https://doi.org/10. 7892/ boris. 108693 | downl oaded: 26.4.2024

source:

A modular ordinal analysis of metapredicative
subsystems of second order arithmetic

Habilitationsschrift

Dieter Probst
Institut fir Informatik
Universitat Bern

2017

i

Contents

Provable Functions

Operations and functionals

[.L1 Theories e

[.2 Operation
[.2.1 Operations as functions on open Ls-sentences
[.2.2 Representation of operations

[.3 The functionals (It,. 1 :neN)

[.4 A substitute for transfinite induction

Provable functions: the case N; = 2

I.T Names
I1.1.1 Names for functionals
I1.1.2 Names for operations

I1.2 Approximations and normal forms

1.3 Properties of the functionals (H, :x € Q)

I1.4 The operations (Op, :x € Q%)
I1.4.1 The proper definition of (Op,:x € @%)
11.4.2 Properties of Op, and Op
I1.4.3 The proper and provisional Definition of Op, agree

II.5 Modular ordinal analysis at work
II.5.1 The definition of “Op, proves Hyux”
I1.5.2 Elementary properties of Prv,,(z) (m € {0,1,2})
I1.5.3 A sketch of the proof
I1.5.4 Proof of the main result (for the case No=2)

The general case

ITI.1 Names
II1.2 Names for functionals
IT1.3 Names for operations

111

11

13
13
18
19
23
28
34

v

\

Vi

I1I1.4 Approximations and normal forms
1.5 Properties of functionals (H, :x € Q")
III.6 The operations (Op, : @ € Qy,) - - - - - - o o o oo
I11.6.1 The proper definition of (Op, : x € Q%,) -
I11.6.2 Properties of (Op, :x € Q)
I11.6.3 The proper and provisional Definition of Op, agree
IT1.7 Modular ordinal analysis at work again
II1.7.1 Lifting “Op, proves H,m”
IT1.7.2 A sketch of the proof
I11.7.3 Proof of the main result for the general case

Notations for the ordinals (g,(a) : v € Q)
IV.1 How f,(a) and f,(f) compare
IV.2 Ordinal function generators (OFGs)
IV.2.1 The OFG Oy := (A, <'k,1)
IV.2.2 Fixed point free variants of the functions (g, : * € Q))
IV.3 How to obtain a notation system for G[Cly]
IV.4 Finding notations for the ordinals g,(c)
IV.5 Relating g, and the ¥-function
IV.5.1 The nary Veblen functions and (4, : z € Qo Az < ¢3) . . .

Bounds

The infinitary systems (cr € Q)

V.1 The language £ and composition of theories
V.2 Finitary Tait-style systems
V.3 Infinitary Tait-style systems
V.4 Cut-formula replacement

Finitary and infinitary reductions and sharp bounds

VI.1 Revisiting the axioms of (T, :2z€Q*)

VI.2 Finitary reductions
VI.2.1 Reducing T,y to T . o oo oo 000 oo
VI.2.2 Reducing T, to T, for names z € Q with deg(z) >1 . .

V1.3 Infinitary reductionso
VL.3.1 From TE\S}ﬁ Mo =T to S

V1.3.2 Reducing Tx+1 to T and if deg(z) > 1, then Tx to 'i‘x(a) ..
VI.4 Bounds
VI.5 Modular ordinal analysis at work yet again
VI.5.1 In which meta-theory did we prove (Vo € Q)Bdo(z)?

v

117
117
123
126

. 128

132
137
142

. 146

149

151
152
155
158
164

Conclusion

VIl Appendix

1 Proof of the Representation Theorem
2 The theory II9-CA;

Index

Introduction

This thesis leaps into the metapredicative and puts forward a type of ordinal analysis
that goes without “impredicative methods”. Neither does our approach involve the
use of collapsing functions nor uncountable ordinals. Furthermore, the rules of the
infinitary systems used to eliminate cuts are intrinsically sound, as opposed to e.g.
infinitary systems equipped with an {2-rule. We are building — bottom-up — stronger
and stronger theories by applying successively stronger operations which we have
already understood to theories which we have already understood.

Metapredicative ordinal analysis

Metapredicative theories is a term coined by Jager and his research group in Bern. A
first description of this notion is found in Strahm’s paper “First steps into metapred-
icativity in explicit mathematics” [27]:

Metapredicativity is a new general term in proof theory which describes
the analysis and study of formal systems whose proof-theoretic strength
is beyond the Feferman-Schiitte ordinal I'y but which are nevertheless
amenable to purely predicative methods.

The distinguishing feature of a metapredicative theory is that its ordinal analysis
can be performed by abstaining from so-called impredicative methods. Or as put by
Jéger in [6]:

The collection of metapredicative systems comprises all those theories
which are not predicatively reducible and whose proof-theoretic anal-
ysis can be carried through without making use of any impredicative
methods. [...] Our experience shows that typical impredicative meth-
ods always refer to some sort of collapsing techniques and collapsing
functions, either directly applied to infinitary proofs or to the ordinals
assigned to proofs or to both.

At present, the predicative theories are thoroughly understood, and so is a large
segment of impredicative theories with the strength |ID;| and beyond. This leaves
a huge gap between the Feferman-Schiitte ordinal I'y and the Bachmann-Howard
ordinal [ID;| = ¥eq4q, of which only a small initial segment is charted, namely a
couple of theories with a proof-theoretic ordinal up to ¢1000.

Initial steps into the metapredicative were made by Strahm [27] in the framework of
explicit mathematics by analyzing theories of strength ¢1w0 and pley0. Subsystems
of second order arithmetic of corresponding strength, ATRy + (X]-DC) and ATR +
(21-DC), have been considered by Jager and Strahm [8]. Independently, Rathjen has

1

analyzed a Martin-Lof type theory with ordinal strength 100 (Rathjen [17, 16]).
The metapredicative variants of transfinitely iterated inductive definitions IADa were
analyzed by Jéger, Kahle, Setzer and Strahm in [7]. Their autonomous closure
corresponds to a subsystem of second order arithmetic called FTR, (fixed point

transfinite recursion) which has ordinal strength 200 (see Strahm [28]).

In a next step, various systems of strength meta-predicative Mahlo — captured by the
ordinal w00 — were studied. All these systems are characterized by II3-reflection on
w-models of ACA, Il,-reflection on admissible sets or some corresponding form of
reflection (cf. Jéger and Strahm [9], Strahm [29] and Riiede [19]). Then, Thiel and
Gibbons have researched in their dissertations [33, 5] theories with proof-theoretic
ordinal ¢1000 (the Ackermann ordinal). These theories correspond to systems of
second order arithmetic where an w-tower of Mahlo-universes is asserted to exist,
i.e. ACAy + VZ3X[ZEX NTIL-Refl(X1-DCo) [X]. And quite recently, in Ranzi [13]
and Ranzi and Strahm [14] systems are analyzed whose proof-theoretic ordinal is the
small Veblen number 9¥Q“ which correspond to the theory ps(ACA) (IIi-reflection
on w-models of ACAj). Besides, some ideas how to tackle the systems p,,13(ACA)
(IT},, s-reflection on w-models of ACA) are sketch in Jéger and Strahm [10].

To narrow down the concept of metapredicative ordinal analysis we review the cur-
rent practice as applied in the aforementioned papers. First, we look at the upper
bound computations, then at the well-ordering proofs. Since we are interested in
developing a modular ordinal analysis for subsystems of second order arithmetic, we
specialize to subsystems of second order arithmetic, although mutatis mutandis our
observations apply to metapredicative systems in general.

To describe the general procedure to obtain upper bounds, we denote by T€¢ the
Lo-theory that comprises the logical axioms for classical two-sorted predicate calcu-
lus, and axioms for the primitive recursive functions and relations. T¢ denotes the
corresponding infinitary Tait-style system that derives formulas without free num-
ber variables: the w-rule replaces the Va-rule, and its axioms are all sequents of the
form I'; A and I', B, =C, where A is a true literal, and A and B are numerically
equivalent literals (so T¢ is a second order version of PA*). For the time being, T
stands for some finitary (formal) theory, and T some infinitary Tait-style system.
If the depth of a derivation is less than v and the cut-rule is restricted! to (main
formulas of) axioms of T that are not also axioms of T¢, this is indicated by T }% r.
An upper bound of T is then a limit ordinal 7, so that each derivation T F I of an
arithmetical sequent can be transformed into a derivation Te }% I', which by the
above definition is cut-free.

'The cut-rule is only applicable if one of the cut-formulas is main formula of an axiom of T.

An upper bound of a theory T is then computed as follows. First, a procedure is
given that transforms each derivation T - I' into an infinitary derivation T }ﬁ r

for some limit ordinal +. Then, the costs of eliminating cuts in T are figured out
using the following means:

(i) Partial cut-elimination: T ST = T }ﬁi I

(ii) Using (i) and other standard techniques from predicative proof-theory such as
asymmetric interpretations, T is reduced to the union of suitable? intermediate
systems (Tg : & € I) for which the costs of cut-elimination are already known.
Thus, for each £ € I, there is a function f¢, so that for all < £ and each

sequent I' C Fml(T,), consisting of formulas for which the transformation
works,

(+) T T T T

Under the additional assumption that Ty is T¢ and le('i_e) are the arithmetical
formulas, and further, there is a function f so that for all £ € I, if § < «, then
fe(f(B)+w) < f(a), one obtains by induction on «, that for each 7 (including n = 0),

*

(c0-elim) If T C Fml(T,) and | J T[S T, then T, 20 T
el

Namely, if [, :Ik'g = I is obtained from I, VX—A(X) by a cut with an axiom
X A(X) of 'i'5 for some £ > 7, then V-inversion and the I.H. yield :f'g }f(*—ﬁ) I',=A(U)
for some 8 < «, thus 'i'5 }w I'. Now (x) and the assumption on f yield -T_n }@ r.
For an arithmetical I" with T T, Te }%(7) I' follows.

With regard to the well-ordering proofs, we see no clear pattern emerging. But
all well-ordering proofs seem to use a generalization of Feferman’s Lemma 5.3.1.
in “Reflection on incompleteness” [3], which states that given a suitable hierarchy
(HX)s : B < 7) of sets above some set X, and given that v is a limit ordinal

which is “sufficiently refined w.r.t. a@ < ~”, expressed below by w®*1|y, stating that
(v = wtLE), then the set

C = {a: V7,8 (W y A Woll 9 (5) = WollT) (pad)))

is progressive w.r.t. <. If for each a < 7 and each set X, there is a hierarchy H*
along <[y, then Wo4(v) together with the progressivity of C entails Wo4(p70).

21f 5 < €, then Fml(T,) C le('i'g), and each axiom of -i_n is an axiom of 'i'g; if VX A(X) is main

9]

formula of an axiom of T,, then =A(U) € Fml(T,).

3

Ad hoc adjustments to the actual demands of the hierarchy, the condition w®*!|y
and the function paf are used to do the well-ordering proofs.

The analysis of metapredicative systems came to a momentary halt at theories of the
strength of the small Veblen number. From our point of view this is because these
theories are substantially harder to analyze, and since the currently used methods
used in metapredicative ordinal analysis are still unsatisfying in the following respect:

Carrying out the ordinal analysis of a theory T is a long-winded and
strenuous task. All the same, one is content to present as the main result
of such labor the proof-theoretic ordinal |T|, although |T| falls short
of subsuming the information gained by its computation. Hence, the
invested work cannot be efficiently reused when attempting to analyze
stronger systems.

Our modular ordinal analysis presents a solution to this problem. The information
gained by carrying out the ordinal analysis of a theory is now efficiently reused,
which allows us to compute also the proof-theoretic ordinals of most relevant systems
of ordinal strength between the small Veblen number and the Bachmann-Howard
ordinal.

Modular ordinal analysis

Although the proof-theoretic ordinal | T| is of great relevance — it is the extra ingre-
dient needed to proof the consistency of T in PRA+QF-TI4(|T]) (cf. [2, 4, 11, 15, 21,
22, 31, 32]) — we think that the focus should be shifted towards an understanding of
the ordinal analysis of the theory T itself, which in particularly allows to efficiently
reuse the information gained in the process.

In order to address the above point, we set-up our modular ordinal analysis as
follows.

(i) If T is an Ly-sentence, then T denotes the theory T := T¢ 4+ T which extends
T¢ by the single axiom T. We present all theories under consideration in the
form T := T¢+T. These theories are then manipulated by selected operations
Op, functions on sentences, that map a theory T to Op(T) := T+ Op('T'). The
focus is on operations that are build from the basic operations (p,+1 : n € N),

where p;(T) states that above each set Z there is an w-model X of T, and
more generally, p,+1(T) expresses II}, ;-reflection on w-models of T.

