NF y ◦m z, then y = x0 is a simple name of degree one.

Lemma III.4.7. If deg(x) = m+1 and n ≤ m, then there exists unique names
y, z ∈ Q, y simple with deg(y) = m−n+1, so that x =NF y ◦n z.

Proof By Definition of the short normal form and since the (long) normal form is
unique. ✷

The following helps to find short normal forms.

Lemma III.4.8. Let x ∈ Q∗.

(i) If x =NF y ◦n z, then x ◦ z′ =NF y ◦n (z ◦ z′).

(ii) If x =NF y ◦n z, then (1, x) =NF y ◦n+1 (1, z).

(iii) If (1, v) =NF y ◦n z, then (β+1, v) =NF y ◦n ((β, v) ◦ z).

Proof Let x =NF L(x0 ◦1 . . . ◦1 xm) ◦xm+1. Straightforward computation verifies the
claims. (i) Note that x◦z′ = L(x0◦1 . . .◦1xm)◦(xm+1◦z′) by Lemma III.1.8. (ii) We
have (1, x) =NF L(x0 ◦1 . . .◦1xm ◦1 (1, xm+1)), and (1, x) = (1, y ◦m z) = y ◦m+1 (1, z),
and z = L(xm−n+1◦1. . .◦1xm)◦xm+1. Thus, (1, z) = L(xm−n+1◦1. . .◦1xm◦1(1, xm+1)).
(iii) (β+1, v) = (1, v) ◦ (β, v), so the claim is by (i). ✷

Example III.4.9. Consider the name x = (1, (1, y)), where y := 〈(1, q1), (1, q21)〉.
We have Hy = It(it) ◦ It2(it) and Opy iff (p2p1)(p

2
2p1), and

(i) Hx = H+2
y [It, it] = (It4(It3) ◦ It

2
4(It3), It, it).

(ii) Opx iff Op+(1,y)p1 iff Op+2
y p2p1 iff Op+2

y p1 iff (p4p3)(p
2
4p1).

It is readily checked that the (long) normal form and the short normal form look as
follows:

x =NF L(q1 ◦1 q1 ◦1 (1, z) ◦1 q1) =NF q2 ◦2 (1, (1, z)), where z := (1, q21).

Next, we have a glance at what will be instances of the Lemmas III.2.9, III.6.11 and
III.6.10. These results state that the (long) normal form goes well with functionals
and operations, and the short normal form goes well with operations in the following
sense:

(i) Hx = (H+3
q1
, H+2

q1
, H+

(1,z), Hq1).
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(ii) Opx iff Op+3
q1

◦ Op+2
q1

◦ Op+(1,z) ◦ Opq1.

(iii) Opx iff Op+2
q2

◦ Op(1,(1,z)).

Let us verify these claims. First, observe that Hz = (It2, it) and H(1,z) = (It23, It, it),
Opz iff p22p1 and Op(1,z) iff p23p1. So H(1,(1,z)) = (It24, It3, It, it), and Op(1,(1,z)) iff p24p1.

(i) Indeed we have that

(H+3
q1
, H+2

q1
, H+

z , Hq1) = (It4, It3, (It
2
4, It3, It), it) =

(It4(It3), (It
2
4(It3), It), it) = (It4(It3) ◦ It

2
4(It3), It, it) = Hx.

(ii) Op+3
q1

◦ Op+2
q1

◦ Op+(1,z) ◦ Opq1 iff p4 ◦ p3 ◦ (p24p2) ◦ p1 iff (p4p3)(p
2
4p1) iff Opx.

(iii) Op+2
q2

◦ Op(1,(1,z)) iff (p4p3) ◦ (p24p1) iff Opx.

With functionals, the short normal form is not very helpful. Hx is not easily recon-
structed from H+2

q2
= It4(It3) and (It24, It3, It, it), as one would have to look inside the

type-2 functional (It24, It3, It, it).

We use the (unique) normal form of a name x ∈ Q∗ to define an approximation
x[α], and if deg(x) > 1 another approximation x(α). The definition is by recursion
on the level. For clarity, we list the case where deg(x) = 1 separately.

Definition III.4.10. Let x ∈ Q∗. If deg(x) = 1, then either

(i) x =NF q1 ◦ z and x[α] := z,

(ii) x =NF (γ, v) ◦ z and x[α] := (1+α, v) ◦ z if α < γ, and else x[α] := x,

(iii) x =NF (1, y−) ◦ z and x[α] := (1, y[α]) ◦ z.

And if deg(x) = m > 1, then we have one of the following cases.

(i) x =NF L(q1◦1 (1, y2)◦1 . . .◦1 (1, ym))◦z, x[α] := L((1+α, y2)◦1 . . .◦1 (1, ym))◦z,

and x(α) := x[α]+1,

(ii) x =NF L((γ, y1)◦1(1, y2) . . .◦1(1, ym))◦z, x[α] := L((γ, y1)[α]◦1. . .◦1(1, ym))◦z,

and x(α) := L((1+α,w) ◦1 (1, y3) ◦1 . . . ◦1 (1, ym)) ◦ z for w := ((γ, y1) ∗ y2)−.

(iii) x =NF L((1, y
−
1 )◦1(1, y2) . . .◦1(1, ym))◦z, x[α] := L((1, y1[α])◦1. . .◦1(1, ym))◦z,

and x(α) := L((1+α,w) ◦1 (1, y3) ◦1 . . . ◦1 (1, ym)) ◦ z for w := ((1, y−1 ) ∗ y2)
−.

Below, we list some first properties of these approximations.
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Lemma III.4.11. Let x ∈ Q∗. Then we have the following.

(i) If x =NF y ◦m z, then x[α] = y[α] ◦m z, and if further deg(y) > 1, then
x(α) = y(α) ◦m z.

(ii) If deg(x) = m+2, then deg(x(α)) = m+1, and if further o(x) = 1, then
x(α) = q1 ◦m x[α].

Proof (i) By Lemma III.4.5 (iii). (ii) The first part is immediate by Lemma III.4.5
(iii). For the second part note that if deg(x) = m+2 and o(x) = 1, then x =NF

(1, y+1) ◦m z, and x[α] = (1, y) ◦m z and x(α) = (q1 ◦ (1, y)) ◦m z =L.III.1.8= q1 ◦m
((1, y) ◦m z) = x[α]. ✷

When dealing with approximations, also the following simple properties are useful.

Lemma III.4.12. For each x ∈ Q∗ and all v ∈ Q∗ ∪ P ,

(i) (x+1)[α] = x, (1, x+1)[α] = (1+α, x) and (1, v+1)(α) = (1+α, v).

(ii) if x = (x)0 ∗ y, then x[α] := (x)0[α] ∗ y and if deg(x) > 1, x(α) := (x)0(α) ∗ y,

(iii) (β+1, v)[α] := (1, v)[α] ◦ (β, v), and (β+1, z)(α) := (1, z)(α) ◦ (β, y).

(iv) (1, v)[α] := (1, v[α]) if v 6= y+1 (for some y ∈ Q).

Proof (i)-(iii) is immediate by Definition III.4.6 and Lemma III.4.8. (iv) If v = z−,
this is by Definition III.4.10. Else, x = v ∈ Q. Say, x =NF y ◦ z. By Lemma III.4.11
(ii), x[α] =NF y[α] ◦ z. Then, (1, v) =NF y ◦1 (1, z), and (1, v)[α] = y[α] ◦1 (1, z) =
(1, y[α] ◦ z) = (1, x[α]) = (1, v[α]). ✷

If deg(x) = m+2, then x =NF y ◦m z for some simple name of degree two, and
x[α] = y[α] ◦m z and x(α) = y(α) ◦m z. Therefore, we observe the following.

Lemma III.4.13. Assume that x is a simple name with deg(x) = m+2. Then,

(i) If o(x) ∈ Lim(Ω), then deg(x(α)) = m+1, o(x(0)) = o(x), x(0)[α] = x[α],
o(x(γ)) = γ and x(γ)[α] = x(α) for α < γ. Further, x(0) ◦ x(α) = x(α+1).

(ii) If o(x) = 1, then deg(x[γ]) = 1, o(x[γ]) = γ and x[γ][α] = x[α] for α < γ.
Further, x[0] ◦ x[α] = x[α+1].

Also the following technical results are obtained completely analogously to the case
N0 = 2.

Lemma III.4.14. If deg(x) = 1 and o(x) = γ, then x = sup<{x[α] : α < γ}.

Lemma III.4.15. If x ∈ Q with deg(x) > 1, and q0 6= y ∈ QH is not a successor,
then
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(i) if o(x) = 1, then x = sup<{x[α] < x : α < Ω} = sup<{x(α) : α < Ω},

(ii) if o(x) = γ, then x(0) = sup<{x[α] : α < γ}, and x = sup<{x(α) : α < Ω},

(iii) y = sup<H{y[α] < y : α < Ω}.

Lemma III.4.16. Assume that x ∈ Q∗ and x ◦ y ∈ Q∗, and let

δ0 :=

{
δ : x = (γ, v) ∧ (y)0 = (δ, v),

0 : otherwise.

Then, for each α, x[α] ◦ y = (x ◦ y)[δ0+α], and o(x ◦ y) = δ0+o(x).

Lemma III.4.17. Assume that x ∈ Q∗ with deg(x) > 1. If x ◦ y ∈ Q∗, then we
have that x(α) ◦ y = (x ◦ y)(α) and o(x ◦ y) = o(x).

Finally, we extend the relations ❀ and ❀∗ to Q. This is straightforward.

Definition III.4.18. All all x, y ∈ Q, y ❀ x :⇔ (∃α < o(x))(y = x[α]). Further,
❀∗ is the transitive closure of ❀, and ❀∗

r is reflexive closure of ❀∗.

Lemma III.4.19.

(i) (Q,❀∗) is well-founded.

(ii) If q0 < x ∈ Q, then q0 ❀
∗ x.

(iii) If y ❀∗ x, then either y ❀ x or y ❀∗ x[α] ❀ x for some α < o(x).

(iv) If y ∗ z ∈ Q and x ∗ z ∈ Q, then y ❀∗ x⇒ y ∗ z ❀∗ x ∗ z.

(v) If 1 ≤ α < β, then (α, v) ❀∗ (β, v).

(vi) If y ❀∗ x, then (1, y) ❀∗ (1, x).

(vii) If α < β < o(x) = γ, then x[α] ❀∗ x[β].

(viii) If y ❀∗ x and z ❀∗ x, then y ❀∗ z ∨ y = z ∨ z ❀∗ y.

(ix) If y ◦m z ∈ Q and x ◦m z ∈ Q, then y ❀∗ x⇒ y ◦m z ❀∗ x ◦ z.

(x) qm ❀∗ qm+1, and if deg(x) = m+1, then qm+1 ❀
∗
r x (where qm+1 := (1, qm)),

(xi) If deg(x) > 1 and β < α, then x(β) ❀∗ x(α).

(xii) Wo❀∗(x).
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Proof We just show (ix) and (x), as the other claims are shown very similar to the
corresponding claims of Lemma II.2.16. (ix) By induction on m. The case m = 0 is
shown as the corresponding claims of Lemma II.2.16. To show the induction step,
assume y ❀∗ x, x◦m+1 z ∈ Q and that the claim holds for m. As x◦m+1 z is defined,
z = (1, z′) ∗ z′′. By I.H., y ◦m z′ ❀∗ x ◦m z′, thus (1, y ◦m z′) ❀∗ (1, x ◦m z′) by (vi),
and the claim follows by the case m = 0. (x) By I.H. on m, one readily obtains
that qm+1[0] = qm. If deg(x) = m+1, then x =NF L(x1 ◦1 . . . ◦1 xm+1) ◦ xm+2.
As qm+1 = L(q1 ◦1 . . . ◦1 q1), the claim is by (ix). (xi) By Lemma III.4.11 and
(ix), it suffices to show the claim for deg(x) = 2, which is done analogously to the
corresponding case of Lemma II.2.16. ✷

As in the previous chapter, the map ·H : Q → QH assigns to each x ∈ Q a name
xH ∈ QH , so that Opx corresponds to HxH .

Definition III.4.20. We define corr : Q→ {0, 1} and ·H : Q→ QH as follows.

(i) corr(x) := 1 if ∃y, n[x = y+n ∧ deg(y) = 1 ∧ o(y) ∈ Lim(Ω)]; else corr(x) := 0.

(ii) (q0)
H := q0, (α, y

−)H := (α, yH) and (α, y)H := (α, yH+corr(y)),

(iii) if k > 1, then 〈x1, . . . , xk〉
H := 〈xH1 , . . . , x

H
k 〉.

We also write H(x) for xH .

Note that corr(x) = corr(x+1) and that (x+1)H = xH+1. To avoid case distinctions,
we extend corr by letting corr(x−) := 1. Note that (α, v)H = (α, (v+corr(v))H):
(α, y−)H = (α, yH) = (α, (y−+1)H)), and further, (α, y)H = (α, (yH+corr(y)) =
(α, (y+corr(y))H).

Below, we verify the indeed ·H : Q→ QH .

Lemma III.4.21. For all n and all x ∈ Qn, x
H ∈ QH

n and x < y ⇒ xH ≤ yH .

Proof We show the claim by induction on n. If x, y ∈ Q1, then both claims are obvi-
ous. Now assume that both claims hold for n > 0, and let x = 〈(α1, v1), . . . , (αk, vk)〉
and y = 〈(β1, w1), . . . , (βl, wl)〉 with x, y ∈ Qn+1 and x < y. We show that
xH ∈ QH

n+1 and xH < yH. Note that if x− ∈ P , then by Lemma III.4.2, deg(x) = 1
and o(x) ∈ Lim(Ω), therefore (ω, q0) ≤ x and corr(x) = 1. Further, corr(x) =
corr(x+1). Hence, if v, w ∈ Qn ∪ Pn with v < w, then v+corr(v) < w+corr(w). As
v+corr(v), w+corr(w) ∈ Qn, the I.H. yields (v+corr(v))H < (w+corr(w))H. By the
initial remark, (αi, vi)

H = (αi, (vi+corr(vi))
H . Thus, xH ∈ QH

n+1. And as x < y,
either x is either an initial segment of y, and then xH is an initial segment of yH, or
there is a first position form the right where x and y differ, say (αi, vi) < (βj, wj).
By the above, also (αi, vi)

H < (βj, wj)
H , which is now the first position form the

right where xH and yH differ, thus xH <n+1 y
H. ✷
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Lemma III.4.22. (x ◦ y)H = xH ◦ yH.

Proof By definition, (x ∗ y)H = xH ∗ yH. As further, for z := v+corr(v), we have
((α, v) ◦ (β, v))H = (β+α, zH) = (α, zH) ◦ (β, zH) = (α, v)H ◦ (β, v)H, the claim
follows. ✷

Lemma III.4.23.

(i) deg(x) ≤ deg(xH),

(ii) if deg(x) = 1, then o(x) = o(xH),

(iii) if deg(x) > 1, then o(xH) = 1.

Proof All claims are shown by induction on lv(x). (i) As xH = q0 implies x = q0,
the claim holds if deg(x) ≤ 1. And if deg(x) > 1, we have that x = (α+1, y) ∗ z,
and so deg(x) = deg(y)+1 and deg(xH) = deg(yH+corr(y))+1. If deg(y) = 1, then
the claim holds as deg(yH+corr(y)) ≥ 1, and if deg(y) > 1, then corr(y) = 0, and
deg(y) ≤ deg(yH) by I.H., so deg(x) ≤ deg(xH).
(ii) If deg(x) = 1, x is of the form y0 := (1, q0)◦z or y1 := (γ, v)◦z or y2 := (1, z−)◦z′.
Using Lemma III.4.22, we see that o(y0) = o(yH0 ) = 1 and o(y1) = o(yH1 ) = γ. With
y2, note that z ∈ P . By Lemma III.4.2, deg(z) = 1, so o(y2) = o(z) =IH o(zH) =
o(yH2 ).
(iii) If deg(x) = 2, it suffices, by the above Lemma, to check the claim for simple
names of degree two, names of the form (1, y+1), (1, (γ, v)) and (1, (β+1, y−)), which
is straightforward. And if deg(x) > 2, then x is of the form (1, y) ◦ z for deg(y) ≥ 2,
then the claim is by I.H. ✷

Finally, we lift Lemma II.2.19.

Lemma III.4.24. Let x ∈ Q.

(i) If deg(x) = 1 and o(x) = γ, then xH [α] ❀∗
r (x[α])

H ❀∗
r x

H [α+1].

(ii) If deg(x) = m+2, then xH [α] ❀∗
r (x(α))

H ❀∗
r x

H [α+1].

Proof Again, we just show the first claim of (ii). Let x =NF y ◦m z. Then y
is a simple name of degree two, and by Lemma III.4.22 xH [α] = yH[α] ◦m z and
H(x(α)) = H(y(α)) ◦m zH . By Lemma III.4.19 (ix), it is thus enough to check
the claim for simple names of degree two. To do so, recall for each y, (y+1)H =
yH+1 and corr(y) = corr(y) + 1. Hence, (1, y+1)H [α] = (1, yH+corr(y)+1)[α] =
(1+α, yH+corr(y)) = (1+α, y)H = H(x[α]), and further, for for y = (γ, v) and y =
(β+1, z−), corr(y) = 1, y− ∈ P , (1+α, yH) = (1+α, y−)H , and (1, y)(α) = (1α, y−).
The verification of the claim is now easily done.
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(i) (1, y+1)H [α] = H((1, y+1)[α]) ❀∗ H((1, y+1)[α]+1) = H((1, y+1)(α)).

(ii) If y = (γ, v) or y = (β+1, z−), then (1, y)H[α] = (1, yH+1)[α] = (1+α, yH) =
(1+α, y−)H = H((1, y)(α)).

✷

III.5 Properties of functionals (Hx : x ∈ QH)

In this section, we show that the properties of (Hx : x ∈ QH
2 ) shown in Section II.3

extend to the general case. Lemma III.5.7 (as well as Definition III.5.5 and Lemma
III.5.6) is only used when we build a notation system (cf. Chapter IV). Again, it is
assumed that f ∈ Ω(0), and for x ∈ QH , fx = Hx(f). Also recall that we identify a
normal function with its range and that f ′ = {α : f(α) = α}.

Lemma III.5.1. If y ❀∗
r x ∈ QH , then we have for each n, H+n

x ⊆ H+n
y .

Proof By induction along ❀∗. If x = y, the claim holds trivially, hence assume that
y ❀∗ x. We do a case distinction on the form of x.

(i) y ❀∗ x =NF (1, x′)◦z. If x′ = q0, then y ❀
∗
r z and by I.H. H+n

z ⊆ H+n
y . Thus,

H+n
x = Itn+1 ◦H+n

z ⊆ Hz ⊆ Hy. If x
′ = q1, then y ❀∗

r (1, q0) ∗ z = x[0]. Using
the I.H. and that Itn+2(Itn+1) ⊆ Itn+1, H

+n
x ⊆ H+n

x[0] ⊆ H+n
y . If x′ 6= q0 and

x′ 6= q1, then there is an α < o(x), so that y ❀∗
r x[α] = (1, x′[α]) ∗ z. By (i),

H
+(n+1)
x′ ⊆ H

+(n+1)
x′[α] , and so H+n

x = H
+(n+1)
x′ (Itn+1) ◦ H+n

z ⊆ H
+(n+1)
x′[α] (Itn+1) ◦

H+n
z = H+n

x[α] ⊆IH H+n
y .

(ii) y ❀∗ x =NF (γ, x′)∗z. There is an α < o(x), so that y ❀∗
r x[α] = (1+α, x′)◦z.

As H
+(n+1)
x′ (Itn+1) ∈ Ω(1), (H

+(n+1)
x′ (Itn+1))

γ ⊆ (H
+(n+1)
x′ (Itn+1))

1+α, and so

H+n
x = (H

+(n+1)
x′ (Itn+1))

γ ◦H+n
z ⊆ (H

+(n+1)
x′ (Itn+1))

1+α ◦H+n
z ⊆IH H+n

y .

✷

Lemma III.5.2. If x ∈ QH , deg(x) > 1 and o(x) = 1, then fx(α) = fx[1+α](0).

Proof Assume that deg(x) = m+2. As x ∈ QH and o(x) = 1, we have that
x =NF L((1, q0) ◦1 (1, x1) ◦1 . . . ◦1 (1, xm+1)) ◦ xm+2. Using Corollary III.1.11, we
see that x = (1, x1+1) ◦ z for z := L((1, x2) ◦1 . . . ◦1 (1, xm+1)) ◦ xm+2, so x[1+α] =
(2+α, x1) ◦ z = ((2+α, x1) ◦1 . . . ◦1 (1, xm+1)) ◦ xm+2. By Lemma III.2.9,

fx(α) = ((Itm+2, H
+m
(1,x1)

, H
+(m−1)
(1,x2)

, . . . , H+0
(1,xm+1)

) ◦Hxm+2)[f, α]

= (((H+m
(1,x1)

)2+α, H
+(m−1)
(1,x2)

, . . . , H+0
(1,xm+1)

) ◦Hxm+2)[f, 0]

= ((H+m
(2+α,x1)

, H
+(m−1)
(1,x2)

, . . . , H+0
(1,xm+1)

) ◦Hxm+2)[f, 0] = fx[1+α](0).

97



✷

Lemma III.5.3. For each x ∈ QH with o(x) = γ, we have

(i) if ξ < γ, then fx[ξ+1] ⊆ fx[ξ]+1,

(ii) if ξ < γ, then fx[ξ+2] ⊆ f ′
x[ξ],

(iii) fx =
⋂
ξ<γ fx[ξ] =

⋂
ξ<γ f

′
x[ξ].

Proof (i) x = L((γ, x0)◦1 . . .◦1 xm)◦ z. So x[ξ+1] = L(q1 ◦ (1+ξ, x0)◦1 . . .◦1 xm)◦ z.
Thus, Hx = Itm+2 ◦H(1+ξ,x0)[. . .] ⊆ it ◦H(1+ξ,x0)[. . .] = Hx[ξ]+1.

(ii) By (i), fx[ξ+1] ⊆ it(fx[ξ]). Since sh is monotone (cf. Lemma I.3.17), sh(fx[ξ+1]) ⊆
(sh ◦ it)(fx[ξ]) = f ′

x[ξ]. And as it ⊆ sh (cf. Lemma I.3.15), fx[ξ+2] ⊆ sh(fx[ξ+1]). (iii) If

o(x) = γ, then x =NF L((γ, y) ◦1 (1, y1) ◦1 . . . ◦1 (1, ym)) ◦ xm+1. So the first equality
follows by Lemma III.2.9 and the definition of iteration of functionals. The second
follows using (ii) and that f ′ ⊆ f (so fx[α+2] ⊆ f ′

x[α] ⊆ fx[α]). ✷

Lemma III.5.4. For each x ∈ QH and each y ∈ QH with o(y) = δ0+γ, we have

(i) fx(γ) = sup{fx(ξ) : ξ < γ},

(ii) fy(0) = sup{s0(ξ) : ξ < γ} and fy(α+1) = sup{sfy(α)+1(ξ) : ξ < γ}, where
sβ(0) = β+1, sβ(ξ+1) := fy[δ0+ξ](sβ(ξ)) and sβ(γ

′) := supξ<γ′sβ(ξ).

Proof Completely analogous to the proof of Lemma II.3.5. ✷

The ordinals that occur in the name x are called the components of x, and are
defined recursively as follows. Further, |x| is the largest component of x.

Definition III.5.5. k(q0) := ∅, if x = 〈(α, y)〉, then k(x) := {α} ∪ k(y), and
k(〈x1, . . . , xn〉) = k(x1) ∪ . . . ∪ k(xn). And |x| := max(k(x)), where max(∅) := −1
(where −1 is below every ordinal, and (−1)+1 := 0).

The following is readily observed.

Lemma III.5.6. For all x ∈ QH , 0 < α, and each f ∈ Ω(0), fx(α) > fx(0) ≥ |x|.

For later reference, we also note the following.

Lemma III.5.7. If x ≤H y and |x| < γ ∈ f ′
y, then γ ∈ f ′

x.

Proof Fix x and assume that x ≤H y and |x| < γ ∈ f ′
y. We show the claim by

induction on y w.r.t. the ordering (QH , <H). If x = y, the claim holds trivially,
and if x <H y, we do a case distinction on the form of y. Thereby, we use that for
z ∈ QH and ξ < γ, z[ξ] = (z[γ])[ξ].
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(i) y = z+1. As x <H y = z+1, we have x ≤H z. Further, with fz+1 = it(fz) ⊆
fz, also f

′
z+1 ⊆ f ′

z by Lemma I.3.17. Therefore, γ ∈ f ′
y ⊆ f ′

z. By I.H., the
claim holds for z, thus γ ∈ f ′

x.

(ii) deg(y) > 1 and o(y) = 1. As x <H y and |x| < γ, there is a β < γ so that
x <H y[β] (cf. Lemma III.4.15). Since γ = fy(γ) = fy[γ](0) ∈

⋂
ξ<γ fy[ξ], we

obtain γ ∈ fy[β+2] ⊆ f ′
y[β] by Lemma III.5.3 (ii). Applying the by I.H to y[β+2]

yields γ ∈ f ′
x.

(iii) deg(y) = m+1 and o(y) = γ′. Then y = z[γ′] for some z, and γ ∈ f ′
y ⊆ fz[γ′] =⋂

ξ<γ′ fz[ξ] =
⋂
ξ<γ′ f

′
z[ξ] by Lemma III.5.3 (iii). Further, by Lemma III.4.15,

there is a β < γ′ so that x <H z[β]. Applying the I.H. to fz[β] yields γ ∈ f ′
x.

✷

“About equal”

The following interlude mentions some properties of the functionals H+m
x that we

only use for motivational purposes. For instance, we treat 1+q2 as q2, although
one could regard 1+q2 as a name of It(it) ◦ it which is different from It(it), since
(It(it) ◦ it)(f, n) = it2+n+1(f, 0) = (It(it)(f, n+1). However, It(it) ◦ it and It(it) are
“about equal” in the following sense.

Definition III.5.8. Let m ∈ N. For each f ∈ Ω(0), (m+f)(α) := f(m+α), and if

[F, ~F, f ] ∈ Ω≤(n+1), then (m+F )[~F, f, α] := F [~F, f,m+α].

Now, we say that F,G ∈ Ω(n+1) are “about equal” if there is an m ∈ N so that
F ≤ G ≤ m+F or G ≤ F ≤ n+G.

Note that “about equal” is an equivalence relation.

Next, we show that if deg(x) > 1, then Hx and (Hx ◦ it) are “about equal”. We
start with two auxiliary claims. Recall that x[α] ❀∗

r x and thus fx[α] ≤ fx.

Lemma III.5.9. For each x ∈ QH , H+m
x is ≤-monotone. That is if F,G ∈ Ω(m)

with F ≤ G, then H+m
x (F ) ≤ H+m

x (G).

Proof An easy induction on the build up of H+m
x . ✷

Lemma III.5.10. For each x ∈ QH , Hx ◦ it ≤ Hx+1.

Proof By induction on ❀∗. The claim is trivial for x = q0. If x = y+1, then
Hy+1 ◦ it = (it ◦Hy) ◦ it = it ◦ (Hy ◦ it) ≤IH it ◦Hy+1. If deg(x) = 1 and o(x) = γ,
then Hx ◦ it =

⋂
α<γ Hx[α] ◦ it =

⋂
α<γ Hx[α] as Hx[α] ⊇ Hx[α] ◦ it ⊇ Hx[α] ◦Hx[α]. And

if deg(x) > 1, then (Hx ◦ it)(f, α) = (Hx[1+α] ◦ it)(f, 0) ≤IH (it ◦ Hx[1+α])(f, 0) ≤
(it ◦Hx)(f, α). ✷
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Lemma III.5.11. If deg(x) > 1, then Hx ◦ it ≤ 1+Hx.

Proof Using Lemmas III.5.10,III.5.9 and III.5.2, we readily see that (Hx ◦ it, f, α) =
(Hx[1+α] ◦ it, f, 0) ≤ (it ◦ Hx[1+α], f, 0) = (Hx[1+α]+1, f, 0) ≤ (H[x[1+α+1], f, 0) =
(1+Hx, f, α). ✷

Lemma III.5.12. If (ω, q0) ≤ x, then Hx and Hx ◦ it are “about equal”.

Proof By the above lemma and since withH(γ,x)◦it = H(γ,x), also H
′◦H(γ,x)◦Hz◦it =

H ′ ◦H(γ,x) ◦Hz. ✷

Lemma III.5.13. Let z := (x ◦1 (1, y)) ∈ QH . Then, H+m
zH

and H
+(m+1)
x∗ (H+m

(1,y)H
)

are “about equal”, where x∗ := x+corr(x) (cf. Definition III.4.20).

Proof Let z = x ◦1 (1, y) = (1, x ◦ y). We consider the following cases. If x = (n, q0),

then corr(x) = 0 and corr(y) = corr(x ◦ y), so H+m
zH

= H
+(m+1)
x∗ (H+m

(1,y)H
). And if

x = (γ, x′) ∗ z+n or if deg(x) > 1, then corr(x) = corr(x ◦ y), so depending on

corr(y), H+m
zH

is either H+(m+1)x∗(H
+m
(1,y)H

) or (H
+(m+1)
x∗ ◦ Itm+1)(H

+m
(1,y)H

). In both
cases, the claim follows by Lemma III.5.12. ✷

Corollary III.5.14. Assume that z = L(x ◦1 (1, y0) ◦1 . . . ◦1 (1, ym)). Then we have

that H+n
zH

and (H
(m+n+1)
x∗ , H

(m+n)

(1,y0)H
, . . . , H+n

(1,ym)H
) are “about equal”.

Proof By induction on m. For m = 0 the claim is by Lemma III.5.13. Now we
assume that the claim holds for m and we prove it for m+1. Thereto, we let
zm := L(x ◦1 (1, y0) ◦1 . . . , ◦1 . . . ◦1 (1, ym)), so that z = (zm ◦1 (1, ym+1)). By Lemma

III.5.13, and since deg(zm) > 1 and so z∗m = zHm , H
+n
zH

and H
+(n+1)

zHm
(H+n

(1,y)H
) are

“about equal”. By I.H.,

H
+(n+1)

zHm
and (H

(m+n+2)
x∗ , H

(m+n+1)

(1,y0)H
, . . . , H

+(n+1)

(1,ym)H
)

are “about equal”. Applying both sides to H+n
(1,ym+1)H

yields the claim. ✷

The point of this corollary is the following. For x ∈ Q∗
1, Prv2(x) states that

Op(1,y) proves H(1,y)H =⇒ Opx ◦ Op(1,y) proves (Hx∗, H(1,y)H ).

We will lift this definition with the idea that “Op+(m+1)
x proves H

+(m+1)
x ” expresses

that if z = L(x ◦1 (1, y0) ◦1 . . . ◦1 (1, ym)) and for each i ≤ m, “Op
+(m−i)
(1,yi)

proves

H
+(m−i)
(1,yi)

”, then “Op+(m+1)
x ◦ Op+m(1,y0)

. . . ◦ Op+0
(1,ym) proves (H

+(m+1)
x , . . . , H+0

(1,ym))”.

Since Op+(m+1)
x ◦Op+m(1,y0)

. . .◦Op+0
(1,ym) iff Opz, and we also have that Opz proves HzH ,

HzH and (H
+(m+1)
x , . . . , H+0

(1,ym)) should be “about equal”.
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III.6 The operations (Opx : x ∈ Q∗
N0
)

As in the case N0 = 2, it is henceforth assumed that we have primitive recursive
relations that are formalized versions of (Q,<), ❀, ❀∗, and primitive recursive
functions formalizing deg(x), ◦ and ·H . To emphasis that we now work within a
formal theory, we write α✁ β for α < β. The other function- and relation symbols
are overloaded.

III.6.1 The proper definition of (Opx : x ∈ Q∗
N0
)

We extend the definition of the L2(P )-formula ϕ(u) given in Definition II.4.1 in an
obvious way, and show that the resulting formula indeed represents the operations
Opx. However, since there is no L2(P)-formula ϑ(u) so that for all n, Opϑn+1 ⇔ pn+1,
all the following is relative to some fixed N0 ∈ N, as we use the L2(P)-formula

ϑN0(u) = u ≤ N0 ∧
∧

n<N0

(u = n+1 → ϕpn+1)

to represent for each 1 ≤ n ≤ N0, the basic operation pn by ϕN0(n), where ϕpn+1 is
as fixed in Definition I.2.15. Consequently, we can only represent operations with
names from Q∗

N0
.

Now, we supplement the proper definition of Op+nx (x ∈ Q∗
N0−n

), which supersedes

the provisional Definition II.1.12. Again, ϕf
+,❀∗↾Q1,❀↾Q1,ϑ(u) is the formula defined

in the Appendix (Theorem A.1.2 and Definition A.1.11).

Definition III.6.1. For each n < N0, we let f+n(y, x) := deg(x)+n, and

ϕ+n(u) := ϕf
+n,❀∗↾QN0−n,❀↾QN0−n,ϑ

N0
(u).

Then, Op+nx (T̆) := Opϕ
+n

x (T̆), Opx(T̆) := Opϕ
+0

x (T̆) and Op+x (T̆) := Opϕ
+1

x (T̆). Fur-
ther, we define T̆+n

x := (x = q0 ∧ T̆) ∨ (x 6= q0 ∧ Op+nx (T̆).

The following is again essentially an instance of the Representation Theorem. The
addition of n < N0 in (i) of the lemma below is by the definition of ϑN0(u), as
0 ❀∗ x ∧N0 ≤ n ∧ ϑN0

T̆↾U
(deg(x)+n) ↔ ⊥. Also note that if x ∈ Qn, then Wo❀∗(x)

iff Wo❀∗↾Qn(x).

Lemma III.6.2. The map T̆ 7→ Op+nx (T̆) is an operation that satisfies the following
properties (provable in Tǫ).

(i) Op+nx (T̆) → n < N0 ∧ 0 ❀∗ x ∧ x ∈ Q∗
N0−n

∧Wo❀∗(x),

(ii) Op+nq1 ⇔ pn+1,
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(iii) if q1 ❀
∗ x and deg(x) = m+1, then Op+nx ⇔ (∀α✁ o(x))(pm+n+1 ◦ Op

+n
x[α]).

From a technical point of view, we only need the operations Op+nx for x ∈ Q∗
N0−n

.
However, in order to compare the proper with the provisional definition, we also
supplement a proper definition of Op

+(m,n)
y− for each y− ∈ PN0−n.

Definition III.6.3. For each 0 ≤ m < n and y− ∈ PN0−n,

Op
+(m,n)

y− := (∀α✁ γ)pm+1Op
+n
y[α].

Since pm+1(T̆) is Π
1
m+n+2, the following is readily observed.

Lemma III.6.4. Let y− ∈ P and x ∈ Q∗
N0

with deg(x) = m+1. Then,

(i) for all 0 ≤ k < n, Op
+(k,n)
y− (T̆) is Π1

k+2,

(ii) for all n, Op+nx (T̆) is Π1
m+n+2.

In the sequel, we drop the subscript N0. It is assumed to be big enough.

III.6.2 Properties of (Opx : x ∈ Q∗)

The next couple of lemmas are all shown using Theorem I.4.2. For all these proofs,
we let A(x) express the claim, and we proceed exactly as described in Subsection
II.4.2 (cf. page 55).

Lemma III.6.5. The following is provable in Tǫ. For all x, y ∈ Q,

(i) if y ❀∗ x, then T̆+n
x → pn+1T̆

+n
y , in particular, if x ∈ Q∗, then Op+nx ⇒ pn+1.

(ii) if x ◦ y ∈ Q∗, then T+n
x◦y ↔ Op+nx (T̆+n

y ).

(iii) if x ∈ Q∗, Opn(1,x) ⇔ Opn+1
x pn+1.

Proof (i) Let A(x) := y ❀∗ x ∈ Q∗∧T̆+n
x → pn+1T̆

+n
y . If x = y+1, then x[0] = y, and

the claim is by definition of T̆+n
x . Otherwise, there is an α✁o(x) so that y = x[α] or

y ❀∗ x[α]. In the first case, T̆+n
x → pn+1T̆

+n
y by definition of T̆+n

x and since, in any

case, pdeg(x)+n ⇒ pn+1. And if x[α] ❀∗ x, then the I.H. yields for each X , T̆+n
x[α]↾X →

p1T̆
+n
y ↾X . Since pn+1 is an operation, we obtain pn+1T̆

+n
x[α] → p2n+1T̆

+n
y . As T̆+n

x iff

(∀ξ ✁ o(x))pdeg(x)+nT̆
+n
x[ξ] and pdeg(x)+n ⇒ pn+1, we have also T̆+n

x → pn+1T̆
+n
x[α]. By

Lemma I.2.12, p2n+1T̆
+n
y → pn+1T̆

+n
y , hence T̆+n

x → pn+1T̆
+n
y follows.

(ii) Let A(x) := q0 6= x ∧ x ◦ y ∈ Q∗ → [T̆+n
x◦y ↔ Op+nx (T̆+n

y )]. If x or y is q0,
then the claim is trivial, so assume otherwise. Next, we let m so that m+1 =
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deg(x) = deg(x ◦ y), and δ0 so that o(x ◦ y) = δ0+o(x) and thus by Lemma III.4.16,
(∀α ✁ o(x))((x ◦ y)[α] = x[α] ◦ y). Then, T̆+n

x◦y ↔ (∀α ✁ o(x ◦ y))pm+1(T̆
+n
(x◦y)[α]).

Hence, T̆+n
x◦y → (∀α ✁ o(x))pm+1(T̆x[α]◦y). For each α ✁ o(x) and each X , the I.H.

yields Op+nx[α]◦y(T̆
+n)↾X ↔ Op+nx[α](T̆

+n
y )↾X . Since pm+1 is an operation, we obtain

(pm+1 ◦ Op+nx[α]◦y)(T̆
+n) iff (pm+1 ◦ Op+nx[α])(T̆

+n
y ). Now T̆+n

x◦y → Op+nx (T̆+n
y ) readily

follows. For the converse direction, observe that (∀ξ ✁ γ)pm+1Op
+n
x[α](T̆

+n
y ) yields

(∀α✁ γ)pm+1(T̆
+n
(x◦y)[δ0+α]

). Using (ii) yields (∀ξ ✁ δ0+γ)pm+1(T̆
+n
(x◦y)[δ0+α]

).

(iii) Similar, using that deg(1, x) = deg(x)+1 and o(1, x) = o(x). ✷

The next Lemma generalizes Lemma I.2.14.

Lemma III.6.6. For each open Π1
n+2-sentence T̆′,

Tǫ ⊢ x ∈ Q∗ ∧ Op+(n+1)
x (T̆) ∧ T̆′ → Op+(n+1)

x (T̆′).

Proof Let T̆′ be Π1
n+2, and A(x) := x ∈ Q∗ ∧ Op+(n+1)

x (T̆) ∧ T̆′ → Op+(n+1)
x (T̆′).

Trivially, we have A(q0), and if x = q1, then by Lemma I.2.14, pn+2(T̆) ∧ T̆′ yields
pn+2(T̆

′). Next, let q1 6= x ∈ Q∗ with deg(x) = m+1, and assume Op+(n+1)
x (T̆) ∧ T̆′

and (∀y ❀∗ x)a(y). By definition, Op+(n+1)
x (T̆) iff (∀α ✁ o(x))pm+n+2Op

+(n+1)
x[α] (T̆).

Hence for each α✁ o(x), pm+n+2(Op
+(n+1)
x[α] (T̆))∧ T̆′, thus pm+n+2(Op

+(n+1)
x[α] (T̆)∧ T̆′),

again by Lemma I.2.14. Further, for α✁ o(x), x[α] ❀∗ x, thus a(x[α]), that is,

∀X [(Op
+(n+1)
x[α] (T̆) ∧ T̆′)↾X → Op

+(n+1)
x[α] (T̆′)↾X ].

We obtain pm+n+2(Op
+(n+1)
x[α] (T̆) ∧ T̆′) → pm+n+2(Op

+(n+1)
x[α] (T̆′)) for each α ✁ o(x),

since pm+n+2 is an operation. Hence, Op+nx (T̆′). Thus, we have A(x). ✷

Lemma III.6.7. Let (1, y) ∈ Q be a simple name of degree m+2. Then,

(i) Op+(n+1)
y ⇒ Op+n(1,y).

(ii) Op
+(n+1)
(1,y) ⇔ Op+n(1,y)pn+1.

Proof (i) Op+(n+1)
y (T̆) implies pn+1(T̆) which is Π1

n+2, thus by the above lemma,

Op+(n+1)
y (T̆) implies Op+ny pn+1(T̆), or in other words, Op+(n+1)

y ⇒ Op+n(1,y). (ii)

Op
+(n+1)
(1,y) ⇔ Op+ny pn+1, so (i) implies Op+n(1,y)pn+1. For the converse direction, note

that Op+n(1,y)pn+1 ⇔ Op+(n+1)
y p2n+1. As pn+2 ⇒ pn+1 by Lemma I.2.12, we further

obtain that Op+(n+1)
y p2n+1 ⇒ Op+(n+1)

y pn+1, and the claim is by (i). ✷
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Corollary III.6.8. For each open Π1
n+2-sentence T̆′,

Tǫ ⊢ y ∈ Q∗ ∧ Op+n(1,y)(T̆) ∧ T̆′ → Op+n(1,y)(T̆
′).

Proof By Lemma III.6.5 (iii), Op+n(1,y) ⇔ Op+(n+1)
y pn+1. Hence, Op

+n
(1,y)(T̆) ∧ T̆′ yields

Op+(n+1)
y (pn+1(T̆))∧ T̆′, which by Lemma III.6.6 implies Op+(n+1)

y (T̆′), which in turn

yields Op+n(1,y)(T̆
′) by Lemma III.6.7. ✷

The proofs of the next few results for a change, do not make (direct) use of Theorem
I.4.2.

Lemma III.6.9. The following is provable in Tǫ.

(i) if x− ∈ P , then Op(1,x) ⇒ Op(1,x−).

(ii) Op+nx◦1(1,y) ⇔ Op+(n+1)
x ◦ Op+n(1,y).

Proof (i) Assume that deg(x) = m+1. Since x− ∈ P , we have o(x) = γ, in particular,
x is not of the form y+1, and therefore, (1, x)[α] = (1, x−)[α]. Hence Op(1,x) ⇔
(∀α ✁ o(x))pm+2Op(1,x)[α] ⇒ (∀α ✁ o(x))pm+1Op(1,x−)[α] ⇔ Op(1,x−). (ii) If y = q0,

then Op+n(x◦1(1,q0))
⇔ Op+n(1,x) ⇔ Op+(n+1)

x pn+1 ⇔ Op+(n+1)
x ◦ Op+n(1,q0)

, and if q0 ❀∗ y,

then we have Op+n(1,x◦y) ⇔ Op+(n+1)
x◦y pn+1 ⇔ Op+(n+1)

x ◦Op+(n+1)
y p1 ⇔ Op+(n+1)

x ◦Op+n(1,y).
✷

Below, we present internal variants of Lemma III.3.9 (ii) and Corollary III.3.11.
With the above properties of Opx at hand, the proofs are almost literally the same.

Lemma III.6.10. If q0 6= x and x ◦m y ∈ Q, then Op+nx◦my ⇔ Op+(m+n)
x ◦ Op+ny if

y 6= q0, and Op+nx◦my ⇔ Op+(m+n)
x , otherwise.

Lemma III.6.11. Tǫ proves: if x = L(y0 ◦1 . . . ◦1 ym) ◦ z ∈ Q∗, then,

Op+nx ⇔ (Op+(n+m)
y0

◦ Op+(n+m−1)
y1

◦ . . . ◦ Op+nym ) ◦ Op
+n
z .

Our next goal is to lift Lemma II.4.9 to the general case.

Lemma III.6.12. Assume that x is a simple name of degree two. Then,

(i) Op+nx ⇒ Op+nx(0),

(ii) Op+nx(0) ◦ Op
+n
x(α) ⇒ Op+nx(α+1),

(iii) if o(x) = 1, then Op+nx[γ] ⇔ (∀α✁ γ)Op+nx(α).

(iv) if o(x) ∈ Lim(Ω), then Op+nx(γ) ⇔ (∀α✁ γ)Op+nx(α).
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Proof Almost literally as the corresponding proof of Lemma II.4.8, now using that
(∀α✁o(x))Op+nx iff pn+2Op

+n
x[α] (cf. Lemma III.6.2 (iii)), and Lemmas III.6.5, III.4.13

instead of II.4.4, II.2.14. ✷

Recall that if deg(x) > 1 and β ✁ α, then by Lemma III.4.19 (ix), x(β) ❀∗ x(α),
and so by Lemma III.6.5 (i), Op+nx(α) ⇒ Op+nx(β).

Lemma III.6.13. Tǫ ⊢ deg(x) > 1 ∧ T̆x → Prog
✁
({α : T̆x(α)}).

Proof This time, assume that deg(x) = m+2, and x =NF (1, y) ◦m z, so Opx iff
Op+m(1,y) ◦Opz. Now the claim is shown completely analogously to Lemma II.4.9 using
the above Lemma, and Corollary III.6.8 and Lemma III.4.13 instead of Corollary
II.4.7 and Lemma II.2.14. ✷

III.6.3 The proper and provisional Definition of Opx agree

This subsection is devoted to the proof that the proper Definition III.6.1 agrees
with the provisional Definition III.3.4. Again, from a technical point of view, none
of these results are used in the sequel.

Lemma III.6.14. The following is provable in Tǫ.

(i) For all x ∈ Q∗, Op+nx pn+1 ⇒ Op+nx .

(ii) If q2 6= x ∈ Q∗, then Op+nx ⇒ Op+nx pn+1.

This leads for instance to the following results which correspond to Lemmas II.4.11,
II.4.12, and Corollaries II.4.13 and II.4.14.

Lemma III.6.15. Tǫ proves: for all x ∈ Q∗,

(i) Op+nx ◦ Op+nx ⇒ Op+nx ,

(ii) if 0✁ β ✁ α, then (Op+nx )α ⇒ (Op+nx )β, and (Op+nx )γ ⇔ (∀ξ ✁ γ)(Op+nx )1+ξ.

The following results corresponds to Lemma II.4.15 and II.4.16. The proofs are
omitted as they are easily lifted from the case n = 2 to the general case.

Lemma III.6.16. Tǫ proves: if q1 6= x ∈ Q∗ and 0✁ α, then

(i) pn+1(Op
+n
x )α ⇒ (pn+1Op

+n
x )α,

(ii) (pn+1Op
+n
x )α+1 ⇒ pn+1(Op

+n
x )α.

Lemma III.6.17. Tǫ proves: if x ∈ Q∗, then Op+(n+1)
x pn+1 ⇔ Op+(n+1)

x p2n+1.
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Lemma III.6.18. Tǫ proves: for all x ∈ Q∗, Op+(n+1)
x pn+1 ⇔ Op+n(1,x).

Now we prove the aforementioned equivalence the proper and the provisional defi-
nition of Op+nx . As in the case n = 2, most work is done in the proof of the next
two lemmas.

Lemma III.6.19. For each n ∈ N, Tǫ proves the following: if x ∈ Q∗, then

Op+n(1,x) ◦ (pn+1Op
+n
(1,x))

γ ⇔ (Op+n(1,x))
γ .

Proof Recall that (Op+nx )γ ⇔ (∀ξ ✁ γ)(Op+nx )1+ξ (cf. Lemma III.6.15 (ii)). To
show the ⇒-direction, fix an η ✄ 0. Since Op+n(1,x) iff Op+n(1,x)pn+1 (cf. Lemma

III.6.14), and (pn+1Op
+n
(1,x))

γ ⇒ (pn+1Op
+n
(1,x))

η+1 ⇒L.III.6.16 pn+1(Op
+n
(1,x))

η, we have

that Op+n(1,x) ◦ (pn+1Op
+n
(1,x))

γ ⇒ (Op+n(1,x))
η+1 ⇒L.III.6.15 (Op+n(1,x))

η. For the converse

direction observe that (Op+n(1,x))
γ ⇒ (∀ξ ✁ γ)(Op+n(1,x))

ξ+1 ⇒ (∀ξ✁ γ)pn+1(Op
+n
(1,x))

ξ ⇒

(∀ξ ✁ γ)(pn+1Op
+n
(1,x))

ξ. Let C := (∀ξ ✁ γ)(pn+1Op
+n
(1,x))

ξ(T̆), which is Π1
n+2, and note

that (Op+n(1,x))
γ(T̆) implies Op+(n+1)

x (pn+1(T̆))∧C. Hence Lemma III.6.6 further yields

Op+(n+1)
x (C), therefore also Op+(n+1)

x pn+1(C), that is, Op
+n
(1,x) ◦ (pn+1Op

+n
(1,x))

γ(T̆). ✷

Lemma III.6.20. For each n ∈ N, Tǫ proves the following: if x ∈ Q∗, then

(i) Op+n(m+1,x) ⇔ (Op+n(1,x))
m+1, and Op+n(γ+m+1,x) ⇔ (Op+n(1,x))

γ+m.

(ii) Op+n(γ,x) ⇔ (pn+1Op
+n
(1,x))

γ.

Proof Using Theorem I.4.2. We let A(α) so that A(m+1) and A(γ+m+1) express
(i), and A(γ) expresses (ii). First, we show A(γ+1), i.e., Op+n(γ,x) ⇔ (Op+n(1,x))

γ+1.