(ii) The main ideas of modular ordinal analysis are that we can adequately de-
scribe a theory T by a sharp bound, a normal function fr : Q@ — €, and
accordingly, that each selected operation Op can be adequately described by

4

a corresponding functional H, to the extend, that if ft is a sharp bound of T,
then H(fr) is a sharp bound of Op(T).

The sharp bound of T, a normal function ft : Q — €2, describes T by quantifying the
costs of cut-elimination in the corresponding 1nﬁn1tary system T that extends T¢
axioms I', A, where A € mst(T) is an instance® of T. It assigns to each limit ordinal
v the least ordinal fr(7), so that for each finite set I' of arithmetical Lj-formulas
(formula without free number variables),

T D= T,

where, T }% Tis T }% I', but allows cuts with additional formulas that do not
impede the cut-elimination process and can be eliminated cheaply at a later stage.

A sharp bound fr of T comprises much more information than the proof-theoretic
ordinal |T|, which — for the theories we consider in this thesis — can be characterized,
for instance, in one of the following ways: |T| is

(i) the least limit ordinal that is not provable in T, i.e. T I/ Wo4(7),

(ii) the least limit ordinal 7 so that for each finite set of arithmetical Lj-formulas
THD = TS0 T

Smce by des1gn of the corresponding infinitary system 'i', T F T readily implies
T }— I, (ii) yields that fr(w) = |T|. Clearly, the single value at w does not
yet determine the sharp bound fy. We will see that, for instance, the theories
p2(ACAq) (21-DCy) and py(ACAq) (ACA, plus the assertion that for each n, there
is an n-tower of w-models of ACA, above any set Z) have both proof-theoretical
ordinal pw0. Nevertheless, p1pa(ACAg) (ATRy) has ordinal I'y, while p;py(ACAy)
(p*H(ACAp)) has ordinal ¢(w+1)0. Only the sharp bounds separate these theories:

fs1-pe,(7) = 70 and fie(aca,) (1) = pw7.

Indeed, the sharp bound ft of T stores relevant proof-theoretic information of the
infinitary system 'T_, and therefore also of T. In terms of reusability, this is good
news. If we manipulate T by means of an operation, we can predict what happens to
fr. For instance, p;(T) proves the existence of an n-tower of w-models of T, and its
sharp bound is obtained by applying to ft the functional It; which iterates functions:
It;(f) is defined to be a normal function so that It (f, a+1) = f(It;(f, a)) (we write
Ity (f, @) for (Ity(f))(a)). Similarly, as po(T) plus enough transfinite induction proves
p‘f‘(‘T’), it seems plausible that py corresponds to a type-3 functional Ity that iterates

Sinst(A A B) := inst(A) U inst(B), inst(VXA(X)) := ey inst(A(U;)) and inst(VozA(z)) =
Us a closed torm INSE(A(5)); else, inst(A) := {A}.

functionals, and that a similar correspondence between operations and functionals
persists in higher types.

This approach is especially interesting, because most relevant subsystems of sec-
ond order arithmetic are obtained by applying to ACAy an operation that is com-
posed of the basic operations (p,;+1 : n € N). To reiterate, we have e.g. that
p2(ACAy) = X1-DCy, p1p2(ACAg) = ATRg, p2pip2(ACA)) = ATRy+X1-DCy and
p3(ACA;) = X}-TDC, (Xi-transfinite dependent choice, cf. Riiede [19]).

The main result of this thesis can now be summarized as follows: for each operation
Pni1, there is a type-n+2 functional It,,; that iterates normal functions or type-n+1
functionals, so that essentially the following holds:

if faca, is a sharp bound of ACA(, Op is an operation build from basic
operations (p,11 : n» € N), and H is the functional build from the cor-

responding basic functionals (It, 1 : n € N), then H(faca,) is a sharp
bound of Op(ACAy).

In particular, we obtain sharp bounds of a large number of subsystems of second
order arithmetic whose ordinals are below ||J,, pn+1(ACAg)| = |ID;|, the Bachmann-
Howard ordinal.

Of course, the above outline neglects many details. An obvious point is that in
contrast to functionals, there is no apparent difference between application and
composition of operations: while we can apply po and p; to ACAy, the functional It,
is type-3, and thus only Its(It;) can be applied to the function faca,. This indicates
that e.g. pa(ACA) should be regarded as pop;(ACA) (still 31-DCy). It also suggests
that we have to elaborate on what we mean by “H is the functional build from the
corresponding basic functionals” in the above formulation of our main result.

Therefore, we introduce names for operations and functionals. The name x of the
operation Op, codes how this operation is constructed by iterated transfinite com-
position from the basic operations (p,.1 : » € N), and the same applies to names
of functionals. = The correspondence between operations and functionals is then
produced by a map z — 21| so that Op,, relates to H,u.

Our main result can now be summarized more precisely as follows.

Theorem. For each name z, let T, := Op,(ACAy), and f,rn := Hyu(faca,). Then,
sz = f:cH'

The theorem is proved by induction along some well-founded ordering on the under-
lying names. We show that fr, = f,u, assuming that fr, = f = holds for all names
y that are “simpler” than x.

To check that f,n < fr,, we extend the notion of a provable ordinal to that of a
provable function as follows:

T proves f: & TF Wog(a)ATl4(Cr,a) = Wo,(f(a)),

where Cr is a class depending on T. We show that for each name x, “T, proves f,x”,
which then yields, essentially by the Boundedness Lemma, that f,u(y) < fz ().

The converse direction, that fr, < g,», is checked by showing that for each fimit
ordinal v, and each arithmetical sequent I, T, }% '=T¢ }qﬂcfm I.

Finally, we point out that we obtain also the proof-theoretic ordinals of the theories
T, + (In), where (ly) claims formula-induction, i.e., for each Lo-formula A(u),

(In) Va[A(0) AVy(A(y) = Aly+1)) — A(x)].

As for each a < g, T, + (In) F Wog(a) A Tl4(Cr,,), we see that “T, proves
forr” implies T, + (In) F Wo(f,u(«)). Therefore, | T, + (In)| > fr.(€0). On the
other hand, T, + (ly) F I entails, using standard cut-elimination techniques, that

T, }% I'. Therefore |T, + (In)| < f1.(c0)-

To conclude this exposition, we list some immediate consequences of the above

theorem. To denote the respective proof-theoretic ordinals, we let Qy := 1, Q0,41 :=
QQ”7 Qo(O{) =, and Qn+1(O{> = Qﬂn(a).

Examples.
(i) |ACAy| = g¢ and |ACA| = pley.

(i1) 1p1(ACAG)| = ¢20 and [py(ACAY) + ()| = ¢2=,.

(iii) |X1-DCo| = w0 and |L1-DC| = ¢g0.

(iv) |ATRo| =Ty (Feferman-Schiitte ordinal), and |ATR| = ¢10e.

(v) |ATRy + (X1-DC)| = p1w0 and |ATR + (£1-DC)| = ¢1g40.

(vi) |S1-TDCy| = w00 and |L1-TDC| = ¢e,00.

(vii) |p1(X1-TDCo)| = p1000 (Ackermann ordinal).
(viii) [p5*2(ACAG)| = w000, [p3*(ACA) + ()] = ¢e0Q...00 and

n n

0...00.

n+1
(iz) |p3s(ACAy)| = I (small Veblen number), and
Ip1p3(ACA)| = 9Q (big Veblen number).

(l') |pn+3(ACAQ)| = ﬁQn(W), |pn+3(ACA)| = 199”(50) and p1|pn+3(ACA)| = ’199”_,_1.

IP1p5 T2 (ACAY)| = ¢l

Contents

In the first part of this thesis, we introduce sets of names @ and Qf for opera-
tions and functionals, and show that for each z € @, the theory T, := Op,(ACAy)
proves the function H,u(faca,). In the second part, we then show that the function
H,u(faca,) is also a bound of T,, hence a sharp bound. This also implies that
H,u(faca,) is the largest normal function that is provable in T,.

Part 1 consists of the chapters I-IV, and Part II of the chapters V-VI, briefly re-
viewed below. The second part is shorter, partly because most relevant notions have
already been introduced in the first part, but also partly because the computation
of bounds is simpler, as we do not have to distinguish between what is provable
in a theory and what is true in the mathematical universe outside. We work in a
meta-theory and assume a reasonable amount of transfinite induction. At the end,
however, we make precise which formal theory would allow to formalize the given
proofs.

In the first chapter, we say how we present our theories. This leads to the concept
of operations on theories. We introduce the basic operations p,,; and collect some
elementary, but relevant properties. Then, we explain how to represent operations
by Ly(P)-formulas, and formulate a representation theorem for operations. It states,
that we can define new operations from operations with known representations by
transfinite recursion, and that there is an Ly(P)-formula which represents this new
operation. The proof is rather technical and thus only provided in the appendix. It is
not required on a first reading. Next, we introduce the functionals It,,.; that iterate
functions and functionals, and in some sense correspond to the operations p, ;. We
conclude with an auxiliary and technical theorem which provides a substitute for
transfinite induction, and allows us to prove, for a well-founded relation <, certain
statements of the form (Vo € field(<))A(«) in T¢, for instance our main result.

Chapter II explains most of the ideas of our modular ordinal analysis, however,
keeps the framework still simple in that we only consider operations build from the
operations p; and p,. After introducing names Q4 for functionals and names @, for
operations, and moreover, approximations and normal forms of names, we can see
our modular ordinal analysis a first time at work.

Chapter III parallels chapter two. We now extend the concepts and results to the
general case. This time we consider operations build from the operations p; and py,
for arbitrary large Ny’s. As the ordering on names is now more complex, a couple
of new problems surface, which are solved by providing additional structure for the
sets of names @ and Q. This also allows us to cope well with higher type behavior
of operations and functionals.

Chapter IV deals with ordinal notations, and how to construct them. We introduce
a notation system based on the functionals (H, : z € Q), the idea being that

8

(x,) denotes the ordinal g,(«). Thereby, we use many ideas developed by Setzer
(see [25]). Further, we show how the so obtained notation system relates to more
standard ones based on the ¥-function, or with regard to ordinals below the small
Veblen number, to a standard notation system based on the nary Veblen functions.

Chapter V now introduces Tait-style systems for the theories (T, : z € Q) and cor-

responding infinitary Tait-style systems (Tm : & € () that are suitable to deal with
cut-elimination. Further, we extend the language by additional relation symbols
(Upy1 2 n € N). The corresponding class terms {z : U,1(x)} are used to axiomatize
new theories, build from given ones, by stacking them on top of each other: T;|Ty
(“Ty over Ty”) is essentially the theory T¢+ T, A EIX('T_O IX), that is, T1|T, extends
T, by an axiom asserting that there is an w-model of T,. However, it proves conve-
nient to have an explicit class term for the w-model above Ty, namely {z : U;(z)}.
The need to stack theories on top of each other stems from the way we deal with
the operation py: basically, we reduce, for a suitable I', a derivation p;(T) F T to a
derivation T|...|T F I'. Further, we collect some standard results concerning cut-
elimination. Moreover, we show how to cheaply eliminate a cut with a formula A
by first replacing the derivation Tm }% I', A by a derivation Tm }% I', A, where A’
is equivalent to A, and the cut with A’ is easier to eliminate than the cut with A.

Chapter VI is then devoted to the computation of bounds. After looking at finitary
and infinitary reduction properties, we define the notion of a bound and show that
it dominates, essentially by the Boundedness Lemma, each provable function. Next,
we give two different proofs that the function H,u(faca,) is not only provable in
T,, but also a bound of T,. A first direct proof exploits the provided reduction
properties by proving the claim by transfinite induction, using a suitably defined
norm |(z,a)| of a derivation T, }% I'. And the second and more important proof
obtains the same result by first showing a stronger one, namely a dual version of
the main result of part I, which states that there is not only a strict correspondence
between the theories T, and the functions H,u(faca,), but more generally, also
between the operations Op, and the functionals H,u, and even the operations Op"
and the functionals H;,? of higher types.

Chapter VI ends with a section “Conclusion”, where we give another overview of
this thesis. Having the relevant notions at hand by then allows for a more accurate
discussion of the underlying ideas and concepts.

Finally, this thesis ends with an appendix which mainly contains the rather technical
proof of the so-called Representation Theorem. This theorem states that if we can
represent operations (Op, : ¢ € I) within T¢ then also all operations that are
obtained by iterated transfinite composition of these operations. This allows to
meaningfully talk within formal theories about all operations under consideration.