By I.H. we have Op+n(γ,x)(T̆)↾X ⇔ (pn+1Op
+n
(1,x))

γ(T̆)↾X . As Op+n(1,x) is an operation,

Op+n(1,x) ◦Op
+n
(γ,x) ⇔ Op+n(1,x) ◦ (pn+1Op

+n
(1,x))

γ follows. By Lemma III.6.5 (ii) and Lemma

III.6.19, we obtain Op+n(γ+1,x) ⇔ (pn+1Op
+n
(1,x))

γ. A(1) holds trivially, and A(m+1)

and A(γ+m+2) are directly from the I.H.

Now we show A(γ). Using the definition of Op+n(γ,x), Lemma III.6.5 (iii) and III.6.15,
this amounts to show that

(∀ξ ✁ γ)pn+1Op
+n
(1+ξ,x) ⇔ (∀ξ ✁ γ)(pn+1Op

+n
(1,x))

1+ξ.

To show that ⇒-direction, fix a η ✁ γ with η ✄ 0. (∀ξ ✁ γ)pn+1Op
+n
(1+ξ,x) en-

tails pn+1Op
+n
(η+1,x). Using the I.H. yields pn+1(Op

+n
(1,x))

η, and (pn+1Op
+n
(1,x))

η fol-
lows by Lemma III.6.16. For the converse direction, also fix an η ✁ γ with η ✄ 0.
Note that (∀ξ ✁ γ)(pn+1Op

+n
(1,x))

1+ξ entails (pn+1Op
+n
(1,x))

η+1. Lemma III.6.16 yields

pn+1(Op
+n
(1,x))

η. Using the I.H. and possibly Lemma III.6.5 (ii) and Lemma III.6.15

yields pn+1Op
+n
(η,x). ✷
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Theorem III.6.21. For each n, all 〈x1, . . . , xk〉, x ∈ Q∗ (k > 1), each y− ∈ P , each
v ∈ Q∗ ∪ P and each α > 0, we have

(i) Op+nq1 ⇔ pn+1,

(ii) Op+n(m+1,x) ⇔ (Op+(n+1)
x pn+1)

m+1 and Op+n(γ+m+1,x) ⇔ (Op+(n+1)
x pn+1)

γ+m,

(iii) Op+n(γ,x) ⇔ (pn+1Op
+n
(1,x))

γ,

(iv) Op+n(1+α,y−) ⇔ (Op
+(n,n+1)
y− pn+1)

1+α

(v) Op+n〈x1,...,xk〉
⇔ Op+nx1 ◦ . . . ◦ Op+nxk ,

and for all m,n with 0 ≤ m < n, we have

(iii)’ Op
+(m,n)
(γ,v)− ⇔ (∀α < γ)pm+1(Op

+n
(1,v))

1+α,

(vi)’ Op
+(m,n)
(α+1,y−)− ⇔ Op

+(m,n+1)
y− pn+1 ◦ Op

+n
(α,y−),

(v)’ Op
+(m,n)

〈y1,...,yk〉−
⇔ Op

+(m,n)

y−1
◦ Op+ny2 ◦ . . . ◦ Op+nyk .

Proof (i) is by definition, (ii) and (iii) are by Lemma III.6.20, and (v) is by Lemma
III.6.5 (ii). To show (iv), we first observe, using the definitions of Op+n(1,y−) and

Op
+(n,n+1)
y− (i.e. Definitions III.6.1, III.6.3) and Lemma III.6.5 (iii), that

Op+n(1,y−) ⇔ (∀α✁ o(y))(pn+1Op
+n
(1,y−)[α]) ⇔ (∀α✁ o(y))(pn+1Op

+(n+1)
y[α] pn+1) ⇔

(∀α✁ o(y))(pn+1Op
+(n+1)
y[α] )pn+1 ⇔ Op

+(n,n+1)
y− pn+1.

Now we show, using Theorem I.4.2, that A(α) := Op+n(α,y−)(T̆) ↔ (Op+n(1,y−))
α(T̆), for

α ✄ 0. (iv) then follows. A(1) trivially, holds. If 1 < α = α′+1, then Op+n(α,y−) iff

Op+n(1,y−) ◦Op
+n
(α′,y−), and A(α) follows using the I.H. If α =: γ is a limit, then Op+n(γ,y−)

iff (∀ξ✁γ)pn+1Op
+n
(1+ξ,y−). The I.H. implies that Op+n(γ,y−) iff (∀ξ✁γ)pn+1(Op

+n
(1,y−))

1+ξ.

As (Op+n(1,y−))
1+ξ is Π1

n+2, we have that for all 0✁ξ✁γ, pn+1(Op
+n
(1,y−))

ξ ⇒ (Op+n(1,y−))
ξ,

and Op+n(1,y−))
ξ+1 ⇒ pn+1(Op(1,y−))

ξ, hence A(γ) follows.

For the next clauses, recall that Op
+(m,n)

x− ⇔ (∀α✁o(x))pm+1Op
+n
x[α]. For (iii)’ observe

that

Op
+(m,n)
(γ,v)− ⇔ (∀α✁ o(v))pm+1Op

+n
(1+α,v) ⇔ (∀α✁ o(v))pm+1(pn+1Op

+n
(1,v))

1+α ⇔

(∀α✁ o(v))pm+1pn+1(Op
+n
(1,v))

1+α ⇔ (∀α✁ o(v))pm+1pn+1(Op
+n
(1,v))

1+α.
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(iv)’ Let (β+1, y−) = o(y) = γ. Then, Op
+(m,n)

(β+1,y−)− ⇔ (∀α✁ γ)pm+1Op
+n
(β+1,y−)[α]. As

Op+n(β+1,y−)[α] ⇔ Op+n(1,y−)[α] ◦ Op
+n
(β,y−), the claim follows.

(v)’ Assume that k > 1 and x = 〈x1, . . . , xk〉. Let γ := o(x) and y =: 〈x2, . . . , xk〉.

Recall that x[α] = x1[α] ∗ y. By definition, Op
+(m,n)
x− ⇔ (∀α ✁ γ)pm+1Op

+n
x[α]. As

Op+nx[α] ⇔ Op+nx1[α] ◦Op
+n
y , we have Op

+(m,n)
x− ⇔ (∀α✁γ)Op+nx1[α] ◦Op

+n
y ⇔ Op+n

x−1
◦Op+ny .

✷

III.7 Modular ordinal analysis at work again

In this section, we extend what we did in Section II.5 to the general case. Again,
we fix T̆ := (ACA) and g(α) := ω1+α, and prove Tǫ ⊢

∧
n<N0

(∀x ∈ Q∗
N0
)Prvn+1(x),

and obtain Tǫ ⊢ (∀x ∈ QN0)Prv0(x) as an easy corollary.

III.7.1 Lifting “Opx proves HxH ”

Let us lift all the definitions to the general case. This is very canonic, and mostly
the definitions look the same. However, keep in mind that the underlying set of
names QN0 is now bigger, and that this change affects T̆x (e.g. T̆x → x ∈ QN0).

Definition III.7.1. For x ∈ Q, xh :=

{
(x+1)H : x < (ω, q0),

xH : else.

With Lemma III.5.12 at hand, we can think of gxh as (HxH ◦ it)(g) = fxH for
f := it(g).

Definition III.7.2. Cx := {α : [(deg(x) ≤ 1∧Wo✁(gxh(α))] ∨ [deg(x) ≥ 2∧ T̆x(α)]}.

Next, we define when Tx proves gxh, when Opx proves HxH , and when Opm+1
x proves

Hm+1
x∗ , where again, x∗ := xH+corr(x). The first two notions are as before, and the

third extends Op+x proves H+
x∗ : if for 0 ≤ i ≤ m, Op+i(1,ym−i)

proves H+i
(1,ym−i)H

, then

Op+(m+1)
x (Op+m(1,y0)

◦1 . . . ◦1 Op
+0
(1,ym)) proves H

+(m+1)
x∗ [H+m

(1,y0)H
, . . . , H+0

(1,ym)H
].

The definition below is worded differently, but the way to think of Opm+1
x proves

Hm+1
x∗ is as explained above. However, this only serves as motivation since for

z := L(x ◦1 (1, y0) ◦1 . . . ◦1 (1, ym)), Opz iff Op+(m+1)
x (Op+m(1,y0)

◦1 . . . ◦1 Op
+0
(1,ym)), and

by Corollary III.5.14, Hz is “about equal” to H
+(m+1)
x∗ [H+m

(1,y0)H
, . . . , H+0

(1,ym)H
] (cf.

Lemma III.7.4).
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Definition III.7.3. We fix the following formulas.

Prv0(x) := T̆x → ∀α[Wo✁(α) ∧ TI✁(Cx, α) → Wo✁(gxh(α))],

Prv1(x) := ∀y[prv0(y) → Prv0(x ◦ y)],

Prvn+2(x) := ∀y[prvn+1(1, y) → Prvn+1(1, x ◦ y)].

Further, prvn(x) := ∀XPrvn(x)↾X.

We say that Opx proves HxH if Tǫ ⊢ Prv1(x), and that Op+(n+1)
x proves H

+(n+1)
x∗ , if

Tǫ ⊢ Prvn+2(x).

Again, T̆u → u ∈ QN0 (cf. Definition III.6.1 and Lemma III.6.2), and Prv0(u) is
trivially true if u /∈ QN0 . So Prv1(x) iff ∀y[x ◦ y ∈ QN0 ∧ prv0(y) → Prv0(x ◦ y)], and
Prvm+2(x) iff ∀y[x ◦ y ∈ QN0−mprvm+1(1, y) → Prvm+1(1, x ◦ y)]. Often, we use these
equivalent forms to focus on the non-trivial instances of these definitions.

The next lemma partially unfolds the definition of Prvn+1(x). To do so, we use for a
possibly empty list ~y = y0, . . . , yn the term tn(x, ~y) := L(x◦1 (1, y0)◦1 . . .◦1 (1, yn−1)).
In case that n = 0, t0(x) = x.

Lemma III.7.4. Tǫ proves the following.

Prvn+1(x) ↔ ∀~y, y[z = L(x ◦1 (1, y0) ◦1 . . . ◦1 (1, yn−1)) ◦ y ∧
∧

i<n

prvn−i(1, yi) ∧ prv0(y) → Prv0(z)].

Proof By meta-induction on n. If n = 0, the right hand side is the definition of
Prv1(x). To show the induction step, let tn(x, y0, . . . , yn−1) := L(x ◦1 (1, y0) ◦1 . . . ◦1
(1, yn−1)). By definition,

Prvn+2(x) ↔ ∀y0[prvn+1(y0) → Prvn+1(1, x ◦ y0)].

By I.H.,

Prvn+1(1, x ◦ y0) ↔ ∀y1, . . . , yn, y[tn((1, x ◦ y0), y1, . . . , yn) ◦ y ∧
∧

1≤i<n+1

prvn+1−i(1, yi) ∧ prv0(y) → Prv0(tn((1, x ◦ y0), y1, . . . , yn) ◦ y)].

Since tn(x ◦1 (1, y0), y1, . . . , yn) = tn+1(x, y0, y1, . . . , yn+1), the claim follows. ✷

Looking at the definition of Prv0(z), we also have the following.
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Corollary III.7.5. Tǫ proves the following.

Prvn+1(x) ↔ ∀~y[z = L(x ◦1 (1, y0) ◦1 . . . ◦1 (1, yn−1))∧
∧

i<n

prvn−i(1, yi) ∧ prv0(y) → Prv1(z)].

Hence Prvm+2(x) has the following alternative characterization, which justifies the
aforementioned motivation. If z = L(x◦1(1, y0)◦1. . .◦1(1, ym)), then

∧
i≤m prvm+1−i(yi)

implies Prv1(z), i.e. Opz proves HzH .

Next, we check that (∀x ∈ Q∗
N0−n

)Prvn+1(x) can be proved using Theorem I.4.2.

Lemma III.7.6. Tǫ ⊢ Prvn+1(x) ∨ ((ACA) ∧Wf❀∗(x)).

Proof We work informally in Tǫ and assume ¬Prvn+1(x). The above lemma yields
that there are z, ~y, y, so that z = L(x ◦1 (1, y0) ◦1 . . . ◦1 (1, yn−1)) ◦ y ∈ Q∗

N0
and

¬Prv0(z). Further, ¬Prv0(z) implies T̆z which in turn implies (ACA) and Wf❀∗(z).
And finally, over ACA0, Wf❀∗(z) implies Wf❀∗(x): By Lemma III.4.19 which is
clearly already provable in ACA0, we have that x

′ ❀∗ x′′ ❀∗ x implies tn(x
′, ~y)◦y ❀∗

tn(x
′′, ~y) ❀∗ tn(x, ~y) = z. Hence, an infinite descending chain x0 ❀ ∗x1 ❀ . . . with

elements in {x′ : x′ ❀∗ x} gives rise to an infinite descending chain tn(x0, ~y) ◦ y ❀∗

tn(x1, ~y) with elements in {z′ : z′ ❀∗ z}. ✷

As discussed on page 64, if e.g. ACA0 ⊢ A∧ b→ Prvn(x) (where b = ∀XB↾X), then
we also have Tǫ ⊢ a ∧ ∀Xb↾X → prvn(x) and ACA0 ⊢ a ∧ b → prvn(x). Again, we
refer to this as the “small variant” of ACA0 ⊢ A ∧ b → Prvn(x). For instance, we
have the following which we will tacitly use in the sequel.

Lemma III.7.7. The following is provable in ACA0:

(i) x ◦ y ∈ Q∗
N0

∧ prv1(x) ∧ prv0(y) → prv0(x ◦ y).

(ii) x ◦ y ∈ Q∗
N0−n−1 ∧ prvn+2(x) ∧ prvn+1(1, y) → prvn+1(1, x ◦ y).

(iii) x ◦ y ∈ Q∗
N0−n

∧ Prvn+1(x) ∧ prvn+1(y) → Prvn+1(x ◦ y).

Proof (i) and (ii) are the “small variants” of x ◦ y ∈ Q∗
N0

∧ Prv1(x) ∧ prv0(y) →
Prv0(x ◦ y) and x ◦ y ∈ Q∗

N0−n−1 ∧ Prvn+2(x)∧ prvn+1(1, y) → Prvn+1(1, x ◦ y), which
hold by definition of Prv1(x) and Prvn+2(x), respectively. (iii) Prvn+1(x ◦ y) holds,
if x ◦ y ◦ z ∈ Q∗

N0−n
and prvn(z) imply Prvn(x ◦ y ◦ z). To verify the claim, assume

x ◦ y ◦ z ∈ Q∗
N0−n

and prvn+1(z), and further Prvn+1(x) and prvn+1(y). By (i),
prvn+1(y) and prvn(z) yield prvn(y ◦ z), and Prvn(x ◦ y ◦ z) follows from Prvn(x). ✷

Again, all we need to know about the interplay of ·[α], ·(α) and ·H is collected below
(we will use (i) in the proof of Lemma III.7.10 (ii), and (ii) in the proof of Lemma
III.7.12).
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Lemma III.7.8. Let z ∈ Q∗. Then we have the following.

(i) If deg(z) = 1 and o(z) = γ, then gzH [α] ✂ g(z[α])H ,

(ii) if deg(z) > 1, then gzH [α] ✂ g(z(α))H .

Proof By Lemma III.4.24, we have in case (i) zH [α] ❀∗ (z[α])H , and in case (ii)
zH [α] ❀∗ z(α))H . Thus the claim follows by Lemma III.5.1. ✷

III.7.2 A sketch of the proof

In this subsection, we sketch the proof of Tǫ ⊢
∧
n<N0

(∀x ∈ Q∗
N0
)Prvn+1(x) given in

the next subsection. Again, we neglect the difference between Prvm(x) and prvm(x)
(m ≤ N0), and pretend that for m ≤ N0, Prvm(x) ∧ Prvm(y) implies Prvm(x ◦ y).

Recall that in the case N0 = 2, the assumption Prv2(q1) allowed us to prove
∀βPrv2(1+β, x) for all (the only) names x ∈ Q0 = {q0}. In a next step, we then
proved (∀x ∈ Q∗

2)Prv1(x) by induction on ❀∗. For x =NF (1, y) ◦ z, the I.H. and
z ❀∗ x gave us Prv1(z), and Prv2(y) and Prv1(1, q0) gave us Prv1(1, y). Together,
Prv1(1, y) and Prv1(z) implied Prv1(x).

Now we briefly say how to extend the proof, more details are given in following
paragraphs. First, observe that Lemma II.5.17, which allowed us to move from
Prv2(q1) to ∀βPrv2(1+β, q0), is a special case (v = q0) of the “one-up variant” of
Lemma II.5.16, where Prv1 and prv1 are replaced by Prv2 and prv2, respectively. And
further, the “one-up variant” of Lemma II.5.17 (ii) is an easy consequence of (i),
and (i) is a consequence of Lemma II.5.16 and Lemma II.5.15. Moreover, as we will
see below, Lemma II.5.15 implies its own ‘one-up variant”, which together with the
“one-up variant” of Lemma II.5.16 implies a “two-up variant” of Lemma II.5.16 ,
which then readily yields Prv3(1, q0), and so on.

Let us elaborate on the above comment. For a start, we assume the following,
where (am) and (a′m) are the “m-up” variants of Lemma II.5.16, (bm) is the “m-up”
variant of Lemma II.5.15, and, as in the corresponding sketch for N0 = 2, (c ) hides
technical details (cf. Lemma III.7.10).

(am) if deg(x) = 1, then (∀α✁ o(x))Prvm+1(x[α]) implies Prvm+1(x),

(a′m) if deg(x) = 1, then Prvm+1(1, v) implies (∀αPrvm+1(1+α, v),

(bm) if deg(x) ≥ 2, then ∀αPrvm+1(x(α)) implies Prvm+1(x),

(c ) if deg(x) = 1, then T̆x ∧ (∀α✁ o(x))Prv0(x[α]) → Prog
✁
(Cx).
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From the above assumptions we continue as follows: Prv1(q1) and Prv2(q1) are ob-
tained analogously to the case N0 = 2, and Prvm+2(q1) is by (a′m): if Prvm+1(1, y),
then (a′m) yields ∀αPrvm+1(1+α, y), which further, together with Prvm+1(q1) yields
∀αPrvm+1((1+α, y)+1), that is, ∀αPrvm+1((1, y+1)(α)), and now Prvm+1((1, y+1)
follows by (bm).

While in the case N0 = 2, we first showed (∀x ∈ Q∗
1)Prv2(x) and only then proved

(∀x ∈ Q∗
2)Prv1(x), we show in the general case (∀x ∈ Q∗

n+1)PrvN0−n(x) by meta-
induction on n < N0. Since PrvN0−n(x) implies x ∈ Qn+1, it suffices to prove
(∀x ∈ Q∗)PrvN0−n(x); the possible cases are discussed below.

(i) deg(x) = 1 ∧ x 6= q1. By I.H., (∀α✁ o(x))PrvN0−n(x[α]), and PrvN0−n(x) is by
(aN0−n−1).

(ii) deg(x) > 1. Then x =NF (1, y)◦z. As z ❀∗ x by Lemma III.4.19 (iv), the I.H.
yields Prvm+1(z). If n = 0, then (1, y) ∈ Q1, thus y = q0. Hence PrvN0(q1). If
n > 0, then PrvN0−(n−1)(y) by the meta-I.H. Together with PrvN0−n(1, q0) we
obtain PrvN0−n(1, y). Now PrvN0−n(1, y) and PrvN0−n(z) imply PrvN0−n(x).

Finally, we discuss where we get the assumptions (am), (a
′
m) and (bm) from. (b1) is

shown as (b) in the case N0 = 2, and (bm+1) follows readily form (bm): if deg(x) > 1
and ∀αPrvm+2(x(α)), then Prvm+1(1, y) yields ∀αPrvm+1(z(α)) for z := (1, x ◦ y),
which by (bm) yields Prvm+1(z). This shows Prvm+2(x).

Also (a1) is obtained as in the case N0 = 2, and (a′m) follows readily form (am).
Further, (am+1) is by (a′m) and (bm). Again, we observe a characteristic two-step
approximation which works almost literally as in the case N0 = 2.

III.7.3 Proof of the main result for the general case

Next, we observe our modular approach at work in the general case. The following
results are proved exactly as the corresponding results (Lemma II.5.11 and II.5.12)
in Section II.5.

Lemma III.7.9. ACA0 proves the following.

(i) Prv0(q0),

(ii) x ∈ QN0 ∧ T̆x+1 ∧ prv0(x) ∧Wo✁(α) → Wo✁(gxh(α)).

Lemma III.7.10. ACA0 proves the following.

(i) x ∈ QN0 ∧ T̆x+1 ∧ prv0(x) → Prog
✁
(Cx+1).

(ii) x ∈ Q∗
N0

∧ deg(x) = 1 ∧ o(x) = γ ∧ (∀α✁ γ)prv0(x[α]) ∧ T̆x → Prog
✁
(Cx).
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Proof: Literally(!) as the proof of the corresponding Lemma II.5.13, expect that we
now refer to Lemma III.6.5) (i) instead of Lemma II.4.4 (ii), and to Lemma III.7.8
instead of Lemma II.5.10.

Again, as a consequence of Lemma III.7.10 (i), we obtain that p1 proves it.

Lemma III.7.11. ACA0 ⊢ Prv1(q1).

Below, we lift Lemma II.5.15 (which corresponds to (bn) in the sketch) to the general
case.

Lemma III.7.12. For each n < N0,

ACA0 ⊢ (∀x ∈ Q∗
N0
)[deg(x) > 1 ∧ ∀αprvn+1(x(α)) → Prvn+1(x)].

Proof By meta-induction on n < N0. The case n = 0 is literally as the proof of the
corresponding Lemma II.5.15, but referring now to Lemma III.7.8 instead of Lemma
II.5.10. For the induction step, assume that n > 0, and that the claim holds for n−1.
Assume that x ∈ Q∗

N0
with deg(x) > 1 and ∀αprvn+1(x(α)), and aim for Prvn+1(x).

For that, further assume that x◦ y ∈ Q∗
N0

and prvn(1, y), and aim for Prvn(1, x◦ y)).
prvn+1(x(α)) and prvn(1, y) imply prvn((1, x(α) ◦ y), that is, prvn(1, x ◦ y)(α)), as
deg(x) ≥ 2 (cf. Lemma III.4.16). Hence we have ∀αprvn(1, x ◦ y)(α)), and the I.H.
yields Prvn(1, x ◦ y). ✷

The next result corresponds to Lemma II.5.16 and to (an) of the sketch.

Lemma III.7.13. For each n < N0, ACA0 proves the following: for each x ∈ QN0

with deg(x) = 1 ∧ o(x) = δ0+γ, and each (1, v) ∈ Q∗
N0
, then

(i) (∀α✁ γ)prvn+1(x[δ0+α]) → Prvn+1(x) =: C1(n),

(ii) Prvn+1(1, v) ∧ prvn+1(1, v) → ∀αPrvn+1(1+α, v) =: C2(n).

Proof First note that (ii) follows using (i) by induction on α (in the sense of Corollary
I.4.3) exactly as in the case N0 = 2. Hence, it suffices to show (i), which is done
by meta-induction on n < N0. The case n = 0 is literally as the proof of the
corresponding Lemma II.5.16 (i), but referring to Lemma III.7.10 (ii) instead of
Lemma III.7.10 (ii). Next, we consider the induction step. It is assumed that n > 0,
and that (i) and (ii) hold for n−1, that is, C1(n−1) and C2(n−1). We show that (i)
holds for n, i.e. that C1(n).

Assume that x ∈ Q∗
N0

with deg(x) = 1 and o(x) = δ0+γ and (∀α✁γ)prvn+1(x[δ0+α]),
and aim for Prvn+1(x). For that, further assume that z := (1, x ◦ y) ∈ Q∗

N0
and

prvn(1, y), and aim for Prvn(z). Thereto, let δ1 so that for each β, x[β] ◦ y =
(x◦y)[δ1+β] and o(z) = o(x◦y) = δ1+γ (cf. Lemma III.4.16). Recall that by Lemma
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III.4.12 (iv), (1, (x ◦ y)−)[α] = (1, (x ◦ y)[α]). The assumptions (∀α✁ γ)Prvn+1(x[α])
and prvn(1, y) yield for each α < γ, Prvn(1, x[α]◦y), that is Prvn((1, (x◦y)

−)[δ1+α]).
Hence the I.H. yields Prvn(1, (x◦y)−), and its “small variant” yields prvn(1, (x◦y)

−).
So by (ii), ∀βprvn(1+β, (x◦y)

−), that is, ∀βprvn(z(β)). Finally, Prvn(z) is by Lemma
III.7.12. ✷

The next result lifts Lemma II.5.18 to the general case.

Lemma III.7.14. For all n < N0, ACA0 ⊢ Prvn+1(q1).

Proof By meta-induction on n. The case n = 0 is by Lemma III.7.11. For the induc-
tion step, assume that the claim holds for n. To show Prvn+2(q1), assume y+1 ∈ QN0

and prvn+1(1, y), and aim for Prvn+1(x) for x := (1, y+1). Note that deg(x) > 1.
Once we know that ∀αprvn+1(x(α)), the claim is by Lemma III.7.12. By the small
variant of Lemma III.7.13 (ii), prvn+1(1, y) yields ∀αprvn+1(1+α, y). Since x(α) =
x[α]+1 = (1+α, y)+1, prvn+1(1+α, y) and prvn+1(q1) yield prvn+1((1+α, y)+1), we
also have ∀αprvn+1(x(α)). ✷

Putting the pieces together yields a proof of the main result of part I. It generalizes
Theorem III.7.15.

Theorem III.7.15. For all n < N0, ACA0 ⊢ (∀x ∈ Q∗
n+1)PrvN0−n(x).

Proof By meta-induction on n < N0. If n = 0 and x ∈ Q∗
1, then x = (1+β, q0). As

we have PrvN0(q1) by Lemma III.7.14, and thus also prvN0
(q1), PrvN0(1+β, q0) is by

Lemma III.7.13 (ii).

For the induction step, assume n+1 < N0 and ACA0 ⊢ (∀x ∈ Q∗
n+1)PrvN0−n(x). We

show ACA0 ⊢ (∀x ∈ Q∗
n+2)PrvN0−n−1(x) by induction on ❀∗↾Q∗

n+2 (in the sense of
Theorem I.4.2). We consider the following possible cases.

(i) x = y+1. If x = q1, PrvN0−n−1(q1) is by Lemma III.7.14. Else, we have
prvN0−n−1(y) by I.H. Together with PrvN0−n−1(q1), this yields PrvN0−n−1(x).

(ii) deg(x) = 1 ∧ o(x) = γ. By I.H., (∀α✁ γ)prvN0−n−1(x[α]), and PrvN0−n−1(x) is
by Lemma III.7.13 (i).

(iii) deg(x) > 1. Then there are y, z with deg(y) > 0 so that x =NF (1, y) ◦
z. As z ❀∗ x by Lemma III.4.19 (iv), the I.H. yields prvN0−n−1(z). As
(1, y) ∈ Q∗

n+2 and deg(y) > 0, we have y ∈ Q∗
n+1, and prvN0−n(y) is by the

meta-I.H. Together with PrvN0−n−1(1, q0) we obtain PrvN0−n−1(1, y). Finally,
PrvN0−n−1(1, y) and PrvN0−n−1(z) imply PrvN0−n−1(x).

✷

In particular, we have that for each name x ∈ Q, Tx proves gxh.

114



Corollary III.7.16. Tǫ ⊢ (∀x ∈ QN0)Prv0(x).

Proof Let x ∈ QN0 . We have ACA0 ⊢ Prv0(q0), hence also Tǫ ⊢ Prv0(q0), which
entails Tǫ ⊢ prv0(q0). Togehter with Prv1(x), this implies Prv0(x). ✷

The corollary immediately provides lower bounds for the proof-theoretic ordinal of
a theory of the form T̆x or T̆x+ (IN) (cf. the discussion following Corollary II.5.20.

Below, we list a few instances of the above corollary. In particular, it is confirmed
what we claimed already at the end of Section II.5, namely that |p1p3(ACA0)| ≥ ϑΩΩ.
The presentation of the ordinals in the form ϑγ is due to Corollary IV.5.13. Further,
Ω0 := 1 and Ωn+1 := ΩΩn .

Example III.7.17.

(i) |p3(ACA0)| ≥ (It3, It, it, g, ω) = (Itω(it), g, 0) = ϑΩω (small Veblen number),

(ii) |p3(ACA0) + (IN)| ≥ (It3, It, it, g, ε0) = (Itε0(it), g, 0) = ϑΩε0,

(iii) |p1p3(ACA0)| ≥ it(gq3)(ω) = g′q3(0) = ϑΩΩ (big Veblen number),

(iv) |p1pn+1(ACA0)| ≥ it(gq3)(ω) = g′q3(0) = ϑΩn.
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Chapter IV

Notations for the ordinals
(gx(α) : x ∈ QH)

In this chapter, we discuss how to obtain notations for the ordinals (gx(α) : x ∈ QH).
Further, we relate the functions (gx(α) : x ∈ QH) to the ϑ-function as e.g. introduced
in Rathjen and Vizcáıno [18], p. 538, for the special case where |X| = ∅.

This chapter makes heavy use of Setzer’s work on notations systems [25], in par-
ticular his ordinal function generators (OFGs). To keep this thesis reasonably self
contained, we have included the proof of Setzer’s key lemma (cf. Lemma IV.2.7).
After examining how the functions Hx(f) and Hy(f) compare, we use Setzer’s OFGs
to obtain an ordinal notation system for the ordinal relevant for this work.

Since we build our notation system out of expressions corresponding to g̃x(α), a
variant of gx(α), we are left with the task to find notations for the ordinals gx(α).
This is done by defining a recursive function v which is provably total in ACA0 and
assigns to an ordinal expression (x, α) a notation v(x, α) that denotes the ordinal
gx(α).

We conclude the chapter by showing how the functions (gx : x ∈ QH) relate to
the ϑ-function. Together with the main results of Chapter II and Chapter III, this
allows to present the ordinals gx(ω) of the theories Opx(ACA0) in a more familiar
form.

Convention IV.0.18. As we work in this chapter exclusively with names x ∈ QH ,
it is assumed that x, y range over QH , and we lazily write x < y for x <H y.

IV.1 How fx(α) and fy(β) compare

The idea is to represents ordinals by expressions containing only smaller ordinals as
their components. Essentially, an ordinal which is not additively principal is written
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as a sum of smaller additively principal ordinals, and each additively principal ordi-
nal γ is written as γ = gx(α), where α and the ordinals occurring in the name x are
below γ, where again, g(α) := ω1+α is the function which enumerates the infinite
principal ordinals.

Definition IV.1.1. HZ := {ωα : α ∈ Ord} = {1, ω, ω2, . . .} are the additively

principal ordinals. We write α =NF βk+ . . .+β1 if α = βk+ . . .+β1, ~β ∈ HZ and
β1 ≤ . . . ≤ βk < α. Further, E := {γ : ωγ = γ} is the set of ε-numbers.

The following is readily observed.

Lemma IV.1.2. If 1 < α /∈ HZ, then there are unique ordinals ~β ∈ HZ, so that
α =NF βk+ · · ·+β1. Further, γ ∈ E iff for all α, ~β, α =NF βk+ . . .+β1 and ~β < γ
implies α < γ.

Note that g = HZ \ {1}, and that g′ = E. Below, we recall the definition of the
components of a name (Definition III.5.5).

Definition IV.1.3. k(q0) := ∅, if x = 〈(α, y)〉, then k(x) := {α} ∪ k(y), and
k(〈x1, . . . , xn〉) = k(x1) ∪ . . . ∪ k(xn). And |x| := max(k(x)), where max(∅) := −1.

Next, we extend (QH , <) to (QH × Ω, <′), and the functions k(·) and |·| from QH

to QH × Ω.

Definition IV.1.4. For (x, α), (y, β) ∈ QH × Ω, we define

(x, α) <′ (y, β) :⇔ x < y ∨ (x = y ∧ α < β).

Further, k(x, α) := k(x) ∪ {α}, and |(x, α)| = max{k(x, α)}.

For a principle ordinal γ there are in general many pairs (x, α) ∈ QH × Ω with
|(x, α)| < γ and gx(α) = γ. Thus, we need a way to pick one. To do so, we define
some notions which are relative to some f ∈ Ω(0). Later, g will take the role of f .

In order to pick a pair (x, α) so that γ = fx(α), we make use of the following
properties of the functions (fy : y ∈ QH).

Lemma IV.1.5. Let x ∈ QH and f ∈ Ω(0).

(i) If deg(x) > 1 and o(x) = 1, then fx(α) = fx[1+α](0).

(ii) If x = y+1, then fx(0) = fy(γ) for γ := fy(0), fx(γ+1) = fy(γ
′+1), for

γ′ := fx(γ), and if α is a successor, then fx(α+1) = fy(γ), for γ := fx(α).
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Proof (i) is by Lemma III.5.2. (ii) Let x = y+1. The first claim is by definition.
For the second and third claim, note that fx(γ) ∈ (sh ◦ fy) = f ′

y (cf. Lemma I.3.15),
and that fx(α+1) /∈ f ′(y). Thus, the claims are by definition of fx = it(fy). ✷

In the above lemma, if (i) applies, we regard moving form fx(α) to fx[1+α](0) as
performing one step in the computation of fx(α). And similarly, in case (ii), moving
from fx(0) to fy(γ), from fx(γ+1) to fy(γ

′+1), or from fx(α+1) to fy(γ). We can
compute in this way, until we arrive that fy(β), where either y = q0 or β is a limit
or o(y) is a limit. Such a pair (y, β) where no computation step applies is called
good.

Definition IV.1.6. We say that (x, α) ∈ QH × Ω is good, if

x = q0 ∨ o(x) ∈ Lim(Ω) ∨ (x = y+1 ∧ α ∈ Lim(Ω)).

If (x, α) is not good, then x = y+1∧α /∈ Lim(Ω), or deg(x) > 1∧ o(x) = 1. In these
cases, we can perform one of the computation steps shown in Lemma IV.1.5. Since
(QH , <) is a well-ordering and x[α] < x and y < y+1, a good pair is finally reached.

Lemma IV.1.7. If (x, α) ∈ QH×Ω is not good, then there is an (y, β) that is good,
so that γ := fx(α) = fy(β), y < x, and if |(x, α)| < γ, then also |(y, β)| < γ.

Next, we give a first criteria to decide whether for good (x, α), (y, β) ∈ QH × Ω,
fx(α) ≤ fy(β).

Lemma IV.1.8. Assume that (x, α) and (y, β) are good, and that (x, α) <′ (y, β)
and |(x, α)| < fy(β). Then fx(α) < fy(β).

Proof Assume that (x, α) and (y, β) are good, and that (x, α) <′ (y, β) and |(x, α)| <
fy(β). If x = y, then α < β and fx(α) = fy(α) < fy(β) as fy is normal. Hence we
may assume that x < y. As (y, β) is good, y is either a successor, or o(y) ∈ Lim(Ω).
If y = z+1 for some z, then β is a limit, and fy(β) ∈ f ′

z by Lemma I.3.15. As
x ≤ z and |x| < fy(β), we have fy(β) ∈ f ′

x by Lemma III.5.7. Since α < fy(β) by
assumption, we obtain fx(α) < fx(fy(β)) = fy(β). And if o(y) = γ, then, as x < y,
there is a ξ < γ so that x < y[ξ] (cf. Lemma III.4.15 (iii)). By Lemma III.5.3 (iii),
fy(β) ∈ fy ⊆ f ′

y[ξ]. As x < y, Lemma III.5.7 yields fy(β) ∈ f ′
x. Since α < fy(β) by

assumption, fx(α) < fx(fy(β)) = fy(β). ✷

If x, z ∈ QH and deg(z) > 1 and o(z) = 1, then the functions fx and α 7→ fx[α](0)
have fixed points, hence it may happen that fx(α) ∈ k(x, α). Obviously, fx(α) can
possibly only match |(x, α)|.

Lemma IV.1.9. If (x, α) is good and fx(α) ∈ k(x, α), then either

fx(α) = α ∈ Lim(Ω) or fx(α) = o(x) ∈ Lim(Ω) ∧ α = 0.
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Proof Assume that (x, α) is good and fx(α) ∈ k(x, α). In case that fx(α) > α, then
fx(α) ∈ k(x, 0), hence α = 0 by Lemma III.5.6. As (x, 0) is good by assumption,
o(x) is a limit. As for each ξ < o(x), |x[ξ]| ≤ fx[ξ] < fx(0), |x| = fx(0) is only
possible if fx(0) = o(x). ✷

Next, we define a finite set l(x, α) ⊆ k(x, α), where l(x, α) is k(x, α) with potential
fixed points removed. Note that if e.g. for x := (2, (γ, q0)), we have that x[0] =
(1, q0) ∗ (γ, q0), and x[0] contains the additional component 1. To have l(x) ⊆ k(x),
we let l(x) := k(x) ∩ k(x[0]) in this case.

Definition IV.1.10. To each (x, α) ∈ QH × Ω, we assign a finite set l(x, α) of
ordinals as follows:

l(x, α) :=





k(x) : α is a limit,

k(x, α) : α is a successor, or α = 0 ∧ o(x) /∈ Lim(Ω),

k(x) ∩ k(x[0]) : α = 0 ∧ o(x) ∈ Lim(Ω).

The following is immediate by this definition and Lemma IV.1.9.

Lemma IV.1.11. If β ∈ l(x, α), then β < fx(α).

Now we give the complete picture of how fx(α) and fy(β) compare for good pairs
(x, α) and (y, β).

Lemma IV.1.12. Let (x, α), (y, β) ∈ QH × Ω be good. Then

fx(α) < fy(β) ⇔ ((x, α) <′ (y, β) ∧ |(x, α)| < fy(β)) ∨ fx(α) < |(y, β)| ∨

fx(α) ∈ l(y, β)

fx(α) = fy(β) ⇔ ((x, α) <′ (y, β) ∧ fy(β) = |(x, α)| ∧ fy(β) /∈ l(x, α)) ∨

((y, β) <′ (x, α) ∧ fx(α) = |(y, β)| ∧ fx(α) /∈ l(y, β)) ∨

(x, α) = (y, β)

Proof First formula, right-to-left. The first disjunct on the right implies the left
side by Lemma IV.1.8. The other two conjuncts imply the left side due to Lemma
III.5.6.
Second formula, right-to-left. We just show that the first disjunct on the right implies
the left hand side, as the argument for the second disjunct is symmetric, and trivial
for the third. So assume (x, α) <′ (y, β) ∧ fy(β) = |(x, α)| ∧ fy(β) /∈ l(x, α). By
Lemma III.5.6, we have fy(β) = |(x, α)| ≤ fx(α). Now we assume fy(β) < fx(α) and
argue for a contradiction. First note that x = y is impossible: then (x, α) <′ (y, β)
yields α < β, contradicting fy(β) < fx(α). Hence x <′ y. By Lemma IV.1.9, we
have the following options.
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(i) fy(β) = |(x, α)| = α (so α is a limit). Then, fy(β) /∈ l(x, α) = k(x), so
|x| < fy(β). Hence, for each ξ < α, (x, ξ) <′ (y, β) and |(x, ξ)| < fy(β),
therefore, by Lemma IV.1.8, fx(ξ) < fy(β). As fx is normal, also fx(α) ≤
fy(β), contradicting fy(β) < fx(α)!

(ii) fy(β) = |(x, α)| = o(x) =: γ. Then fy(β) /∈ l(x, α) implies that α = 0. Note
that supξ<γfx[1+ξ](0) = fx(0). For each ξ < γ, we have (x[ξ], 0) <′ (y, β)
and |(x[ξ], 0)| < fy(β), therefore, by Lemma IV.1.8, fx[ξ] < fy(β). Hence,
fx(0) = fx(α) ≤ fy(β), contradicting fy(β) < fx(α)!

First formula, left-to-right. The negation of the right hand side readily implies the
conjunction of the following formulas:

(i) (y, β) <′ (x, α) ∨ (y, β) = (x, α) ∨ |(x, α)| ≥ fy(β),

(ii) fx(α) > |(y, β)| ∨ fx(α) = |(y, β)|,

(iii) fx(α) /∈ l(y, β).

We show that the conjunction of (i)–(iii) implies fy(α) ≤ fx(β). This follows since
(y, β) = (x, α) ∨ |(x, α)| ≥ fy(β) implies fy(α) ≤ fx(β) (cf. Lemma III.5.6), and
(y, β) <′ (x, α) ∧ fx(α) > |(y, β)| implies fy(α) ≤ fx(β) (Lemma IV.1.8), and
furthermore, (y, β) <′ (x, α)∧fx(α) = |(y, β)|∧fx(α) /∈ l(y, β) implies fx(α) = fy(β)
(second formula, right-to-left).
Second formula, left-to-right. The negation of the righthand side readily implies the
conjunction of the following formulas:

(i) (y, β) <′ (x, α) ∨ fy(β) > |(x, α)| ∨ fy(β) < |(x, α)| ∨ fy(β) ∈ l(x, α),

(ii) (x, α) <′ (y, β) ∨ fx(α) > |(y, β)| ∨ fx(α) < |(y, β)| ∨ fx(α) ∈ l(y, β),

(iii) (x, α) 6= (y, β).

We show that the conjunction of (i)–(iii) implies fx(α) 6= fy(β). This follows, since
(y, β) <′ (x, α) ∧ (x, α) <′ (y, β) ∧ (x, α) 6= (y, β) is impossible, and fx(α) 6= fy(β)
follows if fy(β) ∈ l(x, α), or if fx(α) ∈ l(y, β) (cf. Lemma IV.1.11), or if fy(β) <
|(x, α)|, or if fx(α) < |(y, β)| (cf. Lemma III.5.6), or if (x, α) 6= (y, β) ∨ fy(β) >
|(x, α)| ∨ fy(β) > |(x, α)| (cf.Lemma IV.1.8). ✷

This characterizations becomes considerably simpler if we impose the additional
restrictions that |(x, α)| < fx(α) and |(y, β)| < fy(β).

Corollary IV.1.13. Let (x, α), (y, β) be good, so that |(x, α)| < fx(α) and |(y, β)| <
fy(β). Then, fx(α) = fy(β) ⇔ (x, α) = (y, β), and fx(α) < fy(β) iff either

(i) (x, α) <′ (y, β) ∧ |(x, α)| < fy(β), or
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(ii) (y, β) ≤′ (x, α) ∧ fx(α) ≤ |(y, β)|.

Proof Just observe that by the extra assumptions |(x, α)| < fx(α) and |(y, β)| <
fy(β), the possibilities fy(β) < |(x, α)|, fy(β) = |(x, α)| and fx(α) = |(y, β)| are
ruled out. So the claim follows readily by the above lemma. ✷

The restriction to good pairs (x, α) is a bit awkward. Note that only if x is of the
form y+1 does it depend on α whether (x, α) is good. To improve the situation, we
arrange things so that each pair (x, α) ∈ QH ×Ω that is good corresponds to a pair
(y, β) := good(x, α) ∈ Q̃0 × Ω so that fx(α) = f̃y(β).

Definition IV.1.14. We define Q̃0, Q̃ and good : Q̃0 × Ω → Q× Ω as follows.

(i) Q̃0 := {x ∈ QH : deg(x) > 1 → o(x) ∈ Lim(Ω)} and Q̃ := Q̃0 \ {q0}.

(ii)

good(x, α) :=




(x, α) : x = q0 ∨ o(x) ∈ Lim(Ω),

(x, ω(1+α)) : deg(x) = 1 ∧ o(x) = 1.

Definition IV.1.15. If x ∈ Q̃0, then

f̃x :=




sh ◦ fx : deg(x) = 1 ∧ o(x) = 1,

fx : else.

Observe that f̃y+1 := fy (cf. Lemma I.3.15), and if x = q0 ∨ o(x) ∈ Lim(Ω), then
f̃x := fx =

⋂
ξ<γ f

′
x[ξ] (cf. Lemma III.5.3). In particular, if x > q0, then f̃x ⊆ f ′.

Further, as fx and f̃x have the same fixed points (cf. Lemma I.3.15), and further
|y|✂ fy(0)✁ fy+1(0) ∈ Lim(Ω) and so |y+1|✁ fy+1(0), we again have the following.

Lemma IV.1.16. If f̃x(α) ∈ k(x, α), then f̃x(α) = α or f̃x(α) = o(x) ∧ α = 0.

Also the following is readily observed.

Lemma IV.1.17.

(i) good[Q̃0 × Ω] = {(x, α) ∈ QH × Ω : (x, α) is good}.

(ii) good : (Q̃0 × Ω, <′) → (good[Q̃0 × Ω], <′) is an order isomorphism.

(iii) If (x, α) ∈ Q̃0 × Ω and (y, β) := good(x, α), then f̃x(α) = fy(β).
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If γ := f̃y(β), then either y = z+1 and f̃y = f ′
y, or o(y) = γ′ for some limit γ′, and

f̃y = fy[γ′]x =
⋂
ξ<γ′ f

′
y[ξ] ⊆ f ′

y[0] (cf. Lemma III.5.3). Therefore, by Remark I.3.8,

γ = ω(1+β) for some β, and thus α✁ γ iff ωα✁ γ. Further, l(y+1, γ) = k(y+1) =
l(y+1, ω(1+γ)). The lemma below summarizes this discussion.

Lemma IV.1.18. Let (x, α), (y, β) ∈ Q̃0 × Ω, (x′α′) := good(x, α) and γ = f̃y(β).
Then, |(x, α)|✁ γ iff |(x′, α′)|✁ γ, and γ ∈ l(x, α) iff γ ∈ l(x′, α′).

As a result, we have the following.

Lemma IV.1.19. For all (x, α), (y, β) ∈ Q̃0 × Ω we have the following.

f̃x(α) < f̃y(β) ⇔ ((x, α) <′ (y, β) ∧ |(x, α)| < f̃y(β)) ∨ f̃x(α) < |(y, β)| ∨

f̃x(α) ∈ l(y, β)

f̃x(α) = f̃y(β) ⇔ ((x, α) <′ (y, β) ∧ f̃y(β) = |(x, α)| ∧ f̃y(β) /∈ l(x, α)) ∨

((y, β) <′ (x, α) ∧ f̃x(α) = |(y, β)| ∧ f̃x(α) /∈ l(y, β)) ∨

(x, α) = (y, β)

IV.2 Ordinal function generators (OFGs)

In this section, we look at ordinal expressions and ordinal function generators as
introduced in Setzer [25]. These tools are then used to obtain ordinal notations, and
to relate the functions (gx : x ∈ Q̃) to the ϑ-function. Before we review Definition
and Lemma 2.5 from Setzer [25], we start with a specific instance of what is later
called an ordinal function generator (OFG).

Below, we define a set of ordinal expressions A and a well-ordering <′ on A. Then,
we assign to each a ∈ A an ordinal G(a).

Definition IV.2.1. The set A is defined as follows.

(i) Σasc := {0} ∪ {〈α0, . . . , αk〉 : α0 ≤ . . . ≤ αk} (we identify 0 with 〈〉).

(ii) A := Σasc ∪ Q̃× Ω.

The intended value of an ordinal expression a ∈ A is given by G(a) defined below.

Definition IV.2.2. We define G : A→ Ω as follows.

(i) G(0) := 0,

(ii) G(〈α0, . . . , αk〉) := ωαk+ . . .+ωα0,

(iii) G(x, α) := g̃x(α).
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Definition IV.2.3. We extend the well-ordering (QH , <) to (A,<′) as follows.

(i) If a ∈ Σasc and b ∈ Q̃× Ω, then a <′ b,

(ii) 〈α0, . . . , αk〉 <′ 〈β0, . . . , βl〉 iff αk < βl or there is an i < min{k, l} so that
〈ak−i, . . . , ak〉 = 〈bl−i, . . . , bl〉 and ak−i−1 < bl−i−1.

(iii) (x, α) <′ (b, β) iff x < y ∨ (x = y ∧ α < β).

We point out that for a, b ∈ Σasc, a <
′ b iff G(a) < G(b).

Next, we extend |·|, k and l from QH × Ω to A by saying what these functions do
with elements in Σasc.

Definition IV.2.4. If σ := 〈α0, . . . , αk〉, then k(σ) := {α0, . . . , αk}. In case that
α0 is a limit and lh(σ) = 1, then l(σ) = ∅, and if α0 is not a limit or lh(σ) > 1, then
l(σ) := k(σ). Further, k(0) = l(0) = ∅, and |σ| := max(k(σ)) (where max(∅) := −1).

Note that k(a) is a finite set of ordinals. Further, if k(a) 6= ∅, then
⋃
k(a) = |a|, and

as α+1 = α∪ {α}, |a| ∪ k(a) = |a| ∪ {|a|} = |a|+1, and moreover, since l(a) ⊆ k(a),
we have that |a| ∪ l(a) = |a| if |a| /∈ l(a), and |a| ∪ l(a) = |a|+1 if |a| ∈ l(a). That
all this also holds for k(a) = ∅, we let for each X ⊆ Ord, −1 ∪ X := X , and we
consider −1 ⊆ X as true, and −1 ∈ X as false.

The quadruple OH := (A,<′, k, l) is an ordinal function generator in the sense of
the next definition. Definitions IV.2.5 and IV.2.8, and Lemma IV.2.7 correspond
to Lemma 2.5 in Setzer [25]. As there, if f is a function and X ⊆ dom(f), then
f [X ] := {f(x) : x ∈ X}. Further, X ⊆fin Y states that X is a finite subset of Y .