10

Part 1

Provable Functions

11

Chapter 1

Operations and functionals

In this chapter, we provide the basic concepts required to start a modular computa-
tion of provable functions of subsystems of second order arithmetic. After fixing the
language and the general form used to present theories in Section 1, we start Section
2 by presenting a general notion of operations on theories. A family (p,.; : n € N)
of basic operations is defined, out of whose members all operations under considera-
tion are built. Furthermore, we describe how to represent operations within formal
theories. Section 3 introduces functionals (It,,+1 : n € N), which, in some sense made
precise later, correspond to the operations p,.;. In Section 4, we prove a technical
result which allows us to show already in ACA, (and weaker theories) certain state-
ments of a specific form by transfinite induction. This is in particular relevant as
our main result of the first part is of such a form.

I.1 Theories

We consider subsystems of second order arithmetic formulated in the language Lo,
which comprises the symbol €, a unary relation symbol U, and symbols for the
primitive recursive functions and relations. The number terms of Ly, denoted by
r,s,t,..., are defined as usual. For each relation symbol R(i), each set variable U
and all number terms § and ¢, R(S) and ¢t € U are atoms of Ly. If A is an atom, then
A and ~A are literals. We write t ¢ U for ~(t € U). The formulas of Ly are build
from literals by closing under conjunction, disjunction, existential and universal
quantification in both sorts. The negation —A is defined using De Morgan’s laws
and the law of double negation. The remaining logical connectives are abbreviated
in the standard way. FVy(A) denotes the number variables which occur free in A,
FV1(A) the set variables which occur free in A, and FV(A) := FVy(A) U FV,(A).
BVo(A), BVi(A) and BV(A) denote the corresponding sets of variables which occur
bound in A. Q either stands for V or 3, and finally, T:=0=0 and 1L :=0 # 0.

13

An Ly-formula A with FV(A) = 0 is called a sentence, and if FV;(A) = (), then A
is called an open sentence. Further, a formula without bound set variables is called
arithmetical formula, or alternatively II}-formula or ¥}-formula. Further, A is a
IT},, ,-formula [¥} -formula], if A is a II}-formula or a X}-formula or of the form
VXB(X) [3XB(X)], where B is a Xl-formula [[I}-formula). If X = X,..., X,
and Y =)1, ..., Y, are finite lists of expressions, then AD_} /X | denotes the formula
obtained from A by substituting simultaneously all occurrences of the expressions
X by Y. Further, if a formula is introduced as A(U,u), then A(X,x) is short for
AU, u)[X, z/U, ul.

We start by describing the general form of the theories that we consider in this
thesis.

Definition I.1.1. T€ is the Ly-theory that comprises the logical axioms for classical
two-sorted predicate calculus, and axioms for the primitive recursive functions and
relations. If T is an Ly-sentence, then T denotes the theory T = T¢ + T which
extends T¢ by the single axiom T

Next, we introduce class terms C which we also use to code families of sets and
classes in the sense specified below.

Definition 1.1.2 (Class terms). Each set variable is a class term, and if C(U,u) is
an Ly-formula and D are class terms, then C := {z : C(D,)} is a class term. If C
is the set variable X, then x € C is x € X, and if C is of the form {z : C(D,)},
then z € C abbreviates C(D, x).

For each n, we have a standard primitive recursive sequence coding (zg, ..., Tn_1)
with associated projections ((zo,...,2n-1)); = x; for 0 < i < n. Also, we often
regard a class C as a family {(C),, : n € N} of classes, where (C); := {z : (z,t) € C}.
Moreover, (C)s,; is short for ((C)s); and C = C’ abbreviates that C and C" have the
same elements. Finally, () denotes the class term {z : # # 2} and N := {z : x = z}.

Definition 1.1.3. The following notations allow to restrict the range of bound set
variables to the classes coded by a class term C.

(i) For each Ly-formula A(U), (QX€EC)A(X) := QzA((C),), where x is a fresh
variable.

(ii) A[C := A if A is arithmetical; else (Aj B)[C := A[Cj B|C for j € {A,V},
(QzB)|C := Qx(BI|C) and (QX A(X))|C := (QXEC)(A(X)|C).

Further, XeC = Fx[X = (C).]. Moreover, | takes precedence over quantifiers
and logical connectives: for j € {\,V,—, <}, AjB|C == Aj(B|C), QXA|IC :=
QX (A[C) and QzA[C := Qz(A[C).

14

If C and D are class terms, then C = {z : C(z)} for some formula C(u), thus C|D is
{z : C(x)D}. Occasionally, we also write A¢ for A[C.

Remark 1.1.4. Let us address a possible source of confusion. Note that if e.g. A(U)
is arithmetical, then (VX E€C)A(X) is VxA((C).), where in general (C), is not a set.
Hence Yz A((C),) implies VX(XEC — A(X)), but the latter formula claims A(X)
only for sets X of the form X = (C), for some x.

Observe that in A[C only the range of the bound set variables of A is restricted.
Below, we define the formula C |= A, which also restricts the extension of the free
set variables in FV{(A) \ FV1(C).

Definition I.1.5. Let C be a class term and A an Ly-formula with FV1(A)\FV1(C) =
{U1,...,U,}. Then,

CEA:=(AIC)(C)/U1, ..., (C)y, /Ul

where vy, ..., v, are pairwise distinct fresh number variables (i.e. variables that do
not occur in A[C). To be specific, assume that vy, ..., v, are the first variables w.r.t.
some fized enumeration that do no occur in A[C.

Note that if FVi(A) \ FV1(C) = 0, then A[C is the same formula as C = A. We
continue by recording some properties concerning the abbreviations X €C, A[C and
X E A

Lemma 1.1.6. T¢ proves the following:
(i) AX[XEC N A(X)] — (BXEC)A(X).
(ii) (VXEC)A(X) — VX[XEC — A(X)).

Proof We work informally in T¢. (i) If there is an X with X€C — A(X), then for
some z, X = (C),, and so also A((C),), that is, 3z A((C),), which is (IXEC)A(X).
(ii) Assume that 2 does not occur in A(C). Then (VX €EC)A(X) is VzA((C),). Hence
for each =, A((C),), in particular A(X) in case that X = (C), for some y, so
Jy(X = (C),) = A(X), that is X€C — A(X), and VX[XeC — A(X)] follows. O

There is a caveat though: IX[XEC A A(X)] claims the existence of a set, whereas
(3XEC)A(X) only claims A((C),) for some class (C),. The two statements are only
equivalent if we have V23Y'[Y = (C),], stating that each class (C), is a set.

Lemma I.1.7. T¢ proves the following: if Vx3Y'[Y = (C).|, then
(1) AX[XeCNA(X)] & (3XeC)A(X).
(ii) VX[XEC — A(X)] + (VXEC)A(X).

15

Next, we state two basic observations concerning class terms that are tacitly used
later. A simple direct proof of these claims is obtained analogously to the proof
of Lemma V.2.8 in the second part of this thesis. Below, just a model theoretic
arguments is given.

Definition 1.1.8. A structure Ml = (N,S,U) for the language Ly consists of a
structure N' = (N, ...) for the first order part of Ly, a non-empty collection S of
subsets of N used to interpret the set variables, and a set U C N to interpret the
relation symbol U. If M satisfies the axioms of T, M s called a model of T. Given
a structure M, V denotes a valuation that maps number variables to N and set
variables to S. If A is a formula with free variables, then as usual, My = A states
that M satisfies A under the variable assignment V.

Lemma 1.1.9. For each open Ly-sentence A and each class term C,
T°FA=TF A|C.

Proof Assume that C = C(V), and that T¢ + A. We show that T¢ I/ A is
impossible. If this were the case, then there exists a countable model M = (N, S,)
of T¢, sets Z € S and a valuation V of the number variables, so that My, [A (Z)
Now let § := {X : My, = (3XEC(Z))(X = X)} be the collection of sets coded by
the interpretation of the class term C, that is, the range of the quantified set variables

of A. As T¢ contains no axioms for sets and S’ is not empty, M’ := (NV,S',U) is a
model of T¢. By choice of ' and V, M, = A, contradicting T F A. O

The following example shows the reason for the restriction to open La-sentences:
T¢F3X[X = U], but since T/) = U, also Tt/ (3X€P)[X = U].

The converse direction fails in general. For instance, let A := IX(X =)) and
C := (. Note that for each z, (), = 0 and that A[C = Fz((0), = 0). Hence
TF A[C, but Tt/ A.

Lemma 1.1.10. For each Ly-formula A with FV1(A) = {Uy,...,U,} and each class
term C with FV1(A) NFV(C) = 0, we have that (i)=(i1)= (iii), where

(i) TEF A,
(i) TEHC = A,
(iii) Te - UEC — A|C.

Proof If T¢ - A(U), then T¢ + VX A(X), so T¢ F Va1, ..., 2, A((C)ay, - .-, (C)s,)IC
by Lemma I.1.9, and thus T¢ = A((C)y,, - .-, (C)y,)[C for fresh variables 0, that is,
T¢F C = A. This clearly entails T* - UeC — AIC. O

16

To round the picture, we also show that the statements in the above lemma are
actually all equivalent in case that the class term C is a set variable. We state this
fact as a separate lemma, since it is not required in the sequel, and since we just
give a model theoretic proof.

Lemma 1.1.11. For each Ly-formula A with Z ¢ FV1(A) = {Uy,...,U,}, we have
that T UEZ — AlZ implies T¢ F A.

Proof If T¢ I/ A, then there is a countable model M = (N,S,U) of T¢, and sets
Y € S so that M = —A(Y). Let (X; : i € N) be an enumeration of the sets in S,
Z:={(z,i) :z € X}, S =SU{Z} and M' = (N,S',U). By choice of Z, M is a
model of T¢ with M/ = YEZ A =A(Y)]Z, contradicting T* - UEZ — Al Z. O

A typical application is the following.
Corollary 1.1.12. IfFV(T) =0, then T+ THA iff TF T|X — X £ A.
Proof T'+ TH AT FT 5 Aiff T'F TIX — X = A O

We conclude this section by giving the axioms of three important subsystems of
second order arithmetic, ACAq, X1-DCy and ATR,. ACA, is the weakest system
which we consider. The theories $1-DCy and ATR; can be obtained by applying
certain operations to ACAg, but are also of independent interest.

In order to formulate the axioms of ATRy, we introduce the abbreviation

(X))« ={{z,y) € X 1y < t},

and some further abbreviations which are also extensively used when dealing with
provable functions. For each binary relation symbol <, Wf_(u) := VXTI (X, u)
asserts that <[u :=<[{y : y < u} is well-founded, where

Prog_(U) = (Vz efield(<))(Vy <x)(y € U) — (z € U)),
TIZ(U,u) := Prog_ (U) — (Vy <u)(y € U).

Wo_ (u) claims that Wf_(u) and that <[{y : y < u} is a strict linear order. Further,
we use the above abbreviations with a set variable in place of the relation symbol
<. In this case, zUy is read as (x,y) € U. Often, we also use < as a set variable.

Moreover, Wo(U) := VaWoy (z) and Wf(U) := YaWfy(z).

The aforementioned theories as well as most second order theories with set induction
can be presented in the form T¢+ T. In this case, the axiom T asserts the existence
of certain sets, and further, implies the sentence VXIND(X) claiming set induction,
where

IND(U) :=Vz[0 e UAVy(y e U - y+1 € U) -z € Ul.

17

Occasionally, also the schema of formula induction is considered, which claims for
each Lo-formula A(u),

(In) Vr[A(0) AVy(Aly) = Aly+1)) = A(z)].
Definition 1.1.13. The theories ACAq, 1-DCy and ATRy are defined as follows.
(i) ACAq extends T¢ by set induction, i.e. VXIND(X), and an axiom
AZ(Z ={z: A(2)}].
for each arithmetical formulas A(u).
(ii) X1-DCy extends ACAq by an aziom
VXIYAX,Y) = Z[W = (Z)o AYnA{(Z)n, (Z)ns1)]
for each arithmetical formula A(U, V).
(11i) ATRy extends ACAq by an axiom
Wo(<) = 3FVy((F), = {o : A((F) = 2)}).
for each arithmetical formula A(U,u).

The following is well-known (a specific TI3-sentence that axiomatizes ACA, is given
in Section 2 of the appendix).

Lemma 1.1.14. There is a [13-sentence (ACA), so that ACAy is equivalent to T¢ +
(ACA).

To forestall future confusion, we stress that (ACA) is a Li-sentences so that T¢ +
(ACA) is ACA. In particular, (ACA) is not to be confused with ACA, often used in
the literature to denote the theory ACAg + (In).

I.2 Operation

Our focus on theories of the form T := T¢+ T allows us to regard operations on
theories as maps on Ly-sentences. However, to deal also with internalized versions of
theories, we define operations to be maps on open sentences, instead. Say, we have
a family (T, : n € N) of theories. To prove that for each n, T, F A, it might be
worth attempting to prove an internal variant T€ - Vz[f(m) — A(x)], where T(u)
and A(u) are open sentences with T¢ - T(7) <> T, and T¢ + A(m) <> A,. And in
the course of such an argument, we may want to apply an operation to 'T'(u)

This is how operations are introduced in the subsection below. In the next subsec-
tion, we then show how to represent operations as Lo(P)-formulas (formulas with an
additional relation symbol P(U), cf. Definition 1.2.16), and how to define transfinite
iterations of operations.

18

1.2.1 Operations as functions on open L,;-sentences

Essentially, an operation Op maps a theory T¢ + T to the theory T€ + Op("ur). For
reasons discussed below, we impose some further conditions on the map Op.

Definition 1.2.1. An operation Op is a function that _maps an open Ly-sentence to
an open Ly-sentence, so that for all open Ly-sentence T and T’

(i) FVO(-T—) c FVO(OP(-T_))7
(i) T FVX(TIX — T'1X) — (Op(T) — Op(T")).

If a theory is introduced as T := T<+T, then Op(T) := Te+O0p(T). Op®(T) := T and
op" ™ (T) :== Op(Op"(T)). Further, if Op and Op’ are operations, (Op o Op')(T) :=
Op(Op'(T)).

Henceforth, T and T/ range over open Lo-sentences. Observe that if T¢ T T ,
then by Lemma 1.1.9, T + T]X — T'|.X, and thus by (ii) of the above definition,
T+ Op(T) — Op(T'). Therefore, (i) is a stronger condition than T+ T — T/ =
T Op(T) — Op(T'). On the other hand, although we have for an open sentence
A that T+ A implies T¢ - A[X, it may of course be the case that T° HA— AlX.
Therefore, it is not surprising that there are T and T’ so that

TH(T—>T) > VX(TIX — T'[X).

In fact, we have even T¢ H (T — T) — (plg'T') — P1(-T_:)), as detailed in Remark
[.2.11. Item (ii) tries to approximate (T — T') — (Op(T) — Op(T’)) by replacing
T T — T by “T — T’ holds in all models”.

Definition 1.2.2. If FV,(Op(T)) \ FVo(T) = {u, .. un} then we may highlight
this by writing Op; for Op. In this case, OpAT) := Op()[t/).

All operations we are interested in are build from basic operations (p,.1 : n € N),
which are defined below (cf. Definition 1.2.8). Informally speaking, p;(T) claims the
existence of arbitrary large models of T: for each set Z, there is an X with Z€X so
that T]X. And p,42(T) claims that there are arbitrary large models of T that are
IT},, ,-reflecting: for each Hn Lo-formula A(U) and each set Z, if A(Z), then there is

an X with ZEX, so that T|X and A(Z)]X

When working in p,41(T), given sets Z; and Z, we also want models X of T that
contain Z; and Zy. Therefore, we state that the theories p,1(T) meet the axiom
pair, which allows to add a set to a family of sets; for each X and Y there is a set
Z := X+Y so that (Z)y = X and (Z),41 = (Y),, for each n. Further, we need that
with X also (X), is a set, which is ensured by the axiom trans.

19

Definition 1.2.3. The I1i-sentences trans and pair state the following:
(1) trans := VX, 23Y[Y = (X),].

(i1) pair:=VX,Y3Z[Z = X+Y], where
X4Y ={(z,0) :x € X} U{(y,2+1) : (y,2) € Y}.

To keep subsequent definitions as simple as possible, we apply operations only to
theories that imply (ACA), and henceforth stick to the following convention.

Convention 1.2.4. Unless stated otherwise, an anonymous T is always assumed to
be an open Lay-sentences so that T = T — (ACA), and an anonymous theory T is
always assumed to be of the form T+ T. This assumption is justified by Remark
1.2.13.

Now we say that A is IIL, if there is a IT}-formula B with FV(A) = FV(B) so that

T<F A« B. Note that by the above convention, we have that ACA, T o T iff
TFT < T.

Having fixed a domain of theories, we read Op <> Op’ and Op = Op’ in the following
way.

Definition 1.2.5. We write Op < Op' (and also Op iff Op’), if for each T (which
implies (ACA)), T+ Op(T)v < Op'(T). Accordingly, Op = Op' expresses that for
each T, T¢+ Op(T) — Op/(T).

Lemma 1.2.6. If Op’ = Op”, then Op o Op’ = Op o Op”.

Proof Fix some T and assume Op’ = Op”. Then, T¢ Op/(T) — Op”(T), hence also
T = VX[Op'(T) X - Op”(T)1X by Lemma [.1.9. As Op is an operation, we have
that T+ (Op o Op’)(T) — (Op o Op”)(T) follows. O
The definition of the operations (p,.+1 : n € N) makes use of so-called universal
formulas.

Definition 1.2.7 (Universal formulas). For each n > 0, we denote by (U, u,e) a
11} -formula with the property that for each each 11! -formula A(U, u,v),

ACA(F Vy 3eV X, 2[A(X, y,x) <> 72(X, z,¢)].

1

. 15 effectively computable from the

Moreover, the index e in the universal formula m
formula A and the number parameter y.

Details about universal formulas can be found e.g. in Simpson [26] (cf. Definition
VII.1.3), and Probst [12] (Corollary I1.1.12).

20

Definition 1.2.8 (The basic operations). For each natural number n, we define
Rn—i—l(Xa Z> Z, 6) = 7T71L+1(Z> Z, 6) - 7T71L+1(Z> Z, 6) fX Then7

(i) pi(T) :=VZ3X(ZEX ATIX) A pair A trans, and

(ii) Pryo(T) := V2V, eIX[ZEX ATIX A Rpya(X, Z, x,€)] A pair A trans.
That each p,y; is an operation is immediate by its definition, and we readiy ob-
serve that pnyq(T) is I} .5, and that p,.o(T) F pni1(T). Further note that T +
trans - 7} (Z,x,e) — @(Z,a:, e)[X, hence, over the theory T¢, pl('T') is equivalent
to VZVz,edX[Z€X NTIX A Ri(X, Z, x,¢e)| A pair A trans.
Remark 1.2.9. Note that over ACAq, pni1((ACA)) is equivalent to the w-model re-

flection scheme for ¥}, -fo;r’mulas, introduced in Simpson ([26], Definition VIII.5.1):
for each X} ,-formula A(V) with FV(A) = {V1,..., Vi},

(3L, ,-RFN) VZ[A(Z) — 3X[ZEX A (ACA) X A A(Z)1X].

To see that p,i1((ACA)) implies (X1, ,-RFN), let A(V) = 3IWB(W, V), where B is
I}, . and assume that IW B(W, Y). Let Z so that (Z)g = W and (Z)i1 = Y; for
0<i<k. Forsomee, BW,Y) iff ©}, (Z,¢), and p,1(ACA) provides a set X s0
that (ACA)IX and ZEX (hence also W,Y EX), and (AW B(W, Z))1 X.

For the converse direction, assume that 7y, ,(Z,x,€). Then, there is a 11}, -formula
B(U) with FV(B) = {U}, so that for W :={(2,0) : z € Z} U {(z,e+1)}, B(W) iff
T 1(Z,x,€). Hence, IWB(W), and X}, , w-model reflection yields a set X, so that
(ACA) X, and there is a WEX so that BOW)[X. With WeEX, also Z€X, therefore
ﬁ}L+1(Z, x,e)X.

Further, we recall the following well-known facts.
Lemma 1.2.10. pg(ACAo) 18 Z%-DCO and plpg(ACAQ) 18 ATRQ

Proof This can be found e.g. in Simpson [26]. The first claim is Theorem VIIL.5.12.
The right-to-left direction of the second claim is by Theorem VIII.4.20, and the
direction from left-to-right is by Lemma VIII.4.15 and Theorem VIII.3.15. O

Let (ACA) be the II}-sentence provided by Lemma 1.1.14. So ACA, is T¢ + (ACA),
¥1-DCy is T¢ + (2{-DC) for (X}-DC) := py((ACA)), and ATR, is T¢ + (ATR) for
(ATR) := p;((£1-DC)). Observe that 31-DCy is T}, and that (ATR) is II3.

Remark 1.2.11. As shown in Simpson [26] Theorem VIII.5.13, there exists a model
M of ATRy that does neither satisfy (31-DC) nor pi((ATR)). Then,

M ((£1-DC) — (ATR)) = [pi((X1-DC)) — pi((ATR))],
as trivially, M |= (%1-DC) — (ATR) and M | p((%1{-DC)). This illustrates that
there are T and T, so that Tt (T — T') = (p(T) = po(T")).

21

Next, we collect some basic properties of the operations (p,.1 : n € N).

Lemma 1.2.12. Assume that T’ is an open 11}, ,-sentence of Ly. If T¢ F T -T",
then T€F poyr (T) — T

Proof We start with a preparatory consideration. Assume that T = VZC(Z) for
some X! -formula C(U), and that further T T — T’. Then also T+ T — C(U).

n+1
Now Lemma 1.1.10 yields T - UEX — [T|X — C(U)!X], from which we readily

obtain
(%) T HVX[UEX ATIX — C(U)[X].

Now we show T¢ F p,.1(T) = VZC(Z) by induction on n. We work informally in
T¢, assume that p,1(T) and =C/(Z) for some Z, and argue for a contradiction. If
n =0, py(T) provides a set X so that ZEX and T|X. Now (%) yields C(Z)[X. As
C'is ¥} and for each z, (X). is a set since p;(T) implies trans, we obtain C(Z). And
if n >0, then =C is II}, ., and pns1(T) provides an X so that ZEX and T]X and
—C(Z)[X, contradicting (x). O
We typically refer to this lemma to justify a claim such as p} = p;: as trivially,
Tk pi(T) = pu(T), and py(T) is I1}, the above lemma yields T¢ p%(‘T’) — pi(T),
hence indeed p? = p;.

Remark 1.2.13. If T is I} .,, then T+ pn+1('T_) — T by Lemma 1.2.12. As by
Convention I.2.4, T T — (ACA), and since further (ACA) is I1L, we also have that

%

T F pi(T) = (ACA). Moreover, we will prove (Lemma II1.6.5 (i)), that Op = p;
for each operation build from basic operations. Consequently, T¢ = Op(T) — (ACA)
for all operations Op and open sentences T we consider. This justifies Convention
1.2.4.

The next Lemma exhibits another key property, which is generalized later.

Lemma 1.2.14. If T is H}nH, then T¢F pm+1(-T') AT = pm+1(-T' A -T")

1%

Proof By the above remark, p,,+1(T) implies arithmetical comprehension. Now let
T' be II! ,,. We just show the case m > 0; the case m = 0 is similar but simpler.

We assume pp,41(T) and T/, and aim for py(T A T'). Assume that To1(Z, 3, €).
We have to find a set X so that ZEX, m} ,(Z,z,¢)[X, TIX and T'IX. As (ACA)
is at hand, there is an ¢ so that 7}, (Z,z,¢') iff T'An}, (Z, x,e). Hence, there is a
set X so that Z€X,)1 (Z,z, €)X and TIX. Since also (ACA)[X, and therefore
(mh o (Z,x,¢) & T ATh (Z,x,)X, 7L, (Z,2,¢)) X implies 71, (Z,x,e)[X
and T/ X, and we are done. O

22

1.2.2 Representation of operations

We have introduced operations as maps on open Lo-sentences. Hence, with pq, also
the operation p? = p; o p; is explained. But what should py be?

In order to answer this question, we first explain how to represent an operation Op
by an Ly(P)-formula ¢. The idea is that the formula T is mapped to the formula
cp{-T'[U } obtained from ¢ by replacing each occurrence of P(X') in ¢ by the formula
TIX. Before we give the general definition of when an Lo(P)-formula ¢ represents an
operation, we start by presenting Ly(P)-formulas so that the map T Ppn +1{'T_[U }
coincides with the map p,1.

Definition 1.2.15.
(i) pp, :=VZ3IX[ZEX NP(X)] A pair Atrans, and
(ii) p,,o =YZVr,e3X[Z€X NP(X) A Ryio(X, Z, x,€)] A pair A trans.

Now we address the initial question of what p% should be. Since pf is an oper-
ation, p#(T) is an open Ly-sentence. We emphasize that p%(T) is not the theory
Unen PTTH(T), where pi(T) := pi(T) and py™*(T) := pi(py™'(T)). Instead, p¢ is the
operation T Pp {TIU}, where @pe = VYnd(n), and J(u) is such that for all T
(which imply (ACA)),

(i) TEF9(){TIU} > pi(T), and
(ii) TeF Vn[d(n+2){TIU} < p1(9(n+1){TIU)].