Definition IV.2.5. A quadruple O := (Arg, <′, k, l) consisting of a well-ordering
(Arg, <′) and functions k, l so that for each a ∈ Arg, l(a) ⊆ k(a) ⊆fin Ord, is called
an ordinal function generator (OFG). By recursion on (Arg, <′) we simultaneously
define for each a ∈ Arg a set C(a) ⊆ Ord, and a function eval : Arg → Ord.
Further, we define sets NF,Cl and Arg[Cl] ⊆ Arg. If we want to indicate that the
objects eval, C,NF,Cl and Arg[Cl] are induces by the OFG O, we denote them by
evalO, CO,NFO,ClO and Arg[ClO], respectively.

(i) C0(a) = |a| ∪ l(a), Cn+1(a) = {eval(b) : b <′ a ∧ k(b) ⊆ Cn(a)} and
C(a) :=

⋃
n<ω C

n(a). Further, eval(a) := min{α : α /∈ C(a)}.

(ii) NF := {a ∈ Arg : |a| < eval(a)}.

(iii) Cl0 := ∅, Cln+1 := {a ∈ NF : k(a) ⊆ eval[Cln]} and Cl :=
⋃
n<ω Cl

n.

(iv) Arg[Cl] := {a ∈ Arg : k(a) ⊆ eval[Cl]}.
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Since |a| ⊆ C(a), eval(a) ≥ |a|. So if b /∈ NF, then eval(b) = |b| ∈ k(b). Further, as
k(a) is finite, C(a) is the least set X so that

|a| ∪ l(a) ⊆ X and {eval(b) : b ∈ NF ∧ b <′ a ∧ k(b) ⊆ X} ⊆ X

(if b /∈ NF ∧ b <′ a ∧ k(b) ⊆ X , then already eval(b) = |b| ∈ k(b) ⊆ X). Also by the
finiteness of k(a), Cl ⊆ NF is the least set Y so that {a ∈ NF : k(a) ⊆ eval[Y ]} ⊆ Y .

Lemma IV.2.6. If C0(b) ⊆ C(a) and b <′ a, then C(b) ⊆ C(a).

Proof Assume that C0(b) ⊆ C(a) ∧ b <′ a. We show (∀n ∈ N)Cn(b) ⊆ C(a) by
induction on n. for n = 0 there is nothing to show, and if eval(c) ∈ Cn+1(b) \Cn(b),
then c <′ b <′ a and k(c) ⊆ Cn(b) ⊆I.H. C(a), hence eval(c) ∈ C(a). ✷

Lemma IV.2.7.

(i) C(a) is an initial segment of the ordinals.

(ii) eval↾NF is injective.

(iii) eval[Cl] is an initial segment of the ordinals.

(iv) For a, b ∈ NF we have

eval(a) < eval(b) ⇔ (a <′ b ∧ |a| < eval(b)) ∨ (b ≤′ a ∧ eval(a) ≤ |b|).

(v) For a, b ∈ Arg[Cl],

eval(a) < eval(b) ⇔ (a <′ b ∧ |a| < eval(b)) ∨ eval(a) < |b| ∨ eval(a) ∈ l(b)

eval(a) = eval(b) ⇔ (a <′ b ∧ eval(b) = |a| ∧ eval(b) /∈ l(a)) ∨

(b <′ a ∧ eval(a) = |b| ∧ eval(a) /∈ l(b)) ∨

a = b

Proof (i) To prove that C(a) is an ordinal, we show by induction on a w.r.t. <′ and
side induction on n that (∀α ∈ Cn(a))(α ⊆ C(a)). Note that if C(a) is an ordinal,
then eval(a) = C(a). C0(a) = |a| ∪ l(a) is either |a| or |a|+1, hence an ordinal.
Thus, if α ∈ C0(a), then α ⊆ C0(a) ⊆ C(a). If eval(b) ∈ Cn+1(a) \ Cn(a), then
b <′ a and k(b) ⊆ Cn(a), so |b| ∈ Cn(a) and l(b) ⊆ Cn(a). By side I.H., |b| ⊆ C(a),
thus |b| ∪ l(b) = C0(b) ⊆ C(a), so by Lemma IV.2.6, C(b) ⊆ C(a). As b <′ a, the
main I.H. yields that C(b) is an ordinal. Therefore eval(b) = C(b) ⊆ C(a).

(ii) Assume that a, b ∈ NF, b <′ a and eval(a) = eval(b). We have |b| < eval(b) =
eval(a) =(i) C(a), so k(b) ⊆ C(a). Since b <′ a, eval(b) ∈ C(a) = eval(a), contra-
dicting eval(a) = eval(b)!
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(iii) We show by main induction on a w.r.t. <′ and side induction on n that Cn(a) ⊆
eval[Cl]. This implies the claim: if a ∈ Cl and β < eval(a), then for some n,
β ∈ Cn(a) ⊆ eval[Cl]. Fix a ∈ Cl. By definition of Cl, l(a) ⊆ k(a) ⊆ eval(a),
in particular, |a| ∈ eval[Cl]. Thus, |a| = eval(b) ∈ eval(a) for some b ∈ Cl. If
a <′ b, then k(a) ⊆ C(b) would entail eval(a) ∈ C(b)! Hence b <′ a, and by
I.H., eval(b) = C(b) ⊆ eval[Cl]. That is, C0(a) = |a| ∪ l(a) ⊆ eval[Cl]. And if
eval(c) ∈ Cn+1(a) \ Cn(a) for some c, then c <′ a and k(c) ⊆ Cn(a) ⊆s.I.H. eval[Cl].
As eval(c) 6= |c|, c ∈ Cl follows. Hence Cn+1(a) ⊆ eval[Cl].

(iv) Assume that a, b ∈ NF. Left-to-right. Assume eval(a) < eval(b). Then |a| <
eval(b). If a <′ b we are done, and if b ≤′ a, then also b <′ a. If we had |b| < eval(a),
then b ∈ C(a), contradicting eval(a) < eval(b), so eval(a) ≤ |b|.
Right-to-left. a <′ b and |a| < eval(b) implies eval(a) ∈ C(b) = eval(b), therefore
eval(a) < eval(b). And if eval(a) ≤ |b|, the claim follows from |b| < eval(b).

(v) Using (iv) and proceeding as in the proof of Lemma IV.1.12. ✷

We like to point out that (v) becomes much simpler if we have that l(a) = k(a).
In this case, |a| < eval(a), α ∈ l(a) implies α ≤ |a|, and α = |a| implies α ∈ l(a).
Hence, if a, b ∈ Arg[Cl] ∧ l(a) = k(a) ∧ l(b) = k(b), then eval(a) = eval(b) ⇔ a = b,
and

eval(a) < eval(b) ⇔ (a <′ b ∧ |a| < eval(b)) ∨ eval(a) ≤ |b|.

Knowing that eval↾Cl is injective, we can assign to each a ∈ Arg[Cl] a finite set
k0(a) ⊆ Cl as done below, so that eval[k0(a)] = k(a). Further, length(a) assigns to
each a ∈ Arg[Cl] a length that is bigger than the length of each b ∈ k0(a).

Definition IV.2.8. k0(a) := eval−1[k(a)]∩Cl and l0(a) := eval−1[l(a)]∩Cl. Further,
length(0) := 0, and if 0 6= a ∈ Arg[Cl], then length(a) = max(length[k0(a)])+1.

IV.2.1 The OFG OH := (A,<′, k, l)

Now we look at the OFG OH := (A,<′, k, l) with A = Σasc ∪ Q̃×Ω, and k and l as
specified by Definition IV.2.4. Below, NF, Cl and eval are w.r.t. the OFG OH . We
aim to show that for each a ∈ A, eval(a) = G(a).

By definition, eval(a) is the least ordinal not in C(a), that is, if a = (x, α), then by
definition of C(a) and since C(a) is an ordinal, eval(a) is the least ordinal ξ so that
|a| ∪ l(a) ⊆ ξ and for each b <′ a with |b| < ξ, also eval(b) < ξ. Exactly the same
holds for G(a).

Lemma IV.2.9. For each A ∋ a := (x, α) ∈ Q̃ × Ω, we have that G(x, α) = ξ0,
where

ξ0 := min{ξ ⊇ |a| ∪ l(a) : (∀b <′ a)(|b| < ξ ⇒ G(b) < ξ)}.
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Proof By Lemmas III.5.6 and IV.1.19, we have that G(x, α) ⊇ |a| ∪ l(a) and that
b <′ a ∧ |b| < G(x, α) implies G(b) < G(x, α), hence ξ0 ≤ G(x, α). Next, we show
that G(x, α) ≤ ξ0. If (x, α) = (q1, 0), G(q1, 0) = g̃q1(0) = (sh ◦ it)(g, 0) = g′(0) = ε0,
and ε0 ≤ ξ0 follows, as it is readily seen that ξ0 ∈ E. If (x, α) 6= (q1, 0), then we
provide a sequence (bi ∈ A : i ∈ I) with supi∈IG(bi) = G(x, α) and for each i ∈ I,
G(bi) < ξ0. We do so by a case distinction on the form of (x, α).

(i) α is a limit. Then l(x, α) = k(x), hence |x| < ξ0 and α ≤ ξ0. For each β < α,
let bβ := (x, β). Then, for each α < β, (x, β) <′ (x, α) and |(x, β)| < ξ0, so
also G(x, β) < ξ0. And by Lemma III.5.4 (i), supβ<αG(x, β) = G(x, α) (recall
that G(x, β) is gx(ω(1+β)) if deg(x) = 1 and o(x) = 1, and gx(β) otherwise).

(ii) (x, α) = (y+1, β+1). Then l(x, α) = k(x, α), |(x, α)| < ξ0, and as ξ0 ∈ E,
ξ0 > β+ω. Further, we have that G(x, α) = gx(γ0 + ω) for γ0 := ω(1+β).
Let b0 := 〈1, (x, β)〉 and bn+1 := (y,G(bn)) if deg(y) = 1 and o(y) = 1, and
bn+1 := (y[G(bn)], 0) otherwise. Note that G(bn) is a limit and thus bn ∈ Q̃×Ω.
By induction on n, we show that G(x, γ0+n) ≤ G(bn) < ξn. As 〈1, (x, β)〉 <′

(x, α) and |〈1, (x, β)〉| < ξ0, we have G(x, γ0) < G(b0) = G(〈1, (x, β)〉) < ξ0.
And if G(bn) < ξ0, then |bn+1| < ξ0, so as bn+1 <

′ (x, α), also G(bn+1) < ξ0.
If G(x, γ0+n) < G(bn), then G(x, γ0+n+1) is either below G(y,G(bn)) or
G(y[G(bn)], 0) by definition of it and since it(gy, γ0) ∈ g′y.

(iii) o(x) = γ and α = 0. For each β < γ, let bβ := (x[β], ω). Then, for each β < γ
(x[β], ω) <′ a and |(x[β], ω)| < ξ0, hence G((x[β], ω)) < ξ0. Using Lemma
III.5.4 and III.5.3 yields that G(x, 0) = supβ<γG(bβ).

(iv) o(x) = γ and α = β+1. Then, l(x, α) = k(x, α) and |(x, β+1)| < ξ0. We
let b0 := 〈0, (x, β)〉, b1 := G(x[ξ], G(bξ)+ω), if 1 < ξ > γ, then bξ+1 :=
G(x[ξ], G(bξ)), and if γ′ < γ, bγ′ := G(x[γ′], G(b0)). Similar as in case (ii), one
shows by transfinite induction on ξ using Lemma III.5.4 that for each ξ < γ,
G(bξ) < ξ0, and that ξ0 = supξ<γG(bξ).

✷

The above holds also for a ∈ Σasc.

Lemma IV.2.10. For each a ∈ Σasc, we have that G(a) = ξ0, where

ξ0 := min{ξ ⊇ |a| ∪ l(a) : (∀b <′ a)(|b| < ξ ⇒ G(b) < ξ)}.

Proof Again, G(x, α) ⊇ |a| ∪ l(a), and as a ∈ Σasc, b <
′ a implies that also b ∈ Σasc,

and so G(b) < G(a). Hence, ξ0 ≤ G(a). Next, we show that G(a) ≤ ξ0. If a = 0,
the claim is readily checked, and if G(a) ∈ E, then |a| = G(a) ≤ ξ0. In case that
G(a) /∈ E, then a = 〈α0, . . . , αk〉. If α0 = 0, then b := 〈α1, . . . , αk−1〉 <′ a and
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k(b) < ξ0, so G(b) < ξ0, thus G(a) = G(b)+1 ≤ ξ0. If α0 = β+1, then l(a) = k(a),
and we have for each bn := 〈β . . . , β, α1, . . . , αk−1〉 of length k+n that b <′ a and
|b| < ξ0, hence G(bn) < ξ0. As G(a) = supn(G(bn)), G(a) ≤ ξ0 follows. And if
α0 = γ, then either a = 〈γ〉, or lh(a) > 1 and l(a) = k(a) and |a|+1 ≤ ξ0, hence
for each β < γ, bβ := 〈β, α1, . . . , αk〉 <′ a and |bβ | < ξ0, thus G(bβ) < ξ0. Again, as
G(a) = supβ<γG(bβ), G(a) ≤ ξ0 follows. ✷

Combining the two previous lemmas yields the following.

Corollary IV.2.11. For each a ∈ A, we have that G(a) = ξ0, where

ξ0 := min{ξ ⊇ |a| ∪ l(a) : (∀b <′ a)(|b| < ξ ⇒ G(b) < ξ)}.

The following is now readily obtained by induction on (A,<′).

Lemma IV.2.12. For each a ∈ A, eval(a) = G(a).

Proof Let a ∈ A and suppose that the claim holds for each b <′ a with b ∈ A. By
the above corollary,

eval(a) = min{ξ ⊇ |a| ∪ l(a) : (∀b <′ a)(|b| < ξ ⇒ eval(b) < ξ)} =IH

min{ξ ⊇ |a| ∪ l(a) : (∀b <′ a)(|b| < ξ ⇒ G(b) < ξ)} = G(a).

✷

Summing up, we can characterize the ordinal eval[Cl] = G[Cl] in the following way.

Corollary IV.2.13.

(i) eval[Cl] = G[Cl] is the least ordinal Λ so that for each (x, α) ∈ Q̃ × Ω with
|(x, α)| < Λ, also g̃x(α) < Λ.

(ii) For a ≺ b :⇔ eval(a) < eval(b), the map eval : (Cl,≺) → (eval[Cl],∈) is an
order-isomorphism.

IV.2.2 Fixed point free variants of the functions (g̃x : x ∈ Q̃)

Let O = (Arg, <′, k, l) be some OFG. In some sense, for a ∈ Arg \ NF, eval(a) is a
fixed point of eval, as eval(a) ∈ k(a). Note that if |a| ∈ l(a) for some a ∈ Arg, then
C0(a) = |a| ∪ l(a) = |a| ∪ {|a|} = |a|+1, and therefore |a| < eval(a), that is a ∈ NF.
In particular, if k and l agree on A0 ⊆ Arg, then A0 ⊆ NF.

Next, we consider the OFG OH′ = (A,<′, k, lH′) which is obtained from the OFG
OH = (A,<′, k, l) by changing l to lH′ according to the following definition. We
examine how evalH := evalOH

and evalH′ := evalO′

H
relate. In order to describe this

relationship, we consider the order-isomorphism introduced in the next lemma.
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Definition IV.2.14. Let OH = (A,<′, k, l) be the OFG from the previous subsec-
tion, and

lH′(a) :=

{
k(a) : a ∈ Q̃× Ω,

l(a) : a /∈ Q̃× Ω.

Further, OH′ := (A,<′, k, lH′), and evalH′ := evalOH′
, ClH′ := ClOH′

and NFH′ :=
NFOH′

.

Hence lH′↾(Q̃× Ω) = k↾(Q̃× Ω) and thus Q̃× Ω ⊆ NFH′.

Given a well-ordering (X,<) (so it makes sense to speak about x+1 := x+<1 and
x+n) which is closed under successors, and a set L ⊆ X of elements without an
immediate <-predecessor (0 or a limit), we consider a canonic order-isomorphism
between (X,<) and (X \ L,<): to an x ∈ L, we simply assign x+1, and to obtain
an order-isomorphism, an element of the form x+n for x ∈ L is mapped to x+n+1.

Lemma IV.2.15. Let (X,<) be a well-ordering where X is closed under successor,
and L ⊆ X a set of elements without an immediate <-predecessor. Then, the map
⊕L : (X,<) → (X \ L,<), given by

x⊕L 1 :=




x+1 : (∃y ∈ L)(∃n ∈ N)(x = y+n),

x : else,

is an order-isomorphism.

Next, let L := (Q̃ × Ω) \ NFH (so (Q̃ × Ω) ∩ NFH = (Q̃ × Ω) \ L). Note that
(x, α)+n = (x, α+n). Hence, for δ ∈ Lim(Ω) ∪ {0}, (x, δ+n) ⊕L 1 is (x, δ+n) if
(x, δ) ∈ NF, and otherwise, (x, δ+n)⊕L 1 = (x, δ+n+1).

Below, list some further simple observation.

Lemma IV.2.16. Let ⊕ := ⊕L (for L := (Q̃× Ω) \ NFH). Then we have the
following for each a ∈ A = Σasc ∪ (Q̃× Ω).

(i) If 〈〉 6= a ∈ Σasc, then a+1 ∈ Σasc and |a| = |a+1|.

(ii) If a ∈ Q̃× Ω, then a+1 ∈ Q̃× Ω and |a| ≤ |a+1| ≤ |a|+1.

(iii) a+1 ∈ NFH , a+1 ∈ NFH′, and Q̃× Ω ⊆ NFH′.

(iv) evalH(a) < evalH(a+1).

(v) If a ⊕ 1 = a, then a ∈ Σasc, or a ∈ Q̃ × Ω and a = b+n for b = 0 or some
limit b ∈ NFH .
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(vi) If a ∈ Q̃× Ω, then a⊕ 1 ∈ NFH .

Proof (i) Note that if a ∈ Σasc, then a+1 = 〈0〉 ∗ a. (ii) As (x, α)+1 = (x, α+1).
(iii) l(a+1) = k(a+1) and |a| ≤ |a+1|, hence C0(a+1) = |a+1| ∪ l(a+1) = |a+1| ∪
k(a+1) = |a+1|+1 ≥ |a|+1, so evalH(a+1) > |a|, that is, a+1 ∈ NFH . Analogously,
a+1 ∈ NFH′ . Q̃×Ω ⊆ NFH′ follows from lH′↾(Q̃×Ω) = k↾(Q̃×Ω). (iv) As a <′ a+1
and |a| ≤ |a+1| < evalH(a+1), the claim is by Lemma IV.2.7. (v) If a ∈ Q̃ × Ω
is not of the form a = b+n for b = 0 or b ∈ NF a limit, then a = c+n for some
limit c /∈ NFH , i.e. c ∈ L, the and so a ⊕ 1 6= a! (vi) If a ⊕ 1 = a+1, this is by
(iii). If a⊕ 1 = a, then a = b+n for some b ∈ NFH , and then |b| < evalH(b) implies
|b+n| ≤ |b|+n < evalH(b) < evalH(a). ✷

Lemma IV.2.17. Let ⊕ := ⊕(Q̃×Ω)\NFH
. For all a ∈ A, evalH′(a) = evalH(a⊕ 1).

Proof By induction on <′, we prove that CH′(a) = CH(a ⊕ 1) by showing by side
induction on n: (i) ∀nCn

H′(a) ⊆ CH(a⊕ 1) and (ii) ∀nCn
H(a⊕ 1) ⊆ CH′(a).

(i) First, we argue that C0
H′(a) ⊆ CH(a⊕1). If a⊕1 = a+1, then C0

H′(a) ⊆ |a|+1 ≤
evalH(a+1) = CH(a ⊕ 1). And if a ⊕ 1 = a, then either a ∈ Σasc and C0

H′(a) =
C0
H(a) ⊆ CH(a), or a ∈ Q̃×Ω and a ∈ NFH , and thus C0

H′(a) ⊆ |a| ∪ k(a) ⊆ CH(a).
Note that CH(a) and CH(a⊕ 1) are in E. Now,

Cn+1
H′ (a) = {evalH′(b) : b <′ a ∧ k(b) ⊆ Cn

H′(a)} ⊆IH

{evalH(b⊕ 1) : b <′ a ∧ k(b) ⊆ CH(a⊕ 1)} ⊆

{evalH(b⊕ 1) : b⊕ 1 <′ a⊕ 1 ∧ k(b⊕ 1) ⊆ CH(a⊕ 1)} ⊆

{evalH(b) : b <
′ a⊕ 1 ∧ k(b) ⊆ CH(a⊕ 1)} ⊆ CH(a⊕ 1).

(ii) First, we show that C0
H(a) ⊆ CH′(a). If a ⊕ 1 = a, then as l(a) ⊆ lH′(a),

C0
H(a) ⊆ C0

H′(a). And if a ⊕ 1 = a+1, then a = (x, α) ∈ NFH′ , so C0
H(a ⊕ 1) ⊆

|a|+1 < evalH′(a) = CH′(a). For the side-induction step, recall that CH′(a) is an
initial segment of the ordinals, and assume that Cn

H(a ⊕ 1) ⊆ CH′(a). To see that
Cn+1
H (a ⊕ 1) = {evalH(b) : b <′ a ⊕ 1 ∧ k(b) ⊆ Cn

H(a ⊕ 1)} ⊆ CH′(a), we need to
check that evalH(b) ∈ CH′(a) for each b with b <′ a ⊕ 1 and k(b) ⊆ Cn

H(a ⊕ 1).
If b <′ a (so a ⊕ 1 = a+1), then evalH(b) ≤ evalH(b ⊕ 1) =IH evalH′(b). As
|b⊕ 1| ≤ |a⊕ 1| ⊆ Cn

H(a⊕ 1) ⊆ CH′(a), also evalH′(b) ∈ CH′(a). And if b = a, then
either a /∈ NFH and evalH(a) = |a| ∈ CH′, or a = c+n+1 for some c /∈ NFH , and by
I.H., evalH(a) = evalH((c+n)⊕ 1) = evalH′(c+n) < evalH′(a) = CH′(a). ✷

Lemma IV.2.18. Let ⊕ := ⊕(Q̃×Ω)\NF
. Then evalH [ClH ] = evalH′ [ClH′ ].
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Proof evalH [ClH ] ⊆ evalH′[ClH′ ]: else, there is a least α ∈ evalH [ClH ] \ evalH′ [ClH′].
So α = evalH(a) for some a ∈ Cl and k(a) ⊆ evalH [ClH ]. As a ∈ NFH , |a| < α, hence
by I.H. k(a) ⊆ evalH′[ClH′ ]. Since a ∈ NFH′ and also α ≤ evalH(a⊕ 1) = evalH′(a),
a ∈ evalH′ [ClH′]!
evalH′ [ClH′] ⊆ evalH [ClH ]: else, there is a least α ∈ evalH′ [ClH′ ] \ evalH [ClH ]. So
α = evalH′(a) for some a ∈ ClH′ and k(a) ⊆ evalH′ [ClH′ ]. As a ∈ NFH′ , |a| < α,
hence by I.H. k(a) ⊆ evalH [ClH ]. Since α = evalH′(a) = eval(a ⊕ 1), and also
a⊕ 1 ∈ NFH , a ∈ evalH [ClH ]! ✷

With the previous two lemmas at hand, we readily obtain the following.

Lemma IV.2.19. Let ⊕ := ⊕(Q̃×Ω)\NF
. Then, ClH = {a⊕ 1 : a ∈ ClH′}.

Proof First we show that a ∈ ClH′ ⇒ a ⊕ 1 ∈ ClH . Assume that a ∈ ClH′. Then
|a| < evalH′(a) = evalH(a⊕ 1). Hence, a⊕ 1 ∈ NFH , and with k(a) ⊆ evalH′ [ClH′],
also k(a ⊕ 1) ⊆ evalH [ClH ]. Therefore, a ⊕ 1 ∈ ClH . For the converse direction,
we let a ∈ ClH and look for a b ∈ ClH′ with b ⊕ 1 = a. If a = a ⊕ 1, then
|a| < evalH(a ⊕ 1) = evalH′(a), so a ∈ NFH′ . As with k(a) ⊆ evalH [ClH ] also
k(a ⊕ 1) ⊆ evalH [ClH ] = evalH′[ClH′], a ⊕ 1 ∈ ClH′. And if a+1 = a ⊕ 1, then
a = b+n for some b /∈ NFH . As a ∈ ClH ⊆ NFH , n = m+1. Hence a = (b+m) ⊕ 1
for b+m ∈ ClH′ . ✷

Remark IV.2.20. Let L′ := g′x ∪ {0} if o(x) is a limit, and else, L′ := g′x. Then,
for x ∈ Q̃, evalH′(x, α) = g̃x(α ⊕L′ 1). Hence α 7→ g̃x(α ⊕L′ 1) is monotone and
g̃x(α⊕L′ 1) > |(x, α)|. We regard this function as a fixed point free variant of g̃x.

We conclude this section by presenting an OFG OH∗ , so that evalH′ = evalH∗ :=
evalOH∗ . Thereto, we use some notations form Rathjen and Vizcáıno [18]. This

allows to relate evalH∗↾(Q̃× Ω) to the ϑ-function in the next section.

Definition IV.2.21. The (finite) set EΩ(α) consists of the ε-numbers below Ω which
are needed for the unique representation of α in Cantor normal form.

(i) EΩ(0) := EΩ(Ω) := ∅,

(ii) EΩ(γ) = {γ}, if γ ∈ E ∩ Ω,

(iii) EΩ(α) := EΩ(αk) ∪ . . . ∪ EΩ(α1), if α =NF ω
αk+ . . .+ωα0.

Further, α∗ := max(EΩ(α) ∪ {0}).

Since ωα is additively principal, we have the following.

Lemma IV.2.22. For all α, β < Ω, we have that α ≤ β ⇒ α∗ ≤ β∗.
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Lemma IV.2.23. Let k∗(a) := {α∗ : α ∈ k(a)}, l∗(a) := {α∗ : α ∈ lH′(a)}, and
OH∗ = (A,<′, k∗, l∗). Then, evalH′ = evalH∗ , and NFH∗ = NFH′, ClH∗ = ClH′ and
A[ClH∗ ] = A[ClH′ ].

Proof First, observe that for a ∈ Σasc, evalH∗(a) = G(a) (this is shown similar as
Lemma IV.2.10). So for a ∈ Σasc, evalH∗(a) = evalH′(a). Next, we let a ∈ Q̃ × Ω
and show by induction on α: α∗ ∈ CH∗(a) iff α ∈ CH∗(a). If α ∈ E, then α = α∗

and we are done. Else, a = 〈〉 and the claim holds trivially, or α =NF ω
βk+ . . .+ωβ0

with β0 ≤ . . . βk < α. Then b := 〈β0, . . . , βk〉 <′ a. If α∗ ∈ CH∗(a), then as

α∗ = β∗
k , also β

∗
0 , . . . , β

∗
k ∈ CH∗(a), so by I.H., ~β ∈ CH∗(a), that is |b| ∈ CH∗(a),

hence evalH∗(b) = α ∈ CH∗(a).
Replacing H∗ by H ′ in the above argument yields that for each a ∈ A, α∗ ∈ CH′(a)
iff α ∈ CH′(a). Now the CH′(a) = CH∗(a) is immediate by the definition of these
sets. ✷

IV.3 How to obtain a notation system for G[ClH ]

In this section, we sketch how to define notations for the ordinals in G[ClH ]. Essen-
tially by course of value recursion, we define a primitive recursive well-ordering
(O,✁) that is order-isomorphic to (evalH [ClH ],∈). It is however convenient to
actually have an ordering (O′,✂) that is order-isomorphic to (A[ClH ],�), where
a � b :⇔ evalH(a) ≤ evalH(b).

First, we consider a slightly more general form of course of value recursion. Towards
its formulation, let [x, y] := 1

2
(x+y)(x+y+1)+y be Cantor’s pairing function with

associated projections [·]0 and [·]1, that is, if z = [x, y], then [z]0 = x and [z]1 = y.
Recall that [·, ·] is bijective and monotone in both arguments. Further, [0, 0] = 0.

The course of value of a function f(n) is the function f(n) := 〈f(0), . . . , f(n−1)〉.
Then, with g(n) also the function f(n) with f(n) = g(f(n), x) is primitive recursive.
When working with binary functions (characteristic functions of binary relations),
it is convenient to consider the following form of course of value recursion.

Definition IV.3.1. Let f(0, 0) := 〈〉 and for {x, y} 6= {0},

f(x, y) := 〈f([0]0, [0]1), . . . , f([n]0, [n]1)〉, where n := [x, y]−1.

Lemma IV.3.2. Assume that g(x) is primitive recursive. Then also the function
f(x, y) with f(x, y) = g(f(x, y), x, y).

Similar to standard course of value recursion, we can also define functions by si-
multaneous recursion. We can of course combine this with standard course of value
recursion.
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Lemma IV.3.3. If gi(~x) (0 ≤ i ≤ k+l) are k+l+2ary primitive recursive functions,
then also fi and hj (0 ≤ i ≤ k, 0 ≤ j ≤ l) with

(i) fi(x, y) = gi(f 1(x, y), . . . , fk(x, y), h1([x, y]), . . . , hl([x, y]), x, y),

(ii) hj([x, y]) = gj(f 1(x, y), . . . , fk(x, y), h1([x, y]), . . . , hl([x, y]), x, y).

Using such a simultaneous recursion, we define codes for ordinals and names, and
orderings on names and ordinals. In order to keep codes of names distinct from
codes of ordinals, we use two different kinds of sequence numbers. Namely, 〈. . .〉,
which yields even numbers, and (. . .), which yields odd numbers. Below, p : N → N
is the primitive recursive function that enumerates the prime numbers.

Definition IV.3.4. For each n ∈ N, 〈. . .〉n : Nn → N and (. . .)n : Nn → N, where
〈〉 := 0, () := 1, and

(i) 〈x0, . . . , xn−1〉n := 2 ·Πi<np(i)
xi+1 and (x0, . . . , xn−1)n := 2 ·Πi≤n+1p(i)

xi+1+1,

(ii) lh(〈x0, . . . , xn−1〉n) := lh((x0, . . . , xn−1)n) := n,

(iii) π((〈x0, . . . , xn−1〉n), i) := π((x0, . . . , xn−1〉n), i) := xi (i < n).

seq〈〉 :=
⋃
n rng(〈. . .〉n) and seq() :=

⋃
n rng((. . .)n)), and we write (x)i for π(x, i).

For both kinds of sequences, concatenation is denoted by ∗, e.g. (a, b)∗(c) = (a, b, c).

We use (· · · ) to code names, so names are coded by odd numbers, and 〈· · · 〉 to code
ordinals, so ordinals are coded by even numbers. 〈〉 = 0 is a code of the ordinal 0,
and () := 1 is a code for the name q0. Further, we use 3 as a code for −1.

Below, we also make use of finite sets. The idea is that they are coded as finite
sequences. If X is a finite set (or a finite sequence respectively), then X < a states
that for each x ∈ X , x < a. Further, we let σ, τ range over elements of seq〈〉, and
x, y, . . . over elements of seq().

Next, we define primitive recursive subsets O′′, Q′′, Σ′′
asc and L′′ of the natural

numbers. The idea is that O′′ is a set that has the structure of the codes O′ of
A[Cl], Σ′′

asc ⊆ O′′ has the structure of (the codes of) Σasc, Q
′′ has he structure of

QH , and L′′ the structure of limit ordinals. Then, we define primitive recursive

functions ô, d̂eg, k̂, l̂ength, which do on codes what the functions o, deg, k, length
do on names and ordinals, respectively. It is readily seen that these sets and the
functions are primitive recursive.

Definition IV.3.5. By simultaneous recursion, we define the set O′′, Q′′, Σ′′
asc, L

′′,

and the functions ô, d̂eg, k̂ and l̂ength.

(i) q0 ∈ Q′′, 0 ∈ Σ′′
asc and 0 ∈ O′′. Further, ô(q0) := 1, and d̂eg(q0) := 0.
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(ii) If a0, . . . , ak ∈ O′′, then σ := 〈a0, . . . , ak〉 ∈ Σ′′
asc and σ ∈ O′′, and

if a0 6= 0, then 〈a0, . . . , ak〉 ∈ L′′.

(iii) If a0, . . . , ak ∈ O′′ and x0, . . . , xk ∈ Q′′, then ((a0, x0), . . . , (ak, xk)) ∈ Q′′.

(iv) If x = ((a0, x0), . . . , (ak, xk)) or x /∈ Q′′, then ô(x) := d̂eg(x) := 0. Else,

if x = ((a0, x0), . . . , (ak, xk)) and a0 ∈ L′′, then ô(x) := a0 and d̂eg(x) := 1;

if a0 /∈ L′′, then ô(x) := ô(x0) and d̂eg(x) = d̂eg(x0)+1.

(v) If x ∈ Q′′ and a ∈ O′′, then 〈x, a〉 ∈ O′′ and 〈x, a〉 ∈ L′′.

(vi) k̂(q0) = ∅, k̂(〈a1, . . . , ak〉) := k̂(a1) ∪ . . . ∪ k̂(ak), k̂(x, a) = k̂(x) ∪ {a}, and
k̂((x1, . . . , xk)) := k̂(x1) ∪ . . . ∪ k̂(xk). Otherwise, k̂(m) = ∅.

(vii) l̂ength(0) := l̂ength(q0) := 0,

for 0 6= a ∈ O′′, l̂ength(a) := max({l̂ength(a) : a ∈ k̂(a)})+1, and

for 1 6= x ∈ Q′′, l̂ength(x) := max({l̂ength(a) : a ∈ k̂(x)})+1.

Next, we define an auxiliary function x 7→ x[0], and then l̂ : N → N.

Definition IV.3.6. First, let x 7→ x[0] so that for each x = ((α0, x0), . . . , (αk, xk)),

(i) if ô(x) ∈ L′′ ∧ α0 ∈ L′′, then x[0] := ((1, x0), . . . , (αk, xk)),

(ii) if ô(x) ∈ L′′ ∧ α0 = 1, then x[0] := ((α0, x0[0]), . . . , (αk, xk))

(iii) if ô(x) ∈ L′′ ∧ α0 = β+1∧ β 6= 0, then x[0] := ((1, x0[0]), (β, x0), . . . , (αk, xk)),

(iv) and else, x[0] := x.

Secondly, let l̂ : N → N so that

(i) if lh(σ) = 1 ∧ (σ)0 ∈ L′′, then (σ) := ∅, and else, l̂(σ) := k̂(σ).

(ii) l̂(x) := k̂(x),

(iii) if a ∈ L′′, then l̂(〈x, a〉) = k̂(x),

(iv) if ô(x) ∈ L′′ ∧ a = 0, then l̂(〈x, a〉) = k̂(x[0]) ∩ k̂(x),

(v) if ô(x) /∈ L′′ ∨ 0 6= a, then l̂(〈x, a〉) = k̂(〈x, a〉).
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Below, we define the primitive recursive ordering (O′,✁′). It is defined by a simul-
taneous recursion, in which course we also define other primitive recursive sets and
orderings. The names for these sets and relations are overloaded, except for O′, O,
✁ and ≃. O′ (in contrast to O) contains also codes of elements in A[ClH ] \ NFH ,
and a ≃ b expresses that a and b are codes of elements in A[ClH ] that evaluate to
the same ordinal.

Further, we use the following abbreviations. Below, Q̃, QH and Σasc are overloaded
and denote the sets of the codes of the corresponding names and ordinals.

(i) x ∈ Q̃ is short for x ∈ QH ∧ (x 6= q0 ∨ (d̂eg(x) > 1 → ô(x) ∈ L′′).

(ii) a ∈ O is short for a ∈ O′ ∧ k(a)✁ a.

(iii) a✂ b is short for a✁ b ∨ a ≃ b, where a ≃ b is defined below so that a ≃ b iff
a and b code the same ordinal. Hence if a, b ∈ O, then a ≃ b iff a = b.

(iv) a ∈ Σasc is short for a ∈ seq〈〉, and a ∈ Q′×O is short for (a)0 ∈ Q′∧ (a)0 ∈ O.

Further, recall that for any ordering <, the derived ordering <lex orders finite se-
quences as follows (cf. Definition II.1.1): σ := 〈a0, . . . ak〉 <lex 〈b0, . . . bl〉 =: τ iff
there is an i ≤ min{k+1, l} so that 〈ak+1−i, . . . ak〉 = 〈bl+1−i, . . . bl〉 and further,
i ≤ k → ak−i < bl−i.

Definition IV.3.7. By simultaneous recursion, we define (among other sets and
relations) the set O′, QH , ✁, ≃, <H and <′, where QH , <H and <′ get overloaded.

(i) 〈〉 ∈ Σasc, 〈〉 ∈ O′ and () ∈ QH .

(ii) If a0, . . . , ak ∈ O and a0 ✂ . . .✂ ak, then σ := 〈a0, . . . , ak〉 ∈ Σasc ⊆ O′.

(iii) If a0, . . . , ak ∈ O and x0, . . . , xk ∈ QH and x1 <
H . . . <H xk, then

x := ((α0, x0), . . . , (αk, xk)) ∈ QH .

(iv) If x ∈ Q̃ and a ∈ O, then 〈x, a〉 ∈ O′.

(v) |̂a| := 3 (the code for −1) if k̂(a) = ∅ and else, |̂a| := max✁(k̂(a)).

(vi) (a, x)⋖ (b, y) iff x <H y ∨ (x = y ∧ a✁ b).

(vii) x <H y iff x⋖lex y.

(viii) σ <′ τ iff σ ✁lex τ , 〈x, a〉 <′ 〈y, b〉 iff x <H y ∨ x = y ∧ a✁ b, and σ <′ (x, a).

(ix) a✁ b :⇔ (a <′ b ∧ |̂a|✁ b) ∨ a✁ |̂b| ∨ a ∈ l̂(b)), and 3✁ z iff a 6= 3.
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(x) a ≃ b iff a <′ b ∧ b ≃ |̂a| ∧ b /∈ l̂(a) or b <′ a ∧ a ≃ |̂b| or a = b.

Next, we assign to each a ∈ O′ and ordinal expression, and to each x ∈ O′ a name.

Definition IV.3.8. For each a ∈ O′ and each x ∈ O′, define f(a) and f(x) as
follows.

(i) f(〈〉) := 0 and f(()) := q0,

(ii) f((α1, x1), . . . , (αk, xk)) := 〈(f(α1), f(x1)), . . . (f(α1), f(x1))〉.

(iii) f(〈a1, . . . , ak〈) := 〈f(α1), . . . , f(αk)〉,

(iv) f(〈x, a〉) := (f(x), f(a)).

The following is then readily checked.

Lemma IV.3.9. f : (O′,✂) → (A[ClH ],�), where a � b :⇔ evalH(a) ≤ evalH(b),
and evalH ◦ f : (O,✁) → (evalH [ClH ],∈) are order-isomorphisms.

Proof First, we let Q̃[ClH ] := {x ∈ Q̃ : k(x) ⊆ evalH [ClH ]}, and extend the function
length : A[ClH ] → N (cf. Definition IV.2.8) to names as well by setting length(q0) :=
0, and if 0 6= x and x ∈ Q̃[ClH ], then length(x) := max(length[k0(x)])+1.

Now, an easy induction on l̂ength(a) yields that for each a ∈ (O′ ∪ Q̃), l̂ength(a) =
length(f(a)), and further, k̂(v) = k(f(v)) and l̂(v) = l(f(v)). Another easy induc-

tion on l̂ength(a) then yields that for each a ∈ (O′ ∪ Q̃), l̂ength(a) = l̂ength(b) ∧
f(a) = f(b) implies a = b, thus f : O′ ∪ Q̃ → A[ClH ] ∪ Q̃[ClH ] is injective. That
f is also surjective is shown by induction on the length length(w) of the output
w ∈ A[Cl] ∪ Q̃[ClH ].

By a simultaneous induction on l̂ength(a)+l̂ength(b) and l̂ength(x)+l̂ength(y) one
next shows that a ✁ b iff f(a) < f(b), x <H y iff f(x) <H f(y), and a <′ b iff

f(a) <′ f(b). Then, we also have that a ∈ O (i.e. a ∈ O′ ∧ |̂a| ✁ a), iff f(a) ∈
A[ClH ] ∧ k(f(a)) < f(a) iff f(a) ∈ ClH .

This yields that f : (O′,✂) → (A[ClH ],�) is an order-isomorphism. As by Lemma
IV.2.7, evalH : (ClH ,≺) → (evalH [ClH ],∈) is an order-isomorphism, the second
claim follows as well. ✷

It is not hard, but a bit cumbersome to turn this into a full-fledged notation system.
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IV.4 Finding notations for the ordinals gx(α)

The notation system is based on the functions g̃x, however, in our proofs in Chapter
II and III we used the functions gx instead. Therefore, we need to know what
notation corresponds to the ordinal gx(α): given (x, α) ∈ QH

N0
× Ω, we need an

ordinal expression v(x, α) ∈ A[Cl] so that gx(α) = Gv(x, α) := G(v(x, α))G(v(x, α)),
where G : A → Ω is the function form DefinitionIV.2.2, and Cl and eval are w.r.t.
the OFG OH = (A,<′, k, l) from subsection IV.2.1.
Further, the (coded version of the) function v should already be provably total in
ACA0. Moreover, ACA0 should be able to prove the following for each α, β ∈ eval[Cl],
and x, y ∈ QH

N0
with (x, 0), (y, 0) ∈ A[Cl] and o(y) = γ0:

(i) α < β implies Gv(x, α) < Gv(x, β),

(ii) Gv(x, γ) = supα<γGv(x, α), and

(iii) for each γ ≤ γ0, Gv(y[δ0+γ], α+1) = supξ✁γsξ, where s0 = Gv(y[δ0+γ0], α)+1,
sξ+1 := Gv(y[δ0+ξ], sξ) and for γ′ < γ0, sγ′ := Gv(x[δ0+γ

′], s0) = supξ<γ′sξ.

These properties are used in the proofs of Lemma III.7.9 and III.7.10 (ii), and the
corresponding results in Chapter II. The reason why these properties are required
is that ACA0 does not know that gx is normal. Within ACA0 we cannot argue using
properties of the functions (gx : x ∈ QH). We just know how to compare notations
v(x, α) and v(y, β) which correspond to the ordinals g̃x(α) and g̃y(β) (where g̃x = gx
if o(x) ∈ Lim(Ω) or deg(x) > 1 or x = q0, and g̃y+1(α) = gx(ω(1+α)).

It is convenient to extendG toG : A∪({q0}×Ω) by settingG(q0, α) := g(α). Further,
for this subsection, we let Ω := eval[Cl] = G[Cl] and α, β, . . . , γ range over eval[Cl]
(now Ω), where again, γ, γ′, possibly with subscripts, range over limit ordinals.
Moreover, for a, b ∈ A, we let a ≺ b :⇔ G(a) < G(b). Note the by regarding Ω as
eval[Cl], A becomes A[Cl] and Q′ becomes {x ∈ Q′ : k(x) ⊆ eval[Cl]} = {x ∈ Q′ :
(x, 0) ∈ A[Cl]}.

In order to ensure that the function v : QH
N0

× Ω → Ω is provably total in ACA0,
we define it by recursion on ‖(x, α)‖t, where (for N0 > 1) ‖·‖t : QH

N0
× Ω → ωN0 is

defined below.

Definition IV.4.1. Let N0 > 0. First, we define |·|Q : QH
N0

→ ωN0 as follows: if
x = q0 ∨ o(x) ∈ Lim(Ω), then |x|Q := 0, and otherwise,

(i) for n > 0, |(n, x)|Q := ω|x|Qn and |(γ+n, x)|Q := ω|x|Qn,

(ii) if k > 1, then |〈x1, x2, . . . , xk〉|Q = |x1|Q+|〈x2, . . . , xk〉|Q.
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Now, we define ‖·‖t : QH
N0

× Ω → ωN0 as follows: if (x, α) is good (cf. Defini-
tion IV.1.6), then ‖(x, n)‖t := 0, and else ‖(x, n)‖t := |x|Q+n and ‖(x, γ+n)‖t :=
|x|Q+n.

The following properties of ‖ · ‖ and ‖·‖t are readily checked.

Lemma IV.4.2. For each (x, α) ∈ QH
N0

× Ω,

(i) If |x|Q = 0, then x = q0 or o(x) ∈ Lim(Ω).

(ii) ‖(q0, α)‖t < ω, and if N0 > 0, then ‖(x, α)‖t < ωN0,

(iii) if deg(x) > 1 and o(x) = 1, then ‖(x[1+α], 0)‖t < ‖(x, α)‖t,

(iv) for all γ, γ′ and α, ‖(x, γ)‖t < ‖(x+1, 0)‖t, ‖(x, γ′+1)‖t < ‖(x+1, γ+1)‖t, and

‖(x+1, α+1)‖t < ‖(x+1, α+2)‖t.

Next, we define v : QH × Ω → A[Cl] by recursion on ‖·‖t so that gx(α) = Gv(x, α).

Definition IV.4.3. v : QH × Ω → A[Cl] is defined as follows.

(i) v(q0, α) = 〈1+α〉, v(x+1, ω(1+α)) = (x+1, α), and if o(y) ∈ Lim(Ω), then

v(y, α) := (y, α).

(ii) If deg(z) > 1 and o(z) = 1, then v(z, α) = v(z[1+α], 0).

(iii) v(x+1, 0) = v(x,G(v(x, 0))), v(x+1, γ+1) = v(x,G(v(x+1, γ))+1) and

v(x+1, α+2) = v(x,G(v(x+1, α+1))).

It is in general not obvious how v(x, α) and v(y, β) compare. However, if the ordinal
argument is a limit, the following cases are quite easy.

Lemma IV.4.4. Let (x, α) ∈ QH × Ω. Then we have the following.

(i) v(x, ω(1+α)) ≺ v(x, ω(1+β)) iff α < β.

(ii) v(x, ω(1+α)) � v(x+1, ω(1+α)), and

v(x, ω(1+α)) ≺ v(x+1, ω(1+α)) iff α < G(x+1, α).

(iii) If γ := G(x+1, α), then G(v(x, γ)) = γ.

Proof All claims follows by applying the definition of v and then Lemma IV.2.7 (v).
✷

To learn more about v, we start with a couple of simple observations.
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Lemma IV.4.5. Let (x, γ) ∈ QH × Ω, a ∈ A[Cl], and z ∈ QH with deg(z) > 1 and
o(z) = 1.

(i) If v(x, α) 6= (x, α), then v(x, α) <′ (x, α).

(ii) v(x, γ) � (x, γ) � v(x, ωγ). Hence if ωω ≤ γ ∈ HZ, then ωγ = γ and thus
Gv(x, γ) = G(x, γ).

(iii) If α < β and γ′ < γ, then v(x+1, γ′) ≺ v(x+1, γ), v(z, γ′) ≺ v(z, γ), and
v(z[γ′], α) ≺ v(z[γ], β).

Proof (i) By induction on ‖(x, α)‖t. (ii) and (iii) are immediate by the definition of
v and Lemma IV.2.7. ✷

Lemma IV.4.6. Let (x, γ) ∈ QH × Ω, a ∈ A[Cl].

(i) If x❀∗ y, then x < y and |x| ≤ |y|.

(ii) If x❀∗ y, then v(x, ω) ≺ v(y, ω).

(iii) If o(z) = γ, then y ❀∗ z, then v(y, ω) ≺ (z, 0).

Proof (i) It suffices to check that x ❀ y entails x < y and |x| < |y|, which is
straightforward. (ii) By (i) and Lemma IV.2.7. (iii) Assume that o(z) = γ and
y ❀∗ z. Then by (i), (y, ω) <′ (z, 0) and |(y, ω)| ≤ |(z, 0)| ≤ G(z, 0). In case that
|(z, 0)| = G(z, 0), then G(z, 0) = γ and γ /∈ l(z, 0) = k(z[0]). So for each α < γ,
|z[α]| < γ. As y ❀∗ z[α] for some α < γ, also |(y, ω)| ≤ |(z[α], ω)| < γ. Thus in any
case, |(y, ω)| < G(z, 0), so v(y, ω) � (y, ω) ≺ (z, 0). ✷

With the above auxiliary result at hand, the following is readily shown by induction
on |x|Q.

Lemma IV.4.7. Let δ ∈ Lim(Ω) ∪ {0}. Then v(x, δ+n) ≺ v(x, δ+ω).

Proof By induction on |x|Q. This is immediate by Lemma IV.2.7 if x = q0 or o(x) =
γ. If deg(x) > 1 and o(x) = 1, then v(x, δ+n) = v(x[δ+n], 0) ≺IH v(x[δ+n], ω) ≺
v(x[δ+ω], 0). And if x = y+1 we show the claim by side-induction on n. For
the case n = 0 and δ = 0, let γ := Gv(y, 0) and γ′ := Gv(y, ω). By the main
I.H., γ < γ′, and further, by Lemma IV.4.4 (ii), γ′′ := Gv(y+1, ω) > γ′. Hence,
v(y+1, 0) = v(y, γ) ≺ v(y, γ′) ≺ v(y, γ′′), and by Lemma IV.4.4 (iii), Gv(y, γ

′′) = γ′′.
If n = 0 and δ ∈ Lim, then the claim is obvious, and if n = 1 and δ ∈ Lim, then
for γ′ := Gv(y+1, δ), γ′ < Gv(y+1, δ+ω) ∈ E, thus also γ′+ω < Gv(y+1, δ+ω).
Therefore |v(y, γ′+ω)| < Gv(y+1, δ+ω), and thus v(y, γ′+ω) ≺ v(y+1, δ+ω). Now
Gv(y+1, δ+1) = Gv(y, γ

′+1) <IH Gv(y, γ
′+ω) < Gv(y+1, δ+ω) follows.
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For the side induction step, note that v(y+1, δ+n+1) = v(y, v(y+1, δ+n)). By side
I.H., v(y+1, δ+n) ≺ v(y+1, δ+ω), hence by the main I.H., v(y,Gv(y+1, δ+n)) ≺
v(y,Gv(y+1, δ+ω)). The claim follows as Gv(y,Gv(y+1, δ+ω)) = Gv(y+1, δ+ω) by
Lemma IV.4.4 (iii). ✷

For the next lemma, we need a slight generalization of the auxiliary Lemma IV.4.6.
Observe that v(q0, ω) = v(q1, 0) = 〈ω〉. Further, we have the following.