That an Ly(P)-formula 9(u) with these properties exists is a consequence of the
Representation Theorem 1.2.26.

Let us summarize the above discussion.

Definition 1.2.16. The language Ly(P) extends Ly by a fresh relation symbol P(U).
FEach set variable is a set term, and if X is a set term, then also (X)s for each
number term s. Fach atom of Ly is an atom of Ly(P), and for each set term X of
Lo(P), P(X) is an atom of Ly(P). Further, ¢ is an Ly(PT)-formula, if ¢ contains P
only positively.

Since P((X)z) is an atom of Ly(P), the notations C'1X and X | C lift canonically
to Lo(P)-formulas (cf. Definition 1.1.3). For instance, VXP(X)[U is VaP((U).), and
VYP((Y),)IU is VyP((U),). Below, we let ¢, 1), ... range over Ly(P)-formulas.

Definition 1.2.17. Let ¢ and ¥(U) be Lo(P)-formulas. Then p{u(U)} is the Lo(P)-
formula obtained from ¢ by replacing each occurrence of P(X) in ¢ by the formula
Y(X). We also write oy for o{ip(U)}. Further, for each Ly(P)-formula 9(U),

23

{¥(U)} takes precedence over quantifiers and logical connective: Quyp{¥(U)} =
Qu(p{v(U)}), QVp{d(U)} = QY (p{d(U)}), and (¢ j P){9(U)} := ¢ jb{d(U)},

where j is a connective in {\,V,—, <>}.

When we apply this substitution, it is always assumed that BV (¢) NFV(y(U)) = 0,
FV(e) NFV((U)) =0, and that if P(X) occurs in ¢, then FV(P(X)) N BV(y) = ().
Observe that if A(U) is an Ly-formula, then o{A(U)} is an Ly(P)-formula in which
the relation symbol P no longer occurs. Strictly speaking, however, o{A(U)} is not
an Lo-formula: if e.g. X is a set term different from a set variable, then P(X){0 € U}
is the formula 0 € X, which still contains the set term X. Therefore, we identify
©{A(U)} with the Lo-formula obtained by regarding the set terms X occurring in
©{A(U)} as abbreviations according to Definition 1.1.2.

Note that in p{¢(U)}, the variable U plays the role of a place-holder that indicates
where to place the set term X. For all variables U,V we have that p{¢(U)} =

p{Y(V)}, and FV(p{¢(U)}) = FV(p) URV(4(U)) \ {U}.

Another immediate consequence of the definition of ¢{)(U)} is that substitution
distributes over quantifiers and logical connectives.

Lemma 1.2.18. For all Ly(P)-formulas v,v and 9, (Qup){d(U)} = Que{d(U)},
(QY){d(U)} = QYp{d(U)}, and for each j € {A,V, =, <}, (jo){dU)} =
e{0(U)} jo{I(U)}-

The next Lemma guarantees that under mild assumptions, for each Ly(P™)-formula
©, T p{T[U} is an operation in the sense of Definition 1.2.1.

Lemma 1.2.19. If ¢ is an Ly(P1)-formula, and A(U), B(U) are Ly-formulas, then
T¢ 4+ trans - VX (A(X) = B(X)) = (¢{A(U)} = o{B(U)}).

Proof Assume that VX (A(X) — B(X)). We show ¢ := p{A(U)} = o{B(U)} by
induction on the build-up of ¢, tacitly using the above lemma.

(i) ¢ does not contain P. Then ¢~ = ¢ and the claim holds trivially.

(ii) ¢ = P(X) for some set term &X. Then ¢~ is A(X) — B(X), which follows
from VX (A(X) — B(X)) as X is a set by trans.

(iii) @ = @12 forj € {A,V}. By LH., o {A(U)} = ¢:1{B(U)} and p2{A(U)} —
wo{B(U)}. The claim follows as @{A(U)} = 01{AU)}jp2{AU)} implies
pi{B(U)}je2ABU)} = p{B(U)}.

(iv) ¢ =VY¢(Y). By LH., v (Y){AU)} — ¢¥(Y){B(U)}. By logic, we conclude
Wo(YV){AU)} = (Y){BU)} and VWi (Y){AU)} — vYo(Y){B(U)},

and ¢~ readily follows.

24

(v) ¢ = IYY(Y). By LH., ¢(Y){AU)} — »(Y){B(U)}, and ¥(Y){A(U)} —
W YY) {BU)} and IY (V) {AU)} — IY$(YV){B(U)}, thus ¢~

O
If ¢ is an open Ly(P)-sentence, then Op?(T) := o{T|U}, and if ¢ is introduced as

(1), then Op;f('f) := Op?(T)[t/d]. The following is an easy consequence of Lemma
[.2.19.

Theorem 1.2.20. Assume that ¢ := @(@0) is an open Ly(P)-sentence that contains
P, P occurs only positively in ¢, and T¢ = o{T} — pair Atrans. Then Op? and Op;f
are operations in the sense of Definition 1.2.1.

Proof We have Op?(T) := o{T|U}. Since FVi(¢) = 0, the set variable in each
occurrence of P(X) in ¢ is within the scope of a set quantifier. Therefore, this
set variable is still bound after substituting T]X for P(X). So Op?(T) is an open
Lo-sentence. Since it is assumed that the variables occurring in ¢ and 'T_[U are
disjoint, we have FVo(T) C FVo(Op?(T)) and FVo(T) C FVO(Op;f('T')). To show
(ii) of Definition 1.2.1, let C(@) := VX(T|X — T'1X) — (Opi(T) — Op%(T").
By Lemma 1.2.19 (T|U and T'[U take the roles of A(U) and B(U)), we have that

1%]

Te+trans F C. Since T = VX[(T]X) — TIX], also T+ Op?(T) — Op”{T}. As
Op?{T} is p{T}, T¢ F Op?(T) — trans is by assumption. Thus also T¢ F C(u).
Hence Op* and Optf are operations. O

Now, we say what we mean by “p represents the operation Op*”.

Definition 1.2.21. We say that ¢ represents the operation Op“o(-T') = go{'T'[U},
if v is an open Lo(P)-sentence that contains P, P occurs only positively in ¢, and
T F @{T} — pair A trans.

Lemma 1.2.22. Assume that o, ¥(U) are Ly(P)-formulas, A(U), B(U) Ly-formulas,
and A(U) is arithmetical. Then,

(i) (PTX){AU)} = paan | X,
(i1) (ppny{BU)} = e{(V)san}-

Proof Both claims are shown by induction on the build-up of ¢. We just show some
cases, starting with the first claim. Thus we assume that A(U) is an arithmetical.

(i) If P does not occur in ¢, then (p[X){A(U)} = ¢[X = paw)lX.

(ii) ¢ = [1]P(Y) for some set term Y. Then (p[X){AU)} = [-]P(V){AU)} =
[-]A(Y), and also @A [X = [F]A(YV)[X = [-]A(Y) as A is arithmetical.

25

(ili) ¢ = QY Y(Y). Unwinding definitions and using Lemma [.2.18, we see that
ol X = (QYY(Y)X = (QYEX)(Y(Y)]X) = Qui((X),) X, and therefore

(PIX){AU)} = (Quu((X))IX)NAWU)} = Quy((X),)[X{AU)}. Further,
(Pae)) X = ((QYY(Y))aw))[X = (QY V(Y)aw))[X = Quib((X)y) aw) [X.
By I.LH. we have

P(X))IX{AU)} = V((X)y) a@) [X

Quantifying y on both sides yields the claim.

Now for the second claim. If P does not occur in ¢, then again, the claim is readily
checked. For the induction step, we exemplarily consider the case ¢ = QY J(Y).
Then, (QYI(Y))y){B(U)} = (QYU(Y)yw){BU)} = QY)Y)y {BU)} =1n.
QYIY)W (V)sw)} = (QYIV){v(V)sw)} = {v(V)sw)}- O

Example 1.2.23. Assume that ¢ and ¢ represent the operations Op? and OpY,
respectively. Then, as a direct consequence of Lemma 1.2.22, p o = o{¢|U}
represents Op¥ o OpY. We namely hcwe that (¢ o Y){TIUY = @y {TIU} = (ii)

(W) 110} =) e{s VY = o{0p?(T) IV} = (Op” 0 Op¥)(T).

The reminder of this section is devoted to the formulation of the Representation
Theorem. It claims that we can construct from an Ly(P)-formula 9(u) represent-
ing operations Op,, an Ly(P)-formula ((u) which represents new operations Op.,,
that are obtained by transfinite compositions of operations Op,,. Its proof is rather
technical and was thus moved to the appendix.

The idea is the following. Assume that (@, <) is a primitive recursive well-founded
ordering with least element 0, that is, field(<) = @, and for each ¢ € @, 0 < ¢ and
Wo.(q). By recursion on <, we want to define for each ¢ € Q* := @ \ {0} an
operation Op, in terms of initial operations Opg and some of the previously defined
operations {Op, : p < ¢,0 # p}. More specifically, given an Ly(P)-formula 9(u)
that represents initial operations Opz, a primitive recursive subset ~ of < and a
primitive recursive function f(u,v), then we want an Lo(P)-formula ¢(u) so that

(+) THOpg(T) < 0 < u A (Yo~ w)[0pj.,) (Op, (T))],

~0 . v y
where Op, (T) := (0 =uAT) V (0 # uAOp’(T)), an abbreviation that we use since
we cannot represent directly the identity operation by an Ly(P)-formula.

We prove (x) only for relations ~» and < where < is the transitive closure of ~»,
and we let good(~», <) be an arithmetical Ly-sentence so that Yu(0 < u A Wo_(u))
together with good(~», <) implies that < is the transitive closure of ~».

26

Definition 1.2.24. Let good(~, <) be the conjunctions of the following formulas.
(i) Veylz ~y — x < yl,
(ii) Veyzlz Ky ANy~ z =z < 2],

(i1i) (Vz < z2)(Fy ~ z)(x < y).

So under the assumption Vu(0 < u AWo<(u)), (i) and (ii) imply that < contains the
transitive closure of ~», and (iii) yields the other direction, namely that if x < z,
there is ~»-path from z to z,i.e. © = xg~ 21 ~ ...~ x,, = x for some zg, ..., 2, €
field(~). Otherwise, there is a <-minimal element z so that there is an z with x < z
but there is no ~»-path from z to z. By (iii) however, there is a y with y ~ z with
x = y. Clearly, z # y, thus © < y ~ 2. By the minimality of z, there is a ~»-path
from = to y, hence also from z to z!

The following technical notion is convenient to have at hand for the proof of the
Representation Theorem.

Definition 1.2.25. An Ly(P)-formula ¥ strongly implies p1, if ¥ represents an op-
eration, and for each ¥1-formula A(U) of Ly, T¢H9{AU)} = v, {AU)}.

If ¥ strongly implies py, then in particular, Op” = py, since Opﬂ(-T') = ﬁ{T[U} and
{TIU} is arithmetical and thus also 1.

Now the stage is set the state the theorem. Since we find it convenient to have that
Opf('T') implies 0 ~ v and Wo<(u), we will defined the formula ¢ so that it directly
implies these properties. Hence, if e.g. u ¢ field(<) and thus (0 < u), then Op?(T)
is inconsistent and therefore proves everything.

Theorem 1.2.26 (Representation Theorem). Let ¥(u) an open L(P)-sentence that
strongly implies p1, and <,~, f(v,u) primitive recursive. Then there is an open
L(PT)-sentence o(u) := ©=™?(u) that strongly implies p1, so that for each T
(that implies (ACA)), T¢ proves

Y]

(1) OpZ(T) — 0 < u A Wo(u) A good(~, <),
(ii) 0 < u A Wo(u) A good(~, <) = [Op£(T) 4+ (Vv ~> 1) (OpY,.y (Op, (T)))]

Example 1.2.27. Let ¥ = ¢,,, < some primitive recursive well-ordering and o ~ 3
iff B = a+1 or 8 is a limit <-bigger than o. f is irrelevant, as ¢y, has no free
variables. Then, for ¢ = /=7 Op{ = py, if 0 < a, then OpY,, < p1(0p¢), and

if v is a limit, then Op? < (Va < ”y)pl((/)?)ﬁa).

Slightly stretching Definition 1.2.2, we wrote Op? < (Vo < y)pl((/)?)f +o) to indicate
that for each T (that implies (ACA)), T¢ + Opf(‘T’) < (Va < v)pl(a)era('T')).