Lemma IV.4.8. If x, y ∈ QH
N0

and q0 ❀
∗ x❀∗ y, then v(x, ω) ≺ v(y, 0).

Proof By induction on |y|Q. Let q0 ❀∗ x ❀∗ y. If |y|Q = 0, then o(y) = γ,
so v(y, 0) = (y, 0), and v(x, ω) ≺ v(y, 0) is by Lemma IV.4.6 (iii). If y = z+1,
then v(y, 0) = v(z, γ) for γ := Gv(z, 0). If x = z, then ω < γ, and so v(x, ω) =
v(z, ω) ≺ v(z, γ) = v(y, 0). And if x 6= z, then x ❀∗ z, and by Lemma IV.4.6 (ii),
v(x, ω) � v(z, ω) ≺ v(z, γ) = v(y, 0). Finally, if o(y) = 1 and deg(y) > 1, then
v(y, 0) = v(y[1], 0). As |y[1]|Q < |y|Q and y[0] ❀∗ y[1], the I.H. yields v(y[0], ω) ≺
v(y[1], 0). As x ❀∗

r y[0], v(x, ω) � v(y[0], ω) by Lemma IV.4.6 (ii). Therefore,
v(x, ω) ≺ v(y[1], 0) = v(y, 0). ✷

Lemma IV.4.9. Let δ ∈ Lim(Ω) ∪ {0} and n > 0. Then v(x, δ) ≺ v(x, δ+n).

Proof By induction on |x|Q. This is clear if x = q0. If o(x) = γ, then v(x, δ) = (x, δ)
and v(x, δ+n+1) = (x, δ+n+1), and the claim is by Lemma IV.2.7. If deg(x) > 1
and o(x) = 1, then by Lemma IV.4.8 and IV.4.7, v(x, δ) = v(x[1+δ], 0) ≺IH

v(x[1+δ], ω) ≺ v(x[1+δ+n], 0) = v(x, δ+n). Finally, if x = y+1, then we show
the claim by side-induction on n ≥ 1. First, we consider the case δ = 0. v(y+1, 1) =
v(y, γ′) for γ′ := Gv(y, 0) and by Lemma IV.4.7, v(y, 0) ≺ v(y, ω) � v(y, γ′). And
in case that δ ∈ Lim(Ω) is a limit, then for γ′ := Gv(y+1, δ), v(y+1, δ+1) =
v(y, γ′+1) ≻IH v(y, γ′) = γ′ by Lemma IV.4.4 (iii). For the side-induction step,
observe that for γ′ := Gv(y+1, δ+n), v(y+1, δ) ≺IH v(y+1, δ+n) � v(y, γ′) =
v(y+1, δ+n+1). ✷

An easy induction on n now yields the following.

Lemma IV.4.10. Let δ ∈ Lim(Ω) ∪ {0}. Then v(x+1, δ+n) ≺ v(x+1, δ+n+1).

Proof By induction on n. We just consider the case δ = γ. If n = 0, v(x+1, δ) ≺
v(x+1, δ+1) is by Lemma IV.4.7. The induction step: v(x+1, γ+n+2) = v(x, γ′)
for γ′ := Gv(x+1, γ+n+1)). By I.H., γ′′ := Gv(x+1, γ+n)) < γ′, so also γ′′+1 < γ′.
Hence, using Lemma IV.4.4 (ii), v(x+1, γ+n+1) � v(x, γ′′+1) ≺ v(x+1, γ′) =
v(x+1, γ+n+2). ✷

Finally, we show that notations v(x, a) also behave as expected when it comes to
taking supremas.

140



Lemma IV.4.11. Let x, y ∈ QH , where o(y) = ω(1+α). Then,

(i) Gv(x+1, ω(1+α)) = G(x+1, α) = supξ<ω(1+α)Gv(x+1, ξ), and

(ii) Gv(y, 0) = G(y, 0) = supξ<ω(1+α)Gv(y[ξ], 0).

Proof (i) If α ∈ Lim(Ω), then in view of Lemma IV.4.7 and IV.4.9, we have that
supξ<ω(1+α)Gv(x+1, ξ) = supξ<αGv(x+1, ω(1+ξ)) = supξ<α)G(x+1, ξ) = (x+1, α).
So it remains to deal with the case where α = 0 or α = β+1. We show by induction
on the length length(a) of a ∈ Cl that if a ≺ (x+1, α), then there is an n so that
a ≺ v(x+1, n). The proof depends on whether α = 0 or α = γ+1 or the successor
of a successor. Exemplarily we treat the case α = 0.
So assume a ≺ (x+1, 0). Either a <′ (x+1, 0) or (x+1, 0) <′ a. If (x+1, 0) <′ a,
then G(a) ≤ |(x+1, 0)|. Let γ := Gv(x, 0). As ωω ≤ γ ∈ HZ, we have ωγ = γ and
so v(x, ωγ) = v(x, γ). As |(x, 0)| ≤ G(x, 0) < G(x, γ), also G(a) ≤ |(x+1, 0)| <
G(x, γ) = Gv(x, γ) = Gv(x+1, 0). That is, a ≺ v(x+1, 0). Next, we consider
the case a <′ (x+1, 0). By I.H., eval−1(|a|) ≺ v(x+1, n) for some n. Now for
γ := Gv(x+1, n), a <′ (x, γ) and |a| < γ, hence G(a) < G(x, γ) = Gv(x, γ), so
G(a) < Gv(x, γ) ≤ Gv(x+1, n+1).

(ii) This time, if α ∈ Lim(Ω), supξ<ω(1+α)Gv(y[ξ], 0) = supξ<αGv(y[ω(1+ξ)], 0) =
supξ<αG(y[ω(1+ξ)], 0) = G(y, 0), and the claim is again by Lemma IV.4.7 and IV.4.9
and Lemma IV.2.7. Hence it remains to consider the case where ω(1+α) = δ+ω
for δ = 0 or δ ∈ Lim(Ω). Again, we show by induction on the length length(a)
of a ∈ Cl that if a ≺ (y, 0), then there is an n so that a ≺ v(y[δ+n], 0). If
(y, 0) <′ a, then G(a) < |(y, 0)|, thus G(a) < Gv(y[δ+n], ω) < Gv(y[δ+n+1], 0)
for some n. And if a <′ (y, 0), then a ≺ (y, 0) implies that G(a) < |(y, 0)|, and
G(a) < Gv(y[δ+n], ω) < Gv(y[δ+n+1], 0) for some n. That is, a ≺ v(y[δ+n+1], 0).

✷

Lemma IV.4.12. Suppose that y ∈ QH with o(y) = δ0+γ0. Further, let s0 :=
Gv(y, α)+1, for 0 < ξ < γ0, sξ+1 := Gv(y[δ0+ξ], sξ) and for each γ < γ0, sδ0+γ :=
Gv(y[δ0+γ], s0). Then, for each γ ≤ γ0, sγ = supξ<γsξ.

Proof We just consider the case δ0 = 0, the general case runs completely analogously.
Let γ′ := Gv(y, α) = G(y, α). Then s0 := γ′+1, hence for each ξ < γ0, G(y[ξ], γ

′) =
γ′ (cf. Lemma IV.2.7 (v)). Firstly, we show by induction on ξ < γ that G(y[γ], α+1)
is an upper bound of (sξ : ξ ✁ γ), i.e. that for each ξ < γ, sξ < G(y[γ], s0). As
s0 = γ′+1 < G(y[γ], γ′+1) = G(y[γ], s0) ∈ E, also s0+ω < G(y[γ], s0), and thus
s1 = Gv(y[0], s0) < Gv(y[0], s0+ω) < G(y[γ], s0) by Lemma IV.4.8. If 0 < ξ < γ,
then sξ is a limit. By I.H., sξ < G(y[γ], s0), hence sξ+1 = Gv(y[ξ], sξ) ✁ (y[γ], s0)
readily follows.
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Secondly, we show that G(y[γ], s0) is the least upper bound. By induction on the
length length(a) of a, we show that if a ≺ v(y[γ], s0) = (y[γ], s0), then already
G(a) < sξ for some ξ ✁ γ. Thus assume a ≺ (y[γ], s0). If (y[γ], s0) <

′ a, then
G(a) < |(y[γ], s0)| = s0 as s0 = G(y[γ0], α)+1. And if a <′ (y[γ], s0), then either
a = (y[γ], β) for β < s0, and then G(a) < s0, or a = (z, δ) for some z with z < y[γ].
As (by assumption) G(a) < G(y[γ], s0), |a| < G(y[γ], s0). By I.H. (on the length),
there is a ξ < γ so that |a| < sξ. We may assume that z < y[ξ]. Therefore,
G(a) < Gv(y[ξ], sξ) = sξ+1. ✷

Observe that in the above proof we employed transfinite induction up to γ0. This is
no problem, as the sequences (sξ : ξ ✁ γ0) play only a role in the proofs of Lemma
III.7.10 (ii) and the corresponding results in Chapter II. There, we prove in ACA0,
that under some additional assumptions, if x ∈ Q, deg(x) = 1 and o(x) = γ0, then
T̆x → Prog

✁
(Cx), where Cx := {α : Wo✁(gxh(α))}.

Recall that Q also contains names of degree one the form (β+1, (γ0, z)
−) ◦ y. Then,

xh = 1+xH = (β+1, (γ0, z
H)) ◦ yH : the degree of xh may increase, but still o(xh) =

γ0 (cf. Definition III.4.20). By definition, T̆x implies Wo❀∗(x), which as o(x) =
γ0, entails Wo✁(γ0). Therefore, in the context where the above lemma is applied,
Wo✁(γ0) is at hand. Also note that Wo✁(γ0) is already required to ensure that
(sξ : ξ ✁ γ0) is total.

IV.5 Relating g̃x and the ϑ-function

In this section, we will see that the the OFG OH∗ defined in Lemma IV.2.23 is
isomorphic to the OFG Oϑ = (Σasc ∪ εΩ+1, <ϑ, kϑ, lϑ), where εΩ+1 is the first ε-
number above Ω, and that evalOϑ

:= evalϑ is the ϑ-function from [18], p.538, for the
special case |X| = ∅.

We say that f is an isomorphism between the OFG O1 := (A1, <1, k1, l1) and the
OFG O2 := (A2, <2, k2, l2), if f : (A1, <1) → (A2, <2) is an order-isomorphism, and
for all a ∈ A1, k1(a) = k2(f(a)) and l1(a) = l2(f(a)). It is immediate that then
CO1(a) = CO2(f(a)), and therefore evalO1(a) = evalO2(f(a)).

Definition IV.5.1. Oϑ = (Aϑ, <ϑ, kϑ, lϑ) is defined as follows.

(i) Aϑ := Σasc ∪ εΩ+1,

(ii) <ϑ↾Σasc :=<
′↾Σasc and <ϑ↾εΩ+1 =∈↾εΩ+1.

(iii) For α ∈ εΩ+1, kϑ(α) := lϑ(α) := {α∗}, and for σ ∈ Σasc, kϑ(σ) := k(σ)
and l(σ) := l(σ), where k and l are as in Definition IV.2.4. Further, |a|ϑ :=
max(kϑ(a) ∪ {−1}).
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Recall that by definition of evalϑ(a), we have that evalϑ(a) is the least ξ so that
|a|ϑ ∪ lϑ(a) ⊆ ξ, and for each b ∈ Aϑ, if b <ϑ a and |b|ϑ < ξ, then evalϑ(b) < ξ.

Lemma IV.5.2. For each a ∈ Σasc ∪ εΩ+1,

evalϑ(a) := min{ξ : ξ > |a|ϑ ∪ lϑ(a) ∧ (∀b <ϑ a)(|b|ϑ < ξ ⇒ evalϑ(b) < ξ)}.

If σ ∈ Σasc and α ∈ εΩ+1, then σ <ϑ a. Hence (∀b <ϑ α)(|b|ϑ < ξ ⇒ evalϑ(b) < ξ)
splits into the two clauses

(i) (∀η < α)(η∗ < ξ ⇒ evalϑ(η) < ξ), and

(ii) (∀σ ∈ Σasc)(|σ|ϑ < ξ ⇒ evalϑ(σ) < ξ).

For σ ∈ Σasc, evalϑ(σ) := min{ξ : ξ > |σ|∪l(σ)∧(∀τ <ϑ σ)(|τ | < ξ ⇒ evalϑ(τ) < ξ)}.
Therefore, an easy induction on (Σasc, <ϑ) yields that evalϑ(σ) = evalH(σ) = G(σ).
Further, if α ∈ εΩ+1, then (ii) expresses that ξ is an ε-number. Hence, we have the
following.

Lemma IV.5.3. For each α ∈ εΩ+1,

evalϑ(α) := min{ξ ∈ E : ξ > α∗ ∧ (∀η < α)(η∗ < ξ ⇒ evalϑ(η) < ξ)}.

We use the ϑ-function from [18], p.538, for the special case where |X| = ∅.

Definition IV.5.4. The sets of ordinals Cn(α, β), C(α, β) and the ordinals ϑα are
defined for all n ∈ N and all ordinals α and β by recursion on α as follows.

(i) {0,Ω} ∪ β ⊆ Cn(α, β),

(ii) if ~ξ ∈ Cn(α, β) and ξ =NF ω
ξk+ . . .+ωξ0, then ξ ∈ Cn+1(α, β),

(iii) if ξ ∈ Cn(α, β) ∩ α, then ϑξ ∈ Cn+1(α, β),

(iv) C(α, β) =
⋃
n C

n(α, β),

(v) ϑα = min{ξ < Ω : C(α, ξ) ∩ Ω ⊆ ξ ∧ α ∈ C(α, ξ)} if there exists an ordinal ξ
so that C(α, ξ) ∩ Ω ⊆ ξ and α ∈ C(α, ξ); otherwise ϑα is undefined.

The next lemma collect some standard properties of the ϑ-function. This lemma is
taken form [18]. A proof can be found there.

Lemma IV.5.5. ϑα is defined for each α < εΩ+1. Further, for all α, β < εΩ+1,

(i) ϑα ∈ E,

(ii) α ∈ C(α, ϑα),
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(iii) ϑα = C(α, ϑα) ∩ Ω, and ϑα /∈ C(α, ϑα),

(iv) δ ∈ C(α, β) iff δ∗ ∈ C(α, β),

(v) α∗ < ϑα,

(vi) ϑα = ϑβ implies α = β,

(vii) ϑα < ϑβ iff (α < β ∧ α∗ < ϑβ) ∨ (β < α ∧ ϑα ≤ β∗).

(viii) β < ϑα iff ωβ < ϑα.

In order to relate ϑ to evalϑ, we slightly rewrite the definition of ϑα.

Lemma IV.5.6. For each α < εΩ+1,

ϑα = ξ0 := min{ξ ∈ E : ξ > α∗ ∧ (∀η < α)(η∗ < ξ ⇒ ϑη < ξ)}.

Proof By definition, ϑα = min{ξ < Ω : C(α, ξ) ∩ Ω ⊆ ξ ∧ α ∈ C(α, ξ)}. Knowing
that ϑα ∈ E, it suffices to let range ξ over E ∩ Ω. As further, α ∈ C(α, ξ) iff
α∗ ∈ C(α, ξ) ∩ Ω, we have that for each ξ ∈ E ∩ Ω,

C(α, ξ) ∩ Ω ⊆ ξ ⇔ (∀η < α)(η∗ < ξ ⇒ ϑη < ξ).

Moreover, given C(α, ξ)∩Ω ⊆ ξ, α ∈ C(α, ξ) iff iff α∗ < ξ. Thus the claim follows.
✷

Analogously to Lemma IV.2.12, we obtain by the following.

Lemma IV.5.7.

(i) For each a ∈ Aϑ ∩ Σasc, evalϑ(a) = evalH(a) = G(a).

(ii) For each α ∈ Aϑ ∩ εΩ+1, evalϑ(α) = ϑα.

Proof (i) See the discussion following Lemma IV.5.2. (ii) Let α ∈ Aϑ and suppose
that the claim holds for each β <ϑ α (i.e. β ∈ α) with β ∈ Aϑ. By the above
Lemma and Lemma IV.5.3, we obtain that for each α ∈ Aϑ ∩ εΩ+1,

evalϑ(α) = min{ξ ∈ E : ξ > α∗ ∧ (∀β <ϑ α)(β
∗ < ξ ⇒ evalϑ(β) < ξ)} =IH

min{ξ ∈ E : ξ > α∗ ∧ (∀β <ϑ α)(β
∗ < ξ ⇒ ϑβ < ξ)} = ϑα.

✷

Hence we have that evalϑ(α) = ϑα. To see that also evalH∗(α) = ϑα, we just have
to show that the OFG OH∗ is isomorphic to the OFG Oϑ. We start by defining an
order-isomorphism between (QH , <) and (εΩ+1,∈).
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Definition IV.5.8. We assign to each x ∈ QH an ordinal ‖x‖ below εΩ+1 as follows:

(i) ‖q0‖ := 0,

(ii) ‖〈(αk, xk), . . . , (α1, x1)〉‖ := Ω‖x1‖α1 + . . .+ Ω‖xk‖αk.

As we work with Q̃ rather than QH , we further need an order-isomorphism between
(QH , <) and (Q̃, <). To define it, let L := {x ∈ QH : deg(x) > 1 ∧ o(x) = 1}, so
each x ∈ L is a limit in (QH , <). It is readily seen that ⊕L : (QH , <) → (Q̃0, <) is
an order-isomorphism. An order-isomorphism between (QH , <) and (Q̃, <) is then
given by the function which maps 1+x to x⊕L 1, where for x ∈ QH , 1+x := x+1 if
x < (ω, q0), and 1+x := x if x ≥ (ω, q0).

We also give the reverse direction of the isomorphism that maps 1+x to x⊕L 1, in
order to define an order-isomorphism between (Q̃× Ω, <′) and (εΩ+1,∈).

Definition IV.5.9. Let L := {x ∈ QH : deg(x) > 1∧o(x) = 1}. Then i0 : Q̃0 → QH

and i1 : Q̃→ QH are defined as follows. If x = y+n+1 for some y ∈ L, then i0(x) :=
y+n, else i0(x) := x. And i1(x) := i0(x) if x ≥ (ω, q0), and i1(n+1, q0) := i0(n, q0).

An order-isomorphism between Q̃ × Ω and (εΩ+1,∈) is then provided by the map
‖x‖′ := ‖i1(x)‖, and an order-isomorphism between Q̃ × Ω and (εΩ+1,∈) is then
provided by the map (x, α) 7→ Ω‖x‖′+α.

Lemma IV.5.10. We have the following:

(i) (α+β)∗ = max(α∗, β∗), Ω∗ = 0 and (Ω+α)∗ = α∗.

(ii) (Ωα1β1+ . . .+Ωαkβk)
∗ = max{α∗

1, . . . , α
∗
k, β

∗
1 , . . . , β

∗
k}.

(iii) For each x ∈ Q̃, ‖x‖∗ = |x|∗ = (|x|′)∗.

Proof (i) is immediate by the definition of ·∗. (ii) Since Ωα = ωΩα, (Ωα)∗ = α∗. So,
as Ωαβ = ωΩα+β, (Ωα + β)∗ = max(α∗, β∗) by (i). Now (ii) follows from (i).
(iii) As |b⊕ 1| ≤ |b|+1 and α∗ = (α+1)∗, we just have to show the first equality,
which is done by induction on the build-up of x := 〈(β1, x1), . . . , (βk, xk)〉 ∈ Q̃:

‖x‖∗ = (Ω‖x1‖β1+ . . .+Ω‖xk‖βk)
∗ = max(β∗

1 , . . . , β
∗
k, ‖x1‖

∗, . . . , ‖xk‖
∗) =IH

max(β∗
1 , . . . , β

∗
k , |x1|

∗, . . . , |xk|
∗) = |x|∗.

✷

Finally, we can define the sought-after isomorphism t : OH∗ → Oϑ.
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Lemma IV.5.11. Let t : Σasc ∪ Q̃× Ω → Aϑ be as follows:

t(a) :=

{
a : a ∈ Σasc,

Ω‖x‖′+α : a = (x, α) ∈ Q̃× Ω.

Then, t : OH∗ → Oϑ is an isomorphism between OFGs.

Proof Since t : Σasc∪ Q̃×Ω → Aϑ is an order-isomorphism, it remains to check that
for each a ∈ Σasc ∪ Q̃ × Ω, k∗(a) = kϑ(t(a)) and l

∗(a) = lϑ(t(a)). However, this is
by Lemma IV.5.10 (iii). ✷

As further, by Lemma IV.2.23, evalH′ = evalH∗ and by Lemma IV.2.17, for ⊕ :=
⊕(Q̃×Ω)\NFH

and each a ∈ A[ClH ], evalH(a⊕ 1) = evalH′(a), we have the following.

Theorem IV.5.12. If x ∈ Q̃ and γ, |x| < εΩ+1, then evalH((x, α)⊕1) = ϑ(Ω‖x‖′+α).

All we actually use of this theorem are some the following instances. Recall that
gx := Hx(g) for g(α) := ω1+α. Below, qω2 := (1, qω1 ) = (1, (ω, q0)) is the name of the
functional Itω(it).

Corollary IV.5.13. Let x ∈ QH . If deg(x) > 1, x ≥ qω2 and |x| ≤ ε0, then we have
the following:

(i) gx+1(ω) = ϑ‖x‖,

(ii) if o(x) = 1, then gx(ω) = ϑ‖x[ω]‖ and gx(ε0) = ϑ‖x[ε0]‖.

Proof Since |(x, α)| ≤ ε0, we have that (x, α) ∈ Q̃ × Ω implies that (x, α) ∈ NFH ,
and so (x, α) ⊕L 1 = (x, α) for L := (Q̃ × Ω) \ NFH . Further, if deg(x) > 1 and
x > qω2 , then x[ω] ≥ qω2 , and if x ≥ qω2 , then ‖x‖ ≥ Ωω, and thus ‖x‖ = Ω‖x‖. Now
both claims easily follow:
(i) gx+1(ω) = g̃x+1(0) = evalH(x+1, 0) = evalH((x+1, 0) ⊕L 1). Since deg(x) > 1,
‖x+1‖′ = ‖x‖ by definition of ‖ · ‖′, hence the claim. (ii) As o(x) = 1 and γ ≤ ε0,
then gx(γ) = gx[γ](0) = g̃x[γ](0) = evalH((x[γ], 0) ⊕L 1). By definition of ‖ · ‖′,
‖x[γ]‖′ = ‖x[γ]‖. The claim follows. ✷

IV.5.1 The nary Veblen functions and (g̃x : x ∈ Q̃0 ∧ x < qω2 )

Since qω2 := (1, qω1 ) = q3[ω], we have by Corollary IV.5.13 that g̃x(0) = gx(0) =
Itω[it, g, 0] = ϑΩω is the small Veblen number. So, the functions (g̃x : x ∈ Q̃0∧x < qω2 )
relate to the nary Veblen functions: for L := {x ∈ QH : deg(x) > 1∧ o(x) = 1} and
x ∈ QH with x < qω2 , we have that g̃x⊕1 = ϕx, as we will show below (cf. Lemma
IV.5.15).

The following definition of the Veblen functions is taken from Setzer [24].
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Definition IV.5.14. [The k+2-ary Veblen function]
ϕk+2 : Ωk+2 → Ω is defined by recursion on the lexicographic ordering on Ωk+2.

(i) ϕk+2(0, . . . , 0, α0) := ω1+α0, and if αi+1 6= 0, then

(ii) ϕk+2(αk+1, . . . , αi+1, 0, . . . , 0, α0) is the α0th common fixed point of the func-
tions hα : Ω → Ω, (α < αi+1) with hα(ξ) := ϕk+2(αk+1, . . . , αi+2, α, ξ, 0, . . . , 0).

A name x ∈ QH with x < qω2 has to form x = 〈(β, q0)〉 ∗ 〈(αn1, q
n1
1 ), . . . (αnk

, qnk
1 )〉,

with n1 < . . . < nk, where β may be 0 (in which case (x)0 = (αn1, q
n1
1 ), as we write

(0, q0) for 〈〉). For the following, it is convenient to identify a k-tuple (αk, . . . , α1)
with the name 〈α1, q

0
1〉 ∗ 〈α2, q

1
1〉 ∗ . . . ∗ 〈αk, q

k−1
1 〉, where q01 = q0. Further, we write

ϕ(αk ,...,α1) for the function α0 7→ ϕ(αk, . . . , α0).

In order to formulate the next lemma, we let L := {x ∈ QH : deg(x) > 1∧o(x) = 1}
and ⊕ := ⊕L. Then, ⊕ : QH → Q̃0, and g̃x⊕1 is defined for all x ∈ QH .

Lemma IV.5.15. For each x ∈ QH with x < qω2 , g̃x⊕1 = ϕx.

Proof By induction on (QH , <). Recall that sh◦fix = fix (cf. Lemma I.3.15) and thus
g̃′x = g′x. By definition, ϕ2

(0) = g = g̃q0. If x 6= q0, we consider the following two cases.

Firstly, let y := (αk+1, . . . , α1) and x := y+1 (so x = (αk+1, . . . , α1+1)). Then,
ϕk+2
x = fix(ξ 7→ ϕk+2

y (ξ)) =IH g′y⊕1 = g̃x⊕1. Secondly, let x := (αk+1, . . . , αi+2+1,~0)

(that is, αi+1 = . . . = α1 = 0). Then x[ξ] = (αk+1, . . . , αi+2, 1+ξ,~0), and

ϕk+2
x = fix(ξ 7→ ϕk+2(αk+1, . . . , αi+2, 1+ξ,~0)) =IH

fix(ξ 7→ g̃x[ξ]⊕1(0)) = fix(ξ 7→ gx[ξ](0)) = g′x = g̃x+1 = g̃x⊕1.

Here, we used that ξ 7→ g̃x[ξ]⊕1 and ξ 7→ gx[ξ] have the same fixed points. As
only limit ordinals are fixed point candidates, and g̃x[γ]⊕1 = gx[γ] by definition, this

clearly is the case. Finally, let x = (αk+1, . . . , αi+2, γ,~0). Note that for αi+1 < γ,
x[αi+1] = (αk+1, . . . , αi+2, 1+αi+1,~0). This time, we have

ϕk+2
x =

⋂

αi+1<γ

fix(ξ 7→ ϕk+2(αk+1, . . . , αi+2, αi+1, ξ,~0)) =

⋂

αi+1<γ

fix(ξ 7→ ϕk+2(αk+1, . . . , αi+1, 1+ξ,~0)) =IH

⋂

αi+1<γ

g′
(αk+1,...,αi+2,αi+1+1,~0)⊕1

=L.III.5.3 g(αk+1,...,αi+2,γ,~0)
= gx = g̃x⊕1.

✷

All we actually use of this lemma are some the following instances. Below, we write
ϕαk+1 . . . α0 for ϕk+2(αk+1 . . . α0).
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Corollary IV.5.16. Let x ∈ QH . We have the following.

(i) g(n+1,q0)(ω) = ϕ(n+1)0 and g(n+1,q0)(ε0) = ϕ(n+1)ε0,

(ii) if deg(x) > 1 and o(x) = 1, then gx[γ] = ϕx[γ].

(iii) if deg(x) > 1 and o(x) = 1, then gx+1(ω) = ϕx0 and gx+1(ε0) = ϕxε0.

Proof Let L := {x ∈ QH : deg(x) > 1 ∧ o(x) = 1}. Note that (n+1, q0) ⊕ 1 =
(n+1, q0), and if deg(x) > 1 and o(x) = 1, then x⊕L 1 = x+1 and x[γ]⊕L 1 = x[γ].
Further observe that for each x ∈ QH , gx+1(ω) = g̃x+1(0) and gx+1(ε0) = g̃x+1(ε0),
and that gx[γ] = g̃x[γ]. The claim is now by the above lemma. ✷
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Part II

Bounds
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Chapter V

The infinitary systems (
∗
Tx : x ∈ Q)

In this chapter, we introduce most of the notions used to compute bounds of the
theories (Tx : x ∈ Q). For reasons discussed below, we work in a language L which
extends L2 by additional relation symbols U1,U2, . . . And since we are dealing with
cut-elimination, we introduce for each of the theories (Tx : x ∈ Q) a finitary and an
infinitary Tait-style system.

The notion of a bound f : Ω → Ω of Tx is tied to the infinitary Tait-style system
∗

Tx
corresponding to the theory Tx, and ceils the costs of eliminating cuts in the following
way: for each limit ordinal γ and each finite set Γ of arithmetical formulas,

∗

Tx
<γ

+
Γ =⇒

∗

Tx
<f(γ)

−
Γ,

where in the derivation on the left, the cut-rule is restricted to instances of axioms

of
∗

Tx and some further formulas that do not impede the cut-elimination process,
while the derivation on the right is cut-free. Since Γ is arithmetical, we also have
∗

Tǫ
<f(γ)

−
Γ.

We will see that the function gxh, which we have shown to be provable in Tx in the
first part, is also a bound of Tx. Moreover, if h is provable in Tx and f is a bound of
Tx, then h↾Lim(Ω) ≤ f↾Lim(Ω). Therefore, gxh is the largest normal function that
is provable in Tx, and at the same time, the least bound of Tx (in the sense that if f
is another bound, then gxh↾Lim(Ω) ≤ f↾Lim(Ω)). We call a normal function which
is provable in Tx, and at the same time a bound of Tx, a sharp bound of Tx.

In order to deal with the operation p1, we also stack theories on top of each other:
T1|T0 (“T1 over T0”) is essentially the theory Tǫ + T̆1 ∧ ∃X(T̆0↾X), that is, T1|T0

extends T1 by an axiom asserting that there is an ω-model of T0. For the subsequent
arguments it proves however more convenient to have an explicit class term for the
ω-model above T0, say {x : U1(x)}, where U1 is a fresh relation symbol. That is
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why we work in this second part mainly in the languages L which extends L2 by
additional relation symbols Ui(u) for each 0 < i, where U0 := U.

The motivation for stacking theories on top of each other is that the theory p1(T)
asserts that above each set Z there is a set X with Z∈̇X and T̆↾X . As a proof in
p1(T) makes only use of finitely many instances of this assertion, it seems at least
plausible that for each arithmetical L2-formula A with FV1(A) = ∅, p1(T) ⊢ A entails
that for some n ∈ N, A is already provable in Tǫ from the assumption that there
are sets X0∈̇ . . . ∈̇Xn with T̆↾Xi for each i ≤ n, and this assumption is provided by
the theory T| . . . |T︸ ︷︷ ︸

n

.

We start this chapter by having a closer look at theories of the form T1|T0 (we call
T1|T0 also the composition of T0 with T1, since if f0 is a sharp bound of T0 and f1
is a sharp bound of T1, then f0 ◦ f1 is a sharp bound of T1|T0).

V.1 The language L and composition of theories

In this second part, we work with the languages L which extends L2 by additional
relation symbols Ui(u) for each 0 < i, where U0 := U. Again, Ui denotes also the
class term {x : Ui(x)}. It is assumed that the free number variables of the language
L are u0, u1, . . ., and the free number variables are U0, U1, . . . Moreover, we extend
the theory Tǫ to the language L, which in particular means that we have an axiom
Ui(u) ∨ ¬Ui(u) for each i ∈ N.

In the sequel, we often care which relation symbols Ui occur in a formula A. The
relation symbols Ui are used to axiomatize theories of the form Tk| . . . |T0 (see Def-
inition V.1.6). We let S range over such theories which are also of the form Tǫ + S̆.

Definition V.1.1. We write A ∈ L to indicate that A is an L-formula. If an
L-theory S is given, then we say that A ∈ L(S), if A contains besides the relation
symbol U at most the relation symbols Ui that occur in S̆. The set of L(S)-literals is
denoted by Llit(S), and the set of arithmetical L(S)-formulas is denoted by LΠ1

0
(S).

It also proves convenient to consider the sets LeΠ1
n
and LeΣ1

n
of formulas that are

essentially Π1
n and essentially Σ1

n defined below.

Definition V.1.2. Let C be a set of L-formulas. Then, the set eΣ(C) is the smallest
superset of C that is closed under conjunction, disjunction and existential quantifi-
cation in both sorts. Accordingly, eΠ(C) is the smallest superset of C that is closed
under conjunction, disjunction, and universal quantification in both sorts. Further,
Σ(C) := {∃XA : A ∈ C′}, where C′ is C closed under conjunction and disjunction,
and Π(C) := {∀XA : A ∈ C′}.
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Note that A ∈ eΠ(C) iff ¬A ∈ eΣ(¬C).

Definition V.1.3. LeΣ1
0
:= LeΠ1

0
:= LΠ1

0
, and LeΣ1

n+1
:= eΣ(LeΠ1

n
) and LeΠ1

n+1
:=

eΠ(LeΣ1
n
).

It is obvious that over a theory T that implies arithmetical comprehension, each for-
mula in LeΣ1

n
is equivalent to one in LΣ1

n
with the same free variables. An analogous

result holds for the formulas in LeΠ1
n
.

Lemma V.1.4. Let A ∈ LeΣ1
n
. If S comprises (ACA), then there is an A′ ∈ LΣ1

n

with FV(A) = FV(A′) so that S ⊢ A↔ A′.

Remark V.1.5. Recall that in the first part, we said that A is Π1
2, if T

ǫ ⊢ A ↔ A′

for some Π1
2-formula A′ with FV(A) = FV(A′). As it is assumed that each theory

T implies arithmetical comprehension, we have e.g. that T̆ ∈ LeΠ1
n
implies that T̆

is Π1
n in the above sense. However, note that A is Π1

n does not imply A ∈ LeΠ1
n
:

for instance, let A := p2((ACA)) ∧ ∀x∃X∀y∃Y B for an arithmetical B. Then, A
is only in LeΠ1

4
, but A is Π1

3, as over p2(ACA0) (already Σ1
1-AC0), ∀x∃X∀y∃Y B is

equivalent to a Σ1
1-formula.

The purpose of the additional relation symbols in the language L is to have a
specific set term that denotes an ω-model of the theory S when we have a look at
the composition of S with T, or as we usually put it, the theory T|S (”T” over ”S”)
defined below.

Definition V.1.6. Assume that T,T0,T1, . . . are L2-theories that imply (ACA).
Then,

(i) T|Tǫ := T, and Tǫ|Tǫ := Tǫ.

(ii) if S := Tk| . . . |T0, then Tk+1|S := Tk+1 + S̆↾Uk+1 ∧ ∃X [X = Uk+1], and

Tǫ|S := Tǫ + S̆↾Uk+1, where S̆ is the axiom of S besides the axioms of Tǫ.

Further, T0 := Tǫ and Tn+1 := T|Tn. Moreover, T̆|S denotes the axiom of T|S
besides the axioms of Tǫ.

By induction on k it is readily observed that the theory Tk+1| . . . |T0 proves that
U0∈̇ . . . ∈̇Uk+1, that Ui is a set for each i ≤ k+1, and that T̆i↾Ui+1 for each i ≤ k.
This is the case as each Ti implies (ACA) and thus (ACA)↾Ui+1 for each i ≤ k.

Convention V.1.7. As before, T,T′,T0,T1, . . . range over L2-theories that imply
(ACA). Further, we let S range over L-theories of the form Tk| . . . |T0 or T or Tǫ.
If we introduce a theory as Tk| . . . |T0|S, then for 0 ≤ n ≤ k, Mn refers to Un in
case that S is Tǫ, and in case that S is Tk′| . . . |T0, then Mn refers to U(k′+1)+n; in
particular, M0 refers to Uk′+1 an is thus an ω-model of S.
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The theories T that we have encountered in the first part, say ACA0 and Opx(ACA0)
for x ∈ Q∗, have all the property that with T ⊢ A(U) also T ⊢ ∀XA(X), in
particular, T ⊢ TI✁(U, α) iff T ⊢ Wo✁(α). This is the case as all a theory T claims
about U is that it is a set, and further, the operations Opx do not treat any set
special.

As theories of the form T|T′ lack this property, we adjust the notion of a provable
function (cf. Definitions III.7.3 and III.7.2). To do so, we introduce composite names
to address theories of the form S := Tk . . . |T0, and we assign to each composite name
c a degree and a class term Cc (cf. Definition III.7.2).

Definition V.1.8. A composite name c of length n is an element of Qn (an n-tuple
(x1, . . . , xk) of names x1, . . . , xk ∈ Q). The empty composite name is denoted by ✷

and T✷ := Tǫ. And for c := (x1, . . . , xk), we let

(i) Tc := Tx1| . . . |Txk, and H
c := Hxk ◦ . . . ◦Hx1,

(ii) deg(c) := deg(x1), C
c := Cx1 and ch := (xh1 , . . . , x

h
k),

(iii) Prv0(c) := T̆c → ∀α[TI✁(Cc, α) ∧Wo✁(α) → TI✁(U, g
ch(α))], where

g(α) := ω1+α and gc
h
:= Hch(g). We say that Tc proves gc

h
, if Tǫ ⊢ Prv0(c).

If x0, . . . , xk ∈ Q, then (x0,✷) := x0 and (x0, (x1, . . . , xk)) := (x0, x1, . . . , xk).

We conclude this section by showing that for each composite name c, Tc proves gc
h
.

To show this, we use that if S ⊢ A, then Tǫ|S ⊢ M0 |= A, which is rather obvious.
We give a proof, though, but only after we have introduced Tait-style systems (cf.
Lemma V.2.8 (i)).

Lemma V.1.9. Let T := ACA0, g(α) := ω1+α and c a non-empty composite name.
Then Tc proves gc

h
.

Proof Since the composite name c is represented by a closed term, we have that
Tǫ ⊢ Prv0(c) iff Tc ⊢ TI✁(Cc, α) ∧Wo✁(α) → TI✁(U, g

ch(α)).
We prove the claim by induction on the length of c. If c = (x0) then the claim is by
Corollary III.7.16. Next, we assume that c := (x1, . . . , xk) is a non-empty composite
name so that Tc proves gc

h
and that x0 ∈ Q. We have to show Tx0|T

c ⊢ Prv0((x0, c)).
Thereto, we work informally in Tx0|T

c. To show that Prv0((x0, c)), assume that
TI✁(Cx0 , α) ∧ Wo✁(α), and aim for TI✁(U, g

ch(gxh0 (α))). By Corollary III.7.16, Tx0
proves gxh0 , therefore we obtain Wo✁(gxh0 (α)). As Tc proves gc

h
by assumption, we

have

Tc ⊢ ∀β[TI✁(Cx1 , β) ∧Wo✁(β) → TI✁(U, g
ch(β))].
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By the above remark (or Lemma V.2.8 (i)), we have for M0 := Uk,

(∗) Tx0|T
c ⊢ ∀β[TI✁(C

M0
x1
, β) ∧WoM0

✁
(β) → TI✁(U, g

ch(β))].

As CM0
x1

is a set, Wo✁(gxh0 (α)) yields TI✁(CM0
x1
, gxh0 (α)), and further, WoM0

✁
(gxh0 (α)).

Hence TI✁(U, g
ch(gxh0 (α))) follows by (∗). ✷

V.2 Finitary Tait-style systems

A Tait-style system for a theory S derives finite sets Γ,∆,Λ of L-formulas, also
referred to as sequents (cf. e.g. Tait [30]). We write A instead of {A}; Γ, A for Γ∪{A}
and Γ,∆ to abbreviate Γ∪∆. Further, for i ∈ {0, 1}, FVi(Γ) :=

⋃
{FVi(A) : A ∈ Γ}.

In similar fashion, we lift the functions ¬A, A[X /Y ], and A↾C from formulas to
sequents: for instance Γ↾C := {A↾C : A ∈ Γ}.

We map sequents to formulas as follows.

Definition V.2.1. If Γ := {A0, . . . , Ak−1}, then (Γ) :=
∨
i<k Aπ(i), where π is a

permutation on {0, . . . , k−1} so that pAπ(0)q < . . . < pAπ(k−1)q, and pAq is the
Gödelnumber of A. We consider two sequents Γ and ∆ as equivalent over some
theory T, if the corresponding formulas (Γ) and (∆) are equivalent over T. If Γ = ∅,
then (Γ) := ⊥.

The notion C |= A is lifted to sequents as follows.

Definition V.2.2. Let C be a class term of L, Γ a sequent of L-formulas with
FV1(Γ) \ FV1(C) = {V1, . . . , Vn} and Var a finite set of number variables. Then,

C |=Var Γ := ∆[(C)v1/V1, . . . , (C)vn/Vn], where ∆ := Γ↾C,

and v1, . . . , vn are the first variables w.r.t. some fixed enumeration that are not in
Var and do not occur in Γ↾C. Further, C |= Γ := C |=∅ Γ.

Note that due to the way we pick the fresh variables v1, . . . , vn, the sequent C |=
Γ ∪∆ may be different from the sequent C |= Γ, C |= ∆, which would be annoying.
However, if Var is the set of number variables that occur in (Γ,∆)↾C, then C |= Γ∪∆
is C |=Var Γ ∪ ∆ is C |=Var Γ, C |=Var ∆. Thus, if a sequent Γ,∆ is given, then we
read C |= Γ, C |= ∆ as C |=Var Γ, C |=Var ∆, where Var is a above.

All finitary Tait-style systems considered in this thesis share the axioms and rules of
the Tait-style system for Tǫ: for each atom A, each sequent Γ ⊇ {A,∼A} is an axiom
with main-formulas A and ∼A. Besides, we have axioms for the primitive recursive
function and relation symbols. We assume that the main-formulas of these axioms
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consist of literals only and are closed under substitution, i.e. if Γ(~u) is an axiom,
then so is Γ(~s) for all number terms ~s. The rules are the usual rules for conjunction,
disjunction and quantification in both sorts displayed below. A(v), B(V ), A1, A2, C
and the elements of Γ range over L-formulas and s, t over L-terms.

Γ, A(s)

Γ, ∃xA(x)
,

Γ, A(u)

Γ, ∀xA(x)
,

Γ, B(U)

Γ, ∃XB(X)
,

Γ, B(U)

Γ, ∀XB(X)
,

where U /∈ FV1(Γ, ∀XB(X)) and u /∈ FV0(Γ, ∀xA(x)) is required for the ∀-rules.
Additionally, we have

Γ, A1, A2

Γ, A1 ∨ A2

,
Γ, A1 Γ, A2

Γ, A1 ∧A2

, and
Γ, C Γ,¬C

Γ
(cut).

A formula displayed beside Γ in the conclusion of the above rules is called the main-
formula of this rule, and the formulas C and ¬C displayed in the cut-rule are referred
to as cut-formulas. Restricting the cut-rule to a certain set C of formulas means
that the cut-rule is only applicable if one of the cut-formulas is in C.

Next, we assign a Tait-style system to a theory S := Tǫ + S̆. We could consider the
extension of Tǫ by all sequents that contain the formula S̆. However, for reasons
related to cut-elimination, we do not want the main-formula of an axiom to be overly
complex. Instead of S̆, we consider the L-instances inst(S̆) of the theory S.

Definition V.2.3. The L-instances inst(A) of an L-formula A is the set of L-
formulas inductively defined as follows.

(i) If A is not of the form ∀XA′, ∀xA′ or A0 ∧ A1, then inst(A) := {A}.

(ii) inst(A ∧ B) := inst(A) ∪ inst(B), inst(∀XA(X)) :=
⋃
i∈N inst(A(Ui)) and

inst(∀xA(x)) :=
⋃
s∈L inst(A(s)), where s ∈ L states that s is an L-term.

We refer to inst(S̆) as the L-instances of the theory S.

Example V.2.4. p1(T̆) := ∀Z∃X [Z∈̇X ∧ T̆↾X ] ∧ pair ∧ trans. The instances of
p1(T̆)|S are thus the following:

(i) the instances of pair and trans, that is, ∃Y [Y = (U)s] and ∃Z[Z = U+V ]
(where U+V := {〈x, 0〉 : x ∈ U} ∪ {〈y, z+1〉 : 〈y, z〉 ∈ V }), for all set variable
U, V and each number term s.

(ii) ∃X [U∈̇X ∧ T̆↾X ] for each set variable U , and ∃X [X = M0], unless S is Tǫ.

(iii) the instances of S̆↾M0, unless S is Tǫ.

Observe that (i) and (ii) are Σ1
1, and (iii) are arithmetical.
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Definition V.2.5. The Tait-style system assigned to a theory S := Tǫ + S̆ extends
then Tǫ by axioms Γ, A for each A ∈ inst(S̆), where A is the main-formula of this
axiom. And S

n

∗
Γ states that there is a derivation of the sequent Γ of depth n,

where the cut-rule is only applied if one of the distinguished formulas of the cut-rule
is an element of inst(S̆).

The next result states some standard inversion properties of Tait-style systems.
Observe that formulas of the form A∧B, ∀XA(X) and ∀xB(x) are not L-instances
of S̆ and are thus not main-formulas of axioms of S.

Lemma V.2.6. Assume that the displayed formula A∨B below is not an L-instances
of S. Then, we have the following.

(i) If S
n

∗
Γ, ∀XA(X) and S

n

∗
Γ, ∀xB(x), then also S

n

∗
Γ, A(Ui) and

S
n

∗
Γ, B(s), for each i ∈ N and each s ∈ L.

(ii) If S
n

∗
Γ, A ∨B, then also S

n

∗
Γ, A, B.

Having a notion of derivation at hand allows us to also give a proof-theoretic proof
of Lemma I.1.9.

Lemma V.2.7. For each class term C, Tǫ|S ⊢ Γ ⇒ Tǫ|S ⊢ C |= Γ.

Proof By induction on the depth of the derivation. The only axiom of Tǫ|S, where
the main-formulas contain set variables is t ∈ U,¬t /∈ U . As C(t),¬C(t) is deriv-
able in Tǫ for each formula C, also t ∈ (C)u, t /∈ (C)u is provable. And if e.g.
Γ, ∀XA(X) with FV1(Γ, ∀XA(X)) = {V1, . . . , Vk} is obtained form Γ, A(U) with
U /∈ FV1(Γ, ∀XA(X)) by a ∀X-rule (we may also assume that U /∈ FV1(C)), then

by I.H. Γ↾C[C~v/~V ], A(U)↾C[Cu/U, C~v/~V ]}. As ~v, u are fresh and pairwise distinct

variables, a ∀x-rule yields Γ↾C[~V/C~v], ∀x(A(U)↾C[(C)x/U, C~v/~V ]). As (∀XA(X))↾C
is ∀x(A(U)↾C[(C)x/U ]), the claim follows. The other cases are similar or simpler. ✷

The following technical lemma will be used in the proof of Lemma VI.2.3, which
is a key step in the reduction of p1(T)

n

∗
Γ to Tn ⊢ Γ for an arithmetical Γ.

Since T|Tn+2 implies that T̆↾Un+2, but also that T̆↾Un+1, we can, under suitable
assumptions, substitute Un+2 for Un+1. Further, we have added a consequence of
the above result.

Lemma V.2.8.

(i) S ⊢ Γ =⇒ Tǫ|S ⊢ M0 |= Γ.

(ii) if Γ ⊆ L(Tn+2|S), then

Tǫ|Tn+1|S ⊢ Γ =⇒ Tǫ|Tn+2|S ⊢ Γ[Mn+2/Mn+1, . . . ,M2/M1].
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(iii) if Γ ⊆ L(T2|S), then Tǫ|Tn+1|S ⊢ Γ =⇒ Tǫ|Tn+2|S ⊢ Γ[M2/M1].

Proof (i) If S is Tǫ, this is by Lemma V.2.7. Else, S ⊢ Γ implies Tǫ ⊢ ¬S̆,Γ, and
thus Tǫ ⊢ ¬S̆↾M0,M0 |= Γ by the Lemma V.2.7. Hence Tǫ+ S̆↾M0 ⊢ M0 |= Γ, that is
Tǫ|S ⊢ M0 |= Γ. (ii) We show that Tǫ|Tn+2|S ⊢ Γ[Mn+2/Mn+1, . . . ,M2/M1] for each
axiom Γ of Tǫ|Tn+1|S. Then the claim follows easily by induction on the depth of the
derivation. The non-trivial case is if the main-formula of Γ is An := T̆n+1|S↾Mn+1.
We show by induction on n, that Tǫ|Tn+2|S ⊢ A′

n := An[Mn+2/Mn+1, . . . ,M2/M1],
that is, T̆n+2|S↾Mn+2 implies A′

n.
n = 0. T̆2|S↾M2 implies T̆↾M2 and M0∈̇M1∈̇M2 and T̆|S↾M1 and S̆↾M0. Since M2

satisfies (ACA), M2 is transitive, so M0∈̇M2, and T̆|S↾M2, that is, A0[M2/M1] i.e. A
′
0.

Next, assume that n > 0 and T̆n+2|S↾Mn+2 implies A′
n. Further observe that An+1 =

T̆↾Mn+2∧ T̆n+1|S↾Mn+1, so A
′
n+1 = T̆↾Mn+3∧ T̆n+1|S↾Mn+1[Mn+2/Mn+1, . . . ,M2/M1],

which is T̆↾Mn+3 ∧ A′
n. Now the induction step follows as T̆n+3|S↾Mn+3 implies

T̆↾Mn+3 and T̆n+2|S↾Mn+2, which by I.H. yields A′
n.

(iii) is immediate by (ii) as Mn+2, . . . ,M2 do not occur in Γ ⊆ L(T2|S). ✷

V.3 Infinitary Tait-style systems

An infinitary Tait-style system derives finite sets of L∗-formulas (L-formulas without
free number variables) usually denoted by Γ or ∆. We write s ∈ L∗ to indicate that
s is a closed number term of L∗ and A ∈ L∗ to indicate that A is an L∗-formula. Ac-
cordingly, L∗

Π1
0
(S) are the formulas in LΠ1

0
(S) without free number variables. Further,

an L-formula A is identified with the L∗-formula A∗ obtained from A by replacing
each free number variable un by the numeral n.

An infinitary Tait-style system imports the natural numbers N from the meta-theory
into the infinitary system via the ω-rule, which asserts that ∀xA(x) holds if A(n)

holds for all n ∈ N. As a consequence (cf. Pohlers [11]), the infinitary system
∗

Tǫ is
complete w.r.t. Π1

1-sentences of L
∗(T): if for each interpretation UN ∈ P(N) of the

relation symbol U, the Π1
1-sentence A is valid in the (standard) model of arithmetic

(P(N),N,UN), then
∗

Tǫ A.

In the standard model (N, . . .), each s ∈ L∗ evaluates to a natural number sN. Two
L∗-formulas are numerically equivalent if they are syntactically equivalent modulo
number terms which have the same value. Literals of L∗ that do not contain the
relation symbols (Ui : i ∈ N) and ∈ evaluate to true or false in the standard model.
Those that evaluate to true are referred to as the true literals of L∗, and those that
evaluate to false are referred to as the false literals.

The axioms of
∗

Tǫ are all the sequents of L∗-formulas of the form Γ, A and Γ, B,∼C,
where A is a true literal and B and C are numerically equivalent literals. The rules
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of
∗

Tǫ are the rules of Tǫ restricted to L∗-formulas, but with the ∀x-rule replaced by
the following rule, called ω-rule,

(ω-rule)
Γ, A(n) for all n ∈ N

Γ, ∀xA(x)
.

An infinitary Tait-style system corresponding to a finitary theory S then extends
Tǫ by axioms Γ, A, where A is now an L∗-instances inst∗(S̆) of S. The L∗-instances
of a formula A are defined similarly as the L-instances, but we close inst∗(A) under
numerical equivalence, and further, the definition is so that if A is a true literal,
then inst∗(A → B) := inst∗(B). With these modifications, the L∗-instances of the

infinitary systems
∗

Tx (x ∈ Q) are simple enouth to allow for a lean cut-elimination.

Definition V.3.1. The L∗-instances inst∗(A) of an L∗-formula A are inductively
defined as follows:

(i) If A is true literal or B is a true literal, then inst∗(A∨B) := ∅. If A is a false
literal and B is not a true literal, then inst∗(A∨B) := inst∗(B∨A) := inst∗(B).

(ii) inst∗(A ∧ B) := inst∗(A) ∪ inst∗(B), inst∗(∀XA(X)) :=
⋃
i∈N inst

∗(A(Ui)), and

inst∗(∀xA(x)) :=
⋃
s∈L∗ inst

∗(A(s)).

(iii) inst∗(A) := {B : A and B are numerically equivalent }, if neither (i) nor (ii)
applies.

We refer to inst∗(S̆) as the L∗-instances of theory S.

Definition V.3.2. If S is a theory, different form
∗

Tǫ, then the corresponding in-

finitary Tait-style system
∗

S extends
∗

Tǫ by axioms Γ, A, where Γ is a finite set of
L∗-formulas and A ∈ inst∗(S̆). Further, A is the main-formula of this axiom.

Next, we define when
∗

S
α

C
Γ, that is, when

∗

S proves a sequent Γ with depth α and
the cut-rule restricted to the set

cut(C, S) := {A(U) ∈ L∗(S) : A(V ) ∈ C ∪ ¬C} ∪ inst∗(S̆) ∪ ¬inst∗(S̆),

where inst∗(T̆ǫ) := ∅. Observe that to obtain cut(C, S) from C, we first close under
substitution of set variables and restrict to formulas in L∗(S), and then add the
L∗-instances of S and their negations since we cannot avoid these cuts.

Definition V.3.3. For all ordinals α and each set C of L∗-formulas, we define
∗

S
α

C
Γ by recursion on α as follows.

(i) If Γ is an axiom of
∗

S, then
∗

S
α

C
Γ for all ordinals α.
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(ii) If for all i ∈ I,
∗

S
αi

C
Γ, Ai and αi < α for all premises Γ, Ai of a rule that is

not a cut, then
∗

S
α

C
Γ, A for the conclusion of this rule.

(iii) If
∗

S
α1

C
Γ, A and

∗

S
α2

C
Γ,¬A with α1, α2 < α, and {A,¬A} ⊆ cut(C, S), then

∗

S
α

C
Γ.

∗

S
α

Γ states
∗

S
α

L∗ Γ, where L∗ denotes the set of all L∗-formulas, and
∗

S
<β

C
Γ

states that
∗

S
α

C
Γ for some α < β. Further, we write

∗

S
α

∗
Γ for

∗

S
α

∅
Γ, and

∗

S
α

−
Γ

states that Γ is obtained without using the cut-rule at all.

We point out that
∗

T
∗

Γ is
∗

T
−

Γ, so the derivation is cut-free, while if S is

different from Tǫ, then the derivation
∗

Tǫ|S
∗
Γ still contains cuts with L∗-instances

of Tǫ|S, that is, formulas in inst∗(S̆↾M0).

Although the following properties of Tait-style systems are essentially trivial, we
consider them important enough to summarize them in a lemma. Note that the

axioms of
∗

S are by design closed under numerical equivalence.

Lemma V.3.4. Let sN = tN, and B a false literal. Then,

(i)
∗

S
α

C
Γ, A(s) iff

∗

S
α

C
Γ, A(t),

(ii)
∗

S
α

C
Γ, B iff

∗

S
α

C
Γ.

Next, we state inversion properties of Tait-style systems. Observe that formulas of
the form A ∧ B, ∀XA(X) and ∀xB(x) are not L∗-instances of S̆ and are thus not

main-formulas of axioms of
∗

S.

Lemma V.3.5.

(i) If
∗

S
α

C
Γ, ∀XA(X) and

∗

S
α

C
Γ, ∀xB(x), then also

∗

S
α

C
Γ, A(Ui) and

∗

S
α

C
Γ, B(s), for each i ∈ N and each s ∈ L∗.

(ii) If A ∨ B /∈ inst∗(S̆) and
∗

S
α

C
Γ, A ∨B, then

∗

S
α

C
Γ, A, B.

Also the following simple observation is occasionally useful. It is often used tacitly
if we prove results by induction on the depth of the derivation.

Lemma V.3.6. If
∗

S
γ

C
Γ is not obtained by an ω-rule, then

∗

S
<γ

C
Γ.

Proof If
∗

S
γ

C
Γ is not obtained by an ω-rule, then the last rule applied has at most

two premises which are derivable with depth α < γ. As then also α+1 < γ, the
claim follows. ✷

160



Next, we show kind of an infinitary deduction theorem, see Lemma V.3.9. Here, and
often in the sequel, it suffice to bound the depth of a derivation by a limit ordinal.
Thus, the following definition.

Definition V.3.7. For each α, α+ := α+ω.

If A ∈ inst∗(B), then
∗

Tǫ ⊢ B → A and
∗

Tǫ ⊢ ¬A → ¬B. Essentially, this is behind
the next auxiliary Lemma.

Lemma V.3.8. If A ∈ inst∗(B) and
∗

S
α

C
Γ,¬A, then

∗

S
<α+

C
Γ,¬B.

Proof By induction on the build-up of B. Let A ∈ inst∗(B). If B is a true literal,
then ¬A is a false literal, and the claim is by Lemma V.3.4; if B is a false literal, then
¬A is a true literal, and the claim holds trivially. And if e.g. B is of the form B1∧B2,

then e.g. A ∈ inst∗(B1). By I.H.,
∗

S
<α+

C
Γ,¬B1, so also

∗

S
<α+

C
Γ,¬B1 ∨ ¬B2. The

other cases are shown similarly. ✷

Lemma V.3.9. If
∗

T|S
α

C
Γ, then

∗

Tǫ|S
<α+

C
¬T̆,Γ.

Proof Immediate by induction on α. If e.g.
∗

T|S
α+1

C
Γ is obtained from

∗

T|S
α

C
Γ,¬A

for A ∈ inst∗(T̆|S) by a cut, then by I.H.
∗

Tǫ|S
<α+

C
¬T̆,Γ,¬A, thus by Lemma V.3.8,

∗

Tǫ|S
<α+

C
¬T̆,Γ. ✷

Further, we give an infinitary variant of Lemma I.1.9 for the case where C is a set
variable or a relation symbol. When we apply it, the set D in the formulation of the
lemma which specifies the range of the cut-rule is ∅ or L∗

eΣ1
n
, so the assumed closure

properties are met. For its proof, we use the following auxiliary result.

Lemma V.3.10. Suppose that C is a set variable or a relation symbol of L∗(T|S),

and that with A ∈ D also A[(C)s/U ] ∈ D. Then,
∗

Tǫ|S
α

D
Γ ⇒

∗

Tǫ|S
α

D
Γ[(C)s/U ].

Proof Straightforward by induction on α. Since the main-formula of an L∗-instance

of
∗

Tǫ|S does not contain free set variables, the claim clearly holds for axioms. ✷

Lemma V.3.11. Suppose that C is a set variable or a relation symbol of L∗(T|S),
and that for each s ∈ L∗, D contains (C)s 6= (C)s and with A ∈ D also A[(C)s/U ] ∈ D.

If C /∈ FV1(Γ) = {Z1, . . . , Zl} and
∗

Tǫ|S
α

D
Γ, then

∗

Tǫ|S
<α+

D↾C
~Z

.

/∈ C,Γ↾C.

Proof By induction on α. We just show the case where Γ = ∆, ∀XA(X) and
∗

Tǫ|S
α+1

D
Γ is obtained from

∗

Tǫ|S
α

D
∆, A(U), where U /∈ FV1(Γ) is different form

C. By I.H.,
∗

Tǫ|S
<α+

D↾C
U

.

/∈ C, ~Z
.

/∈ C,∆↾C, (A↾C)(U). As U
.

/∈ C is ∀x[U 6= (C)x],

inversion yields for each s ∈ L∗,
∗

Tǫ|S
<α+

D↾C
U 6= (C)s, ~Z

.

/∈ C,∆↾C, (A↾C)(U). Using
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Lemma V.3.10 to substitute (C)s for U , cutting with
∗

Tǫ|S
<ω

D
(C)s = (C)s, and

applying an ω-rule yields
∗

Tǫ|S
<α+

D↾C
~Z

.

/∈ C,∆↾C, ∀x((A↾C)((C)x)), that is,
∗

Tǫ|S
<α+

D↾C

~Z
.

/∈ C,Γ↾C. ✷

Also for later use, we state this substitution property.

Lemma V.3.12. If
∗

S
α

D
Γ[X/U ], then also

∗

S
<α+

D
X 6= C,Γ[C/U ].

Proof By induction on α. Note that Tǫ
−

(C)t 6= X, s ∈ (C)t, s /∈ X , this handles

the case of an axiom of the form Γ, s ∈ X, s /∈ X . If A(X) ∈ inst∗(S̆), Tǫ
−
X 6=

C,¬A(X), A(C), so
∗

Sǫ
<ω

−
X 6= C,¬A(X), A(C), and

∗

S
<ω

∗
X 6= C, A(C) follows

by a cut. The induction step is straightforward (if
∗

S
α+1

D
Γ[X/U ] is obtained

from
∗

S
α

D
Γ[X/U ], A[X/U ] by a cut, then note that for B := A[X/U ], also

∗

S
α

D

Γ[X/U ], B[X/U ], and by I.H.
∗

S
α

D
Γ[C/U ], B since U does not occur in B; in the

same way we obtain
∗

S
α

D
Γ[X/U ],¬B). ✷

Before we review the basic facts about partial cut-elimination, we fix a notion of
subformulas and rank of a formula.

Definition V.3.13. The set sufo(A) of subformulas of an L∗-formula A is defined
as follows:

(i) sufo(A) := {A}, if A is a literal.

(ii) sufo(Aj B) := {AjB} ∪ sufo(A) ∪ sufo(B), where j ∈ {∧,∨},

(iii) sufo(QxA(x)) := {QxA(x)} ∪
⋃
{sufo(A(s)) : s ∈ L∗ },

(iv) sufo(QXA(X)) := {QXA(X)} ∪
⋃
{sufo(A(Ui)) : i ∈ N}.

Further, sufo−(A) := sufo(A)−{A} are the proper subformulas of A. Moreover, for
a set C ⊆ L∗, sufo(C) :=

⋃
A∈C sufo(A) and sufo−(C) :=

⋃
A∈C sufo

−(A).

Definition V.3.14. To each L-formula, we assign a rank as follows. The rank rk(L)
of a literal is 1, rk(Aj B) := max(rk(A), rk(B))+1, and rk(QxA) := rk(QXA) :=
rk(A)+1. Further, rk(C) < n is short for (∀A ∈ C)(rk(A) < n).

Partial-cut elimination now reads as follows, where α#β denotes the natural sum
of two ordinals.

Lemma V.3.15. Let Γ,∆, A ⊆fin L∗, C ⊆ L∗ and assume that sufo−(A) ⊆ cut(C, S)
and sufo−(C) ⊆ sufo(D).

(i) If
∗

S
α

C
Γ, A and

∗

S
β

C
∆,¬A, then

∗

S
α#β

C
Γ.
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(ii)
∗

S
α

C
Γ =⇒

∗

S
2α

D
Γ and

∗

S
α

Γ =⇒
∗

S
E(α)

∗
Γ, where E = {α : α = ωα}.

Proof We only provide some hints. (i) We consider the case where A := ∀xB(x) with
B(m) ∈ cut(C, S) for all m ∈ N. Assuming that A and ¬A are the main-formulas
of the last inference, we have for some α′ < α, β ′ < β, some s ∈ L∗ with sN = m,

that
∗

S
α′

C
Γ, A, B(m) and

∗

S
β′

C
∆,¬A,¬B(s). Hence the I.H. and Lemma V.3.5

(iii) yield
∗

S
α#β′

C
Γ,∆,¬B(s) and

∗

S
α′#β

C
Γ,∆, B(s), and the claim follows by a

cut. (ii) Induction on α using (i) yields the first claim, since with A ∈ cut(C, S),
either also A ∈ cut(D, S) or sufo−(A) ⊆ cut(D, S). Induction on α using the first
claim yields the second. ✷

Also a simple but relevant property is the following, for whose formulation we use
the notion of a substitution instance of Γ.

Definition V.3.16. If Γ is a finite set of L-formulas with FV(Γ) = {~V,~v}, then for

all set variables ~U and ~s ∈ L∗, Γ[~U/~V,~s/~v] is called a substitution instance of Γ.

Lemma V.3.17. If S ⊢ Γ with FV(Γ) = {~V,~v}, then for all set variables ~U and
~s ∈ L∗,

(i) S
<ω

∗
Γ,

(ii)
∗

S
<ω

∗
Γ[~U/~V,~s/~v].

Proof (i) By partial cut-elimination and completely standard. (ii) From (i) by in-

duction on n. For n = 0 the claim is readily checked. If S
n+1

∗
Γ is obtained by a

cut, a QX-,∧-, ∨- or ∃x-rule, the claim follows immediately by the I.H. So assume
that S

n+1

∗
Γ, ∀xA(x) is obtained from S

n

∗
Γ, A(u) with u /∈ FV0(Γ, ∀xA(x)). By

I.H.,
∗

S
<ω

∗
Γ′, A′(n) for each n and each substitution instance Γ′, A′(n) of Γ, A(n).

Now Γ′, ∀xA′(x) follows by the ω-rule. ✷

For later reference, we collect some further auxiliary results. The next lemma helps
us to deal with instances of induction and transfinite induction.

Lemma V.3.18. Let C be a class term and n0 so that
∗

Tǫ
n0

−
s /∈ C, s ∈ C for each

s ∈ L∗. Then we have the following.

(i)
∗

Tǫ
n0+2sN

−
0 /∈ C,¬B, s ∈ C, for B := ∀x[x ∈ C → x+1 ∈ C].

(ii)
∗

Tǫ
n0+4(α+1)

−
¬Prog

✁
(C), α ∈ C.

Proof (i) By induction on sN. If sN = 0, then the claim is by choice of n0. For the

induction step, assume
∗

Tǫ
n0+2sN

−
0 /∈ C,¬B, s ∈ C. As

∗

Tǫ
n0

−
s+1 /∈ C, s+1 ∈ C,
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we obtain
∗

Tǫ
n0+2sN+1

−
0 /∈ C,¬B, s ∈ C ∧ s+1 /∈ C, s+1 ∈ C. An application of the

∃-rule yields the induction step. (ii) By induction on α. We just show the induction

step. By I.H. we have for each β ✁ α,
∗

Tǫ
n0+4(β+1)

−
¬Prog

✁
(C),¬(β ✁ α), β ∈ C.

Hence,

(i)
∗

Tǫ
n0+4α+2

−
¬Prog

✁
(C), (∀β ✁ α)(β ∈ C), and

(ii)
∗

Tǫ
n0+4α+3

−
¬Prog

✁
(C), (∀β ✁ α)(β ∈ C) ∧ α /∈ C, α ∈ C.

An application of the ∃-rule yields the induction step. ✷

V.4 Cut-formula replacement

The result of this section is used to cheaply eliminate a cut of
∗

S
n

C
Γ, A with

∗

S
α

C
Γ,¬A, if A ∈ eΣ(C). The strategy is to replace the cut-formula A by an

equivalent formula A◦ ∈ Σ(C), without a significant increase of the depth of the

derivation, say,
∗

S
<ω

C
Γ, A◦ and

∗

S
<α+

C
Γ,¬A◦. Then

∗

S
<α+

C
Γ is by Lemma V.3.15.

This result is then used to provide criteria when two equivalent theories S and S′

satisfy
∗

S
<α+

C
Γ iff

∗

S′ <α+

C
Γ.

In the proof of the above mentioned result, we use an instance of arithmetical com-
prehension to code two sets U and V into one, namely ∃X [U = (X)0 ∧ V = (X)1].
Then, we need to eliminate a cut with this instance. To avoid a relevant increase of
the depth of the derivation, we assume that sufo−(∃X [U = (X)0 ∧ V = (X)1]) ⊆ C;
an assumption that is met whenever we employ Lemma V.4.2 or one of its conse-
quences obtained in this section.

First, we assign to each A ∈ eΣ(C) a formula A◦ ∈ Σ(C) with the same free
variables, so that ACA0 ⊢ A ↔ A◦. Arithmetical comprehension is required to
have ∀X, Y A(X, Y ) iff ∀XA((X)0, (X)1) (or equivalently, that ∃X, Y A(X, Y ) iff
∃XA((X)0, (X)1)).

Definition V.4.1. To each formula A ∈ eΣ(C), we assign a formula A◦ ∈ Σ(C)
that contains the same free variables as follows.

(i) If A ∈ Σ(C), then A◦ := A.

(ii) If A(U, V ), B(U, u), D1(U), D2(U) ∈ C, then for j ∈ {∧,∨},

(a) (∃Y ∃XA(X, Y ))◦ := ∃XA((X)0, (X)1)),

(b) (∃y∃XB(X, y))◦ := ∃X∃yB(X, y),

(c) (∃XD1(X) j ∃XD2(X))◦ := ∃X(D1((X)0) j D2((X)1)).
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(iii) (A j B)◦ := (A◦ j B◦)◦, (∃XA)◦ := (∃X(A◦))◦, and (∃xA)◦ := (∃x(A◦))◦.

Further, if A ∈ eΠ(C), then A◦ := ¬(¬A)◦.

Lemma V.4.2. Assume that sufo−(∃X [U = (X)0 ∧ V = (X)1]) ⊆ cut(D,T|S). If
A ∈ eΣ(C), then

∗

T|S
α

D
Γ, A =⇒

∗

T|S
<α+

D
Γ, A◦, and

∗

T|S
α

D
Γ,¬A =⇒

∗

T|S
<α+

D
Γ,¬A◦.

Proof We just show the first claim; the second is shown similarly. Below, we write

A◦(U) for (A(U))◦ which is justified as FV(A) = FV(A◦). Further, we just write
∗

T

for
∗

T|S. The proof is by induction on the definition of A◦ and side-induction on α.
If A ∈ Σ(C), then A◦ = A and the claim holds trivially. Next, we have a look at the
cases (ii)(a)–(ii)(c) of Definition V.4.1. We start with the following auxiliary claims:

(i)
∗

T
α

D
Γ, ∃XA(X,U) implies

∗

T
<α+

D
Γ, ∃XA((X)0, (X)1).

(ii)
∗

T
α

D
Γ, ∃XA(X, s) implies

∗

T
<α+

D
Γ, ∃X∃xA(X, x).

(iii)
∗

T
α

D
Γ, ∃XA(X), B(U) implies

∗

T
<α+

D
Γ, ∃Y (A((Y )0) ∨B((Y )1), and

∗

T
α

D
Γ, ∃XA(X) and

∗

T
α

D
Γ, B(U) imply

∗

T
<α+

D
Γ, ∃Y (A((Y )0) ∧ B((Y )1).

All three claims are shown by induction on α. Exemplarily we show the first

one. If ∃XA(X,U) ∈ inst∗(S), then as
∗

T
<ω

∗
¬∃XA(X,U), ∃XA((X)0, (X)1),

the claim follows by a cut. If
∗

T
β

D
Γ, ∃XA(X,U), A(V, U) for a β < α, then

∗

T
<β+

D
Γ, ∃XA((X)0, (X)1), A(V, U) is obtained by the I.H. Hence, for some fresh

Y , Lemma V.3.12 yields

∗

T
<β+

D
Γ, ∃XA((X)0, (X)1), V 6= (Y )0, U 6= (Y )1, A((Y )0, (Y )1).

Since
∗

T
<ω

∗
∃Y [V = (Y )0∧U = (Y )1], the claim easily follows using Lemma V.3.15.

With the above auxiliary claims at hand, one following corresponding claims are
readily obtained by induction on α.

(i)
∗

T
α

D
Γ, ∃X∃Y A(X, Y ) implies

∗

T
<α+

D
Γ, ∃XA((X)0, (X)1).

(ii)
∗

T
α

D
Γ, ∃x∃XA(X, x) implies

∗

T
<α+

D
Γ, ∃X∃xA(X, x).

(iii)
∗

T
α

D
Γ, ∃XD1(X) j ∃XD2(X) implies

∗

T
<α+

D
Γ, ∃X(D1((X)0) j D2((X)1).
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Now for the induction step, i.e. case (iii) of Definition V.4.1. We just show the

first two cases, the third is shown similarly. If
∗

T
β+1

D
Γ, A is obtained form

∗

T
β

D

Γ, A1, A2, then by I.H.,
∗

T
<β+

D
Γ, A◦

1, A
◦
2, so

∗

T
<β+

D
Γ, A◦

1 ∨ A◦
2, and again by

I.H.,
∗

T
<β+

D
Γ, (A◦

1 ∨ A◦
2)

◦. Further, if
∗

T
β+1

D
Γ, ∃XA(X) is obtained form

∗

T
β

D

Γ, ∃XA(X), A(U), then by side I.H.,
∗

T
<β+

D
Γ, (∃XA(X))◦, A(X), and by I.H.,

∗

T
<β+

D
Γ, (∃XA(X))◦, A◦(U). Then also

∗

T
<β+

D
Γ, (∃XA(X))◦, ∃XA◦(X), and

again by I.H.,
∗

T
<β+

D
Γ, (∃XA(X))◦, (∃XA◦(X))◦. As (∃XA(X))◦ = (∃XA◦(X))◦,

this is the claim. ✷

This allows for the following strengthening of Lemma V.3.15.

Lemma V.4.3. Let sufo−(∃X [U = (X)0 ∧ V = (X)1]) ⊆ C and sufo−(A◦) ⊆ C. If
∗

T|S
α

C
Γ, A and

∗

T|S
β

C
∆,¬A, then

∗

T|S
<(α#β)+

C
Γ.

Moreover, it allows us to replace A by a provable consequence B, if sufo−(A◦) ⊆ C,
without a significant increase of the depth of the derivation.

Corollary V.4.4. Let sufo−(∃X [U = (X)0 ∧ V = (X)1]) ⊆ C and sufo−(A◦) ⊆ C.

If T|S ⊢ ¬A,B and
∗

T|S
α

C
Γ, A, then

∗

T|S
<α+

C
Γ, B.

Finally, we consider two theories T|S and T′|S, where say, T|S ⊢ B for each B ∈

inst∗(T′|S). We look for criteria which guarantee that
∗

T′|S
<γ

C
Γ ⇒

∗

T|S
<γ

C
Γ.

Lemma V.4.5. If for each B ∈ inst∗(T̆′|S), there is a A ∈ inst∗(T̆|S) so that for each

Γ,
∗

T|S
α

C
Γ,¬B ⇒

∗

T|S
<α+

C
Γ,¬A, then also for each Γ,

∗

T′|S
α

C
Γ ⇒

∗

T|S
<α+

C
Γ.

Proof By induction on α. We just give the relevant case. If
∗

T′|S
α+1

C
Γ is obtained

from
∗

T′|S
α

C
Γ,¬B by a cut with some B ∈ inst∗(T̆′|S), then by I.H.,

∗

T|S
<α+

C
Γ,¬B,

and by assumption,
∗

T|S
<α+

C
Γ,¬A for some A ∈ inst∗(T̆|S), and the claim follows

by a cut with A. ✷

The next lemma describes a situation where this criterion applies.

Lemma V.4.6. Let sufo−(∃X [U = (X)0 ∧ V = (X)1]) ⊆ C. Assume that for each

B ∈ inst∗(T̆′|S), T|S ⊢ B and sufo−(B◦) ⊆ C. If
∗

T′|S
α

C
Γ, then

∗

T|S
<α+

C
Γ.

Proof The criterion given in Lemma V.4.5 clearly holds: under the given assump-

tions,
∗

T|S
α

C
Γ,¬B and

∗

T|S
<ω

C
B yield

∗

T|S
<α+

C
Γ by Lemma V.4.3. ✷

When we later consider equivalent theories with different axiomatizations, we are
in an even better situation. We do not have to cut with an instances of T′|S, but
only with a subformula, since corresponding instances A of T|S and B of T′|S only
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differ by some equivalent subformulas A′ and B′, and it is further the case that

if
∗

T|S
<γ

C
Γ,¬A, then we can dig out ¬A′ using inversion, replace ¬A′ by ¬B′

by cutting with
∗

T|S
<ω

∗
¬B′, A′, and then obtain

∗

T|S
<γ

C
Γ,¬B by undoing the

inversion steps.

The following lemma describes such a situation. The idea is that ¬∀XA(X) is an
instance of T̆|S and ¬∀XB(X) the corresponding instance of T̆′|S. In the lemma
below, we could replace the assumption sufo−(Ai0) ⊆ C by sufo−(A◦

i0
) ⊆ C and

sufo−(∃X [U = (X)0 ∧ V = (X)1]) ⊆ C.

Lemma V.4.7. Let I be finite, and A(U) :=
∨
i∈I Ai(U) and B(U) :=

∨
i∈I Bi(U),

so that Ai = Bi for i ∈ I \ {i0}, and T|S ⊢ ¬Ai0 , Bi0 and sufo−(Ai0) ⊆ C. Then,

∗

T|S
α

C
Γ, ∀XA(X) ⇒

∗

T|S
<α+

C
Γ, ∀XB(X).
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Chapter VI

Finitary and infinitary reductions
and sharp bounds

Our aim is to show that for g(α) := ω1+α, T := ACA0 and Tx := Opx(T), gxh is indeed
that largest normal function which is provable in Tx, by which me mean that for any
other normal function that is provable in Tx, we have that f↾Lim(Ω) ≤ gxh↾Lim(Ω).
We call such a largest provable function a sharp bound of Tx.

To show that gxh is a sharp bound of Tx, we employ the more general notion of
a bound f of Tx, that is, a normal function, so that for each name x ∈ Q, each

derivation
∗

Tx|S
<γ

+
Γ of an arithmetical L∗(T|S)-sequent Γ can be transformed into

a derivation
∗

Tǫ|S
<f(γ)

∗
Γ, where

∗

Tx|S
<γ

+
Γ indicates that the cut-rule is restricted

to formulas in inst∗(T̆x|S) and some additional formulas that do not impede the cut-
elimination process; these additional cuts can be eliminated cheaply at a later stage.
We show that gxh is a bound of Tx. Using the Boundedness Lemma, we obtain that
gxh is also a sharp bound.

We start this chapter by reviewing the axiomatizations of the theories (Tx : x ∈ Q∗).
Then, we are ready to prove the reduction properties listed below. Thereby, we make
use of the approximations x[α] and x(α) (cf. Definition III.4.10). First, we look at
the following reductions which are feasible without resorting to infinitary systems.

(i) If x ∈ Q, and Γ ⊆fin LΠ1
0
(T|S), then for some n,

Tx+1|S ⊢ Γ ⇒ Tn+1
x |S ⊢ M1 |= Γ.

Note that if Γ is arithmetical and FV1(Γ) = ∅, then M1 |= Γ is Γ.

(ii) If x ∈ Q with deg(x) = m+2, and Γ ⊆fin LeΣ1
m+1

(T|S), then for some n,

Tx|S ⊢ Γ ⇒ Tx(n)|S ⊢ Γ.
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Next, we look at the related infinitary reductions.

(iii) If x ∈ Q, f is a bound of Tx and Γ ⊆fin L
∗
Π1

0
(T|S), then

∗

Tx+1|S
<γ

L∗

Π1
0

Γ ⇒
∗

Tx|S
<it(f,γ)

∗
Γ.

(iv) If x ∈ Q with deg(x) = m+2, and Γ ⊆fin L∗
eΣ1

m+1
(T|S), then

∗

Tx|S
α

L∗

eΣ1
m+1

Γ ⇒
∗

Tx(α)|S
<α+

L∗

eΣ1
m+1

Γ.

In order to obtain (iii), we use that if f is a bound of Tx and say
∗

T2
x|S

<γ

+
M1 |= Γ,

then
∗

Tǫ|Tx|S
<f(γ)

∗
M1 |= Γ, which in turn yields

∗

Tx|S
<f(γ)

∗
Γ by Lemma VI.3.13,

an important auxiliary result, that we show prior to the above reduction properties
(iii)–(iv). With (iii)–(iv) at hand, we are ready to produce a first proof that for each
x ∈ Q, gxh is a bound of Tx.

In the final section, we then show, dually to what we did in Section III.7, that in some
higher type sense, HxH is a bound of Opx, and that H

+(n+1)
x∗ is a bound of Op+(n+1)

x

(recall that x∗ := xH+corr(x); see Definitions III.4.20). Finally, we conclude by
discussing what meta-theory we implicitly used to prove these results.

VI.1 Revisiting the axioms of (Tx : x ∈ Q∗)

When transforming a derivation of one theory into a derivation of another, clearly
the exact form of the axioms T̆x of the involved theories Tx matter. However,
whenever possible, we avoid working with the rather complicated sentence T̆x, but
work instead, if say deg(x) = m+1, with the axiom T̆′

x := (∀α✁ o(x))pm+1(T̆x[α]) of

the theory T′
x := Tǫ + T̆′

x, which by Lemma III.6.2 (iii) proves the same formulas.
Although the axiom (∀α ✁ o(x))p+nm+1(T̆x[α]) contains T̆x[α] as a subformula, we can

mostly avoid looking inside T̆x[α].

If we are concerned with finitary reductions where provability is all that matters,
looking at T′

x instead of Tx causes no problems. However, when considering infinitary
reductions, also the derivation’s depth and the complexity of its cut-formulas become

relevant. Therefore, switching from
∗

Tx to
∗

T′
x needs some justification, which involves

inspecting the non-arithmetical L∗-instances of Tx and T′
x, respectively.

This inspection reveals (see Lemma VI.1.2 below) that if deg(x) = m+1, then
for each A ∈ inst∗(T̆x|S) and each B ∈ inst∗(T̆x|S), we have A,B ∈ L∗

eΣ1
m+1

, and

therefore, sufo−(A◦) ⊆ L∗
eΠ1

m
and sufo−(B◦) ⊆ L∗

eΠ1
m
. As further, Tx|S ⊢ B and

T′
x|S ⊢ A, Lemma V.4.6 yields the following.
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Lemma VI.1.1. Let deg(x) = m+1 and T̆′
x := (∀α < o(x))pm+1(

∗

Tx[α]). Then,

∗

Tx|S
<α+

L∗

eΣ1
m

Γ ⇔
∗

T′
x|S

<α+

L∗

eΣ1
m

Γ.

Now we inspect the L∗-instances of Tx and T′
x. Recall that T̆x = ϕ(x){T̆↾U}, where

ϕ(x)
T̆↾U := ϕ(x){T̆↾U} is obtained from the L(P)-formula ϕ(x) by replacing each

occurrence of P(X ) by T̆↾X , and ϕ(u), specified by Definition III.6.1 and Theorem
A.1.2, is defined by means of the L(P)-formulas ψ(X, u) = ∃Y ψ′(X, Y, u), where
ψ′(X, Y, u) has no set quantifiers, and ϑN0(u) = u ≤ N0∧

∧
n<N0

(u = n+1 → ϕpn+1).
N0 is an arbitrary large but fixed bound on the level of the names. Further,

(i) ϕp1 := ∀Z∃X [Z∈̇X ∧ P(X)] ∧ pair ∧ trans, and

(ii) ϕpn+2 := ∀Z∀x, e∃X [Z∈̇X ∧ P(X) ∧ Rn+2(X,Z, x, e)] ∧ pair ∧ trans.

Since ϕ(u) = q0 ❀
∗ u ∧Wo❀∗(u) ∧ good(❀,≺) ∧ (∀y ❀ u)ϑ(deg(u)){ψ(X, y)},

T̆x = q0 ❀
∗ u ∧Wo❀∗(u) ∧ good(❀,≺) ∧ (∀y ❀ u)ϑ(deg(u)){ψT̆↾U(X, y)}.

Now we let x be a closed term and observe how the L∗-instances of Tx look like.
Recall that good(❀,≺) is an arithmetical sentence that asserts that ≺ is the transi-
tive closure of ❀ (cf. Definition I.2.24), and note that the L∗-instances of Wo❀∗(x)
are arithmetical. Next, we unwind (∀y ❀ x)ϑ(deg(x)){ψT̆↾U(X, y)}, which yields

(∀y ❀ x)[deg(x) ≤ N0 ∧
∧

n<N0

(deg(x) = n+1 → ϕpn+1) ∧ pair ∧ trans]{ψT̆↾U(X, y)}.

At this point it comes in handy that inst∗(A → B) = inst∗(B) if A is a true literal,
and inst∗(A → B) = ∅ if A is a false literal. We see that the non-arithmetical
L∗-instances of ϕ(x)

T̆↾U (those different from the L∗-instances of pair ∧ trans) are of
the following forms, where y is a closed terms so that y ❀ x, i.e. y = x[α] for some
α < o(x):

(iii) ∃X [Z∈̇X ∧ ψT̆↾U(X, y)], if deg(x) = 1,

(iv) ∃X [Z∈̇X ∧ ψ
T̆↾U(X, y) ∧ Rn+2(X,Z, s, t)], if deg(x) = n+2.

Since ψ
T̆↾U(X, y) is a Σ1

1-formula and Rn+2(X,Z, s, t) ∈ L∗
eΣ1

n+2
, each L∗-instance

of Tx is in L∗
eΣ1

n+2
. The same holds for the L∗-instance of T′

x|S: as pn+1(T̆x[α]) is

ϕpn+1{T̆x[α]↾U}, we see that the corresponding L∗-instances of Tx and T′
x possibly

only differ by the subformulas ψT̆↾U(X, x[α]) and
∗

Tx[α]↾X . Therefore, the assump-
tions of Lemma VI.1.1 are clearly justified.
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Lemma VI.1.2. Let deg(x) = n+1 and T̆′
x := (∀α < o(x))pn+1(

∗

Tx[α]). Then,

inst∗(T̆) ∪ inst∗(T̆′) ⊆ L∗
eΣ1

n+1
.

However, we can do better. Since for each x ∈ Q∗, Tx ⊢ p1((ACA)), we have by
Lemma I.A.1.13, that

(∗) Tx ⊢ ψT̆↾U(X, y) ↔ T̆y↾X, and therefore also T′
x ⊢ ψT̆↾U(X, y) ↔ T̆y↾X.

Hence, (∗) together with Lemma V.4.5 and V.4.7 yields the following sharper result.

Lemma VI.1.3. Let deg(x) = n+1, and T̆′
x := (∀α < o(x))pn+1(

∗

Tx[α]). Then,

∗

Tx|S
<α+

L∗

Π1
0

Γ ⇔
∗

T′
x|S

<α+

L∗

Π1
0

Γ.

VI.2 Finitary reductions

Now we are prepared to perform the finitary reductions announced at the beginning
of this chapter. Many of these results are proved by induction on the depth of the
derivation. Thereby, the auxiliary result below is of good use.

Lemma VI.2.1. If for some n and each Γ ⊆fin LeΣ1
m
, S

n

∗
Γ ⇒ S′ ⊢ Γ, then also

for each ∆ ⊆fin LeΠ1
m+1

, S
n

∗
∆ ⇒ S′ ⊢ ∆.

Proof By induction on ΣA∈∆rk(A), the sum of the ranks of the formulas in ∆. If
∆ ⊆fin LeΣ1

m
, the claim is by assumption. Hence, assume that ∆ ⊆fin LeΠ1

m+1
is of

the form ∆′, A for A ∈ (LeΠ1
m+1

\ LeΣ1
m
). Then A is of the form ∀yB(y), ∀Y B(Y ),

B1 ∨B2 or B1 ∧B2, where B(U), B(u), B1 and B2 are still in LeΠ1
m+1

. If e.g. A is of

the form ∀XB(X), then by inversion, S
n

∗
∆′, B(X), hence by I.H., S′ ⊢ ∆′, B(X),

and S′ ⊢ ∆′, A follows. And if e.g. A is B1 ∧ B2, then by inversion, for i ∈ {1, 2},
S

n

∗
∆′, Bi, hence by I.H., S′ ⊢ ∆′, Bi, and S′ ⊢ ∆′, A follows. The cases where A is

∀yB(y) or B1 ∨B2 is handled similarly. ✷

VI.2.1 Reducing Tx+1 to Tn
x

The L-instances of p1(T)|S consist of the L-instances of S̆↾M0, ∃X [X = M0], pair
and trans (cf. Definition I.2.3), which are also among the L-instances of T|S, and
L-instances of the form Ap1(T̆)

(Z), called the relevant L-instances, defined below.

Definition VI.2.2. For each set variable Z, Ap1(T̆)
(Z) := ∃X [Z∈̇X∧T̆↾X ] is called

a relevant instance of p1(T̆)|S.
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Next, we show a first auxiliary reduction property.

Lemma VI.2.3. Let Γ ⊆fin LΠ1
0
(T|S) and n > 0. Then,

Tǫ|Tn|S ⊢ M1 |= ¬A
p1(T̆)

(Z),M1 |= Γ ⇒ Tǫ|Tn+1|S ⊢ M1 |= Γ.

Proof Assume that Tǫ|Tn|S ⊢ M1 |= ¬Ap1(T̆)
(Z),M1 |= Γ, where we suppose that

M1 |= ¬Ap1(T̆)
(Z) is ∀x[(M1)z

.

/∈ (M1)x ∨ ¬T̆↾(M1)x]. Since M1 is a transitive set, we
have that

(∗) Tǫ|Tn|S ⊢ Z
.

/∈ X,X
.

/∈ M1,¬T̆↾X, (M1 |= Γ)[Z/(M1)z]).

Using Lemma V.2.8 (iii), we obtain that

(∗) Tǫ|Tn|S ⊢ ∀X(Z∈̇X ∧X∈̇M2 ∧ T̆↾X → (M2 |= Γ)[Z/(M2)z]).

Now we work informally in Tǫ|Tn+1|S. Assume (∗). As M1 is a set with M1∈̇M2 and
T̆↾M1, we can instantiate X with M1, and obtain that Z∈̇M1 → (M2 |= Γ)[Z/(M2)z].
As (Γ) is arithmetical and M1 ⊆̇ M2, we also have Z∈̇M1 → (M1 |= Γ)[Z/(M1)z].
Instantiating Z with (M1)z finally yields M1 |= Γ. ✷

Lemma VI.2.4. Let Γ ⊆fin LΠ1
0
(T|S). Then,

p1(T)|S
n

∗
Γ ⇒ Tǫ|Tn|S ⊢ M1 |= Γ.

Proof By induction on n. If n = 0, then Γ is an axiom of p1(T)|S. As Γ is arith-
metical, its main formula is an instance of S̆↾M0 or T

ǫ. Thus, Γ is already an axiom
of Tǫ|S. Hence Tǫ|S ⊢ Γ, and by Lemma I.1.9, Tǫ|S ⊢ M1 |= Γ.
The induction step is immediate from the I.H., except if Γ is obtained by a cut
with a non-arithmetical instance A of p1(T̆)|S which is not an instance of pair or
trans. Hence, assume that Γ was obtained from p1(T̆)|S

n

∗
Γ,¬A by a cut, where

A is either Ap1(T̆)
(Z) or ∃X [X = M0]. In both cases, we can assume that n > 0

(else, already Γ is an axiom). In the first case, we obtain from p1(T̆)|S
n

∗
Γ,¬A

by ∀X-inversion, that p1(T̆)|S
n

∗
Γ, U 6= M0 for U /∈ FV(Γ). Now the I.H. applies

and yields Tǫ|Tn|S ⊢ M1 |= Γ, (M1)u 6= M0, where u is a fresh variable. Recall that
∀x[(M1)x 6= M0] is M0

.

/∈ M1. As n > 0, Tǫ|Tn|S proves that M0∈̇M1, therefore
Tǫ|Tn|S ⊢ M1 |= Γ follows. Hence, Tǫ|Tn+1|S ⊢ M2 |= Γ by Lemma V.2.8 (iii). As
Γ is arithmetical and M1 ⊆̇ M2, we also have Tǫ|Tn+1|S ⊢ M1 |= Γ. And if Γ was
obtained from p1(T̆)|S

n

∗
¬Ap1(T̆)

(Z),Γ by a cut, then by ∀X-inversion we also have

p1(T̆)|S
n

∗
Z

.

/∈ X ∨ ¬T̆↾X,Γ for X /∈ FV1(Γ). Hence the I.H. applies and yields

Tǫ|Tn|S ⊢ M1 |= Z
.

/∈ X ∨ ¬T̆↾X,M1 |= Γ, from which we further conclude

Tǫ|Tn|S ⊢ M1 |= ¬A
p1(T̆)

(Z),M1 |= Γ.
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Now Tǫ|Tn+1|S ⊢ M1 |= Γ follows by Lemma VI.2.3. ✷

By Lemma III.6.2 (iii), Tǫ ⊢ T̆x+1 ↔ p1(T̆x). Hence Tx+1|S and p1(Tx)|S prove the
same formulas. Thus, we the following corollary.

Corollary VI.2.5. Let Γ ⊆fin LΠ1
0
(T|S). Then,

Tx+1|S
n

∗
Γ ⇒ Tǫ|Tnx|S ⊢ M1 |= Γ.

VI.2.2 Reducing Tx to Tx(n) for names x ∈ Q with deg(x) > 1

If deg(x) = m+2, then Op+nx (T̆) iff (∀α✁o(x))(pm+n+2Op
+n
x[α](T̆)) (cf. Lemma III.6.2

(iii)). Also recall that

pn+2(T̆) = ∀Z∀u, v∃X(Z∈̇X ∧ T̆↾X ∧ Rn+2(X,Z, u, v)) ∧ pair ∧ trans,

where Rn+2(X,Z, u, v) = π1
n+2(Z, u, v) → π1

n+2(Z, u, v)↾X (cf. Definition I.I.2.8).
For each T and each x ∈ Q with deg(x) = m+2 and n ∈ N, we let

AT̆,x,n(Z, α, s, t) := α✁ o(x) → ∃X(Z∈̇X ∧ Op+nx[α](T̆)↾X ∧ Rm+n+2(X,Z, s, t)).

Then, Tǫ ⊢ ∀Z, α, u, vAT̆,x,n(Z, α, u, v) ∧ pair ∧ trans ↔ Op+nx (T̆) by Lemma III.6.2
(iii), and for all number terms α, s, t, AT̆,x,n(Z, α, s, t) ∈ LeΣ1

m+n+2
is a relevant L-

instance of T̆′+n
x := (∀α ✁ o(x))pm+n+2(T̆

+n
x[α]), one that is not also an instance of

some T̆+n
x(β).

The following simple observation will be employed in the proof of Lemma VI.2.9,
the key lemma of this subsection.

Lemma VI.2.6. If T|S ⊢ Γ and Y /∈ FV1(Γ) = {Z1, . . . , Zk}, then

Tǫ|S ⊢ M0

.

/∈ Y, ~Z
.

/∈ Y,¬T̆↾Y,Γ↾Y.

Proof If T|S ⊢ Γ, then also Tǫ ⊢ ∆ for ∆ := ¬(S̆↾M0),¬∃X [X = M0],¬T̆,Γ, and so
Tǫ ⊢ Y |= ∆ by Lemma V.2.7. As Tǫ ⊢ (¬∃X [X = M0])↾Y ↔ M0

.

/∈ Y , and ¬(S̆↾M0)

is arithmetical without free set variables, Tǫ ⊢ ¬(S̆↾M0),M0

.

/∈ Y , ~Z
.

/∈ Y,¬T̆↾Y,Γ↾Y

follows from Tǫ ⊢ ∆. Hence, Tǫ|S ⊢ M0

.

/∈ Y, ~Z
.

/∈ Y,¬T̆↾Y,Γ↾Y . ✷

Next, we review some properties concerning the interplay of names, normal forms
and operations. If deg(x) = m+2 and x =NF y◦mz, then y is a simple name of degree
two and thus of the form (1, y′) with deg(y′) = 1 (cf. Definition III.4.6). Further,
o(y) = o(x) (cf. Definition III.4.3 (ii) and Lemma III.4.2 (ii), (iii)). Moreover, we
have the following.
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Lemma VI.2.7. Let y be a simple name with deg(y) = 2.

(i) If o(y) = 1, then y(β+1)[0] = y[0] ◦ y[β] and y(0)[0] = y[0].

(ii) If o(y) ∈ Lim(Ω) and α✁o(y), then y(β+1)[α] = y[α]◦y(β) and y(0)[α] = y[α].

Proof As y is a simple name of degree two, we have that y = (1, z), where deg(z) = 1.
(i) If o(y) = 1, then y(δ)[0] = (y[δ]+1)[0] = y[δ]. Further, y[β+1] = y[0] ◦ y[β]
by Lemma III.4.13. The claim follows. (ii) If o(y) ∈ Lim(Ω), then z− ∈ P and
o(z) = o(y) (cf. Lemma III.4.2 (i)). Then, y(0) = (1, z−) and y(0)[α] = (1, z[α]) =
y[α] by Definition III.4.10, and y(β+1) = (1, z−) ◦ (1+β, z−) = y(0) ◦ y(β). So
y(β+1)[α] = y(0)[α] ◦ y(β) = y[α] ◦ y(β). ✷

The next lemma provides some auxiliary properties of operations. Recall that
for each operation Op, Tǫ ⊢ T̆ → T̆′ implies Tǫ ⊢ Op(T̆) → Op(T̆′). Further,
Op ⇒ Op′ states that for each T, Tǫ ⊢ Op(T̆) → Op′(T̆). Moreover, (cf. Definition
III.6.1), T̆+n

x := (x = q0 ∧ T̆) ∨ (x 6= q0 ∧ Op+nx (T̆). Thus, we have that for x 6= q0,
T̆+n
x ↔ Op+nx (T̆), and we can use T̆+n

x as a more compact way to write Op+nx (T̆).

Lemma VI.2.8. Assume that T̆ is Π1
n+2. The following is provable in Tǫ. If

z0, z1 ∈ Q∗ and y is a simple name of degree two, then

(a) Op+nz1 (T̆) → T̆, (Op+nz0 ◦ Op+nz1 )(T̆) → Op+nz0 (T̆), and if deg(z1) = 1, then

Op+nz0 ◦ Op+nz1 ⇒ Op+nz1 .

(b) α✁ o(y) ∧ T̆+n
y(β+1) → pn+1(T̆

+n
y[α] ∧ T̆+n

y(β)), and α✁ o(y) ∧ T̆+n
y(0) → pn+1(T̆

+n
y[α]).

Proof (a) By Lemma III.6.5 (i), Op+nz1 ⇒ pn+1, and as T̆ is Π1
n+2, Lemma I.2.12 yields

Tǫ ⊢ pn+1(T̆) → T̆. So Tǫ ⊢ Op+nz1 (T̆) → T̆, thus Tǫ ⊢ (Op+nz0 ◦Op+nz1 )(T̆) → Op+nz0 (T̆)

follows. And if deg(z1) = 1, then by Lemma III.6.4 (ii), Op+nz1 (T̆) is Π1
n+2, hence for

each T̆′, (Op+nz0 ◦ Op+nz1 )(T̆′) → Op+nz1 (T̆′) by the first claim.