27

Corollary 1.2.28. If ¥ is an open Ly(P)-sentence that strongly implies py, then
there is an open Ly(P)-sentence p(u) which strongly implies py, so that Opf < OpY,
if 0 < «a, then Op?,, < Op”(0p?), and if v is a limit, Op? & (Va < v)0p”(0pf...)-

This justifies the following notation: if Op is represented by ¢, then we write Opo‘(-T')
for Op¥(T), where ¢(u) is the formula provided by the above corollary. Note also
that then Op” < (VYa < 7)0p®*.

I.3 The functionals (It,;; : n € N)

In this section, we introduce the family (It,,; : n € N) of functionals. We assume
that the reader is familiar with ordinals, normal functions and closed unbounded
sets. The used properties of these concepts are covered e.g. in Pohlers [11], Chapter
I, Section 6.

Below, € refers to the first uncountable ordinal. To simplify the notation, we identify
a set O C Q with the strictly monotone function fo enumerating the elements of
O, and conversely, a strictly monotone function f : 2 — € is identified with its
range rng(f). Hence, if f,g : Q@ — Q are strictly monotone, then f C g is short
for mg(f) C rng(g). Further, we tacitly use that f is normal iff rg(f) is closed
unbounded, and that (), f; is normal if each f; : @ — € is normal.

Henceforth, we regard the ordinals in €2 also as type-0 functionals, and the functions
f:Q — Qas type-1 functionals. By XY we denote the set of functions from X to Y.
For X C 0}, F € XX is a type-2 functional. And if X is a set of type-n functionals,
then ' € *X is a type-n+1 functional.

Definition 1.3.1. Assume that Fy, ..., F, are functionals (or functions or ordi-
TLCZZS). We let (FQ) = F(), Zf Fl € dom(FO), then (F(),Fl) = FQ(Fl), and fUT-
ther, for 0 < i < n, if Fiy1 € dom(Fy, Fy,...,F;) := dom((Fy, Fi,..., F})), then
(Fo, Fl, couy Fi7 E+1) = (F(](Fl), FQ, ey Fi—l—l)- We also write F(][Fl, NN Fn+1] fOT
(Fo, F1, ..., Foyq).

For instance, if the function f : Q@ — € is in the domain of the functional F,
then (F, f,a) = F[f,a] = (F(f))(a). If Fy,...,F, are suitable functionals, then
(F1, ..., F,) always denotes the functional defined above, and never an n-tuple.

All functionals of type-n+2 that are relevant for our purpose are build from function-
als that do just one simple thing: they iterate functions and functionals, respectively.

Definition I.3.2 (Iteration). Below, v ranges over lim(2), the limit ordinals in €.
Further, idx := {(z,z) : v € X}.

28

(i) Forh:Q —Q, h° :=idg, h**' := ho h® and bV () := sup,.,h*(f).

(i) For a type-n—+1 functional F, F° := idgom(r), F*t* := F o F*, and whenever
f € dom(Fy), Fy € dom(Fy),. .., F, € dom(F),

(F, Foy.. B f) = (Y, B By).

a<ly

Furthermore, we consider only normal functions f with rg(f) C lim(€2), and we
want that on such functions, our functionals thin out a function in the following
way: F'(f) C fand f(0) ¢ F[f,0]; hence F[f,0] > f(0). We call such an F' strictly
inclusive. Below, we lift this notion to higher types.

Definition 1.3.3. By recursion on n we define the sets Q" and explain when a
functional F : QM — QW s called strictly inclusive.

(i) QO = {f:Q = Q| f normal , f C lim(Q)}.

(i) F: QO — QO s strictly inclusive, if (Vf € QO)(f(0) ¢ F(f) C f).
(iii) QD .= {F € 2QM) . F s strictly inclusive }.
(iv) [Fy,...,F,] € Q=" e e QM . F, € QO,

(v) F 2" Q0D s strictly inclusive, if for all [H,h] € Q<)

(H,h,0) ¢ (F,H,h) C (H,h).

It is readily observed that for each n, Q™ is closed under composition.
Lemma 1.3.4. For each n, Q™ is closed under composition.

Proof This is trivial for n = 0. If F,G € Q"D then clearly F o G : Q™ — QM.
It remains to check that F o G is strictly inclusive. Let [H, H,h] € Q). Then,
(FoG,H H h) = (F,G(H),H, h) C (G(H),H,h) = (G,H,H, h) C (H,H,h), and
(H,H,h,0)¢ (G, H H h)D(FoG,H, H,h). O

Convention 1.3.5. Unless stated otherwise, f, g range over Q) n ranges over finite
ordinals, o, ;... range over ordinals in 2, and 7,~" range over lim(Q2). Further,
f < g:=Va[f(a) < g(a)], and for F,G € Q@Y F C G iff for all [H, h] € Q=
(F,H,h) C (G, H,h), and F <G iff for all [H,h] € Q= (F,H, k) < (G, H,h).

Iterating a normal function f does not lead very far as f¥ = ' := {a: f(a) = o}
(cf. Lemma 1.3.15), and hence f! = f“. Therefore, we iterate the fized point free
companion f_ of f instead.

29

Definition 1.3.6 (Fixed point free companion). For a function h : Q — §, we
denote by fix(h) := h' :={a : h(a) = a} the set of fixed points of h, and h_ := h\ I/
is the fized point free companion of h (so h_ is the function that enumerates the set

mg(h) \ {a: h(a) = a}).

We start with a simple observation regarding fixed points, and then state how f
relates to its fixed point free companion.

Lemma 1.3.7. If o ¢ f', then f(a) & f'. If f € QO then f(a)+1 < f(a+1),
fla+1) & f and f(a+1) € f_.

Proof If a ¢ f’, then a < f(a), so f(a) < f(f(a)), thus f(a) & f. If f € QO then
fla)+1 < f(a+1). Since a+1 ¢ f' C f, we have f(a+1) ¢ f" and f(a+1) € f_. O

Remark 1.3.8. As f € QO entails wa < f(a), each fived point v of f satisfies
wy < f(v) =~ < wy, and is therefore of the form v = w* [for some B > 0.

Next, we see that f and f_ differ only on ordinals a of the form vy+n for some
vef.
Lemma 1.3.9. For each f € QO

(o) f(a) ca<w V a=~vy+n for somey ¢ f' and some n < w,
_(a) =
fla+1) :a=~+n for some~y € f' and some n < w.

Proof The claim is shown by transfinite induction on a. As f(0) ¢ f’, f(0) = f-(0).
Next, we show the limit case. Fix some v and assume that the claim holds for each
a < 7. First observe, that then {f_(3) : 8 <~} ={f(B) : B < ~vy}Nf_, and since for

B <, f(B) < [-(B) < f(B+1), also sup({ f-(B) : B <~}) = sup({f(B) : B <~}).
We show that the claim holds for v by distincting the cases v ¢ f’ and v € f'.

(i) v € f". Then f(y) ¢ f-, and v < f_(y) = min(f_\{f-(B) : § <}) =1m.
min(f-\ {f(B) : 6 <~}) = min(f \ ({f(B) : B <7} US)) = f(y+1), since
foy+1) & 1.

(ii)) v ¢ f'. Then f(v) € f-. As f < f_, there is some 6 < 7 so that f_(§) =
f(y) = sup{f(B) : B <~} =rm sup{f-(B) : B <~} Thus 6 = ~, and
f~(v) = ().

The successor case causes no problems: if for some m € {0,1}, f_(a) = f(a+m),
then, as f(a+m+1) € f_, also f_(a+1) = f(a+m+1). O

Now the stage is set to define the functionals (It,;1 : » € N). Further, we introduce
an auxiliary functional sh which shifts the domain of a function from € to lim(Q2),
and nicely relates the functionals it and fix.

30

Definition 1.3.10 (The type-n+2 functionals It,1).
(i) shlf,a] = f(w(1+a)).
(ii) it[f, o] == (f-)**(0), and It; := it.

(iii) tnialFo, ..., Fo, fr0] == (FZT Fy, ..., F,, f,0), for all [F, f] € Q=" and
It .= |t2.

We defined it[f,0] := (f_)%(0) = f?(0) to have f(0) < it[f,0] (ie. it[f,0] & f).
For the same reason, we set It o[F, F, f,a] = (F2*® F, f0). Had we defined
It,2|F, F f.a] to be (F'** F f,0), then It,o[F, F. f,0] = (F,F, f,0), and lt, s
would not be strictly inclusive.

Next, we show that sh and it are in Q)| and that It, ., € Q2.
Lemma 1.3.11. sh € QW and it € Q.

Proof The first claim is obvious, so we just show that it € QM. Assume that
f € QO Firstly, we show that it(f) is strictly inclusive. We have already discussed
that it(f,0) ¢ f. That it(f) C f is readily seen by induction on «a. If « is zero or a
successor, this follows from f_ C f and the definition of it, and if « is a limit and
for each 8 < a, it(f,5) € f, then it(f,~v) € f follows as rng(f) is closed. Secondly,
we show that it(f) € Q©. it(f) is continuous by definition, and it(f) is strictly
monotone since o < f_(a) (a < f(a) < fia) and oo = f~(«) is impossible). O

Now, we show that also It, o € Q"+2),

Lemma 1.3.12. If F € QU then F* € Q0D Fyrther, for all [F, f] € Q<M
and dp, g (@) := (F*, F, f,0), we have dp, ; € QO

Proof We just consider the case n = 0, as the proof works exactly the same for n > 0.
The first claim is shown by transfinite induction. The case o = 0 is trivial, and the
successor case follows since Q1 is closed under composition. For the limit case,
observe that if for each a < v, f(0) ¢ F(f) C f, then also f(0) ¢ (,., F*(f) =
F7(f) € f. And because F*(f) is closed unbounded for each a < =, so is F7(f).
Further, as F°[f,0] ¢ FT'(f), it follows that d := dp is strictly monotone. It
remains to show that d is continuous: for o <, d(a) < ((,<¢<, FE(£))(0) = d(v),
s0 8 = sup,_,d(a) < d(y). On the other hand, F’(f) is club for each 3 < 7.
Therefore, § = supscno,d(a) € FP(f) for each f < v, ie. § € F(f), and so
6> F7[f,0]. O

Corollary 1.3.13. It, ., € Q+1D),

31

Proof The case n = 0 is due to Lemma 1.3.11. As It,,[F, F, f, o] = dp 7 /(2+a),
lt, o € 2"QMD As with F € QM also F'te e Q0D 4, o(F, F f,a) =
(F** F, f,0) € (F**°, F f) C (F,F, f). Since It,o[F,F, f,0] = (F?,F, f,0) ¢
(F, F, f), ltnie is also strictly inclusive. O

Lemma 1.3.14. Let F € QD). Then, Fo FP = Ff+a in particular FYoF = F7.

Proof For each 3, we show the claim by induction on o for a = 0 there is not}iing to
show, Fotl o P =,y Fo /e = Fh+atl and for [F, f] € Q=™ (FYo FA F, f) =
ﬂ§<—y(F5 © F67F9 f) —I.H. m§<fy(Fﬁ+§>F> .f) = (FB+A/>F> .f) O

Next, we relate the functionals it and sh to fix and prove some simple properties.
Among other things, the next lemma tells us that (sh oit) = fix: consequently,
itlg, 7] = g(itlg,7]), and if o ¢ lim(Q2), it[g, a] ¢ ¢’ and so it[g, a+1] = g(it[g, a]).
Lemma 1.3.15. (i) (fixosh) =fix, (i) (shoit) =fix and (i) it C sh.

Proof (i) v € (fixosh)(f) iff y = wy A f(v) =~ iff v € f' (cf. Remark 1.3.8).

(ii) Note that 8+1 < f_(B), and thus also f***(0)+1 < f**2(0). Using Lemma
1.3.9, we conclude that f(f*™(0)) < f_(f**1(0)) < f(f***(0)). Hence, it(f,v) =
SUP, [2T2(0) = supyo, f-(f2T1(0)) = sup,.,f(f2*'(0)), and since f is normal,
SUPuer [(F2TH0)) = f(supaes foT(0)) = f(it[f,7]). To see that each 7' € f’ is
of the form it[f,~], we show that no fixed point of f is strictly between it[f,~]
and it[f,v+w]. Thereto, we let vy := it[f,7], and show that by induction on n
that £ (30+1) = it[f,4+n+1] ¢ £ For n = 0, f(ro+1) ¢ £ and f(31) =
f-(v0) = f-(it[f,~]) = it[f,7+1]. Next we address the induction step. Since by I.H.,
[yo+1) € f/, also f772(yo+1) ¢ f'. Using Lemma 1.3.9 yields f(f""(yo+1)) =
F (" (y041)) =1a [(it([f, y+n+1]) = it[f,7+n+2]. (iii) If o is not a limit, then
the definition of it and Lemma 1.3.9 yield that there is a § > 0 with it[f,a] =
f(w(148)) = sh[f,B]. And if « is a limit, then @ = w(f+1) for some 3, therefore
it f,a] = (shoit)[f, B] =u) fix[f, B] =@) (fixosh)[f, B]. Hence, it[f, a] € (fixosh)(f) C
sh(f). O

Lemma 1.3.16. Let f,g € QO If f < g, then sh(f) < sh(g) and it(f) < it(g).