(b) We just show the first claim, the second is shown similarly but simpler. First,
we show that Op+ny(β+1) ⇒ pn+1(Op

+n
y[α] ◦ Op+ny(β)) for each α < γ, and then that

(Op+ny[α] ◦ Op
+n
y(β))(T̆) implies Op+ny[α](T̆) and Op+ny(β)(T̆). This yields the claim.

If o(y) = 1, then y(β) = y[β]+1. Op+ny(β+1) ⇔ pn+1Op
+n
y(β+1)[0] ⇔ pn+1(Op

+n
y[0] ◦ Op

+n
y[β])

is by Lemma VI.2.7 (i). By (a) we obtain (Op+ny[0] ◦ Op+ny[β])(T̆) → Op+ny[0](T̆), and

further Op+ny[0] ◦Op
+n
y[β] ⇒ pn+1 ◦Op

+n
y[β] ⇒ Op+ny(β). And if o(y) ∈ Lim(Ω) and α✁o(y),

then Op+ny(β+1) ⇒ pn+1(Op
+n
y[α] ◦Op

+n
y(β)) by Lemma VI.2.7 (ii). Since deg(y(β)) = 1 by

Lemma III.4.11, (Op+ny[α] ◦ Op
+n
y(β))(T̆) → Op+ny[α](T̆) ∧ Op+ny(β)(T̆) is by (a). ✷

There is one more thing we wish to recall. If deg(y) = 2 and β✁α, then by Lemma
III.4.19 (ix), y(β) ❀∗ y(α), and so by Lemma III.6.5 (i), T+m

y(β) ⊢ pm+1(T̆
+m
y(α)), and
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as deg(y(α)) = 1 further Tǫ ⊢ pm+1(T̆
+m
y(α)) → T̆+m

y(α) (e.g. by Lemma VI.2.8 (a)). So

T+m
y(β)|S ⊢ T̆+m

y(α)|S.

After these preparatory steps, the following reduction property is readily proved.

Lemma VI.2.9. Let y be a simple name of degree two. Further, assume that T̆ is
Π1
m+2 and Γ ⊆fin LΣ1

m+1
(T|S). Then,

T+m
y(n)|S ⊢ Γ,¬AT̆,y,m(Z, α, s, t) ⇒ T+m

y(n+1)|S ⊢ Γ.

Proof Suppose that T̆, Γ and y meet the assumptions of the lemma and that further
T+m
y(n)|S ⊢ Γ,¬A

T̆,y,m(Z, α, s, t), where FV1(Γ)∪ {Z} = {Z1, . . . , Zk}. As the formula

¬A
T̆,y,m(Z, α, s, t) looks as follows,

α✁ o(y) ∧ ∀X [Z
.

/∈ X ∨ ¬(T̆)+my[α]↾X ∨ (π1
m+2(Z, s, t) ∧ ¬π1

m+2(Z, s, t)↾X)],

we obtain for X, Y /∈ FV1(Γ), using inversion,

(i) T+m
y(n)|S ⊢ Γ, α✁ o(y),

(ii) T+m
y(n)|S ⊢ Γ, ~Z

.

/∈ Y,¬T̆+m
y[α]↾Y, π

1
m+2(Z, s, t),

(iii) T+m
y(n)|S ⊢ Γ, ~Z

.

/∈ X,¬T̆+m
y[α]↾X,¬π

1
m+2(Z, s, t)↾X .

By Lemma VI.2.6 (ii) implies (iia) (see below), where we dropped the assumption
~Z∈̇X , as this follows form ~Z∈̇Y and Y ∈̇X and T̆+m

y(n)↾X . Next, we rewrite (iia) as

(iib), and then exploit that if X is a model of T̆+m
y(n), then we have by Lemma VI.2.8

(b) that for all ~Z∈̇X and α ✁ o(y), there is a Y ∈̇X with ~Z∈̇Y and T̆+m
y[α]↾Y . More

precisely, T̆+m
y(n)|S ⊢ α✁ o(y) → ∃Y [~Z∈̇Y ∧ T̆+m

y[α]↾Y ], so by Lemma VI.2.6

Tǫ|S ⊢ α✁ o(y)) ∧M0∈̇X ∧ T̆+m
y(n)↾X → ∃Y [~Z∈̇Y ∧ Y ∈̇X ∧ T̆+m

y[α]↾Y ].

This yields (iic).

(iia) Tǫ|S ⊢ M0

.

/∈ X,¬T̆+m
y(n)↾X,

~Z
.

/∈ Y, Y
.

/∈ X,Γ↾X,¬T̆+m
y[α]↾Y, π

1
m+2(Z, s, t)↾X .

(iib) Tǫ|S ⊢ M0

.

/∈ X,¬T̆+m
y(n)↾X, ∀Y ¬[~Z∈̇Y ∧ Y ∈̇X ∧ T̆+m

y[α]↾Y ],Γ↾X, π
1
m+2(Z, s, t)↾X .

(iic) Tǫ|S ⊢ ¬(α✁ o(y)),M0

.

/∈ X,¬T̆+m
y(n)↾X,

~Z
.

/∈ X,Γ↾X, π1
m+2(Z, s, t)↾X .

Now (iic) and (iii) yield

(iv) T+m
y(n)|S ⊢ ¬(α ✁ o(y)),¬B,
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for B := ∃X [M0∈̇X ∧ ~Z∈̇X ∧ T̆+m
y[α]↾X ∧ T̆+m

y(n)↾X ∧ ¬(Γ)↾X ].

Next, we will show that

(v) T+m
y(n+1)|S ⊢ ¬(α✁ o(y)),Γ, B.

For that, we work informally in T+m
y(n+1)|S. We assume α✁o(y) and ¬(Γ). By Lemma

VI.2.8 (b), we have pm+1(T̆
+m
y[α] ∧ T̆+m

y(n)). Hence, as ¬(Γ) is Π
1
m+1, B follows. Finally,

as T̆+m
y(n+1) implies T̆y(n), T

+m
y(n+1)|S ⊢ Γ is by (v), (iv) and (i). ✷

For the proof of the corollary below, we use these auxiliary properties.

Lemma VI.2.10. Assume that deg(x) = m+2 and x =NF y ◦m z, and that T̆ is Π1
2.

Then,

(c) Tǫ ⊢ AT̆,x,0(Z, α, s, t) ↔ AT̆z ,y,m
(Z, α, s, t).

(d) Opx(β) ⇔ Op+my(β) ◦ Opz.

Proof (c) As x =NF y ◦m z, x[α] = y[α] ◦m z, so deg(x)+0 = deg(y)+m. Further,
by Lemma III.6.10, Opx[α] iff Op+my[α] ◦Opz. Thus, also T̆+m

x[α]↾X iff Op+my[α](T̆z)↾X , and

the claim follows. (d) As x =NF y ◦m z, also x(β) = y(β) ◦m z, and the claim is by
Lemma III.6.10. ✷

Corollary VI.2.11. Let x ∈ Q with deg(x) = m+2 and x =NF y ◦m z. Further,
assume that T̆ is Π1

2, and Γ ⊆fin LeΣ1
m+1

(T|S). Then,

Tx|S
n

∗
Γ ⇒ Tx(n)|S ⊢ Γ.

Proof By induction on n. If Γ is an axiom, then as Γ ⊆ LeΣ1
m+1

(T|S), Γ is also an

axiom of T+m
x(n)|S. Since with T̆x(n)|S ⊢ Γ, also T̆x(n+1)|S ⊢ Γ, the only interesting case

of the induction step is if Tx|S
n+1

∗
Γ is obtained by a cut with an instances of T̆x|S

which is not also an instance of T̆x(n+1)|S. In this case, Tx|S
n

∗
Γ,¬A

T̆,x,0(Z, α). As

¬A
T̆,x,0(Z, α) ∈ LeΠ1

m+2
, also Tx(n)|S

n

∗
Γ,¬A

T̆,x,0(Z, α) by Lemma VI.2.1 and the

I.H. Hence also Opx(n)(T)|S ⊢ Γ,¬AT̆z ,y,m
(Z, α) by Lemma VI.2.10 (c). As Opx(n)(T)

iff Op+my(n)(Tz) by Lemma VI.2.10 (d), we have Op+my(n)(Tz)|S ⊢ Γ,¬AT̆z ,y,m
(Z, α),

hence Op+my(n+1)(Tz)|S ⊢ Γ by Lemma VI.2.9. Again by Lemma VI.2.10 (d), we have

Op+my(n+1)(Tz) iff Op+mx(n+1)(T), so Tx(n+1)|S ⊢ Γ follows. ✷

VI.3 Infinitary reductions

We will observe that the results form the previous section hold also (to some extend)
in the infinitary systems. In order to fully exploit these results, we require that
∗

Tǫ|S
<γ

∗
M0 |= Γ iff

∗

S
<γ

∗
Γ (Lemma VI.3.13), shown in the next subsection.
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VI.3.1 From
∗

Tǫ|S
<γ

∗ M0 |= Γ to
∗

S
<γ

∗ Γ

For an arithmetical sequent Γ, we will need the property displayed in the subsection

heading to go from
∗

Tx|S
<γ

+
Γ via

∗

Tǫ|S
<γ′

∗
Γ and

∗

Tǫ|S
<γ′

∗
M0 |= Γ to

∗

S
<γ′

∗
Γ.

Since the aforementioned and the following results are only required for S different
from Tǫ we stick to the following convention.

Convention VI.3.1. In this subsection, it is assumed that S := Tk−1| . . . |T0 for
k > 0, so M0 refers to Uk.

We start by refining the definition of M0 |= A. The purpose is twofold: firstly, we
need a definition that is simpler to work with, and secondly, we want that M0 |= A
stores enough information to easily reconstruct A.

To achieve these goals, we let, M0 |= A be an LM0-formula which contains ∗-variables
∗i that are in some sense substitutes for the set variables Ui, and then identify the
LM0-formula M0 |= A with the L-formula (M0 |= A)Φ0 (see Definition VI.3.3).

LM0-formulas are build using a third kind of variables, denoted by ∗0, ∗1, . . . A vari-
able ∗i can be quantified, and it can occur free or bound in a formula in the same
may as a number variable x can occur free or bound in an L2-formula. We let ∗
denote some ∗i in the same way we use u to denote some ui. Further, FV∗(Γ) denotes
the set of free ∗-variables that occur in Γ.

Definition VI.3.2 (LM0-formulas).

(i) Each literal of L without set variables, except s ∈ M0 and s /∈ M0 for s ∈ L,
is a literal of LM0.

(ii) For each s ∈ L, s ∈ (M0)∗ and s /∈ (M0)∗ are literals of LM0, where s ∈ (M0)∗
is short for 〈s, ∗〉 ∈ M0.

(iii) The LM0-formulas are build from the literals by closing under ∧, ∨, Qx and
Q∗, where Q ∈ {∀, ∃}.

The L∗
M0

-formulas are the LM0-formulas without free number variables.

Using an assignment Φ that maps ∗-variables to closed number terms, we map LM0-
formulas to L-formulas.

Definition VI.3.3. Let Φ be a map that assigns to each variable ∗i a closed number
term. If s ∈ L∗, then Φ[∗i = s](∗i) = s, and if i 6= j, then Φ[∗i = s](∗j) = Φ(∗j).
Further, each LM0-formula A is mapped to the L-formula AΦ as follows.

(i) For each literal, LΦ is obtained form L by replacing ∗i by Φ(∗i).
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(ii) (Aj B)Φ := AΦ j BΦ, (QxA(x))Φ := Qx(A(x))Φ, and (Q∗A(∗))Φ := Qx(A(x))Φ,
where x is the first number variable w.r.t. some fixed enumeration that does
not occur in (A(0))Φ.

If the context suggest that the LM0-formula A should be read as an L-formula, then
we identify A with AΦ0 where Φ0(∗n) := n, and if the context further suggest that A
is an L∗-formula, then we identify A with (AΦ0)∗.

Next, we assign to each L-formula A an LM0-formula M0 |= A with the same free
number variables, and conversely, we assign to each LM0-formula B an L-formula
B↑ with the same free number variables. It is readily observed that (M0 |= A)↑ = A
and B = (M0 |= B↑).

Definition VI.3.4 (M0 |= A). To each L-formula A, we assign an LM0-formula
M0 |= A as follows.

(i) M0 |= L := L if L is a literal (without a set variable).

(ii) M0 |= (s ∈ Ui) := s ∈ (M0)∗i and M0 |= (s /∈ Ui) := s /∈ (M0)∗i.

(iii) M0 |= QxA(x) := Qx(M0 |= A(x)) and

M0 |= (Aj B) := (M0 |= A) j(M0 |= B), where j ∈ {∧,∨}.

(iv) M0 |= QUiA(Ui) := Q∗i(M0 |= A(Ui)).

Definition VI.3.5 (A↑). To each LM0-formula A, we assign an L-formula A↑ as
follows.

(i) L↑ := L, if L is a literal without a ∗-variable.

(ii) (s ∈ (M0)∗i)
↑ := s ∈ Ui and (s /∈ (M0)∗i)

↑ := s /∈ Ui.

(iii) (QxA)↑ := QxA↑ and (Aj B)↑ := A↑ j B↑, where j ∈ {∧,∨}.

(iv) (Q∗iA)↑ := QUiA↑.

Now the following is readily checked.

Lemma VI.3.6. M0 |= Γ according to the old definition (Definition I.1.5) agrees
with M0 |= Γ according to the new definition (Definition VI.3.4) (up to names of
bound variables). Note that here M0 |= Γ is short for (M0 |= Γ)Φ0.

If A is an L(S)-formula without dummy set quantifiers (i.e. A contains no subformula
of the form QXA(X) where X does not occur free in A(X)), then we call M0 |= A
an LM0(S)-formula. It is easily seen that LM0(S)-formulas can also be characterized
as follows.
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Definition VI.3.7. An LM0-formula A is an LM0(S)-formula, if A↑ ∈ L(S) and if
A contains no subformula of the form Q∗A(∗) where ∗ does not occur free in A(∗)
(no dummy ∗-quantifiers).

A key property of LM0(S)-formulas is that AΦ0 = BΦ0 entails A = B (we removed
formulas with dummy ∗-quantifier from the LM0(S)-formulas, as (∀∗0(0 = 0))Φ0 is
(∀u0(0 = 0))Φ0). To show this, we need the following auxiliary lemma.

Lemma VI.3.8. Assume that u ∈ FV0(A(u)). If A(∗) ∈ LM0(S), then A(t) /∈
LM0(S), and if A(t) ∈ LM0(S), then A(∗) /∈ LM0(S).

Proof By induction on the build-up of A. The claim is readily checked for literals.
Note that (s ∈ (M0)∗) ∈ LM0(S), but (s ∈ (M0)t) /∈ LM0(S), and conversely, for i < k
where Ui is different from M0, s ∈ (Ui)t ∈ LM0(S), but s ∈ (Ui)∗ /∈ LM0(S). The
induction step is straightforward. ✷

Lemma VI.3.9. If A,B ∈ LM0(S) and AΦ0 = BΦ0, then A = B (up to names of
bound ∗-variables).

Proof By induction on the build-up of LM0(S)-formulas. If L = AΦ0 is a literal,
then A can only differ from B if L is of the form L(m). But by Lemma VI.3.8 only
either L(m) or L(∗m) is literal of LM0(S). If e.g. A

Φ0 = BΦ0 and A = Q∗C(∗), then
B = QxD(x) is impossible: Since Q∗ is not a dummy quantifier, ∗ occurs free in
C(∗). And as ·Φ0 does not change the structure of the formula, also x occurs free in
D(x). Further, AΦ0 = BΦ0 implies (C(∗))Φ0 = (D(x))Φ0, so by I.H., C(∗) = D(x),
a contradiction! The other cases are shown similarly. ✷

Next, we modify
∗

Tǫ|S so that it derives L∗
M0

-sequents. We call this system
∗

Tǫ↓|S.

Definition VI.3.10.
∗

Tǫ↓|S derives finite set of L∗
M0

-formulas. It contains the axioms

and rules of
∗

Tǫ adjusted to LM0-sequents, for each A ∈ inst∗(S̆) an axiom Γ,M0 |= A,
and the Q∗-rules

Γ, A(∗i)

Γ, ∀∗i, A(∗i)
, and

Γ, A(∗i)

Γ, ∃∗i, A(∗i)
,

where ∗i does not occur in Γ, ∀∗iA(∗i).

Note that inst∗(S̆↾M0) = {(M0 |= A)Φ0 : A ∈ inst∗(S̆)}. Therefore,
∗

Tǫ↓|S is essentially
∗

Tǫ|S, with the QX-rules replaced by the Q∗-rules.

The following is immediate by induction the depth of the derivation.

Lemma VI.3.11. Let Γ ⊆fin L∗(S). Then,

∗

S
α

∗
Γ ⇔

∗

Tǫ↓|S
α

∗
M0 |= Γ,
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However, we want to show that for a finite set Γ of L∗
M0

(S)-formulas,
∗

Tǫ|S
α

∗
ΓΦ0

implies S
α

∗
Γ↑. This follows rather straightforward since for A ∈ L∗

M0
(S), AΦ0

already determines A due to Lemma VI.3.9.

Lemma VI.3.12. Let Γ ⊆fin L∗
M0

(S). Then, all of following statements are equiva-
lent.

(i)
∗

Tǫ↓|S
α

∗
Γ,

(ii)
∗

Tǫ|S
α

∗
ΓΦ for each Φ,

(iii)
∗

Tǫ|S
α

∗
ΓΦ0.

Proof (i)⇒(ii) is immediate by induction on α, and (ii)⇒(iii) holds trivially. It
remains to show (iii)⇒(i). We prove the claim by induction on α. If α = 0, then
ΓΦ0 contains LΦ0 ,¬LΦ0 or an L∗-instance of S̆↾M0, which is (M0 |= A)Φ0 for some

A ∈ inst∗(S̆). By Lemma VI.3.9, Γ is also an axiom of
∗

Tǫ↓|S. Of the induction step,

we exemplarily consider the case where
∗

Tǫ|S
α+1

∗
(Γ, ∀xA(x))Φ0 is obtained by an

ω-rule from
∗

Tǫ|S
α

∗
(Γ, A(m))Φ0 for all m ∈ N. Then, (∀xA(x))Φ0 is either of the

form (∀∗A(∗))Φ0 or (∀xA(x))Φ0 , and due to Lemma VI.3.9, only one is possible. In

the first case, the I.H. yields
∗

Tǫ↓|S
α

∗
Γ, A(∗) for some ∗ that does not occur free

in Γ, ∀∗A(∗), and the claim follows by an ∀∗-rule. And in the second case, the I.H.

yields
∗

Tǫ↓|S
α

∗
Γ, A(m) for each m ∈ N, and the claim follows by an application of

the ω-rule. ✷

Combining the two above lemmas into one yields the following.

Lemma VI.3.13. Let Γ ⊆fin L∗(S) without dummy set quantifiers. Then,

∗

S
α

∗
Γ ⇔

∗

Tǫ|S
α

∗
M0 |= Γ.

VI.3.2 Reducing
∗

Tx+1 to
∗

Tx and if deg(x) > 1, then
∗

Tx to
∗

Tx(α)

We present infinitary versions of the Lemmas VI.2.3, VI.2.9 and Corollary VI.2.11.
These results are obtained very similarly to the finitary versions. The following
variant of Lemma VI.2.1 is used which is proved completely analogously.

Lemma VI.3.14. If for some α, β and each Γ ⊆fin L∗
eΣ1

m
,

∗

S
α

C
Γ ⇒

∗

S′ β

C
Γ, then

also for each ∆ ⊆fin L∗
eΠ1

m+1
,

∗

S
α

C
∆ ⇒

∗

S′ β

C
∆.

Further, we need an infinitary versions of Lemmas V.2.8 (iii). Here, we need just
the case n = 0. The proof is easily adapted.
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Lemma VI.3.15. If Γ ⊆ L∗(T2|S), then

∗

Tǫ|T|S
α

C
Γ =⇒

∗

Tǫ|T2|S
<α+

C
Γ[M2/M1].

In the proof of the next lemma, we cut with formulas of the form (M0)s = (M0)s
and Z∈̇M0, and further, with the formula B specified at (∗) in the proof below.

Therefore, we assume that C in the lemma below is so that cut(C,
∗

Tǫ|Tn|S) contains
these formulas. There will be enough room to eliminate these cuts in a further step.
Also note that now M0 |= Γ is an L∗

M0
-sequent which we identify with the L∗-sequent

(M0 |= Γ)Φ0 .

Lemma VI.3.16. Let Γ ⊆fin L∗
Π1

0
(T|S) and C ⊆ L∗

Π1
0
(T|S) so that cut(C,

∗

Tǫ|T|S)

contains all formulas of the form (M0)s = (M0)s and Z∈̇M0, and the formula B
specified at (∗) in the proof below. Then,

∗

Tǫ|T|S
α

C
M1 |= ¬A

p1(T̆)
(Z),M1 |= Γ ⇒

∗

Tǫ|T2|S
<α+

C
M1 |= Γ.

Proof Assume that
∗

Tǫ|Tn|S
α

C
M1 |= ¬Ap1(T̆)

(Z),M1 |= Γ, where we suppose that

M1 |= ¬A
p1(T̆)

(Z) is ∀x[(M1)∗
.

/∈ (M1)x ∨ ¬T̆↾(M1)x] and ∗′ /∈ FV∗(M1 |= Γ). By
Lemma VI.3.11, we also have for each Φ,

∗

Tǫ|T2|S
α

C
((M1)∗

.

/∈ (M1)∗′ ∨ ¬T̆↾(M1)∗′)
Φ, (M1 |= Γ)Φ.

By Lemma V.3.12 we obtain that for all s, t ∈ L∗,

∗

Tǫ|T2|S
<α+

C
Z 6= (M1)s, X 6= (M1)t, Z

.

/∈ X,¬T̆↾X, (M1 |= Γ)[Z/(M1)∗],

which readily yields

∗

Tǫ|T2|S
<α+

C
Z

.

/∈ M1, X
.

/∈ M1, Z
.

/∈ X,¬T̆↾X, (M1 |= Γ)[Z/(M1)∗].

Thus, since Tǫ|T|S ⊢ X∈̇M1 ∧ Z∈̇X → Z∈̇M1, and since Z∈̇M1 ∈ cut(C,
∗

Tǫ|T|S),

∗

Tǫ|T2|S
<α+

C
X

.

/∈ M1, Z
.

/∈ X,¬T̆↾X, (M1 |= Γ)[Z/(M1)∗].

Using Lemma VI.3.15, we obtain

(∗)
∗

Tǫ|T2|S
<α+

C
∀X(Z∈̇X ∧X∈̇M2 ∧ T̆↾X → (M2 |= Γ)[Z/(M1)∗]) =: B.

As we have Tǫ|T2|S ⊢ ¬B,M1 |= Γ (by the proof of Lemma VI.2.3), and thus

Tǫ|T2|S
<ω

∗
¬B,M1 |= Γ, Lemma V.3.15 yields

∗

Tǫ|T2|S
<α+

C
M1 |= Γ. ✷

For the infinitary variant of Lemma VI.2.9, we use the following infinitary variant
of Lemma VI.2.6.
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Lemma VI.3.17. If
∗

T|S
α

C
Γ and Y /∈ FV1(Γ) = {Z1, . . . , Zk} and L∗

Π1
0
(T|S) ⊆ C,

then
∗

Tǫ|S
<α+

C
M0

.

/∈ Y, ~Z /∈ Y,¬T̆↾Y,Γ↾Y.

Proof If
∗

T|S
α

C
Γ, then by Lemma V.3.9,

∗

Tǫ|S
<α+

C
¬T̆, ∀X [X 6= M0],Γ. Now

Lemma V.3.11 yields
∗

Tǫ|S
<α+

C
¬T̆↾Y, ∀X [X 6= M0]↾Y, ~Z

.

/∈ Y,Γ↾Y . Since further,

∀X [X 6= M0]↾Y is M0

.

/∈ Y , the claim follows. ✷

Lemma VI.3.18. Let y be a simple name of degree two. Further, assume that T̆ is
Π1
m+2 and Γ ⊆fin L∗

Σ1
m+1

(T|S) and C ⊆fin L∗
Σ1

m+1
(T|S). Then, for each α < o(y),

∗

T+m
y(β)|S

α

C
Γ,¬AT̆,y,m(Z, α, s, t) ⇒

∗

T+m
y(β+1)|S

<α+

C
Γ.

Proof Almost literally as in the finitary case. We just use Lemma VI.3.17 instead

of Lemma VI.2.6. Further, we use that if T|S ⊢ Γ, A, then also
∗

T|S
<ω

∗
Γ, A, and if

further
∗

T|S
<α+

C
Γ,¬A and sufo−(A) ⊆ C, then by Corollary V.4.4, also

∗

T|S
<α+

C
Γ

(actually, when this situation applies, A is a Σ1
1-formula, so A◦ = A and sufo−(A)

are arithmetical). ✷

Corollary VI.3.19. Let x ∈ Q with deg(x) = m+2. Further, assume that T̆ is Π1
2,

and Γ ⊆fin L∗
eΣ1

m+1
(T|S). Then,

∗

Tx|S
β

L∗

eΣ1
m+1

Γ ⇒
∗

Tx(β)|S
<β+

L∗

eΣ1
m+1

Γ.

Proof By Lemma VI.1.3 it suffice to show the claim for
∗

T′
x|S, where still, T̆′

x :=

(∀α < o(x))pm+2(
∗

Tx[α]). We let C := L∗
eΣ1

m+1
. Recall that then inst∗(

∗

T′
x(β)|S) ⊆fin C

(cf. Lemma VI.1.2). The claim is now shown by induction on β, very similar as in
the finitary case, using Lemma VI.3.14 in place of Lemma VI.2.1. We just hint at
some differences.
If β is a limit, then by Lemma V.3.6, we may assume that

∗

Tx|S
β

C
Γ, ∀xB(x) is

obtained from
∗

Tx|S
<β

C
Γ, B(m), for all m ∈ N. Since

∗

Tx(β)|S
<ω

∗
T̆x(α)|S for

each α < β, we have by Lemma V.4.6, that for each ∆ and γ,
∗

Tx(α)|S
<γ

C
∆ ⇒

∗

Tx(β)|S
<γ

C
∆. Using the I.H. we obtain that

∗

Tx(β)|S
<β

C
Γ, B(m), for all m ∈ N,

hence also
∗

Tx(β)|S
β

C
Γ, ∀xB(x).

Further, we need that
∗

Tx|S
<β+

C
Γ,¬A

T̆,x,0(Z, α) yields
∗

Tx|S
<β+

C
Γ,¬A

T̆z ,y,m
(Z, α).

As ¬AT̆,x,0(Z, α) ∈ LeΠ1
m+2

this is either directly by Lemma VI.2.10 (c) and Lemma

V.4.3, or alternatively, one may observe that ¬A
T̆,x,0(Z, α) and ¬A

T̆z ,y,m
(Z, α) only
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differ in the subformulas ¬(T̆)+0
x[α]↾X and ¬(T̆z)

+m
y[α]↾X , which are equivalent over

Tx(β)|S for α✁ o(y). Hence we can employ inversion to dig out ¬(T̆)+0
x[α]↾X , replace

it by ¬(T̆z)
+m
y[α]↾X by cutting, and then undo the inversion steps. ✷

VI.4 Bounds

Finally, we prove that for each x ∈ Q, gxh is a sharp bound of Tx, so according to
our provisional definition of sharp bounds, gxh is the largest normal function which
is provable in Tx, or more precisely, for any other normal function f that is provable
in Tx, we have that f↾Lim(Ω) ≤ gxh↾Lim(Ω), where now again, g(α) := ω1+α and
T := ACA0 is fixed for this and the final section.

We prove this result by showing that gxh is a bound of Tx. A bound of Tx ceils the

costs of cut-elimination for derivations
∗

Tx|S
<γ

+
Γ, where the cut-rule is restricted

to formulas in inst∗(T̆x|S) and some additional formulas that do not impede the
cut-elimination process; these additional cuts can be eliminated cheaply at a later
stage. The next two definitions explain the concept of a bound.

Definition VI.4.1 (
∗

Tx|S
α

+
Γ). Let Γ ⊆fin L∗ and x ∈ Q.

(i) If deg(x) = m+1, then
∗

Tx|S
α

+
Γ states that

∗

Tx|S
α

C
Γ for C := L∗

eΣ1
m
.

(ii) Tq0|S
α

+
Γ states Tq0|S

α

∗
Γ.

For the next definition, we let m .− 1 := m−1 if m > 0, and 0 .− 1 := 0.

Definition VI.4.2 (Bound of Tx). Assume that x ∈ Q with deg(x) = m. A normal
function f : Ω → Ω is a bound of Tx, if for each S, each Γ ⊆fin L∗

eΣ1
m .

−1
(Tx|S) and

each γ ∈ Lim(Ω),
∗

Tx|S
<γ

+
Γ ⇒

∗

Tǫ|S
<f(γ)

∗
Γ.

f is a weak bound if the above only holds for S = Tǫ, (i.e.
∗

Tx
<γ

+
Γ ⇒

∗

Tǫ
<f(γ)

∗
Γ).

f is a sharp bound, if f↾Lim(Ω) ≤ h↾Lim(Ω) for some h that is provable in Tx.

Remark VI.4.3. If for each Γ,
∗

Tx|S
<γ

+
Γ ⇒ Tǫ|

∗

S
<f(γ)

∗
Γ, then also for each Γ,

∗

Tx|S
γ

+
Γ ⇒ Tǫ|

∗

S
f(γ)

∗
Γ, by Lemma V.3.6 and as f is continuous.

A key property of bounds is that a function that is provable in Tx is majorized
already by each weak bound of Tx. This is, as we will see, essentially a consequence of
Pohlers’ Boundedness Lemma (cf. e.g. [11]). Below, we give a slightly strengthened
version which is due to Beckmann [1]. Recall that TI✁(U, β) is Prog✁(U) → β ∈ U.

184



Lemma VI.4.4 (Boundedness Lemma). If
∗

Tǫ
α

∗
¬Prog

✁
(U), β ∈ U, then β ≤ α.

For the aforementioned majorization property, we need the following observations.

Lemma VI.4.5. If deg(x) ≤ 1, then we let C′
x := {α : Wo✁(gxh(α))}, and if

deg(x) > 1, then C′
x := {α : T̆x(α)}.

(i) Tx ⊢ C′
x = Cx and Tx ⊢ α ∈ C′

x → Wo✁(α).

(ii) If deg(x) ≤ 1, then (α ∈ C′
x) ∈ L∗

Π1
1
and sufo−(α /∈ C′

x)
◦ ⊆ L∗

Π1
0
, and

if deg(x) = m+2, then (α ∈ C′
x) ∈ L∗

eΠ1
m+2

and sufo−(α /∈ C′
x)

◦ ⊆ L∗
eΣ1

m+1
.

(iii)
∗

Tx
<ω

+
α ∈ C′

x and
∗

Tx
<γ

+
α /∈ C′

x,Γ imply
∗

Tx
<γ

+
Γ.

(iv) If α < γ, then
∗

Tx
<γ

+
α ∈ C′

x.

Proof (i) The first claim is trivial, see Definition III.7.2. For the second claim,
note that if deg(x) ≤ 1, then α ∈ C′

x says Wo✁(gxh(α)), thus also Wo✁(α), and if
deg(x) > 1, then α ∈ C′

x says T̆x(α), which by its definition implies Wo❀∗(x(α)),
which in turn yields Wo✁(α), as for each β ✁ α, x(β) ❀∗ x(α) (cf. Lemma III.4.19
(xi)). (ii) by inspection of the definition of C′

x. (iii) By (ii) and Lemma V.4.3. (iv)

By induction on α < γ. Assume that
∗

Tx
<γ

+
β ∈ C′

x for each β < α. Then also
∗

Tx
<γ

+
A := (∀β✁α)(β ∈ C′

x). Since Tx ⊢ Prog
✁
(C′
x), also

∗

Tx
<ω

+
¬A, α ∈ C′

x. Note

that if (β ∈ C′
x) ∈ L∗

eΠ1
m+2

, then also A ∈ L∗
eΠ1

m+2
and sufo−(A◦) ⊆ L∗

eΠ1
m+1

. Hence,

Lemma V.4.3 yields
∗

Tx
<γ

+
α ∈ C′

x. ✷

Theorem VI.4.6. If x ∈ Q and f a weak bound of Tx, then gxh↾Lim(Ω) ≤ f↾Lim(Ω).

Proof Assume that f is a weak bound of Tx. By Corollary III.7.16, Tx proves
gxh, that is, Tx ⊢ Wo✁(α) ∧ TI✁(C′

x, α) → Wo✁(gxh(α)). Noting that ¬TI✁(C′
x, α)

is Prog
✁
(C′
x) ∧ α /∈ C′

x, we also have Tx ⊢ ¬Wo✁(α), α /∈ C′
x,TI✁(U, gxh(α)). As

Tx ⊢ α /∈ C′
x,Wo✁(α) by Lemma VI.4.5 (i), Tx ⊢ α /∈ C′

x,TI✁(U, gxh(α)) follows.

Now let α < γ and λ := gxh(α). By the above,
∗

Tx
<ω

∗
α /∈ C′

x,¬Prog✁(U), λ ∈ U,

and
∗

Tx
<γ

+
α ∈ C′

x by Lemma VI.4.5 (iv). Now Lemma VI.4.5 (iii) yields
∗

Tx
<γ

+

¬Prog
✁
(U), λ ∈ U. As f is a bound of Tx, we have Tǫ

<f(γ)

∗
¬Prog

✁
(U), λ ∈ U. By

the Boundedness Lemma, gxh(α) < f(γ), and since gxh is normal, gxh(γ) ≤ f(γ). ✷

Next, we fix an axiomatizations of Tq0, that is, of ACA0, and then compute a bound
of ACA0. We find it convenient to work with the following finite axiomatization.
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Definition VI.4.7. Let T̆q0 := (ACA) := ∀X IND(X) ∧ A1 ∧ A2 ∧ A3 ∧ A4, where
IND(U) := ∀x[0 ∈ U ∧ ∀y(y ∈ U → y+1 ∈ U) → x ∈ U ], and the instances of Ai
(1 ≤ i ≤ 4) have the forms ∃X [X = Ci], where C1 = {0}, C2 = {x : x /∈ Y }, and

C3 = {x : x ∈ (Y )0 ∨ x ∈ (Y )1} and C4 = {x : {e}(x, y) ∈ Y },

where {e}(〈~x〉, 〈y〉) ∈ Y is a Σ0
1-formula which states that there is a computation of

the recursive function with index e that yields on input (x, y) a value in the set Y .

The idea is simple: A2 tells us the {x : x /∈ U} is a set. A1 and A4 imply in
particular, that for each atom R(~u), Z := {〈~x〉 : R(~x)} = {〈~x〉 : chR(〈~x〉) = 0} is
a set. Then, also by A4, {y : 〈~x, y, ~z〉 ∈ Z} = {y : R(~x, y, ~z)} is a set, too. And
using A3, we can code two sets into one. This allows to prove by induction on the
build-up of A(~V,~v, u) that for all ~Y, ~y, there exists a set {x : A(~Y, ~y, x)}.

Next, we compute a bound of Tq0, using the axiomatization of Definition VI.4.7.

Note however, that for any alternative axiomatization T̆′
q0

with inst∗(T̆′
q0
) ⊆ L∗

Σ1
1
,

cut-elimination comes at the same costs due to Lemma V.4.6: if Γ ⊆fin L∗(T|S) and
∗

T′
q0
|S

<γ

C
Γ for some C ⊆ L∗

Π1
0
with rk(C) < N0, then also

∗

Tq0|S
<γ

D
Γ for some

D ⊆ L∗
Π1

0
with rk(D) < N ′

0.

Since A ∈ inst∗(S↾M0) ∪ cut(C, S) contains no free set variables, the following aux-
iliary claim is immediate by induction on α.

Lemma VI.4.8. Suppose that
∗

Tǫ
N0

−
s ∈ C, s /∈ C. Then, for each arithmetical Γ,

∗

Tǫ|S
α

∗
Γ ⇒

∗

Tǫ|S
N0+α

∗
Γ[C/U ].

Lemma VI.4.9. Assume that Γ ⊆fin L∗
Π1

0
(T|S) and D ⊆ L∗

Π1
0
Further, let N0 so that

for each i ∈ I,
∗

Tǫ
<N0

∗
Ci = Ci, rk(Ci = Ci) < N0, rk(IND(X)) < N0 and rk(D) < N0.

If δ ∈ {0} ∪ Lim(Ω), then

∗

Tq0|S
δ+n

D
Γ ⇒

∗

Tǫ|S
it(g,δ+N0·n)

∗
Γ.

Proof By induction on the depth α of the derivation. If α = 0, then the only
interesting case is if Γ contains an L∗-instance of ∀X IND(X), in which case the
claim is by Lemma V.3.18. If α is a limit, then by Lemma V.3.6 we may assume
that the last inference was an ω-rule, and the claim follows immediately by the I.H.
and the continuity of it(g). And if α = δ+n+1 for some δ ∈ {0} ∪ Lim(Ω), then the

only cases where the I.H. does not apply directly are when
∗

Tq0|S
δ+n+1

D
Γ is obtained

from
∗

Tq0|S
δ+n

D
Γ,¬A by a cut. If A /∈ inst∗(T̆q0), then by I.H.,

∗

Tǫ|S
it(g,δ+N0n)

∗
Γ,¬A

and
∗

Tǫ|S
it(g,δ+N0n)

∗
Γ, A. Since rk(A) < N0 and it(g, β+1) ≥ ωit(g,β) by definition
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of it(g), Lemma V.3.15 yields
∗

Tǫ|S
it(g,δ+N0n+N0)

∗
Γ. If A ∈ inst∗(∀X IND(X)), then

∗

Tǫ|S
<ω

∗
A by Lemma V.3.18, and by I.H.,

∗

Tǫ|S
it(g,δ+N0n)

∗
Γ,¬A. Since rk(A) < N0,

∗

Tǫ|S
it(g,δ+N0n+N0)

∗
Γ follows as above. Further, if A is ∃X [X = Ci] for some i ∈ I,

then inversion and the I.H. yield
∗

Tǫ|S
it(g,δ+N0n)

∗
Γ, U 6= Ci, where U /∈ FV1(Γ, C).

By Lemma VI.4.8,
∗

Tǫ|S
it(g,δ+N0n)

∗
Γ, Ci 6= Ci follows. Since

∗

Tǫ
<ω

∗
C = C and

rk(Ci = Ci) < N0,
∗

Tǫ|S
it(g,δ+N0n+N0)

∗
Γ again follows as above. ✷

The following corollary is a direct consequence.

Corollary VI.4.10. it(g) is a bound of Tq0.

Eventually, we can prove that gxh is a sharp bound of Tx. We start with an auxiliary
result. Recall that xh = xH unless x = (n+1, q0), in which case xh = (n+2, q0).

Lemma VI.4.11. Let E := {α : α = ωα}.

(i) If x ∈ Q∗ \ {q0, q1}, then gxh ⊆ E.

(ii) If rk(C) < ω, then
∗

S
<g

xh
(α)

C
Γ ⇒

∗

S
<g

xh
(α)

∗
Γ.

(iii) For each x ∈ Q with deg(x) > 1, gxh(α+2)(0) > gxh(α)(E(α
+)).

Proof (i) First, let y ∈ QH \ {q0, q1}. We show by a case distinction on y that
Hy ⊆ fix. Since x ∈ Q∗ implies xh ∈ QH \ {q0, q1}, we obtain Hxh(g) ⊆ g′ = E.

If y = z+1 for some q0 6= z ∈ QH , then by Lemma III.4.19 (x), q1 ❀
∗
r y, and so by

Lemma III.5.1, Hz ⊆ it. Further, by Lemma I.3.17, sh◦Hz ⊆ sh◦ it = fix. As it ⊆ sh,
Hy = it ◦ Hz ⊆ fix follows. If o(y) = γ, then by Lemma III.5.3, fy =

⋂
α<γ f

′
y[α],

and as fy[α] ⊆ f , also f ′
y[α] ⊆ f ′. This shows that Hy ⊆ fix. And if deg(y) > 1 and

o(y) = 1, then first note thatHy[1] ⊆ fix: asHy[0] ⊆ it, we have sh◦Hy[0] ⊆ fix; further,
Hy[1] ⊆ it◦Hy[0] by Lemma III.5.3, and it ⊆ sh impliesHy[1] ⊆ sh◦Hy[0]. Next, observe
that by Lemma III.4.19, y[1] ❀∗

r y[1+α], so by Lemma III.5.1, Hy[1+α] ⊆ Hy[1].
Therefore, using Lemma III.5.2, Hy(f, α) = Hy[1+α](f, 0) ∈ Hy[1](f) ⊆ fix(f). Thus
also in this case, Hy ⊆ fix.

(ii) Immediate by (i) and Lemma V.3.15.

(iii) We show the claim for y ∈ QH with deg(y) > 1 and o(y) = 1. Then we observe
that if x ∈ Q with deg(x) > 1, we have xH = xh ∈ QH , and by Lemma III.4.23,
deg(xH) > 1 and o(xh) = 1.
Let y ∈ QH with deg(y) > 1 and o(y) = 1. We have it(f, 0) = f(f(0)), and for
α < γ, y[α] = y[γ][α] by Lemma III.4.13. So by Lemma III.5.3, gy[α+1] ⊆ it(gy[α]),
in particular, gy[α+1](0) ≥ gy[α](gy[α](0)). Using Lemma III.5.6, gy[α+1] ≥ α+.
Hence, gy[α+2](0) ≥ gy[α+1](α

+) ≥ E(α+) by (i), and gy(α+2)(0) = gy[α+2]+1(0) ≥
gy[α+2](E(α

+)) > gy(α)(E(α
+)). ✷

Next, we recall the following results concerning the interplay of xh, x(α) and x[α].
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(p1) if deg(x) = 1 and o(x) ∈ Lim(Ω), then xh = xH , so o(x) = o(xh) by Lemma
III.4.23. Further, have that xh[α] ❀∗

r (x[α])
h ❀∗

r x
h[α+1] by Lemma III.4.24,

so by Lemma III.5.1, gxh[α+1] ⊆ g(x[α])h ⊆ gxh[α], and by Lemma III.5.3, gxh =⋂
α<γ gxh[α] =

⋂
α<γ gx[α]h =

⋂
α<γ g

′
(x[α])h

. In particular, for each β and each

α < γ, g(x[α])h(gxh(β)) = gxh(β).

(p2) If deg(x) > 1, then xH [α] ❀∗
r (x(α))H ❀∗

r x
H [α+1] by Lemma III.4.24 (ii).

Hence by Lemma III.5.1, gzH [α+1] ⊆ g(z(α))H and g(z(α))H ✂ gzH [α+1].

Next, we introducing some notations. Then we explain the proof-strategy and pro-
vide a further auxiliary result which we use in the proof of the theorem below.

If x = y+1, we let T̆′
x := p1(T̆y), and if deg(x) = 1 and o(x) = γ, then we let

T̆′
x := (∀ξ ✁ γ)p1(T̆x[ξ]). In both cases, we read

∗

Tx′|S
<γ

+
Γ as

∗

Tx′|S
<γ

C
Γ for

C := L∗
Π1

0
, and by Lemma VI.1.3,

∗

Tx|S
<γ

+
Γ iff

∗

T′
x|S

<γ

+
Γ. In all other cases, we

let T̆′
x := T̆x.

The proof-strategy is as follows. We will prove by induction on

|(x, α)| :=




gxh(α)+ω : α ∈ Lim(Ω) ∪ {0},

gxh(δ
+)+n : if α = δ+n+1 for some δ ∈ Lim(Ω) ∪ {0},

that for each S and each Γ ⊆fin L∗
Π1

0
(Tx|S),

(i)
∗

T′
x|S

α

+
Γ ⇒

∗

Tǫ|S
g
xh

(α)

∗
Γ, if α is a limit,

(ii)
∗

T′
x|S

α

+
Γ ⇒

∗

Tǫ|S
<g

xh
(α+)

∗
Γ, if α is not a limit.

Concerning |(x, α)|, note that by definition, |(x, α)| < |(x, α+1)|, and if α < γ, then
|(x, α)| < |(x, γ)|. Moreover, we have the following, which is exactly what we need
to apply the I.H. in the proof of the next theorem.

Lemma VI.4.12. Assume that x ∈ Q, δ ∈ Lim(Ω) ∪ {0} and n < ω.

(a) If x = y+1, then |(y, gxh(δ+n))| < |(x, δ+1)|.

(b) If deg(x) = 1 and ξ < o(x) = γ, then |(x[ξ]+1, gxh(δ+n))| < |(x, δ+1)|.

(c) If deg(x) > 1, then |(x(δ+n), E(δ+))| < |(x, δ+1)|.

Proof (a) Since fix = sh ◦ it by Lemma I.3.15, |(y, gxh(δ+n))| = gyh(gxh(δ+n))+ω <
gyh(gxh(δ

+)) = gxh(δ
+) = |(x, δ+1)|. (b) If ξ < γ, then |(x[ξ]+1, gxh(δ+n))| <

gx[ξ]h+1(gxh(δ+n+1)) = gxh(δ+n+1) < gxh(δ
+) = |(x, δ+1)|. (c) By Lemma VI.4.11

(iii) and (p2) from page 188, we conclude |(x(δ+n), E(δ+))| < gx(δ+n+1)h(E(δ
+)) <

gx(δ+n+3)h(0) ≤ gxh[δ+n+4](0) < gxh[δ+](0) = gxh(δ
+) = |(x, δ+1)|. ✷
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Theorem VI.4.13. For each x ∈ Q, gxh is a bound of Tx.

Proof We proof (i) and (ii) on page 188 by a case distinction on x. If x = q0, the
claim is by Corollary VI.4.10.

Next, let x = y+1 for some y ∈ Q. If
∗

T′
x|S

0

+
Γ, then as Γ is arithmetical, already

∗

Tǫ|S
0

∗
Γ. If

∗

T′
x|S

α

+
Γ is not obtained by a cut, or a cut with an instance of

∗

Tǫ|S, then the claim follows directly by the I.H. Hence, assume that
∗

T′
x|S

δ+n+1

+
Γ

was obtained by a cut from
∗

T′
x|S

δ+n

+
Γ, A with

∗

T′
x|S

δ+n

+
Γ,¬A, where A is not

an L∗-instance of
∗

Tǫ|S. If A is arithmetical, then by I.H.,
∗

Tǫ|S
<g

xh
(δ+)

∗
Γ, [¬]A,

and the claim is by Lemma V.3.15 and Lemma VI.4.11. And if A is a relevant

L∗-instance of T′
x|S, say Ap1(T̆y)

(Z), then
∗

T′
x|S

δ+n

+
Γ,¬Ap1(T̆y)

(Z). Using inver-
sion so that we can apply the I.H., and then undo the inversion step, we ob-

tain
∗

Tǫ|S
<g

xh
(δ+)

∗
Γ,¬Ap1(T̆y)

(Z), hence also
∗

Ty|S
<g

xh
(δ+)

∗
Γ,¬Ap1(T̆y)

(Z). Now

Lemma VI.3.13 yields
∗

Tǫ|Ty|S
<g

xh
(δ+)

∗
M1 |= Γ,M1 |= ¬Ap1(T̆y)

(Z), so Lemma

VI.3.16 yields
∗

Tǫ|T2
y|S

<g
xh

(δ+)

∗
M1 |= Γ. As for ∆ := M1 |= Γ, M1 |= Γ is

M2 |= ∆, Lemma VI.3.13 yields
∗

Ty|Ty|S
g
xh

(δ+m)

∗
M1 |= Γ for some m. By

Lemma VI.4.12 (a), |(y, gxh(δ +m))| < |(x, δ+n+1)|, so the I.H. applies, and we

obtain
∗

Tǫ|Ty|S
g
xh

(δ+m+1)

∗
M1 |= Γ, since gyh(gxh(δ+m)) ≤ gxh(δ+m+1). Again,

Lemma VI.3.13 yields
∗

Ty|S
g
xh

(δ+m+1)

∗
Γ. Another application of the I.H. yields

∗

Tǫ|S
g
xh

(δ+m+2)

∗
Γ, that is,

∗

Tǫ|S
<g

xh
(δ+)

∗
Γ.

Next, we consider the case where deg(x) = 1 and o(x) = γ ∈ Lim(Ω). We just

consider the case where
∗

T′
x|S

α+1

+
Γ is obtained from

∗

T′
x|S

α

+
Γ,¬A by a cut

with some non-arithmetical A ∈ inst∗(T̆′
x|S) of the form ∃X [Z∈̇X ∧ T̆x[ξ]↾X ], for

some ξ < γ. Applying ∀X-inversion, using the I.H., and undoing the inversion,

we obtain
∗

Tǫ|S
<g

xh
(α+)

∗
Γ,¬A. So also

∗

T′
x[ξ]+1|S

<g
xh

(α+)

∗
Γ. By Lemma VI.4.12

(b), for each n, |(x[ξ]+1, gxh(α+n))| < |(x, α+1)|, thus the I.H. applies and yields
∗

Tǫ|S
<g

(x[ξ]+1)h
(g

xh
(α+))

∗
Γ, that is

∗

Tǫ
<g

xh
(α+)

∗
Γ.

Finally, we look at the case deg(x) = m+2. If
∗

Tx|S
δ

+
Γ, then the claim holds

trivially if δ = 0, and if δ ∈ Lim(Ω), then we may assume that Γ is obtained

by an ω-rule and the claim is immediate by I.H. If
∗

Tx|S
α+1

+
Γ, then Corollary

VI.3.19 yields that
∗

Tx(α+1)|S
<α+

Γ, so
∗

Tx(α+1)|S
<E(α+)

∗
Γ. By Lemma VI.4.12 (c),

|(x(α+1), E(α+))| < |(x, α+1)|. The I.H. applies and yields
∗

Tǫ|S
<g

x(α+1)h
(E(α+))

∗
Γ,

hence
∗

Tǫ|S
<g

xh
(α+)

∗
Γ by Lemma VI.4.11. ✷

As each bound is also a weak bound, the following is a direct consequence of Theorem
VI.4.6.
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Corollary VI.4.14. For each x ∈ Q, gxh is a sharp bound of Tx.

We continue by showing some additional, slightly more refined properties of bounds.
Most of these properties are already implicit in the proof of Theorem VI.4.13.

Lemma VI.4.15. Let Γ ⊆fin L∗
Π1

0
(T|S), C = L∗

Π1
0
, δ ∈ {0} ∪ Lim(Ω) and f a bound

of Tx. Then,
∗

Tx+1|S
δ+n

C
Γ =⇒

∗

Tx|S
it(f,δ+2n)

∗
Γ.

Proof By Lemma VI.1.1, it suffices to show the claim for p1(
∗

Tx)|S instead of
∗

Tx+1|S,
which is done by induction on α = δ+n. If α = 0, then as Γ is arithmetical, it is

already an axiom of
∗

Tx|S, hence
∗

T|S
0

C
Γ. If α is a limit, then by Lemma V.3.6,

we may assume that p1(
∗

Tx)|S
α

C
Γ is obtained by an ω-rule, and the claim follows

directly from the I.H. and the continuity of it(f). And if α = δ+n+1, the only

interesting case is if Γ was obtained by a cut from p1(
∗

Tx)|S
δ+n

C
Γ, A. If A is

arithmetical, then by I.H.,
∗

Tx|S
it(f,δ+2n)

∗
Γ,¬A and

∗

Tx|S
it(f,δ+2n)

∗
Γ, A. Using

LemmaV.3.15 (ii), and since by Lemma VI.4.11, it(f, δ + 2n+2) is bigger than the

next ε-number above it(f, δ+2n), we have in particular
∗

Tx|S
it(f,δ+2n+2)

∗
Γ. And if A

is a relevant L∗-instance of T|S, say Ap1(T̆)
(Z), then by the I.H. and Lemma VI.3.14,

∗

Tx|S
it(f,δ+2n)

∗
Γ,¬Ap1(T̆)

(Z). Now Lemma VI.3.13 yields
∗

Tǫ|Tx|S
it(f,δ+2n)

∗
M1 |=

Γ,¬M1 |= Ap1(T̆x)
(Z), so Lemma VI.3.16 yields

∗

Tǫ|T2
x|S

<it(f,δ+2n)+

C
M1 |= Γ for some

C ⊆ L∗
Π1

0
with rk(C) < m for some m, and

∗

Tǫ|T2
x|S

<it(f,δ+2n+1)

∗
M1 |= Γ follows.

As for ∆ := M1 |= Γ, M1 |= Γ is M2 |= ∆, Lemma VI.3.13 yields
∗

T2
x|S

<it(f,δ+2n+1)

∗

M1 |= Γ. Since f is a bound of Tx, we obtain
∗

Tǫ|Tx|S
it(f,δ+2n+2)

∗
M1 |= Γ, and one

more application of Lemma VI.3.13 yields
∗

Tx|S
it(f,δ+2n+2)

∗
Γ. ✷

That it(f) is a bound of Tx+1 given that f is a bound of Tx now readily follows.

Lemma VI.4.16. If f is a bound of Tx, then it(f) is a bound of Tx+1.

Proof Assume that gxh is a bound of Tx, and that Γ ⊆fin L∗
Π1

0
(T|S). By Lemma

VI.4.15, we have that
∗

Tx+1|S
<γ

+
Γ entails

∗

Tx|S
it(g

xh
,β)

∗
Γ for some β < γ. Since

gxh is a bound of
∗

Tx,
∗

Tǫ|S
<it(g

xh
,β+1)

∗
Γ follows, so

∗

Tǫ|S
<it(g

xh
,γ)

∗
Γ. ✷

The next results tell us how to obtain a bound of Tx if deg(x) = 1 and o(x) ∈ Lim(Ω),
given that we have already bounds of the theories (Tx[α] : δ ≤ α < γ) for some δ < γ.
By the above lemma, we then also have bounds of the theories (Tx[α]+1 : δ ≤ α < γ).
The reason for working with the theories Tx[α]+1 is that deg(x[α]+1) = 1, and thus

inst∗(T̆x[α]+1) ⊆ L∗
eΣ1

1
, in fact, each such instance is Σ1

1.
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Lemma VI.4.17. Assume that deg(x) = 1 with o(x) ∈ Lim(Ω). Further, assume
that for each δ < ξ < o(x), gx[ξ]h is a bound of Tx[ξ]. Then, gxh is a bound of Tx.

Proof Assume that deg(x) = 1 with o(x) = γ. By Lemma VI.1.1 (or Lemma VI.1.3),

it suffices to show that
∗

T′
x|S

α

C
Γ ⇒

∗

Tǫ|S
g
xh

(α)

∗
Γ, for each Γ ⊆fin L∗

Π1
0
(T|S),

where T̆′
x := (∀ξ ✁ γ)p1(T̆x[ξ]) and C := L∗

Π1
0
. We show this claim by induction

on α. The interesting case is if
∗

T′
x|S

α+1

C
Γ is obtained from

∗

T′
x|S

α

C
Γ,¬A

by a cut with some non-arithmetical A ∈ inst∗(T̆′
x|S) of the form ∃X [Z∈̇X ∧

T̆x[η]↾X ], for some η < γ. Applying ∀X-inversion, using the I.H., and undo-

ing the inversion, we obtain
∗

Tǫ|S
<g

xh
(α+1)

∗
Γ,¬A. Now for some ξ ≥ max(δ, η),

p1(
∗

Tx[ξ])|S
<g

xh
(α+1)

C
Γ: as η ≤ ξ, x[η] ❀∗ x[ξ], thus Tx[η] ⊢ T̆x[ξ], and since p1 is

an operation, also p1(Tx[ξ]) ⊢ p1(T̆x[η]); further, by Lemma V.4.6, p1(
∗

Tx[ξ])|S
<γ

C
Γ

implies p1(
∗

Tx[η])|S
<γ

C
Γ. As g(x[ξ]+1)h is a bound of Tx[ξ]+1 (and Lemma VI.1.3), we

obtain that
∗

Tǫ|S
<g

(x[ξ]+1)h
(g

xh
(α+1))

∗
Γ, that is

∗

Tǫ|S
<g

xh
(α+1)

∗
Γ. And if

∗

T′
x|S

α+1

C
Γ

is obtained from
∗

T′
x|S

α

C
Γ, [¬]A for some arithmetical A with rk(A) = n, then by

I.H.,
∗

Tǫ|S
<g

xh
(α+1)

∗
Γ, [¬]A, and

∗

Tǫ|S
<g

xh
(α+1)

∗
Γ follows by Lemma VI.4.11 (ii).

✷

VI.5 Modular ordinal analysis at work yet again

In this final section, we show, dually to what we did in Section III.7, that in some
higher type sense, HxH is a bound of Opx, and that H

+(n+1)
x∗ is a bound of Op+(n+1)

x

(recall that x∗ := xH+corr(x); see Definitions III.4.20). We conclude by discussing
what meta-theory we implicitly used to proof these results.

Bdn(x) is the dual notion of Prvn(x), where Bd0(x) states that gxh is a bound of
Tx, and Bdn+1(x) is the corresponding assertion for (higher type) functionals and
operations.

Definition VI.5.1. By Bdi(x) (i ∈ N) we denote the following statements.

(i) Bd0(x) says “if x ∈ Q, then gxh is a bound of
∗

Tx”,

(ii) Bd1(x) says “for each y, Bd0(y) implies Bd0(x ◦ y)”,

(iii) Bdn+2(x) says ”for each y, Bdn+1(1, y) implies Bdn+1(1, x ◦ y)”.

If Bd0(x), we call gxh a bound of Tx, if Bd1(x), we call HxH a bound of Opx, and if

Bdn+2(x), then we call H
+(n+1)
x∗ a bound of Op+(n+1)

x . Recall that x∗ := xH+corr(x)
(cf. Definitions III.4.20). The next result corresponds to Lemma III.7.7.
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Lemma VI.5.2.

(i) If x ◦ y ∈ Q and Bd1(x) and Bd0(y), then Bd0(x ◦ y).

(ii) If x ◦ y ∈ Q and Bdn+2(x) and Bdn+1(1, y), then Bdn+1(1, x ◦ y).

(iii) If x ◦ y ∈ Q and Bdn+1(x) and Bdn+1(y), then Bdn+1(x ◦ y).

Proof (i) and (ii) are immediate by Definition VI.5.1. (iii) Assume that x ◦ y ∈ Q.
First, we check the case n = 0. Assume Bd1(x) and Bd1(y). To show: x◦y◦z ∈ Q and
Bd0(z) yield Bd0(x◦y◦z). Indeed, Bd1(y) and Bd0(z) imply Bd0(y◦z), which together
with Bd1(x) further yields Bd0(x ◦ y ◦ z). Next, we check the case n > 0. Assume
Bdn+1(x) and Bdn+1(y). To show: x ◦ y ◦ z ∈ Q and Bdn(1, z) yield Bdn(1, x ◦ y ◦ z).
Indeed, Bdn+1(y) and Bdn(1, z) implies Bdn(1, y ◦ z), which together with Bdn+1(x)
further yields Bdn(1, x ◦ y ◦ z). ✷

In our terminology, the claim of Corollary VI.4.10, that it(g) is a bound of ACA0, is
now expressed by Bd0(q0). Further, the claim of Lemma VI.4.16, that it is a bound
of p1, reads now Bd1(q1). Observe that these statements correspond to the Lemmas
III.7.9 and III.7.11. Moreover, we rephrase (and slightly weaken) Lemma VI.4.17,
so that it nicely corresponds to Lemma III.7.10 (ii).

Lemma VI.5.3.

(i) Bd0(q0) and Bd1(q1).

(ii) If deg(x) = 1, o(x) = γ and (∀α < γ)Bd0(x[α]), then Bd0(x).

Next, we present the Lemma corresponding to Lemma III.7.12.

Lemma VI.5.4. (∀x ∈ Q)[deg(x) > 1 ∧ ∀αBdn+1(x(α)) → Bdn+1(x)].

Proof By meta-induction on n. First, we deal with the case n = 0. Assume that
x ∈ Q with deg(x) > 1, and ∀αBd1(x(α)), and aim for Bd1(x). For that, further
assume that Bd0(y) and z := x◦y ∈ Q, and aim for Bd0(z). To verify Bd0(x◦y), note
that (x ◦ y)(α) = x(α) ◦ y (cf. Lemma III.4.17), and suppose that Γ ⊆fin L∗

Π1
0
(T|S)

and
∗

Tz|S
<γ

+
Γ. We have to show

∗

Tǫ|S
<g

zh
(γ)

∗
Γ.

By Corollary VI.3.19,
∗

Tz|S
<γ

+
Γ yields

∗

Tz(β)|S
<β+

Γ for a β < γ (we also used

that β ′ < β and
∗

Tz(β′)|S
<γ′

+
Γ yields

∗

Tz(β)|S
<γ′

+
Γ; see the argument given in

the middle of the proof of Lemma VI.4.17). Hence we have
∗

Tz(β)|S
<E(β+)

∗
Γ. As

∀αBd1(x(α)) and Bd0(y) by assumption, we obtain Bd0(x(β)◦y), that is, Bd0(z(β)).

Therefore, using Lemma VI.4.11 (iii),
∗

Tǫ|S
<g

z(β+2)h
(0)

∗
Γ. Since by (p2) from page

188, gz(β+2)h(0) ≤ gzh[β+3](0) < gzh(γ), the claim follows.
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For the induction step, assume that n > 0, and that the claim holds for n−1.
Assume that x ∈ Q with deg(x) > 1 and ∀αBdn+1(x(α)), and aim for Bdn+1(x).
For that, further assume that x ◦ y ∈ Q and Bdn(1, y), and aim for Bdn(1, x ◦ y)).
Bdn+1(x(α)) and Bdn(1, y) imply Bdn((1, x(α) ◦ y), that is, Bdn((1, x ◦ y)(α)), as
deg(x) ≥ 2 (cf. Lemma III.4.16). Hence we have ∀αBdn((1, x ◦ y)(α)), and the I.H.
yields Bdn(1, x ◦ y). ✷

Lemma VI.5.5. For each n and each x ∈ Q with deg(x) = 1 ∧ o(x) = δ0+γ, and
each (1, v) ∈ Q,

(i) (∀α✁ γ)Bdn+1(x[δ0+α]) → Bdn+1(x) =: C1(n),

(ii) Bdn+1(1, v) → ∀αBdn+1(1+α, v) =: C2(n).

Proof First note that (ii) follows using (i) by induction on α, as (i) settles the limit
case. Hence, it suffices to show (i), which is done by meta-induction on n. First, we
look at the case n = 0.

Assume x ∈ Q with deg(x) = 1, o(x) = δ0+γ, and (∀α✁γ)Bd1(x[δ0+α]), and aim for
Bd1(x). For that, further assume that Bd0(y) and z := x◦y ∈ Q, and aim for Bd0(z).
Thereto, let δ1 so that for each β, x[β] ◦ y = z[δ1+β], and so o(z) = δ1+δ0+γ (cf.
Lemma III.4.16). As for each α < γ, Bd1(x[δ0+α]), we also have Bd0(x[δ0+α] ◦ y),
that is, Bd0(z[δ1+δ0+α]). Therefore, Bd0(z) follows from Lemma VI.4.17.

Next, we consider the induction step. It is assumed that n > 0, and that (i) and (ii)
hold for n−1 (C1(n−1) and C2(n−1)). We show that (i) holds for n, i.e. C1(n).

Assume that x ∈ Q with deg(x) = 1 and o(x) = δ0+γ and (∀α✁ γ)Bdn+1(x[δ0+α]),
and aim for Bdn+1(x). For that, further assume that z := (1, x◦y) ∈ Q and Bdn(1, y),
and aim for Bdn(z). Thereto, let δ1 so that for each β, x[β] ◦ y = (x ◦ y)[δ1+β] and
o(z) = o(x ◦ y) = δ1+γ (cf. Lemma III.4.16). Recall that by Lemma III.4.12 (iv),
(1, (x◦y)−)[α] = (1, (x◦y)[α]). The assumptions (∀α✁γ)Bdn+1(x[α]) and Bdn(1, y)
yield for each α < γ, Bdn(1, x[α] ◦ y), that is Bdn((1, (x ◦ y)−)[δ1+α]). Hence the
I.H. yields Bdn(1, (x ◦ y)−). So by (ii), ∀βBdn(1+β, (x ◦ y)−), that is, ∀βBdn(z(β)).
Finally, Bdn(z) is by Lemma VI.5.4. ✷

Lemma VI.5.6. For all n, Bdn+1(q1).

Proof By meta-induction on n. The case n = 0 is by Lemma VI.5.3 (i). For the
induction step, assume that the claim holds for n. To show Bdn+2(q1), assume
that y+1 ∈ Q and Bdn+1(1, y), and aim for Bdn+1(x) for x := (1, y+1). Note that
deg(x) > 1. Once we know that ∀αBdn+1(x(α)), the claim is by Lemma VI.5.4.
By Lemma VI.5.5 (ii), Bdn+1(1, y) yields ∀αBdn+1(1+α, y). Since x(α) = x[α]+1 =
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(1+α, y)+1, and Bdn+1(1+α, y) and Bdn+1(q1) yield Bdn+1((1+α, y)+1), we also
have ∀αBdn+1(x(α)). ✷

Putting the pieces together yields a proof of the main result of part II.

Theorem VI.5.7. For each x ∈ Q and each m > 0, Bdm(x).

Proof Fix N0 so that x ∈ QN0+1−m. We show by meta-induction on n < N0, that
(∀x ∈ Qn+1)BdN0−n(x). For n := N0 −m, Bdm(x) then follows.
If n = 0, then BdN0(q0) holds trivially, and as we have BdN0(q1) by Lemma VI.5.6,
BdN0(1+β, q0) is by Lemma VI.5.5 (ii). Therefore, (∀x ∈ Q1)BdN0(x).

For the induction step, assume n+1 < N0 and (∀x ∈ Qn+1)BdN0−n(x). We show
(∀x ∈ Qn+2)BdN0−n−1(x) by induction on ❀∗↾Qn+2. We consider the following
possible cases.

(i) x = y+1. If x = q1, BdN0−n−1(q1) is by Lemma VI.5.6. Else, we have
BdN0−n−1(y) by I.H. Together with BdN0−n−1(q1), this yields BdN0−n−1(x).

(ii) deg(x) = 1 ∧ o(x) = γ. By I.H., (∀α ✁ γ)BdN0−n−1(x[α]), and BdN0−n−1(x) is
by Lemma VI.5.5 (i).

(iii) deg(x) > 1. Then there are y, z with deg(y) > 0 so that x =NF (1, y) ◦ z. As
z ❀∗ x by Lemma III.4.19 (iv), the I.H. yields BdN0−n−1(z). As (1, y) ∈ Qn+2,
y ∈ Qn+1, and meta-by I.H., BdN0−n(y). Together with BdN0−n−1(1, q0)
we obtain BdN0−n−1(1, y), and BdN0−n−1(1, y) and BdN0−n−1(z) finally imply
BdN0−n−1(x).

✷

Since Bd1(x) and Bd0(q0) yield Bd0(x), we have the next corollary.

Corollary VI.5.8. (∀x ∈ Q)Bd0(x).

Furthermore, we obtain that for each composite name c, gc
h
is a sharp bound of Tc.

Corollary VI.5.9. For each composite name c, gc
h
is a sharp bound of Tc.

Proof That Tc proves gc
h
is by Lemma V.1.9. That gc

h
is a bound of Tc is immediate

by induction on the length of the composite name c, using that if f1 is a bound of
Tc and f2 is a bound of Tx, then f2 ◦ f1 is a bound of T(x,c): if Γ ⊆fin L∗

Π1
0
(T(x,c)) and

∗

T(x,c) <γ

+
Γ, then

∗

Tǫ|
∗

Tc
<f2(γ)

∗
Γ, so by Lemma V.3.10

∗

Tǫ|
∗

Tc
<f2(γ)

∗
M0 |= Γ, and

further, by Lemma VI.3.13,
∗

Tc
<f2(γ)

∗
Γ; the claim now follows by the assumption

that f1 is a bound of Tc. ✷

In particular, we have obtained the results announced in the introduction. For

theories of the form Tx+ (IN), observe that by Lemma V.3.18 (i),
∗

Tǫ
<ω

∗
A for each
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instance A of (IN). Therefore, Tx + (IN) ⊢ Γ implies
∗

Tx
<ω

Γ, which by Lemma

V.3.15 yields
∗

Tx
<ε0
∗

Γ. Using that gxh is a bound of Tx, the Boundedness Lemma
implies |Tx + (IN)| ≤ gxh(ε0).

The presentation of the ordinals in the form ϕ~α is due to Definition IV.5.14 and
Corollary IV.5.16, and the presentation of the ordinals in the form ϑγ is due to
Corollary IV.5.13.

Corollary VI.5.10. Let Ω0 := 1, Ωn+1 := ΩΩn, Ω0(α) := α, and Ωn+1(α) := ΩΩn(α).

(i) |ACA0| = ε0 and |ACA| = ϕ1ε0.

(ii) |p1(ACA0)| = ϕ20 and |p1(ACA0) + (IN)| = ϕ2ε0.

(iii) |Σ1
1-DC0| = ϕω0 and |Σ1

1-DC| = ϕε00.

(iv) |ATR0| = Γ0 (Feferman-Schütte ordinal), and |ATR| = ϕ10ε0.

(v) |ATR0 + (Σ1
1-DC)| = ϕ1ω0 and |ATR+ (Σ1

1-DC)| = ϕ1ε00.

(vi) |Σ1
1-TDC0| = ϕω00 and |Σ1

1-TDC| = ϕε000.

(vii) |p1(Σ1
1-TDC0)| = ϕ1000 (Ackermann ordinal).

(viii) |pn+2
2 (ACA0)| = ϕω 0 . . . 0︸ ︷︷ ︸

n

0, |pn+2
2 (ACA0) + (IN)| = ϕε0 0 . . . 0︸ ︷︷ ︸

n

0 and

|p1p
n+2
2 (ACA0)| = ϕ1 0 . . . 0︸ ︷︷ ︸

n+1

0.

(ix) |p3(ACA0)| = ϑΩω (small Veblen number), and |p1p3(ACA0)| = ϑΩΩ (big Ve-
blen number).

(x) |pn+3(ACA0)| = ϑΩn(ω), |pn+3(ACA)| = ϑΩn(ε0) and p1|pn+3(ACA)| = ϑΩn+1.

VI.5.1 In which meta-theory did we prove (∀x ∈ Q)Bd0(x)?

To conclude, we provide a rough sketch of how to prove a formalized and restricted
version of the statement “gxh is a bound of Tx” in ACA0 plus some amount of

transfinite induction. To do so, we first of all need a way to express
∗

Tx|Tc
α

+
Γ,

which is achieved by assigning a code p
∗

Tx|Tc
α

+
Γq to such a derivation.

∗

Tx|Tc
α

+
Γ

is then expressed by p
∗

Tx|Tc
α

+
Γq ∈ D, where D is the set of codes of all such

derivations.

The set D of codes of such derivations is specified by a positive inductive definition,
that is, the least fixed point of X 7→ {x : A(X, x)}, where A(U, u) is an arithmetical
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formula that contains U only positively. Actually, it is not required that D is the
least fixed point, we just need that D is a fixed point. In order for D to be a set,
provably in ACA0, we further have to arrange things so that D is a fixed point of a
positive Π0

1 inductive definition A(U, u). In this case, assuming that π0
1(U, x, y, e) is

a universal Π0
1-formula so that for each Π0

1-formula B(U, x, y), there is an index eB
so that ACA0 ⊢ ∀X, x, y[B(X, x, y) ↔ π0

1(X, x, y, eB)], it is readily checked that for
an index e so that A({z : π0

1(U, z, y, y)}, x) iff π
0
1(U, x, y, e), D := {x : π0

1(∅, x, e, e)}
is the desired Π0

1-fixed point.

A straightforward coding of derivations leads however to a positive Π0
1-∨-Σ

0
1 induc-

tive definition, as e.g. in case of an ∃x-rule, we need to guess a witness. Therefore,
we proceed as detailed in Schwichtenberg [23] section 4.2.2, and use codes of deriva-
tion which provide as additional information codes of immediate subderivations,
or more to the point, a recursive function, that computes these codes. A code of
∗

Tx|Tc
α

+
Γ is then a tuple of the form 〈e, x, c, r, α,+,Γ〉, where {e}(i) computes a

code of the ith premise of the last inference which is coded by r; further we wrote
Γ instead of pΓq.

We just hint at how the clauses of such an inductive definition look like for the
ω-rule and the ∃x-rule. Assume that 0 is a code of the ω-rule, and 1 a code for
the ∃x-rule. Then, 〈e, x, c, 0, α,+, pΓ, ∀xA(x)q〉 ∈ D, if for each n, {e}(n) ∈ D
and {e}(n) is of the form 〈e′, x, c, r, β,+, pΓ, A(n)q〉, where β ✁ α. And accord-
ingly, 〈e, x, c, 1, α,+, pΓ, ∃xA(x)q〉 ∈ D, if {e}(0) ∈ D and {e}(0) is of the form
〈e′, x, c, r′, β,+,Γ, A(s)〉, where β ✁ α.

Of course, we have to check that the previously shown reduction properties also
hold for derivations coded by D which store additional information, in particu-
lar, we would have to show that we can always provide indices of recursive func-
tions that compute the respective subderivations. More precisely, we would have
to provide recursive functions t1(d), t2(d) and t3(d) that compute explicitly the
proof-transformations given in the Lemma VI.3.13, Lemma VI.4.15 and Corollary

VI.3.19: if d codes the derivation
∗

Tǫ|Tx|T
c α

∗
M0 |= Γ, then t1(d) codes the deriva-

tion
∗

Tx|Tc
α

∗
Γ, if d codes the derivation

∗

Tǫ|Tx|Tc
α

+
Γ, then t2(d) codes the

derivation
∗

Tǫ|T2
x|T

c <α+

∗
M1 |= Γ, and if d codes the derivation

∗

Tx|Tc
α

∗
M0 |= Γ,

then t3(d) codes the derivation
∗

Tx(α)|Tc
α+

+
Γ. A recursive definition of these func-

tion ti(d) (i ∈ {1, 2, 3}) can be read off from the proofs of the respective results.
The recursion theorem then provides us with an index of ti; that ti has the right
properties is then proved using transfinite induction on α. As we have to show that
for each code of a derivation d ∈ D with depth below α, there is a computation of
ti(d) that yields a code of a derivation d′ ∈ D, transfinite induction for all sets that
are Π0

2 in D is required, that is, ∀zTI✁((D′)z, α), where D
′ := {〈x, e〉 : π0

2(D, x, e)}
for some universal Π0

2-formula π0
2(U, x, e).
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Furthermore, it turns out that ∀zTI✁((D′)z, λ) is what we need besides ACA0 to
prove a formalized version of Theorem VI.4.13, that for each name x, gxh is a bound

of Tx, given that the resulting derivation in
∗

Tǫ|Tc has depth at most λ. That is, if we
let Bdλ0(x) := ∀γ[gxh(γ) ✂ λ → Bd′0(D, x, γ)], where Bd′0(D, x, γ) expresses that for

each d ∈ D that codes
∗

Tx|T
c <γ

+
Γ, there exists a d′ ∈ D that codes

∗

Tǫ|Tc
<g

xh
(γ)

∗
Γ,

then
ACA0 + ∀zTI✁((D

′)z, λ) ⊢ (∀x ∈ Q)Bdλ0(x).

Finally, to obtain a formalized version of Theorem VI.5.7, that for each x ∈ Q and
each m > 0, Bdm(x), we let Bdλ1(x) := ∀y[Bdλ0(y) → Bdλ0(x ◦ y)], and for each n > 0,
Bdλn+1(x) := ∀y[Bdλn(1, y) → Bdλn(1, x ◦ y)]. So Bdλn+1(x) are modified versions of
Bdn+1(x). These modifications are justified by the observation that the successive

reduction of a derivation
∗

Tx|Tc
<γ

+
Γ to a derivation

∗

Tǫ|Tc
<γ

∗
Γ only relies on

intermediate derivations whose depths are smaller than gxh(γ). Hence, we have for
each n, that

ACA0 +Wo✁(λ) ⊢ (∀x ∈ Q)Bdλn(x).

Conclusion

In this thesis, we managed to compute sharp bounds of the theories (Opx(ACA0) :
x ∈ Q) – in particular their proof-theoretic ordinals – using predicative methods
only. Therefore, the theories (Opx(ACA0) : x ∈ Q) are meta-predicative. This
confirms that ordinal analysis with predicative methods allows to handle theories of
ordinal strength up to the Bachmann-Howard ordinal.

The essence of predicative methods is often described as “bottom-up”: ordinal no-
tations are constructed by adding new terms to build additional notations whenever
closure w.r.t. the previously introduced terms is reached. With regard to ordinal
notation systems, the “bottom-up” approach mainly accounts for the interpreta-
tion of the notations, the elements of a primitive recursive well-ordering: whether a
code (x, α) is interpreted bottom-up as Hx(g, α), or rather top-down as the collapse
ϑ(‖x‖′+α) (cf. Theorem IV.5.12). However, the “bottom-up” approach is visible
more clearly when considering the infinitary systems employed to eliminate cuts.

In our view, the characteristic feature of predicative methods is that the soundness
of the rules of these infinitary systems is self-evident and depends only on the rules’

premises; that is,
∗

T
α

Γ, if there is a rule, so that all premises (Γi : i ∈ I) of
this rule are derived with depth αi < α, where the depth is just the height of the

proof-tree. In fact, the infinitary systems (
∗

Tx : x ∈ Q) used in this thesis canonically

correspond to the formal theories (Tx : x ∈ Q). Therefore, all rules of
∗

Tx are trivially
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sound, and partial cut-elimination for
∗

Tx is obtained straightforwardly. This is in
clear contrast to the trademarks of impredicative methods: infinitary systems whose
soundness also depends on complex proof-transformation properties, as is the case
for infinitary systems equipped with the Ω-rule, where moreover, the height of the
proof-tree is measured w.r.t. an ordering that involves uncountable ordinals and
collapsing functions.

In the following, we reflect on how we obtained our main results and how the proofs
that (∀x ∈ Q)Bd0(x), and that for each n, (∀x ∈ Q)Bdn(x) given in the second
part relate to the proofs of Tǫ ⊢ (∀x ∈ Q∗

N0
)Prv0(x), and that for all n < N0,

Tǫ ⊢ (∀x ∈ Qn+1)PrvN0−n(x), given in the first part, where N0 is some fixed but
aritrary large number.

Underlying ideas and concepts

At the base of our modular ordinal analysis lie the sets QH and Q of names to
address all required functionals and operations, which are constructed by iterated
transfinite composition from the basic functionals (Itn+1 : n ∈ N) (where it := It1
and It := It2) and the basic operations (pn+1 : n ∈ N) (see Definitions III.2.1 and
III.3.1).

With functionals, we assigned to each x ∈ QH \ {q0} a functional H+n
x of type

n+2, so that H+n
(α,q0)

= Itαn+1, and if x 6= q0, then H+n
(β,x) = (H

+(n+1)
x (Itn+1))

β, and

H+n
〈x1,...,xk〉

:= H+n
x1 ◦ . . . ◦ H+n

xk
. Recall that if 〈x1, . . . , xk〉 ∈ QH , then xi = (αi, yi)

and y1 <
H . . . <H yk. Furthermore, for x = L(y0 ◦1 . . . ◦1 ym) ∈ QH with lh(yi) = 1

(0 ≤ i ≤ m),
H+n
x = (H+(n+m)

y0
, H+(n+m−1)

y1
, . . . , H+(n+0)

ym ).

With operations, the situation is more delicate: for instance, different names are
required for the operations ∀np1pn2p1 and pω2 p1. We used (1, (ω, q0)

−) as name for the
former and (1, (ω, q0)) as name for the latter, where (ω, q0)

− is a prename. The main
difference between QH and Q shows in names with deg(x) = 1 and o(x) ∈ Lim(Ω):
if x ∈ QH , then (x)0 is of the form (γ, z), while if x ∈ Q, then (x)0 may also be of
the form (1+α, z−).

The operations (Op+nx : x ∈ Q∗) are defined by recursion on ❀∗, the transitive
closure of y ❀ x :⇔ (∃α < o(x))(y = x[α]):

Op+nq1 :⇔ pn+1, and if deg(x) = m+1, then Op+nx :⇔ (∀α✁ o(x))(pm+n+1 ◦ Op
+n
x[α]).

We point out that the ordertype of ❀∗↾x is only about the size of the largest ordinal
|x| occurring in xH (see Definition III.5.5): indeed, if lv(x) = n, then the ordertype
of ❀∗↾{y : y ❀∗ x} is less than (|xH | · ω)n.
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Similarly to functionals, we have that for x = L(y0 ◦1 . . . ◦1 ym) ◦ z ∈ Q∗,

Op+nx ⇔ (Op+(n+m)
y0 ◦ Op+(n+m−1)

y1 ◦ . . . ◦ Op+nym ) ◦ Op
+n
z .

The main ideas of modular ordinal analysis are that we can adequately describe a
theory T by a sharp bound f (T proves f , and conversely, f is a bound of T), and
accordingly, that each operation Opx can be adequately described by a corresponding
functional HxH : if f is a sharp bound of T, then HxH (f) is a sharp bound of Opx(T).
We fixed T := ACA0 and g(α) := ω1+α, and observed that indeed for each name
x ∈ Q, gxh := H1+xH (g) is a sharp bound of Tx := Opx(T).

Technically, Tx proves gxh is defined as

Prv0(x) := T̆x → ∀α[Wo✁(α) ∧ TI✁(Cx, α) → Wo✁(gxh(α))],

where Cx is a suitable class term (cf. Definition III.7.2). On the other hand, that
gxh is a bound of Tx, or Bd0(x) for short, states that if deg(x) = m, then for each
S, each Γ ⊆fin L∗

eΣ1
m .

−1
(Tx|S) and each γ ∈ Lim(Ω),

∗

Tx|S
<γ

+
Γ ⇒

∗

Tǫ|S
<f(γ)

∗
Γ.

Recall that
∗

Tx|S
<γ

+
Γ indicates that the cut-rule is restricted to formulas in

inst∗(T̆x|S) and some additional formulas that do not impede the cut-elimination
process; these additional cuts can be eliminated cheaply at a later stage (cf. Defini-
tion VI.4.1).

Higher type variants of these notions read as follows: we have that Opx proves
HxH iff Prv1(x) := ∀y[prv0(y) → Prv0(x ◦ y)], and accordingly, HxH is a bound of

Opx iff Bd1(x) := ∀y[Bd0(y) → Bd0(x ◦ y). Further, Op+(n+1)
x proves H

+(n+1)
x∗ , if

Prvn+2(x) := ∀y[prvn+1(1, y) → Prvn+1(1, x◦y)], and H
+(n+1)
x∗ is a bound of Op+(n+1)

x

if Bdn+2(x) := ∀y[Bdn+1(1, y) → Bdn+1(1, x ◦ y)], where x∗ := xH+corr(x) (cf.
Definition III.4.20).

Reviewing the proof strategies of the main results

In the first part, we showed
∗

Tǫ ⊢ (∀x ∈ QN0)Prv0(x), and
∗

Tǫ ⊢ (∀x ∈ Q∗
N0
)Prvn+1(x)

for each n < N0. In the second part, we then computed bounds of the theories
(Tx : x ∈ Q): we provided two different proof of (∀x ∈ Q)Bd0(x) that differed
mainly w.r.t. the ordering used for the induction which has consequences mainly
for names x with deg(x) > 1. A direct proof transformed a derivation Tx

<γ

+
Γ

with deg(x) > 1 into a derivation Tx(β)
<E(γ)

∗
Γ for some β < γ, which by the I.H.
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could further be transform into a cut-free derivation. And the second proof made
use of higher type bounds: in order to show Bd1(x), we first proved a stronger result,
namely that for each n, Bdn+1(x), using that a name x with deg(x) = m+2, is of
the form x =NF (1, y) ◦ z for some y, z with deg(y) = m+1, and then using that by
I.H., Bdn+2(y) and Bdn+1(z), which then yielded Bdn+1(x). Since Bd0(q0), and thus
Bd1(x) yields Bd0(x), we also have (∀x ∈ Q)Bd0(x).

A direct proof of (∀x ∈ Q)Bd0(x) was possible since we worked in a meta-theory and
assumed a reasonable amount of transfinite induction. More precisely, we showed
that for each arithmetical sequent Γ,

∗

Tx|S
<γ

+
Γ ⇒

∗

Tǫ|S
<g

xh
(γ)

∗
Γ,

by induction on |(x, γ)| (cf. page 188), using the following reduction properties.

(i) If Γ ⊆fin L∗
Π1

0
(T|S), then

∗

Tǫ|Ty|S
α

L∗

eΣ1
1

M1 |= ¬Ap1(T̆y)
(Z),M1 |= Γ ⇒

∗

Tǫ|T2
y|S

<α+

L∗

eΣ1
1

M1 |= Γ.

(ii) If x ∈ Q with deg(x) = m+2 and Γ ⊆fin L∗
eΣ1

m+1
(T|S), then

∗

Tx|S
γ

+
Γ ⇒

∗

Tx(β)|S
<E(γ)

∗
Γ, for some β < γ.

If deg(x) > 1, then property (ii) immediately lead to a derivation that is simpler
in that |(x(β), E(γ))| < |(x, γ)|. If deg(x) = 1 and o(x) = 1, so x = y+1 for
some y, then property (i) allowed us to use the I.H., essentially as |(x(β), gxh(α))| <

|(x, α+1)|. Finally, if deg(x) = 1 and o(x) = γ (so T̆x iff (∀β ✁ o(x))p1(T̆x[β])),

then the I.H. allowed us to eliminate cuts with L∗-instances of p1(T̆x[β]), since for
β < γ, |(x[β]+1, gxh(α))| < |(x, α+1)|. It is important, though, to note that the
negation of such an instance is Π1

1, and thus, after using inversion, we are left with
an arithmetical sequent.

Next, we review the proof of the stronger result (∀x ∈ Q)Bdn+1(x), as the very same
strategy was applied in the first part to show (∀x ∈ Q)Prvn+1(x). We emphasize that
we do not use induction along (Q,<). This is tempting, since reduction property
(ii) yields ∀αBd0(x(α)) → Bd0(x), a result that readily extends, for each n, to

(∗) ∀αBdn+1(x(α)) → Bdn+1(x).

However, x(α) is not ❀∗-smaller than x, only x(α) < x w.r.t. (Q,<). And even
if working in some unspecified meta-theory, it makes no sense to assume the well-
foundedness of (Q,<) to prove a result whose purpose is mainly to obtain the proof-
theoretic ordinal of Tx and thus its consistency, when |Tx| is much smaller than the
ordertype of (Q,<).

200



To show Bdm(x), we fixed N0 so that x ∈ QN0+1−m, and proved by meta-induction
on n < N0, that (∀x ∈ Qn+1)BdN0−n(x). The meta-induction step was shown by a
side-induction along ❀∗. Letting n := N0 −m, we have got Bdm(x).

We start by reviewing the side-induction step for names x with deg(x) = 1. As
the direct proof, using induction along ❀∗ instead of |(x, γ)|, we saw that for such
names, Bd0(x) follows, if Bd0(x[β]) for all β < o(x) (if o(x) is a limit, then also an
end-piece suffices). Again, this was readily extended in the following way: for each
x ∈ Q with deg(x) = 1 ∧ o(x) = δ0+γ, and each (1, v) ∈ Q,

(a) (∀α < γ)Bdn+1(x[δ0+α]) → Bdn+1(x),

(b) Bdn+1(1, v) → ∀αBdn+1(1+α, v).

Both claims were shown simultaneously by induction on n. (b) was shown by trans-
finite induction on α. Only the limit case required some thought, and was obtained
using (a) doing the characteristic two-step approximation (see the proof of Lemma
III.7.13, or page 66 for a more verbose discussion).

An easy induction on n now yielded Bdn+2(q1): using (b), we saw that Bdn+1(1, y)
implies ∀αBdn+1((1+α, y)+1), i.e., ∀αBdn+1((1+α, y)(α)), so Bdn+1(1, y+1) by (∗).
This helps with the side-induction step for names x with deg(x) > 1 (see below).

Now we return to the proof of (∀x ∈ Qn+1)BdN0−n(x). If n = 0, then the claim reads
(∀x ∈ Q1)BdN0(x). For q0 ∈ Q1, the claim holds trivially, and BdN0(q1) is by the
above observation, so BdN0(1+α, q0) is by (b). Hence (∀x ∈ Q1)BdN0(x). Concerning
the meta-induction step, we assumed that n+1 < N0 and (∀x ∈ Qn+1)BdN0−n(x),
and showed by induction along ❀∗, that (∀x ∈ Qn+2)BdN0−n−1(x).

If deg(x) = 1, then by the I.H., (∀α ✁ γ)BdN0−n−1(x[α]), thus BdN0−n−1(x) by
(a). And if deg(x) > 1, we decomposed x into x =NF (1, y) ◦ z with deg(y) > 0.
Since z ❀∗ x, we have BdN0−n−1(z), and BdN0−n(y) is by the meta-I.H. (since
(1, y) ∈ Qn+2 and deg(y) > 0, thus y ∈ Q∗

n+1), which together with BdN0−n−1(q1)
yields BdN0−n−1(1, y) (note that q1 = (1, q0)), so Bdn+1(x) follows.

To be clear: if e.g. x =NF (1, y) ◦ z, and
∗

Tx
<γ

+
Γ, then we do not reduce this

derivation to
∗

Tx(β)
<E(γ)

∗
Γ for some β < γ. Instead, we regard

∗

Tx
<γ

+
Γ as

(Op+y ◦ p1)(
∗

Tz)
<γ

+
Γ. Now we have Bd2(y) by the meta-I.H., which together with

Bd1(q1) yields Bd1(1, y+1), and Bd1(x) follows from Bd1(z).

Finally, we revisit the proof of Tǫ ⊢ (∀x ∈ Q∗
N0
)Prvn+1(x) presented in the first

part. Since Tǫ comprises no (transfinite) induction at all, we constantly employed
Theorem I.4.2, to have a substitute for transfinite induction. We attempted to
approximate “Tǫ ⊢ Prvn(x)” by prvn(x) := ∀XPrv(x)n↾X , stating that Prvn(x)
holds in all ω-models of Tǫ. Then, by the theorem and the form of the formula
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Prvn(u), (∀x ∈ Q)Prvn(x) is a consequence of the following variant of the induction
step: ∀x[(∀y ❀∗ x)prvn(y) → Prvn(x)].

Since by the form of Prvn(x) we have only a substitute for transfinite induction
along ❀∗, we had no choice but to show (∀x ∈ Q∗)Prv1(x) using provable functions
of higher types. To make this claim at least plausible, we recall that, similarly to
∀αBdn+1(x(α)) → Bdn+1(x), we have got ∀αprvn+1(x(α)) → Prvn+1(x) (now working
in Tǫ). Thus, an obvious idea to obtain Prv1(x) from (∀y ❀∗ x)prv1(y) is to show
∀αPrv1(x(α)) using induction on α and the assumptions Prv1(x(0)) and prv1(x(0)),
and to leave the problem of how to obtain Prv1(x(0)) for later. If say deg(x) = m+2
with o(x) ∈ Lim(Ω) and x =NF y ◦m z with z = L((1, y1) ◦1 . . . ◦1 (1, ym−1)), then
x(α+1) = (y(0) ◦ y(α)) ◦m z (cf. Definition III.4.6). In this situation, prvm+1(y(α))
and Prv1(z) yield Prv1(y(α) ◦m z), that is, Prv1(x(α)), as an easy induction on m
reveals. We consider this evidence that a detour via provable functionals is required.

When we were computing bounds, reduction property (i) allowed us to step form
Bd0(x) to Bd0(x+1). In the context of provable functions, property (i) corresponds
in some sense to

(i)’ ACA0 ⊢ T̆x+1 ∧ prv0(x) ∧Wo✁(α) → Wo✁(gxh(α)) (cf. Lemma III.7.9).

Since T̆x+1 implies that above any Y there is a X with Y ∈̇X and T̆x(α)↾X , having
prv0(x) at hand, and thus Prv0(x)↾X , allowed us to conclude TI✁(Y, gxh(α)), so
Wo✁(gxh(α)): the relativized assumption TI✁(Cx↾X,α) in Prv0(x)↾X is immediate
by Wo✁(α), as Cx↾X is a set.

Reduction property (ii) corresponds to

(ii)’ Tǫ ⊢ deg(x) > 1 ∧ T̆x → Prog
✁
({α : T̆x(α)}) (cf. Lemma III.6.13).

Using (ii)’, T̆x and TI✁(Cx, α) entail T̆x(α), and also that for each Y , there is an

X with Y ∈̇X and T̆x(α)↾X . With prv0(x(α)) at hand, we obtained Wo✁(gxh[α](β))
similarily as above. Hence, ∀αprv0(x(α)) → Prv0(x) is an immediate consequence of
(ii)’, which was readily lifted to ∀αprvn+1(x(α)) → Prvn+1(x).

This time, we showed by meta-induction on n < N0, that for all n < N0, ACA0 ⊢
(∀x ∈ Q∗

n+1)PrvN0−n(x). Again, the meta-induction step was shown by transfinite
induction along ❀∗; for names with deg(x) = 1, we first employed Lemma III.7.10,
which states that ACA0 proves the following.

1) x ∈ QN0 ∧ T̆x+1 ∧ prv0(x) → Prog
✁
(Cx+1).

2) x ∈ Q∗
N0

∧ deg(x) = 1 ∧ o(x) = γ ∧ (∀α✁ γ)prv0(x[α]) ∧ T̆x → Prog
✁
(Cx).

We saw that deg(x) = 1 implies (∀α ✁ γ)prv0(x[α]) → Prv0(x): if x = y+1, this is
by 1) and the observation that TI✁(Cy+1, α) yields α ∈ Cy+1, that is, Wo✁(gyh+1(α)),
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then indeed prv0(y) → Prv0(y+1); if o(x) ∈ Lim(Ω), the claim follows along the same
lines using 2).

Again, (∀α✁γ)prv0(x[α]) → Prv0(x) extended to the following (see Lemma III.7.13):
for each n and each x ∈ Q with deg(x) = 1 ∧ o(x) = δ0+γ, and each (1, v) ∈ Q,

(a)’ (∀α✁ γ)prvn+1(x[δ0+α]) → Prvn+1(x),

(b)’ Prvn+1(1, v) → ∀αPrvn+1(1+α, v).

Then, an induction on n was used to show that ACA0 ⊢ Prvn+1(q1), which helped to
settle the side-induction step for names with deg(x) > 1.

Now ACA0 ⊢ (∀x ∈ Q∗
n+1)PrvN0−n(x) was shown by meta-induction on n < N0 and

side induction along ❀∗, analogously to (∀x ∈ Qn+1)Bdm(x).
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Chapter VII

Appendix

1 Proof of the Representation Theorem

We start by recalling relevant notions and by proving an auxiliary lemma.

For an L2(P)-formula ϕ(u), ϕ(U, u){T̆↾X} is obtained from ϕ(U, u) by replacing each
occurrence of P(X ) in ϕ by the formula T̆↾X . Note that thus e.g. ϕ(U, u){T̆↾U}
and ϕ(U, u){T̆↾X} are the same formula. We write ϕT̆↾U(U, u) for ϕ(U, u){T̆↾U}. If

ϕ(u) represents an operation, then Opϕu is the operation that maps T̆ to ϕT̆↾U(u).
Further, recall Lemma I.2.19, which is tacitly used in the sequel.

A set is called transitive, if trans↾X , where trans = ∀X, x∃Y [Y = (X)x]. Hence,
if trans↾X , then ∀x, y[(X)x,y∈̇X ], and also ∀x, y, z[(X)x,y,z∈̇X ]. The next auxiliary
lemma states that given trans, then for a Σ1

1-formula B(U) := ∃Y A(Y, U), we have
X |= (ϑ{B(U)}) is equivalent to X |= (ϑ{B′(U)}), where B′(U) := U∈̇X∧B(U)↾X .
Essentially, this holds since the range of ∃Y is restricted anyway after substituting
∃Y A(Y,X ) for P(X ), and since each set variable W that occurs in some P(X ) and
remains free after substituting is replaced by (X)w. The transitivity of X is required
to obtain X∈̇X from W ∈̇X , in case X is of the form (W )~s.

Lemma A.1.1. Assume that A(V, U) is an arithmetical L2-formula, that ϑ is an
L2(P

+) formula, and B(U) := ∃Y A(Y, U) and B′(U) := U∈̇X ∧ (∃Y ∈̇X)A(Y, U).
Then Tǫ proves:

trans↾X → [X |= (ϑ{B(U)}) ↔ X |= (ϑ{B′(U)})].

Proof We prove the claim by induction on the build-up of ϑ. As it is assumed
that the set variables occurring in B′(U) and ϑ are disjoint, X will not occur in ϑ.
Assume that X is transitive. Exemplarily we treat the following cases.

(i) ϑ = P(X ) and X = (W )s. We have to verify that X |= ∃Y A(Y, (W )s) iff X |=
∃yA((X)y, (W )s) ∧ (W )s∈̇X , i.e., ∃yA((X)y, (X)w,s) iff ∃yA((X)y, (X)w,s)∧
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(X)w,s∈̇X , where w is a fresh variable. As trans↾X implies (X)w,s∈̇X , this is
the case.

(ii) ϑ = ∀V ψ(V,W ), FV1(ϑ) = {W} and W does not occur free in A(Y, U). For
B(U) := ∃Y A(Y, U), B′(U) := U∈̇X ∧ (∃Y ∈̇X)A(Y, U), the I.H. yields X |=
ψ(V,W ){B(U)} iff X |= ψ(V,W ){B′(U)}, that is, ψ((X)v, (X)w){B(U)}↾X
iff ψ((X)v, (X)w){B

′(U)}↾X , where v, w are fresh variables. Quantifying v on
both sides, and observing (using Lemma I.2.18) that for C either B or B′,

∀v(ψ((X)v, (X)w){C(U)}↾X) = (∀V ψ(V, (X)w){C(U)})↾X =

X |= ∀V ψ(V,W ){C(U)} = X |= ϑ{C(U)}

yields the claim.

✷

Below, we restate the Representation Theorem (Theorem I.2.26) in a slightly more
explicit form. We let Wog

❀,≺(u) := Wo≺(u)∧ good(❀,≺). Recall that good(❀,≺)
is an arithmetical sentence that asserts that ≺ is the transitive closure of ❀ (cf.
Definition I.2.24).

Theorem A.1.2. Suppose that ϑ(u) is an open L(P+)-sentence that strongly implies
p1, and that ≺,❀, f(u, v) are primitive recursive. Then, there is an L(P+)-formula
ψ(U, u) which is Σ1

1 with exactly the displayed variables free,

ϕ(u) := ϕf,≺,❀,ϑ(u) := 0 ≺ u ∧Wog
❀,≺(u) ∧ (∀x ❀ u)ϑ(f(x, u)){ψ(X, x)}

strongly implies p1, and Tǫ proves that if 0 ≺ u and Wog
❀,≺(u), then

(∗) Opϕu(T̆) ↔ (∀x❀ u)(Opϑf(x,u)(Ôp
ϕ

x(T̆))).