Proof The first claim is obvious. The second is shown by induction on «. it[f,0] =
f(f(0)) < f(g(0)) < g(g(0)) = it[g,0]. The limit case is by the continuity of
it(f) and it(g). Next, we consider successors of the form y+1. By LH., v :=
it[f,7] < itlg,7] =@ m. By Lemma 1.3.15 we have that 79 € f" and 13 € ¢
Using Lemma 1.3.9, we obtain that it[f,v+1] = f_(y0) = f(y0+1) < g(n+1) =
g—(71) = itlg,v+1]. Finally, we consider successors of the form a+2. By LH.,
Yo = it[f,a+1] < it[g,a+1] =: 7;. By Lemma 1.3.15 we have that v, ¢ f’ and
7 ¢ g’ Hence, it[f, a+2] = f_(70) = f(%0) < g(n) = g-(n) = it[g, a+2]. D

We also have the following variant.

32

Lemma 1.3.17. Let f,g € QO If f C g, then f' C g and sh(f) C sh(g).

Proof Suppose that f C g. If v € f’, then v < g(y) < f(y) = 7, thus v € ¢'. For
the second claim, assume that for some v, f(v) ¢ sh(g), that is, f(v) = g(7'+n+1)
for some n, and argue for a contradiction: since f is normal, there is some § < 7,
so that g(y'+n) < f(0) < g(v'+n+1), which contradicts f C ¢! O
Since e.g. it"(g9) = e, it*(g), we also consider the more general situation where
f= ﬂg <o J¢ for a family (fe : &€ <) of normal functions, and wonder how to
approximate f(a). As fis normal, f (a) = sups,fy,(8) if @ is a limit. Otherwise,
we approximate f,,(«) using the normal functions defined below.

Definition 1.3.18. Let (fe : &€ < 7o) a family of normal functions. Depending on
this family and a start value B, we define a continuous function sz : yo+1 — £ as
follows:

(i) 55(0) == B+1,
(ii) s5(€+1) = fe(s5(€)),

(i) s5(7) = sUPg<,s5(E).

To formulate the next lemma, we let next(g, 3) := min{d € g : § > 5} be the next
ordinal in the range of g above . For instance, g(a+1) = next(g,) for 5 := g(«).

Lemma 1.3.19. Assume that f., = ﬂ£<w fe, and for each & <n <, fe € QO
fo C fe, and fero C fi. Further, sg : vo+1 — Q are the functions from Definition
1.3.18. Then, we have for each B and each limit v < 7,

(1) s(7) = next(fy,),
(11) sp is strictly increasing.

In particular, so(v) = f1(0), and for B := f, (), sg(v) = fy(a+1).

Proof (i) As sg({+1) = fe(sp(€)), we have sg({+1) € fe, and since for each &' < 7,
s6(7) = supge,55(§) € for, we also have sg(v7) € (e, fe = f, as f, is closed.
As B < sp(7), sp(y) = next(f,,) follows, if s3(§) < next(f,,B) for all £ < ~,
which is shown by transfinite induction on £. sg(0) = f+1 < next(f,,), and if
sa(§) < next(f,, B), then sg(§+1) = fe(s(8)) < fe(next(fy, B)) = next(f,,), since
[y € fey2 € f¢. The limit case is by the continuity of sg.

(ii) By definition, sg is strictly increasing, if for all £ < v, s3(§) & f{. We show this
by induction on &. Clearly, s5(0) = B+1 ¢ fo. If s5(§) ¢ f¢, then by Lemma 1.3.7,
sp(E+1) = fe(s5(8)) € fi- As fer1 C fe and Lemma 1.3.17 yield f{,, C f{, we also
have sg(§+1) ¢ f{,;. In the limit case, we have ss(y) =(; next(f,,3). Therefore,
sg(7) = fy(0) for some 0 ¢ lim(Q). So 0 ¢ f/, and thus s ¢ f!. O

33

1.4 A substitute for transfinite induction

We aim to prove certain statements of the form (Va € field(<))A(«) in T¢, for
instance our main result, which states that for each name z, the operation Op,
proves the functional H,, by transfinite induction along the well-founded ordering
<. We start by the following simple observation.

Lemma 1.4.1. For each Ly-formula A, if T = AV (ACA) and ACAq = A, then
T A,

The theorem below can be regarded as an internal variant of the following.

If for all 5, T°F A(p) follows if T+ A(«) for all a < 3, then for all o, T+ A(a).

The statement T¢ + A(3) is approximated by the formula VX (A(S)[X), expressing
that A(5) holds in all models X. Therefore, the following convention is very useful:

if a capital letter, say C', denote an Ly-formula, then the corresponding lower case
letter ¢ denotes the IT{-formula VXC|X.

Now we can state the theorem which is proved at the end of this section.

Theorem 1.4.2. Let A(u) be an Ly-formulas without free set variables, and < a
binary relation symbol. Assume that

(1) TeF A(xz) Vv ((ACA) AWo(x)).
(11) ACAo F Vz[(Vy < x)a(y) — A(z)].
Then, T¢ F (Vz € field(<))A(x).

v

Usually, the theorem is applied to formulas A(x) of the form Op¥(T) — C(z), for
some specific Ly(P)-formula o(u) = ¢/=~?(y). That is, if =A(z), then we have
Op#(T), which by the Representation Theorem 1.2.26 entails Wo(z) and (ACA)
(as T implies (ACA) by convention, and by the Representation Theorem, Opf(‘T’)
implies py(T), which further implies p;((ACA)) and (ACA)). Therefore, assumption
(i) is guaranteed.

At times, we require a slight strengthening of the above theorem, namely the
corollary below. There, we apply the theorem to a formula A(u) of the form
BAbANd — C(u), where u ¢ FVo(B Ab A d). Due to the special form of A,
we have the following.

Corollary 1.4.3. Let A(u) := BAbAd — C(u) be an Ly-formulas without free set
variables and u & FVo(B Ab A d), and < a binary relation symbol. Assume that

(i) T<F A(z) V ((ACA) A WoL(z)).

34

(11) ACAgF BAbAdA Yy < x)c(y) — C(x).
Then, T¢ = (Vz € field(<))A(z).

Let us collect some auxiliary properties needed for the proof of the above theorem.
First, note that ACA, proves that each set is contained in a transitive one.

Lemma I.4.4. ACA(- VZ3X[ZeX Atrans| X].

Proof Having arithmetical comprehension at hand, given a set Z, we let X :=
{{x,8) 1 s € seq AT € (Z)(s)0,....(5)n(e)_1 |+ Where seq & N are the sequence numbers.

Then Z = (X)y, and if 0 # VeEWeX and V = (W), and W = (X),, then z € V
iff <[L’,U> S (X)S iff <£L’,'U> c (Z)SO (8)in(s)1 iff v € (Z)SO ’’’’’ (8)in(s)—1v iff v € (X)S*<U>. If
PEWEX, then also DEX, as seq € N. Technically, we define X as follows: Let h be
a primitive recursive function so that h(z,()) = = and h(z, ((s)o,- .. (8)n, Snt1)) =
h({z, sps1), (($)o, - - (8)n)). Then X = {(x,s) : s € seq A h(z,s) € Z}. O

The next lemma needs an assumption VY 3X (Y €X) which follows readily from pair,
as Z&€(Z+Z) (cf. Definition 1.2.3).

Lemma 1.4.5. If A is 11, then T¢ +trans = A — a, and T¢ + pair - a — A.

Proof Let A = VY B(Y) for some arithmetical B(U). If A, then also B((X),), since
trans implies that (X), is a set. Therefore a. For the second claim, fix some set Y.
As there is a set X with YEX, B(Y) follows from A X. O

For later reference, we also record the following.
Lemma 1.4.6. If T°FaAB — C, then T*+trans-a A b — c.

Proof If T*F a A B — C, then also T+ VX (a A B — C)[X, thus by logic, also
T FVX(alX)Ab— c. Now Lemma 1.4.5 yields T¢ +transta A b — c. O

Lemma 1.4.7. If A is 111, then ACAg - VX (trans| X — A]X) — A.

Proof Let A = VY D(Y) for some arithmetical D(U). If VX (trans[X — A[X), but
—D(Z) for some set Z, then by Lemma 1.4.4 there were a transitive X with Z€X,
thus =AJ X! O

Proof [Theorem 1.4.2] Assume (i) and (ii). Because of (i), it suffices to show that
ACAg = Wo(x) — A(x). By (ii), ACAy = (Vy < z)a(y) — A(z), hence by (i),
T F (Vy < x)aly) — A(z). Thus, T*F [(Vy < x)a(y) — A(z)][X by Lemma I.1.9,
which further yields T¢ F (Vy < x)a(y)[X — A(z)[X. Now we first quantify the
X on the left side of the implication, then the X on the right, and we obtain T¢
(Vy < 2)VXa(y)[| X — VXA(x)[X, that is T* - (Vy < 2)VXa(y)[X — a(x). Next,

35

Lemma 1.4.5 and the fact that a(y) is IIj yields T¢ + trans = (Vy < z)a(y) — a(z),
that is, for C := {z : a(z)}, T° F trans — Prog_(C).

Again by Lemma 1.1.9, T¢ - trans[X — Prog_(C[.X). Since ACA, implies that C[X
is a set, ACAy F Wo_(z) — [trans[X — (Vy < z)(y € C[X)]. By Lemma [.4.7,
ACAy F Wo(z) = (Vy < z)(y € C), therefore ACAq F Wo(z) — (Vy < z)a(y).
Now (ii) implies ACAq - WoL(z) — A(x). O

Proof [Corollary 1.4.3] We show that condition (ii) of the corollary is actually equiv-
alent to condition (ii) of the theorem, given that A(u) is of the form Cy — C(u)
with Cy := BAbAd and u ¢ FVy(Cy). For each formula F'; ACAy - VX f]X < f, by
Lemma 1.4.5. Hence, (Vy < z)a(y) iff bAd — (Vy < x)e(x), and so all the following
formulas are equivalent over ACAq

(1) Vzl(vy < z)aly) — A(z)],
(i) Va[(bAd— (Vy < z)c(y)) — (Co — C(2))],

)

)

(iii) Vz[Co — ((Vy < x)c(y) — C(x))],

(iv) Co = Va((Vy < 2)c(y) — C(x)),
) G

(v A Vy < x)e(y) — C(x).

36

Chapter 11

Provable functions: the case Ny =2

In this chapter, we first introduce sets Qo and Q4 of names to address all operation
(Op, : € @) and all type-2 functionals (H, : * € Qi) that play a role in the
reduction process of p3(ACAg). Then, we define when “Op, proves H,x", and show
that this holds for all z € Q, where -7 : Q, — Q¥ assigns to each name x of an
operation the name z! of its corresponding functional (as a first approximation,
think of 2 as the identity).

A name indicates how a functional or operation is constructed by iterated transfinite
composition from the basic functionals It := Ity and it := It; and the basic operations
p2 and pq, respectively. The subscript -5 indicates that we restrict to names of level
two; QY and @ will then be used to denote the respective names of all finite levels.
In the sequel, we also restrict to names of arbitrary large levels Ng.

In order to give a first provisional description of what “Op,, proves H,u" is to express,
we say that “T proves f”, if T¢ proves

Prvo(x) := T ValWo,(a) A Tl4(Cr,) = Wo,(f(a))],

which state that T implies Wo(f(a)) upon the assumptions Wo(a) and Tl4(Cr, @),
where Ct is some class depending on x, and < is a primitive recursive well-ordering.
“Op proves H” then states that for all T and f so that “T proves f”, we also have
“Op(T) proves H(f)".

We treat the case Ny = 2 first, although this is not yet the generic case: many
problems do not surface at all, or only in a trivial form, so that no extra machinery
is required in order to solve them. Therefore, the goal of this chapter is not to
provide the simplest possible proof, but one that neatly extends to the general case.