Throughout this section, which is devote to the proof of this theorem, ϑ(u) and
ϕ(u) are as assumed in the theorem. As ϑ(u) strongly implies p1, T

ǫ proves that
ϑ(f(x, u)){ψ(X, x)} implies ϕp1{ψ(X, x)}, a fact that we use tacitly in the sequel.
Further, we let α, β, . . . range over field(≺) and γ over limits w.r.t. ≺. We think of
≺ as a well-founded ordering with Wo≺(δ) for each δ ∈ field(≺), and good(❀,≺).
If the context suggests that we consider an element α ≺ δ, then we write α+1
for min{β : α ≺ β � δ} (recall that Wo≺(δ) implies that {β : α ≺ β � δ} is
well-ordered).

Firstly, we comment on the form of the formula ϕ(u) introduced in the above the-
orem. By definition, ϕ(u) contains P only positively. Further, for each L2-formula
A(U), ϑ(u){ψ(X,α)}{A(U)} is ϑ(u){ψA(U)(X,α)} (Lemma I.2.22 (ii)). Next, we
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argue that ϕ(u) represents an operation. It remains to show that Tǫ ⊢ ϕ⊤(u) →
pair ∧ trans. We work informally in Tǫ and assume ϕ⊤(u). If 0 6≺ u ∨ ¬Wog

❀,≺(≺),
then pair ∧ trans follows trivially, and if 0 ≺ u ∧ Wog

❀,≺(≺), then there is an α
with α ❀ u, hence ϑ(f(α, u)){ψ⊤(X,α)}. Since each L2-formula trivially implies ⊤,
Lemma I.2.19 yields ϑ⊤(f(α, u)). Further, as ϑ represents an operation, for each y,
ϑ⊤(y) implies pair ∧ trans. Therefore, also ϕ⊤(u) implies pair ∧ trans.

Secondly, we explain the idea leading to this form of ϕ. Assume for the moment,
that ϕ(u) is of the form specified in the formulation of the theorem, that 0 ≺ δ and
Wog

❀,≺(δ), and that (∗) holds for each α ≺ δ. Further, assume that the L2(P)-

formula ψ(U, u) is such that that for D1(U, α) := (α = 0 ∧ T̆↾U) and D2(U, α) :=
(0 ≺ α ∧ Opϕα(T̆)↾U),

(∗∗) (∀α ≺ δ)[ψ(X,α){T̆↾U} ↔ D1(X,α) ∨D2(X,α)].

By choice of ϕ we have that

ϕT̆↾U(δ) ↔ (∀α ❀ δ)ϑ(f(α, δ)){ψT̆↾U(X,α)}.

Further, by the assumption (∗∗), we have that ∀X [ψT̆↾U(X, 0) ↔ D1(X, 0)], and if
0 ≺ α, then ∀X [ψT̆↾U(X,α) ↔ D2(X,α)]. Therefore, ϕT̆↾U(δ) is equivalent to

(∀α ❀ δ)[(0 = α ∧ ϑ(f(α, δ)){D1(X,α)}) ∨ (0 ≺ α ∧ ϑ(f(α, δ)){D2(X,α)})],

which by definition of D1 and D2 (recall: ϑ(z){T̆′↾U}) = Opϑz (T̆
′)) is equivalent to

(∀α❀ δ)[(0 = α ∧ Opϑf(α,δ)(T̆)) ∨ (0 ≺ α ∧ Opϑf(α,δ)(Op
ϕ
α(T̆)))],

which is equivalent to (∀α❀ δ)(Opϑf(α,δ)(Ôp
ϕ

α(T̆))). Hence (∗) holds also for δ.

Before we can give the definition of ψ(X, δ), we need some terminology.

Definition A.1.3. If Z = (X)y, we say that y is an X-index of Z. Further, Z∈̇YX
abbreviates (∃y ∈ Y )[Z = (X)y], i.e. that “Z has an X-index in Y ”.

We refer to Y as a set of X-indices, if we think of each y ∈ Y as an index of
the set (X)y. Now we consider the following hierarchy of X-indices. Its definition
contains a notational ambiguity that we resolve here: ϑ(n){U∈̇(Y )βX} (and also
ϑ(n){V ∈̇(Y )βX}) is obtained by replacing each expression of the form P(X ) in ϑ(n)
by X∈̇(Y )βX .

Definition A.1.4. HierT(Y,X, δ) := χ
T̆↾U(Y,X, δ), where χ(Y,X, δ) is the conjunc-

tion of the formulas listed below:

(i) 0 ≺ δ → [(Y )0 = {y : P((X)y)}],

207



(ii) (∀α ≺ δ)[0 ≺ α→ (Y )α =
⋂
β❀α{y : ϑ(f(β, α)){U∈̇(Y )βX}↾(X)y}].

Note that only (i) is an L2(P)-formula, as in (ii), P(X ) is replaced by X∈̇(Y )βX . To
see more clearly what the above formula claims, assume that 0 ≺ δ and Wog

❀,≺(δ)
and HierT(Y,X, δ), and additionally, that X is transitive. Then, for each α ≺ δ,
(Y )α is a set of X-indices. Some properties of the hierarchy Y are discussed below.

(i) (Y )0 contains the X-indices of models of T, i.e. (Y )0 = {y : T̆↾(X)y}.

(ii) By definition, y ∈ (Y )1 iff ϑ(f(0, 1)){U∈̇(Y )0X}↾(X)y. As by (i), U∈̇(Y )0X

implies T̆↾U , we also have that y ∈ (Y )1 implies ϑ(f(0, 1)){T̆↾U}↾(X)y, and

since ϑ strongly implies p1, also ϕp1{T̆↾U}↾(X)y. So (X)y is a model of p1(T)

and thus transitive. Since X is transitive, T̆↾U ∧ U∈̇(X)y iff U∈̇(Y )0X ∧
U∈̇(X)y. Applying Lemma A.1.1 to the transitive set (X)y and the formulas

A(V, U) := T̆↾U and B(U) := ∃Z(T̆↾U), and then A(V, U) := (U∈̇(Y )0X) and
B(U) := ∃Z(U∈̇(Y )0X), (∃Z is just a dummy quantifier, so e.g. U∈̇(X)y ∧

(∃Z∈̇(X)y)(T̆↾U) is T̆↾U ∧ U∈̇(X)y) yields

y ∈ (Y )1 ↔ ϑ(f(0, 1)){U∈̇(Y )0X}↾(X)y ↔ ϑ(f(0, 1)){T̆↾U}↾(X)y.

Therefore, (Y )1 contains the X-indices of models of Opϑf(0,1)(T).

(iii) By the same reasoning, assuming that (Y )α contains the X-indices of models
of Opα(T), (Y )α+1 contains the X-indices of models of Opϑf(α,α+1)(Opα(T)),
hence of Opα+1(T).

Lemma A.1.5. Tǫ proves that if 0 ≺ δ and HierT(Y,X, δ), then

(i) U∈̇(Y )0X → T̆↾U ,

(ii) 0 ≺ α ≺ δ ∧ U∈̇(Y )αX → (∀β ❀ α)ϑ(f(β, α)){V ∈̇(Y )βX}↾U ,

(iii) α ≺ δ ∧ U∈̇(Y )αX → trans↾U .

Proof Assume that 0 ≺ δ and HierT(Y,X, δ). (i) If U∈̇(Y )0X , then there is a y with

U = (X)y ∧ y ∈ (Y )0. As y ∈ (Y )0 iff T̆↾(X)y, T̆↾U follows. (ii) If U∈̇(Y )αX ,
then there is a y with U = (X)y ∧ y ∈ (Y )α. Therefore, HierT(Y,X, δ) implies
(∀β ❀ α)ϑ(f(β, α)){V ∈̇(Y )βX}↾(X)y, hence the claim. (iii) If α = 0, then (i) yields
trans↾U , and if 0 ≺ α ≺ δ ∧U∈̇(Y )αX , then (ii) and the fact that ϑ(u) represents an
operation entails trans↾U . ✷

We will see that X is model of Opδ(T), if there is a “good” Y , so that HierT(Y,X, δ).
Next, we are looking for conditions that make such a Y “good”. For each α ≺ δ, (Y )α
should contain enough X-indices. It is plausible that for each V ∈̇X , there should be
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a W so that W ∈̇(Y )αX and V ∈̇W . This condition follows from ϕp1{U∈̇(Y )αX}↾X ,
which unwinds to (∀V ∃W (V ∈̇W ∧W ∈̇(Y )αX) ∧ pair ∧ trans)↾X .

If ϕp1{U∈̇(Y )αX}↾X holds for some stage α ≺ δ, then also for all stages β ≺ α. This
is what the next lemma claims if we choose Z := X .

Lemma A.1.6. The following is provable in ACA0:

Wog
❀,≺(δ) ∧ HierT(Y,X, δ) ∧ β ≺ α ≺ δ ∧ ϕp1{U∈̇(Y )αX}↾Z → ϕp1{U∈̇(Y )βX}↾Z.

Proof Assume Wog
❀,≺(δ) and HierT(Y,X, δ). We fix some β with β+1 ≺ δ and show

by induction on α, that

β ≺ α ≺ δ ∧ ϕp1{U∈̇(Y )αX}↾Z → ϕp1{U∈̇(Y )βX}↾Z.

Suppose that β ≺ α ≺ δ and that the claim holds for all α′ ≺ α. As good(❀,≺),
there is an α0 ≺ α with β � α0 ❀ α. We assume ϕp1{U∈̇(Y )αX}↾Z and aim for
ϕp1{U∈̇(Y )α0

X}↾Z. The claim then follows by the I.H. To show ϕp1{U∈̇(Y )α0
X}↾Z,

we fix some V ∈̇Z. ϕp1{U∈̇(Y )αX}↾Z implies that there is a W ′∈̇Z with W ′∈̇(Y )αX
and V ∈̇W ′. α0 ❀ α and W ′∈̇(Y )αX imply ϑ(f(α0, α)){U∈̇(Y )α0

X}↾W ′ by Lemma
A.1.5, and since ϑ strongly implies ϕp1 , also ϕp1{U∈̇(Y )α0

X}↾W ′. Hence there is a
W ∈̇W ′ so that W ∈̇(Y )α0

X and V ∈̇W . This shows that ϕp1{U∈̇(Y )α0
X}↾Z. ✷

Corollary A.1.7. ACA0 proves:

Wog
❀,≺(δ) ∧ HierT(Y,X, δ) ∧ (∀α ❀ δ)ϑ(f(α, δ)){U∈̇(Y )αX}↾X →

(∀β ≺ δ)ϕp1{U∈̇(Y )βX}↾X.

Proof If β ≺ δ, there is an α with β � α ❀ δ. As ϑ strongly implies ϕp1 ,
ϑ(f(α, δ)){U∈̇(Y )αX} implies p1{U∈̇(Y )αX}, and p1{U∈̇(Y )βX} is by Lemma A.1.6.

✷

In fact, if HierT(Y,X, δ), then (∀α ❀ δ)ϑ(f(α, δ)){U∈̇(Y )αX}↾X is a sufficient condi-

tion to ensure Opδ(T̆)↾X . Hence, we let ψ(X, δ) claim that there exists a hierarchy
meeting the above condition. For technical reasons discussed below, we add another
condition.

Definition A.1.8. ψ(X, δ) := ∃Y ψ′(X, Y, δ), where ψ′(X, Y, δ) is the conjunction
of the following formulas.

(i) 0 = δ → P(X),

(ii) 0 ≺ δ → χ(Y,X, δ) ∧ ϕp1{U∈̇(Y )0X}↾X,
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(iii) 0 ≺ δ → (∀α ❀ δ)ϑ(f(α, δ)){U∈̇(Y )αX}↾X.

Clearly, ψ is Σ1
1. Again, only (i) and χ(Y,X, δ) contain the relation symbol P.

Further, ψ(X, 0) iff P(X), so ψT̆↾U(X, 0) iff T̆↾X . And if 0 ≺ δ, then ψT̆↾U(X, δ)
implies that there is a Y such that HierT(Y,X, δ) and ϕp1{U∈̇(Y )0X}↾X , and also

(∀α ❀ δ)ϑ
T̆↾U(f(α, δ)){U∈̇(Y )αX}↾X . As discussed above, U∈̇(Y )0X implies T̆↾U ,

therefore 0 ≺ δ and ψ
T̆↾U(X, δ) imply p1(T̆)↾X .

Lemma A.1.9. Tǫ proves the following.

(i) ψ′
T̆↾U

(X, Y, δ) → HierT(X, Y, δ),

(ii) ψ
T̆↾U(X, 0) ↔ T̆↾X,

(iii) 0 ≺ δ ∧ ψT̆↾U(X, δ) → ϕp1{U∈̇(Y )0X}↾X,

(iv) 0 ≺ δ ∧ ψT̆↾U(X, δ) → p1(T̆)↾X.

Also note that by (ii) and (iv), ψT̆↾U(X, δ) yields (ACA)↾X . By Corollary A.1.7,
we also have the following

Lemma A.1.10. ACA0 ⊢ Wog
❀,≺(≺) ∧ ψT̆↾U(X, δ) → (∀α ≺ δ)ϕp1{U∈̇(Y )αX}↾X.

In view of Corollary A.1.7, the second conjunct of (ii) seems superfluous. We added
it so that the second claim of Lemma A.1.12 is provable in Tǫ.

Now that we have discussed all the ingredients, we restate the definition of ϕ(u).

Definition A.1.11.

(i) ϕ′(u) := (∀α ❀ u)ϑ(f(α, u)){ψ(X,α)}, and

(ii) ϕ(u) := 0 ≺ u ∧Wog
❀,≺(u) ∧ ϕ

′(u).

Lemma A.1.12. Tǫ ⊢ ϕ
T̆↾U(1) → p1(T̆) and Tǫ ⊢ 1 ≺ δ ∧ ϕ

T̆↾U(δ) → p21(T̆).

Proof Assume ϕT̆↾U(1). By definition, ϕT̆↾U(1) implies ϑ(f(0, 1)){ψT̆↾U(X, 0)}. As

ϑ strongly implies p1, we obtain ϕp1{ψT̆↾U(X, 0)}. Since ψT̆↾U(X, 0) iff T̆↾X , p1(T̆)
follows. For the second claim, assume 1 ≺ δ ∧ ϕ(δ). For an α with 1 � α ❀ δ, we
obtain ϕp1{ψT̆↾U(X,α)} as above. By Lemma A.1.9, ψ

T̆↾U(X,α) implies p1(T̆)↾X ,

hence ϕp1{ψT̆↾U(X,α)} implies ϕp1{p1(T̆)↾X}, which is p21(T̆). ✷

As discussed below, claim (∗) of Theorem A.1.2 is easily obtained, once we have the
following lemma, which we prove at the end of this section.

Lemma A.1.13. p1(ACA0) ⊢ 0 ≺ δ ∧Wog
❀,≺(δ) → (ψ

T̆↾U(X, δ) ↔ ϕ
T̆↾U(δ)↾X).
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We argue why this lemma implies that Tǫ proves that 0 ≺ δ ∧Wog
❀,≺(δ) imply (∗)

of Theorem A.1.2. So assume 0 ≺ δ ∧Wog
❀,≺(δ). If δ = 1, (∗) holds as ϕT̆↾U(1) iff

ϕ′
T̆↾U

(1) iff ϑ(f(0, 1)){ψT̆↾U(X, 0)} iff ϑ(f(0, 1)){T̆↾U} iff Opϑf(0,1)(T̆). And for 1 ≺ δ,

ϕT̆↾U(δ) implies p21(T̆). Thus Lemma A.1.13 is at hand. Hence, ϕT̆↾U(δ) iff ϕ′
T̆↾U

(δ)

iff (∀α❀ δ)ϑ(f(α, δ)){ψT̆↾U(X,α)} iff

(∀α ❀ δ)[(0 = α ∧ ϑ(f(α, δ)){ψT̆↾U(X, 0)}) ∨ (0 ≺ α ∧ ϑ(f(α, δ)){ψT̆↾U(X,α)})],

iff

(∀α ❀ δ)[(0 = α ∧ ϑ(f(α, δ)){T̆↾U}) ∨ (0 ≺ α ∧ ϑ(f(α, δ)){ϕ
T̆↾U(δ)↾X)})].

As ϕT̆↾U(δ) is Op
ϕ
δ (T̆) and ϑ(f(α, δ)){ϕT̆↾U(δ)↾X)} is Opϑf(α,δ)(Op

ϕ
δ (T̆)), the displayed

formula is just another way of writing (∀α ❀ δ)(Opϑf(α,δ)(Ôp
ϕ

α(T̆))).

Before we prove the above lemma, we need some further notions and auxiliary results
dealing with indices of sets.

Definition A.1.14. U ⊆̇ V := ∀x∃y[(U)x = (V )y].

Hence if X∈̇U and U ⊆̇ V , then also X∈̇V .

Suppose that Y is a set of X-indices. For some setW withW ∈̇YX we may also have
W ∈̇X ′, so W has also X ′-indices. Below, we define YX′/X so that it contains the
X ′-indices of the sets with X-indices in Y . Further, if Y is a hierarchy of X-indices,
then we define Y[X′/X] so that for each α and Y ′ := (Y )α and (Y[X′/X])α = Y ′

X′/X .

Definition A.1.15.

(i) YX′/X := {y′ : (∃y ∈ Y )[(X ′)y′ = (X)y]}, and

(ii) Y[X′/X] := {〈y′, α〉 : (∃y ∈ (Y )α)[(X
′)y′ = (X)y]}.

Lemma A.1.16. The following is provable in Tǫ.

(i) y′ ∈ YX′/X iff (X ′)y′∈̇YX,

(ii) W ∈̇YX′/X
X ′ iff W ∈̇X ′ ∧W ∈̇YX,

(iii) (∀W ∈̇X ′)(W ∈̇YX) iff (∀W ∈̇X ′)(W ∈̇(YX′/X)X/X′
X),

(iv) if X ′ ⊆̇ X ′′, then YX′/X = (YX′′/X)X′/X′′ and Y[X′/X] = (Y[X′′/X])[X′/X′′].
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Proof (i) y′ ∈ YX′/X iff there is a y ∈ Y with (X ′)y′ = (X)y iff (X ′)y′∈̇YX . (ii)
If W ∈̇YX′/X

X ′, then clearly W ∈̇X ′, and since W = (X)y′ for some y′ ∈ YX′/X , (i)

yields that W = (X ′)y′∈̇YX . Conversely, if W ∈̇X ′ and W ∈̇YX , then there is a
y′ with W = (X ′)y′∈̇YX , so y′ ∈ YX′/X , and thus W ∈̇YX′/X

X ′. (iii) Assume that

(∀W ∈̇X ′)(W ∈̇YX). Hence if W ∈̇X ′, then also W ∈̇YX , and so by (ii), W ∈̇YX′/X
X ′.

As also W ∈̇X , using (ii) again yields W ∈̇(YX′/X)X/X′
X . For the other direction,

observe that by (ii), W ∈̇(YX′/X)X/X′
X yieldsW ∈̇YX′/X

X ′, soW ∈̇X ′ andW ∈̇YX . (iv)

Let y′ ∈ YX′/X . Then (X ′)y′∈̇YX , and there is a y ∈ Y with (X ′)y′ = (X)y. As X
′ ⊆̇

X ′′, there is a y′′ with (X ′′)y′′ = (X)y, thus (X ′′)y′′∈̇YX , that is, y′′ ∈ YX′′/X . As
(X ′)y′ = (X ′′)y′′, (X

′)y′∈̇YX′′/X
X ′′, which says that y′ ∈ (YX′′/X)X′/X′′ . Conversely,

if y′ ∈ (YX′′/X)X′/X′′ , then (X ′)y′∈̇YX′′/X
X ′′. Hence, there is y′′ ∈ YX′′/X so that

(X ′)y′ = (X ′′)y′′ . But y′′ ∈ YX′′/X says that (X ′′)y′′∈̇YX , hence also (X ′)y′∈̇YX ,
that is, y′ ∈ YX′/X . The second claim follows easily from the first. ✷

Lemma A.1.17. Tǫ proves the following: if Z is transitive, Z ⊆̇ X ′ and Z ⊆̇ X,
then ϑ{U∈̇YX}↾Z ↔ ϑ{U∈̇YX′/X

X ′}↾Z.

Proof Assume that Z is transitive, and that Z ⊆̇ X ′, Z ⊆̇ X . If W ∈̇Z, then W ∈̇X
iff W ∈̇X ′, and so W ∈̇YX iff W ∈̇YX′/X

X ′ by Lemma A.1.16 (ii). As ϑ has no free set

variables and since Z is transitive, we have, using Lemma A.1.1, that ϑ{U∈̇YX}↾Z
iff ϑ{U∈̇Z ∧ U∈̇YX}↾Z iff ϑ{U∈̇Z ∧ U∈̇YX′/X

X ′}↾Z iff ϑ{U∈̇YX′/X
X ′}↾Z. ✷

As a consequence, we obtain the next lemma.

Lemma A.1.18. Tǫ proves the following: if X ′∈̇X, X ′ and X are transitive and
Y ′ := YX′/X , then HierT(Y,X, δ) → HierT(Y

′, X ′, δ).

Proof If δ = 0 there is nothing to show. So assume that α ≺ δ, HierT(Y,X, δ) and
Y ′ := Y[X′/X]. We have to show that

(i) y′ ∈ (Y ′)0 iff T̆↾(X ′)y′, and

(ii) if 0 ≺ α ≺ δ, then y′ ∈ (Y ′)α ↔ (∀β ❀ α)ϑ(f(β, α)){U∈̇(Y ′)βX
′}↾(X ′)y′ .

By definition of Y ′, y′ ∈ (Y ′)α iff (X ′)y′∈̇(Y )αX . If α = 0, then y ∈ (Y )0 iff T̆↾(X)y.

Hence y′ ∈ (Y ′)0 iff (X ′)y′∈̇(Y )0X iff T̆↾(X ′)y′ ∧ (X ′)y′∈̇X iff T̆↾(X ′)y′, since X
′ ⊆̇ X

(X ′∈̇X and trans↾X), thus (i). And if 0 ≺ α ≺ δ, then y ∈ (Y )α iff A(X, Y )↾(X ′)y′
for A(X, Y ) := (∀β ❀ α)ϑ(f(β, α)){U∈̇(Y )βX}. Hence y ∈ (Y )α iff (X ′)y′∈̇(Y )αX iff

A(X, Y )↾(X ′)y′ ∧ (X ′)y′∈̇X iff A(X ′, Y ′)↾(X ′)y′ since X
′ ⊆̇ X and by Lemma A.1.17

(as Z := (X ′)y′∈̇(Y )αX , Z is transitive, and since X and X ′ are transitive, we have
Z ⊆̇ X ′ and Z ⊆̇ X , hence the Lemma applies). This shows (ii). ✷
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For the above lemma to apply, we require that X ′ and X are transitive. In the
situations where we use the this lemma, these sets are transitive for the following
reason: ψ′(W,Y, δ) as well as W ∈̇YαX ∧α ≺ δ∧HierT(Y,X, δ) imply the transitivity
of W (cf. Lemma A.1.5 and A.1.9).

Lemma A.1.19. ACA0 proves the following: if Y ′ := Y[X′/X], then

Wog
❀,≺(δ) ∧ ψ′

T̆↾U
(X, Y, δ) ∧ α ≺ δ ∧X ′∈̇(Y )αX → ψ′

T̆↾U
(X ′, Y ′, α).

Proof Assume Wog
❀,≺(δ), ψ

′
T̆↾U

(X, Y, δ), α ≺ δ and X ′∈̇(Y )αX , and let Y ′ := Y[X′/X].

Note, that ψ′
T̆↾U

(X, Y, δ) entails HierT(Y,X, δ), so also HierT(Y,X, α) for α ≺ δ. If

α = 0, then X ′∈̇(Y )0X yields T̆↾X ′, thus ψ′
T̆↾U

(X ′, Y ′, 0). And if 0 ≺ α, then

ψ′
T̆↾U

(X ′, Y ′, α) holds if

(i) HierT(Y
′, X ′, α) ∧ ϕp1{U∈̇(Y ′)0X

′}↾X ′, and

(ii) (∀β ❀ α)ϑ(f(β, α)){U∈̇(Y ′)βX
′}↾X ′.

HierT(Y
′, X ′, α) follows form HierT(Y,X, δ) by Lemma A.1.18, as X ′∈̇(Y )αX and

thus transitive. The second conjunct of (i) follows from (ii) (which we show next)
by Corollary A.1.7. (ii) follows in two steps. By Lemma A.1.5, X ′∈̇(Y )αX yields
(∀β ❀ α)ϑ(f(β, α)){U∈̇(Y )βX}↾X ′ by Lemma A.1.5, and now (ii) is by Lemma
A.1.17. ✷

We already know that ifX ′∈̇X ,X andX ′ are transitive, and HierT(Y,X, δ), then also
HierT(Y

′, X ′, δ) for Y ′ := Y[X′/X]. Next, we show that under suitable assumptions,
(Y ′)≺β∈̇X for each β ≺ δ.

Lemma A.1.20. Consider the formula

B(X,X ′, Y, δ) := ψ′
T̆↾U

(X, Y, δ) ∧X ′∈̇X → (∀α ≺ δ)((Y[X′/X])≺α∈̇X).

Then, p1(ACA0) ⊢ Wog
❀,≺(δ0) → B(X,X ′, Y, δ0).

Proof Let Cδ0 := {δ : δ � δ0 → ∀X,X ′, Y B(X,X ′, Y, δ)}. We show that ACA0 proves
Wog

❀,≺(δ0) → Prog≺(Cδ0), thus Tǫ ⊢ (ACA)↾W ∧ WogW
❀,≺(δ0) → Prog≺(Cδ0↾W ).

Then, working in p1(ACA0), we assume Wog
❀,≺(δ0), fix sets X, Y,X ′ with X ′∈̇X ,

α ≺ δ0, and pick a set W with X, Y ∈̇W and (ACA)↾W . With Wog
❀,≺(δ0), we also

have WogW
❀,≺(δ0). Therefore, we have Prog≺(Cδ0↾W ), and thus δ0 ∈ Cδ0↾W . Hence

B(X,X ′, Y, δ0), which implies (Y[X′/X])≺α∈̇X .

Now we work informally in ACA0 and show Prog≺(Cδ0). Trivially, 0 ∈ Cδ0 . Next,
assume that 0 ≺ δ � δ0 and (∀β ≺ δ)(β ∈ Cδ0). To show that δ ∈ Cδ0 , let
α ≺ δ and X,X ′, Y so that X ′∈̇X and ψ′

T↾U(X, Y, δ). Set Y
′ := Y[X′/X] and aim for
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(Y ′)≺α∈̇X . ψ′
T↾U(X, Y, δ) entails p1(T̆)↾X by Lemma A.1.9. Further ψ′

T↾U(X, Y, δ)
and Lemma A.1.10 yield ϕp1{U∈̇(Y )αX}↾X . This states that there is a setX ′′∈̇(Y )αX
with X ′∈̇X ′′. So X ′′ is transitive and X ′ ⊆̇ X ′′. Let Y ′′ := Y[X′′/X]. By Lemma
A.1.19, ψ′

T↾U(X
′′, Y ′′, α). As Y ′ = Y ′′

[X′/X′′] by Lemma A.1.16 (iv), the I.H. (i.e.

B(X ′′, X ′, Y ′′, α)) implies that for each β ≺ α, (Y ′)≺β∈̇X ′′.

By Lemma A.1.18, HierT(Y
′, X ′, δ). So if α = β+1, then (Y ′)≺α = (Y ′)≺β ∪ (Y ′)β,

which is arithmetical in (Y ′)≺β and X ′, since by definition of HierT(Y
′, X ′, δ),

(Y ′)β =
⋂

ξ❀β

{y : ϑ(f(ξ, β)){U∈̇(Y ′)ξX
′}↾(X ′)y}.

Thus (Y ′)≺α∈̇X . If α =: γ is a limit, then we have HierT((Y
′)≺β, X

′, β) for each
β ≺ γ, and the relevant part of the hierarchy Y ′ is unique: if also HierT(Z,X

′, β),
then (Z)≺β = (Y ′)≺β. Further, for each β ≺ γ, (Y ′)≺β∈̇X ′′ is by I.H. Therefore,

(Y ′)≺γ = {〈y, β〉 : β ≺ γ ∧ ∃w[HierT((X
′′)w, X

′, β) ∧ 〈y, β〉 ∈ (X ′′)w]}.

So (Y ′)≺γ is arithmetical in X ′ and X ′′, and so (Y ′)≺γ∈̇X . Hence δ ∈ Cδ0 . ✷

For the remainder of this subsection, we fix a hierarchy HX
≺δ w.r.t. X and T̆. The

hierarchy HX
≺δ is such that for ξ 6≺ δ, (HX

≺δ)ξ = ∅, and otherwise,

(i) (HX
≺δ)0 = {y : T̆↾(X)y}, and for 0 ≺ α ≺ δ,

(ii) (HX
≺δ)α = {y : (∃Y ∈̇X)ψ′

T̆↾U
((X)y, Y, α)}.

Note that is HX
≺δ arithmetical in X . We also point out that

U∈̇(HX
≺δ)α

X ↔ U∈̇X ∧ (∃Y ∈̇X)ψ′
T̆↾U

(U, Y, α),

as U∈̇(HX
≺δ)α

X iff ∃y[U = (X)y ∧ (∃Y ∈̇X)ψ′
T̆↾U

(U, Y, α)].

Now we prove the left-to-right direction of Lemma A.1.13.

Lemma A.1.21. p1(ACA0) ⊢ 0 ≺ δ ∧Wog
❀,≺(δ) ∧ ϕ(δ)↾X → ψ′

T̆↾U
(X,HX

≺δ, δ).

Proof Assume that 0 ≺ δ and Wog
❀,≺(δ) and ϕ(δ)↾X . We have to check that

(i) HierT(H
X
≺δ, X, δ),

(ii) ϕp1{U∈̇(HX
≺δ)0

X}↾X , and

(iii) (∀α❀ δ)ϑ(f(α, δ)){U∈̇(HX
≺δ)α

X}↾X .
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First, we show (iii). ϕ
T̆↾U(δ)↾X yields (∀α❀ δ)ϑ(f(α, δ)){ψ(X,α)}↾X by definition.

By Lemma A.1.1, we obtain (∀α ❀ δ)ϑ(f(α, δ)){A(U)}↾X , for A(U) := U∈̇X ∧
(∃Y ∈̇X)ψ′

T̆↾U
(U, Y, α). Further, by definition of HX

≺δ, we have A(U) iff U∈̇(HX
≺δ)α

X ,

thus (∀α❀ δ)ϑ(f(α, δ)){U∈̇(HX
≺δ)α

X}↾X , hence (iii).

Now Corollary A.1.7 yields (∀α ≺ δ)ϕp1{U∈̇(HX
≺δ)α

X}↾X . This implies (ii), and

further states that (∀α ≺ δ)∀V ∃W [V ∈̇W ∧W ∈̇(HX
≺δ)α

X ]↾X , which implies

(∗∗) (∀α ≺ δ)(∀V ∈̇X)(∃W ∈̇X)(∃Y ∈̇X)[V ∈̇W ∧ ψ′
T̆↾U

(W,Y, α)].

It remains to show HierT(H
X
≺δ, X, δ). We let Y := HX

≺δ, and verify that Y is formed
according to Definition A.1.4. For α = 0 this is evident, and for 0 ≺ α ≺ δ, we show
by transfinite induction on α that

(∗) y ∈ (Y )α iff (∀β ❀ α)ϑ(f(β, α)){U∈̇(Y )βX}↾(X)y.

Firstly, note that by Definition A.1.4, if (∗) holds for all α′ ≺ α, then HierT(Y,X, α).
Secondly, by definition of Y , y ∈ (Y )α iff ψ

T̆↾U((X)y, α)↾X iff there is a Z∈̇X , so
that

(i) HierT(Z, (X)y, α) and

(ii) ϕp1{U∈̇(Z)0(X)y}↾(X)y, and

(iii) (∀β ❀ α)ϑ(f(β, α)){U∈̇(Z)β(X)y}↾(X)y.

Now we show the two directions of (∗), assuming that (∗) already holds for all
α′ ≺ α. Keep in mind that (X)y and X are transitive, so (X)y ⊆̇ X .

Left-to-right: By I.H., HierT(Y,X, α). For Y ′ := Y[(X)y/X], Lemma A.1.18 implies
HierT(Y

′, (X)y, α). Hence, for the witness Z in (i), (Y ′)≺α = (Z)≺α. Fix a β ❀ α.
By (iii) we have ϑ(f(β, α)){U∈̇(Y ′)β(X)y}↾(X)y. For Y

′′ := Y ′
[X/(X)y ]

, Lemma A.1.17

yields ϑ(f(β, α)){U∈̇(Y ′′)βX}↾(X)y. Hence, ϑ(f(β, α)){U∈̇(Y )βX}↾(X)y by Lemma
A.1.16 (iii). This concludes the proof of the left-to-right direction of (∗).

Right-to-left: Assume that (∀β ❀ α)ϑ(f(β, α)){U∈̇(Y )βX}↾(X)y. Again by I.H.
HierT(Y,X, α), and Lemma A.1.18 yields HierT((Y0)≺α, (X)y, α) for Y0 := Y[(X)y/X].
The right hand side of (∗) and Lemma A.1.17 yield ϑ(f(β, α)){U∈̇(Y0)β(X)y}↾(X)y
for each β ❀ α. Now Corollary A.1.7 yields (∀β ≺ α)ϕp1{U∈̇(Y0)β(X)y}↾(X)y, hence
ψ′
T̆↾U

((X)y, (Y0)≺α, α). It remains to show that (Y0)≺α∈̇X . First, we pick a δ′ with

α � δ′ ❀ δ. By (∗∗), there are W,Y ′∈̇X with (X)y∈̇W so that ψ′
T̆↾U

(W,Y ′, δ′),

notably Hier
T̆
(Y ′,W, δ′). By Lemma A.1.18, Hier

T̆
((Y ′′)≺δ′ , (X)y, δ

′), for Y ′′ :=
Y ′
[(X)y/W ] and Y ′′∈̇X as X satisfies arithmetical comprehension. Hence (Y0)≺α =

(Y ′′)≺α∈̇X . This concludes the verification of (∗). ✷

The other direction of Lemma A.1.13 is proved next.
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Lemma A.1.22. p1(ACA0) ⊢ 0 ≺ δ ∧Wog
❀,≺(δ) ∧ ψT̆↾U(X, δ) → ϕ

T̆↾U(δ)↾X.

Proof We work informally in p1(ACA0). Assume 0 ≺ δ, Wog
❀,≺(δ) and that there is a

Y with ψ′
T̆↾U

(X, Y, δ). Fix α❀ δ. Now ψ′
T̆↾U

(X, Y, δ) yields ϑ(f(α, δ)){U∈̇(Y )αX}↾X .

If we can show that for each X ′, X ′∈̇(Y )αX implies ψT̆↾U(X
′, α)↾X , then we also

have ϑ(f(α, δ)){ψT̆↾U(U, α)}↾X , which then gives ϕ′
T̆↾U

(δ)↾X . Indeed, by Lemma

A.1.19, ψ′
T̆↾U

(X, Y, δ) and X ′∈̇(Y )αX yield ψ′
T̆↾U

(X ′, (Y ′)≺α, α) for Y
′ := YX′/X , and

by Lemma A.1.20, we conclude that (Y ′)≺α∈̇X . ✷

Finally, we show that ϕ(δ) strongly implies p1.

Lemma A.1.23. ϕ strongly implies ϕp1.

Proof Let A(U) be a Σ1
1-formula of L2. By definition, ϕA(U)(u), implies 0 ≺ u and

(∀α ❀ u)ϑ(f(α, δ)){ψA(U)(X,α)}. As 0 ≺ u, there is an α ❀ u for which we have
ϑ(f(α, u)){ψA(U)(X,α)}, therefore also ϕp1{ψA(U)(X,α)}, as ϑ strongly implies p1.
If α = 0, then ψA(U)(X,α) iff A(X) by definition of ψ, and thus ϕp1{A(U)}. And
if 0 ≺ α, then the definition of ψ provides a Y , so that ϕp1{U∈̇(Y )0X}↾X and
(Y )0 = {y : A((X)y)}, i.e. U∈̇(Y )0X iff A(U) ∧ U∈̇X . Hence ϕp1{U∈̇(Y )0X}↾X also
yields ϕp1{A(U)}↾X . Summing up, ϕp1{ψA(U)(X,α)} implies ϕp1{ϕp1{A(U)}↾X},
that is, p1(ϕp1{A(U)}). As ϕp1{A(U)} is Π1

2, ϕp1{A(U)} follows by Lemma I.2.12.
✷
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2 The theory Π0
1-CA

−
0

For the definition of the theory Π0
1-CA

−
0 it proves convenient to have bounded quan-

tifiers at hand. Therefore, we extent the language L2 as follows: if A(u) is an L2-
formula and t a number term with u /∈ FV0(t), then (∀x < t)A(x) and (∃x < t)A(x)
are L2-formulas, too. This gives rise to the following classes of formulas. The set
of ∆0

0-formulas (also called Π0
0 or Σ0

0) of L2 contains all literals of L2 and is closed
under conjunction, disjunction and bounded number quantification. Further, A is
Π0
n+1 [Σ0

n+1], if A is Π0
n, [Σ

0
n] or of the form ∀xB(x) [∃xB(x)] with B Σ0

n [Π0
n].

Definition A.2.1. Think of e as an index of a unary partial recursive function, and
let {e}(x) = y be a Σ0

1-formula of L2 expressing that y is the value of this function
with index e applied to the number x. Then, we set

(i) ∀-CL := ∀X∀e∃Y [Y = {x : ∀y, z({e}(〈x, y〉) = z → z ∈ X)}].

(ii) ∃b-CL := ∀X∀e∀a∃Y [Y = {x : (∃y < a)∀z({e}(〈x, y〉) = z → z ∈ X)}].

Definition A.2.2. Π0
1-CA

−
0 := Tǫ +

∧
{∀X IND(X), pair, trans, ∀-CL, ∃b-CL}.

Lemma A.2.3. For each Π0
1-formula A that contains all its set variables only pos-

itively, Π0
1-CA

−
0 proves that {x : A( ~X, x, ~y)} is a set.

Proof N is a set. Let e so that ∀x{e}(x)↑ (i.e. ∀x, y({e}(x) 6= z)). Then, we
have that N = {x : ∀y, z({e}(〈x, y〉) = z → z ∈ X)}. ∅ is a set: pick an a that
does not code a pair and let e so that ∀x, y{e}(〈x, y〉) = a). Then, ∅ = {x :
∀y, z({e}(〈x, y〉) = z → z ∈ N+N)}. For each primitive recursive R(~x), there is an
e, so that for all y, {e}(〈〈~x〉, y〉)↑ iff R(~x). Hence R = {〈~x〉 : ∀y{e}(〈〈~x〉, y〉)↑} =
{〈~x〉 : ∀y, z[{e}(〈〈~x〉, y〉) = z → z ∈ ∅)}. The same holds true for ∼R(~x). Now
one shows by induction on the build-up of A(~u), that {〈~x〉 : A(~x)} is a set. The
claim then follows. If A = t(~u) ∈ U , then let e so that ∀~x, y({e}(〈〈~x〉, y〉) = t(~x)).
Then {〈~x〉 : t(~x) ∈ U} = {〈~x〉 : ∀y, z({e}(〈〈~x〉, y〉) = z → z ∈ U)}. The case
A = R(t1(~x), . . . , tn(~x)) is handled similarly. To handle conjunction, bounded and
unbounded universal quantification, use pair and ∀-CL. Exemplarily, we consider
the case A(U, u) = ∀zB(U, u, z). By I.H. we know that Y := {〈x, y〉 : B(U, x, y)}
is a set. Then, for and e so that ∀x, y({e}(〈x, y〉) = 〈x, y〉), {〈x〉 : A(U, x)} =
{〈x〉 : ∀y, z({e}(〈x, y〉) = z → z ∈ Y )}. For disjunction and bounded existential
quantification, use pair and ∃b-CL. ✷

Remark A.2.4. The theory p1((Π
0
1-CA)

−) is not stronger than Π0
1-CA

−
0 , as M :=

{〈x, e〉 : π0
1(x, e)} is an ω-model of Π0

1-CA
−
0 with M∈̇M (π0

1(x, e) is a universal
Π0

1-formula with the property that for each Π0
1-formula A(u, v) with at most the

displayed variables free, Π0
1-CA

−
0 ⊢ ∀y ∃e∀x[A(y, x) ↔ π0

1(x, e)]; cf. e.g. Simpson
[26], Definition VII.1.3).
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Due to the above remark, we have to consider the following variant of the operation
p1.

Definition A.2.5. p̃1(T̆) := ∀Z∃X(Z∈̇X ∧ Z∈̇X ∧ T̆↾X) ∧ pair ∧ trans.

Note that ACA0 proves p̃1((Π
0
1-CA)

−), as for X := {〈x, e〉 : π0
1(Z, x, e)}, Z∈̇X and

(Π0
1-CA)

−↾X . Further, by Lemma A.2.3, p̃1(Π
0
1-CA

−
0 ) proves arithmetical compre-

hension. Therefore, we could present ACA0 as p̃1(Π
0
1-CA

−
0 ), and choose (ACA) to be

the Π1
2-sentence p̃1((Π

0
1-CA)

−).
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Index

L-instances
relevant instances, 172, 174

“about equal”, 99
Ackermann ordinal, 72
additively principal ordinals, 118
atom, 13

big Veblen number, 72, 115
bound, 184, 191

gxh is a bound of Tx, 191
H

+(n+1)
x∗ bound of Op+(n+1)

x , 191
HxH is a bound of Opx, 191
sharp bound, 184
weak bound, 184

Boundedness Lemma, 184

class term, 14

EΩ(α), 131
ε-numbers, 118

Feferman-Schütte ordinal, Γ0, 72
formula, 13

L2(P)-formula, 23
Π1
n, 14

Σ1
n, 14

arithmetical, 14
cut-formula, 156
essentially Π1

n, 152
essentially Σ1

n, 152
false literal, 158
L∗-formula, 158
LM0-formula, 178

main-formula, 156
open sentence, 14
proper subformula sufo(A), 162
rank rk(A), 162
restriction, A↾C, 14
sentence, 14
subformula, 162
true literal, 158
universal Π1

n-formulas, 20
functionals, 28

next(g, β), 33
(F0, F1, . . . , Fn+1), 28
F0[F1, . . . , Fn+1], 28
f ′ := fix(f), 29
fixed point free companion, f−, 29
hα, 28
It, Itn+1, 30
it, 30
iteration, 28
names, 41
Ω(≤n), [F0, . . . , Fn] ∈ Ω(≤n), 29
Ω(n), 29
sh, 30
strictly inclusive, 29
type-n, 28

good, 119

induction
formula induction, 18
set induction, 18
transfinite induction, 17

L-instances, 156
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L∗-instances, 159
literal, 13

meta-theory, 195

names, 41, 77
❀∗, 49, 94
approximations x[α], x(α), 47, 92
components k(x), 98, 118
composite names, 154
corr(x), 51, 95
degree, deg(x), 45, 88
for functionals (QH , <H), 81
for operations, (Q,<), Q∗, 84
norm |x|, 98
normal form, 46, 89
ordinal, o(x), 45, 88
prenames, 43, 84
x ◦n y, 78
xH , 51, 95

natural sum α#β, 162
numerically equivalent, 158

OFG
OH , 126
OH′ , 129
Oϑ, 142

OFG, ordinal function generator, 124
operation

basic operations, 20
operations, 19

Op+nx , 101
Opϕ, 25
Opx proves HxH , 62
ϕ represents Op, 25
ϕpn+1 , 23

Ôp
ϑ

u(T̆), 26
Representation Theorem, 27
names, 41
Op+nx , 55
representation, 25

transfinite iterations, Opα, 28
ordinal expression, 123

provable function, 108

sequence numbers, 14
sequents Γ,∆, 155
small Veblen number, 72
standard model, 158
structure, 16

ϑ-function, 143
Tait-style system, 155
theories

S, 152
S̆, 152
ACA, 18, 72
ACA0, 17, 72
alternative axiomatization, 170
ATR, 72
ATR0, 17, 72
composition, 153
p1p3(ACA0), 72, 115
p1pn+1(ACA0), 115
p3(ACA0), 72, 115
Σ1

1-DC, 72
Σ1

1-DC0, 17, 72
T′ over T, 153
T ◦ T′, 153
Tǫ, 14
Tx proves gy, 62
Tx proves gxh, 108
T̆x, T̆

+
x , 55

Tc, T̆c, 154

∗-variable, 178
Veblen functions, 146
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Notations and abbreviations

∗0, ∗1, . . ., 178
<′, 118
<lex, 41
∈̇, 14
〈s, ∗〉, 178
❀, 27, 49, 94
❀∗, 49, 94
⊕L, 129
⊥ := 0 6= 0, 13
¬; negation, 13
∼, negation of literals, 13
⊤ := 0 = 0, 13

A(U, u)[X, x/U, u]; substitution, 14
A ∈ L(S), 152
A ∈ L∗, 158
A ∈ eΠ(C), 153
A↾C; formula restriction, 14
A∗, 158
AΦ, 178
A◦, 164
A↑, 179
AT̆,x,n(Z, α, s, t), 174
Ap1(T̆)

(Z), 172
α#β, 162
α+, 161
(ACA), 21
(ACA), 18
Arg, 124
Arg[Cl], 124
(ATR), 21

BV0, BV1; bound variables, 13

Bdi(x), 191

(C)t := {x : 〈x, t〉 ∈ C}, 14
(Γ), 155
CCx, 62
C, D; class terms, 14
C |= Γ, 155
Cc, 154
Cx, 108
C, 152
c := (x1, . . . , xk), 154
Cl, 124
corr(x), 51, 95
cut(C, S), 159

deg(x), 45, 88
deg(c), 154

E, 118
eΠ(C), 152
eΣ(C), 152
eval, 124

(F0, F1, . . . , Fn+1), F0[F1, . . . , Fn+1], 28
[F0, . . . , Fn], 29
FV0, FV1; free variables, 13
f̃x, 122
f ′, 29
f−, 29
fix(f), 29
FV∗(Γ), 178

G : A→ Ω, 123
Γ,∆, 155
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Γ↾C, 155
g̃x, 122
gc

h
, 154

good(❀,≺), 27
good(x, α), 122

H+
x , H

+
x , 42

Hc, 154
HZ, 118

(IN); formula induction, 18
IND(U); set induction, 18
inst(A), 156
idX := {(x, x) : x ∈ X}, 28
inst∗(A), 159
It, Itn+1, 30
it, 30

k(x), 98, 118
k(x, α), 118

L(· · · ), 79
L, 152
L(S), 152
LΠ1

0
(S), 152

Llit(S), 152
L2, language, 13
L2(P), 23
LM0, 178
l(x), 120
lim(Ω), 28

Mn, 153
M = (N , S,U); structure, 16
|=, C |= A, 15

name(X), 77
next(g, β), 33
NF, 124
α =NF βk+ . . .+β1, 118
z =NF L(x0 ◦1 . . . ◦1 xm) ◦ ym+1, 89
z =NF x ◦ y, 46

Ω(n), Ω(≤n), 29
o(x), 45, 88
OH , 126
OH∗ , 131
OH′ , 129
Op(T), Op(T̆), Op~u(T̆), 19
Op ⇔ Op′, 20
Op ⇒ Op′, 20
Op ◦ Op′, 20
Op+nx , 101
Opα, 28
Opϕ, 25
Opx proves HxH , 62
Opx, Op

+
x , 55

Ôp
ϑ

u(T̆), 26

Prv0(x), 154
Prv0(x), prv0(x), 62
Prvn(x), prvn(x), 108
Prog≺(U), 17
ϕ{ψ(U)}, 24
ϕpn+1 , 23
ϕ{ψ(U)}, 24
pn, 20
pair, 19
Φ, 178
Φ[∗i = s](∗i) = s, 178
Π(C), 152
π1
n(U, u, e); universal formula, 20

(Q,<), Q∗
n, 84

(QH , <H), 81
(QH × Ω, <′), 118
QH

2 , names for functionals, 41
Q2, 43
Q; quantifier, 13
Q̃, 122

R(· · · ), 79
r, s, t, . . ., number terms, 13
rk(A), 162
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rk(C) < n, 162

s ∈ L∗, 158
sN, 158
sh, 30
Σ(C), 152
Σasc, 123
(Σ1

1-DC), 21
sufo(A), sufo−(A), 162

T′
x, 170

T : S
α

∗
Γ, 160

T : S
α

−
Γ, 160

T : S
α

C
Γ, 160

T : T′, 153
T ◦ T′, 153
Tc, T̆c, 154
Tǫ, 14
Tx proves gy, 62
Tx proves gxh, 108
T̆, 14
T̆x, T̆

+
x , 55

∗

Tx,
S

α

+
Γ184

TI≺(U, u), 17
ϑα, 143
trans, 19

U, unary relation symbol, 13

ϕk+2αk+1, . . . , α0, 146

Wf(U), 17
Wf≺(u), 17
Wo(U), 17
Wo≺(u), 17

(X)≺t, 17
X−, 43
X<ω, 41
X+Y , 19
〈x0, . . . , xn−1〉, (〈x0, . . . , xn−1〉)i, 14

|x|, 98
x(α), 48, 92
x ∗ y, 41
x[α], 47, 92
x ◦n y, 78
xH , 51, 95
xh, 62, 108
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