Names for operations and functionals are ordered sets (Qs, <s) and (Q¥, <#). Com-
pared to the general case, the names Q4 and Q, are quite simple and manageable.

37

Having names at hand will allow us to define Op, using the Representation The-
orem, and to prove “Op, proves H,x” by transfinite induction along a suitable
well-founded relation ~* on Qs.

Names are special nested sequences. Since the names Q¥ for functionals are some-
what simpler than the names @, for operations, we first have a brief look at Q.
qo := () is the only name of level 0, and ((«a, qp)) with 0 < a are the names of level
one, and (o, qo) < (B, qo) iff a < 8. Names of level two may be sequences of length
bigger than one: if 27 < ... < x} are names of level one and 0 < «; (1 < i < k), then
((aq, 1), ... (g, x)) is a name of level two. Functionals of type-2 are then named
in the following manner: H, 4 := it*, Hg aq)) = (It*(it))?, and if (z1,..., 2x) is
a name of level two with & > 1, then H,, .,y := H; o...oH,,.

Each z € Q¥ also names an operation Op,. The naming schema for operations is
similar, however, there are some differences that are discussed in the next section. In
particular, Q¥ C Q,, since we need more names for operations than for functionals.
We still have that Opq 4 iff Py, and Op, (4,4 Iff (P2P1)". But e.g. Op(, (aq0)) iff

(P1p2pP1)™ and Op(y 41 (a0 1 (P2 pl)’”"

The organization of this chapter is as follows. First, we introduce names for opera-
tions and functionals. Then, we have a closer look at names and define approxima-
tions and normal forms, which leads to the definition of the relations ~» and ~*,
and a formal definitions of Op, by means of the Representation Theorem. After
collecting relevant properties of the functionals H, and the operations Op,, we are
then in position to show that for each z € Q% := Q2 \ {q}, “Op, proves H,u".

Differences between operations and functionals

In this section, we (still somewhat informal) explain in what sense operations and
functionals behave differently. We start by reviewing some basic properties of oper-
ations that are constantly used in the sequel. Recall that Op = Op’ states that for
all T, T Op(T) — Op'(T).

Firstly, recall (cf. Definition 1.2.1) that if T and T’ are open Ly-sentences so that
Tk T — T, then also T - Op() — Op() for each operation Op. In particular,
since trivially T€ - T AT/ = T and T¢ - VaT(z r) — T(u) (u ¢ FV(V:CT)), we have
that T¢+ Op(T A T') = Op(T) and T+ Op(VaT(z)) — VazOp(T(z)).

Secondly, as (ACA) is I}, Lemma 1.2.12 yields that T¢ F p;((ACA)) — (ACA).
Thus, as pa = pi, also T¢ F pa((ACA)) — (ACA). Since p; is an operation, we
obtain T¢ F pip2((ACA)) — p1(ACA), and further, as T¢ F p;((ACA)) — (ACA), we
conclude that also T¢ F pypa((ACA)) — (ACA).

Thirdly, if T is I1}, then T¢ pQ(T') > pgpl(-T'). To see this, we work informally in

38

T¢ and assume p2(T). Then we have also pl('T')J which is TI;. Using Lemma 1.2.14
yields popy(T). Conversely, as T is I}, T¢+ py(T) — T, thus, as py is an operation,
also T¢ F pop1(T) — po(T).

Next, we elaborate on some differences of the operation ps and the functional It.
A first thing to observe is that we can compose the functional It with any other
type-3 functional F' to obtain the type-3 functional (It o F'). Alternatively, we can
apply the type-3 functional It to a type-2 functional GG to obtain a type-2 functional
It(G). However, we cannot apply It to F', or compose It with G. For the operation
po there is no such distinction: pyops and poop; are both well-defined compositions
of operations.

Example I1.0.8. Recall that pa(ACAg) is $1-DCy and that pipa(ACAg) is ATRg
(cf. Lemma 1.2.10). Hence, pa(p2(ACAy)) is a theory that claims I1-reflection
on w-models of ¥1-DCq. pa(p2(ACAg)) is equivalent to a theory with Xi-transfinite
dependent choice (cf. Riede [19]) of ordinal strength pw00 (cf. Riede [20]).

Next, we look at the theory ATRy + (31-DC), analyzed in Jiger and Strahm [8] and
shown to have ordinal strength ©lw0. We see that pa(ATRy) is ATRy + (X1-DC).
Since p1p2((ACA)) implies (ACA), pap1p2((ACA)) implies po((ACA)), i.e. (X1-DC).
And ps(p1p2(ACAy)) proves p1p2((ACA)) by Lemma 1.2.12. Conversely, since ATRy+
(X1-DC) proves pa((ACA)) A p1(p2((ACA)), and pipa((ACA)) is T1, we obtain, using
Lemma 1.2.14, pap1p2((ACA)).

Summing up, we have the following.
(i) p2(p1p2(ACAy)) is a theory of strength plw0,
(ii) p3(ACAy) is a theory of strength pw00.

Since p2((ACA)) iff pap1((ACA)), we can present these theories also in the following
slightly different way, which immediately reveals its connection the the corresponding
functionals. Namely, p3(ACAo) is pap1(ACAy), and according to the above discussion,
ATRy+(21-DC) is (p2p1)(ATRy) is (pap1)(p2p1) (ACA). Indeed, it turns out that p2p;
corresponds to 1t(it), and that (pyp1)? corresponds to (It(it))2.

This suggests that “ps applies to p1” and that “pa composes with ps”. To keep this
distinction visible, we build our operations from the components py™®py and py. This
corresponds to the situation with functionals: the functionals with names in QX \{qo}
are build from components It't(it) and it.

Next, we explain why we need more names for operations than for functionals. For
this discussion, we work informally in T¢. Observe that p5p; @_) implies OP('T_) for
Op := Vn(p1p4p1) (the operation which maps T to Vn(p1pp:1(T))). As Op(T) is I3,
m-fold use of Lemma 1.2.14 yields (Vn(p;p7p1))™(T) for each m € N. Obviously,

39

the operation Op is different from p%p;. On the other hand, one readily obtains
that It""!(it) C it o It"(it) C It"(it) (c¢f. Lemma II.1.6 and Convention 1.3.5), and
hence H :=), (ito It"(it)) = It*(it). While we therefore need no extra name for the
functional H, an extra name is needed for the “corresponding” operation Op. We
pick (1, (w,q0)”) as a name for Op, i.e. Vn(pip3p1) (recall that Op((,) 13 PEP1
and H(L(W,QO)) is |tw(it)).

As expected, it turns out that “Vn(p;php1) proves It*(it)”, in other words, we have
that “Op(y (u.40)-) Proves H (w0~ - Further, we will see that “p5p; proves [t (it)”,
that is, “Op(y (w4 Proves H(i (w+1,40)) - So the correspondence is slightly skewed.
We do not have that Op, is the counterpart of H,; only “Op, proves H,u”, where
map -1 : Qy — QF (cf. Definition 11.2.17) restores the correspondence. For instance,

(17 (wv qo)_>H = (17 (wv qo))? and (17 (wv qo))H = (17 (w+17 QO))-

Next, we explain why (w,(1,¢qo)) is a name for the functional (It(it))“, but only
(w+1,(1,qo)) is a name for the operation (pap;)¥. To begin with, we anticipate that
for each n, “(pap1)™ proves (It(it))"”. Hence, it is plausible that “Vn(p;p2p;)”™ prove
(it o It(it))™”. However, [(it o It(it))™ is (It(it))*. So “Vn(pip2p1)™ prove (lt(it))*”,
and we thus use (w, (1, ¢o)) as a name for the operation Vn(p;pap1)”. As shown in
the next Lemma, the operation (pyp;)“ is stronger.

Lemma I1.0.9. (p2p1)¥ < (p2p1) © Vn(p1pap1)”.

Y]

Proof We work informally in T¢. For each n, (pop1)“(T) implies (papy)(p2p1)™(T)

19

which implies p1(p2p1)™(T) by Lemma 1.2.12. Thus, (p2p1)¥ = Vn(plp%pl)". So

1% 1%

(p2p1)“(T) implies pa(p1(T)) A Vn(pip2p1)™(T)). Now (p2 o Vn(pip2p1)")(T) follows
by Lemma [.2.14. Conversely, as Vn(pipzp1)" is I13, (p2 o Vn(pipap1)™)(T) implies
(p2p1 © Vn(p1p2p1)™)(T), which in turn implies for each n, ((p2p1) o (p2p1)™)(T).
Hence, (pap1)® < p2 © Vn(p1pzp1)” < (p2p1) © Vn(pipap1)™. O
Having fixed (w, (1,qo)) as a name for the operation Vn(p;pap1)”, the above lemma
states that (pap1)® iff Op(1 (1,40)) © OP(w (1,40 Further, it turns out that “(pgpi)®
proves (It(it))“™”. Since, (It(it))“™ is H1,(1,90)) © H((w,(1,00)), Which goes by the
name H(,+1,(1,40)), it makes sense to assign (pzp1)” the name (w+1, (1, go)).

More generally, we have the following Lemma, which can be proved analogously to

the previous one. We will give a proof later, using the proper definition of Op, (cf.
Theorem 11.4.20).

Lemma I1.0.10.

(i) (p2p1)” < (p2p1)(VE < 7)(p1p2p1)®, and

(it) (p2p1)" ™"+ & (pap1)™(VE < 7)(p1p2p1)*.

40

A further thing to keep in mind is that the Representation Theorem should yield a
formula ¢(u) that represents Op,, for each name z, (that is, ¢(u){TU} iff Op_(T)),
where we regard just p; and p, as basic operations. Using Lemma I1.0.9, we can
regard (pap1)” as pa(Vn(pip2p1)™), and Vn(pipap1)™ is Vnpi(p2p1)”, which allows us
to define (pap;)¥ using the Representation Theorem form the basic operations p;
and py (cf. Definition 11.4.1).

II.1 Names

In this section, we introduce names. Q- and Q¥ are then instances of this definition,
as are) and Q. In order to keep subsequent definitions as simple as possible, we
make use of the following notions.

For a set X, we denote by X <“ the set of finite sequences with elements from X. Such
a sequence of length n is usually depicted by (x1,...,x,), and if 0 := (x1, ..., x,),
then (0); := z; (1 <7 <n). The function Ih : X<“ — N returns the length of such a
sequence, and () stands for the empty sequence with length 0. Further, z*y denotes
the concatenation of the finite sequences x and y.

An ordered set is a pair (X, <), consisting of a set and a strict and total ordering
< on X. Occasionally, we consider orderings < with X C field(<), in which case
(X, <) is short for (X, <[X), where <[X = {(z,y) € X x X : x < y}.

Definition I1.1.1. Let (X, <) be an ordered set. Then < is the least ordering on
X <Y with the following properties: for all o,0',7 € X<¥, and x,y € X,

(1) if () # o, then T <z 0 % T,
(11) if v <y, then o % (x) * T <jep 0" % (y) * T.

Hence, if there is a first position form the right where the two sequences differ, then
the sequence with the <-bigger element at this position is the <j.-larger one. And
if there is no such position, then the longer sequence is the <j.-larger one.

I1.1.1 Names for functionals

In this subsection, we reiterate, now in a more formal manner, what we have outlined
at the beginning of this chapter about names for functionals.

Definition I1.1.2 (Names for functionals). Let qo := () and Qi := {qo}.

(i) (Q¥, <I) is the ordered set with Q¥ := Q¥ U {{(a, q)) : 0 < a}.
For x,y € Q, we have

r<iy:e@=qgpAr#y) Ve bla<fre=(aq)Ay=I(5q))

41

(ii) (QL, <IT) is the ordered set with
QY = {{(a,z1),..., (g, 2p)) : T € QF oy < .. <M gy},

and <= <., where < orders (Q\ {0}) x Q: for x,y € QI and ordinals
0<a,B<Q, qg< (), and (a,z) < (B,y) iff v <y vV (x=yAa<p).

We point out that qo € Qi (i.e. in the definition of the set QY , T may be empty).

As names are used quite frequently in the sequel, we stick to the following abbrevi-
ations and the next convention in order to increase readability.

Convention I1.1.3. If the context indicates that we work with names, then we write

(v,) for {(a, x)). So we write e.g. (a,(5,q0)) for {(a,{(B,q0)))). Further, if f is

a function defined on names, then we write f(a,x) for f({(o,x))). Moreover, we
read (0,qo) as the name qq.

Definition II.1.4. We utilize ¢1, qf and qa, to denote the following names. ¢ :=
(1,90), g2 :== (1, q1) and qf" == («, qo)-

Next, we assign to each z € Q¥ a type-3 functional H;, and to each name z € Q¥
a type-2 H, functional as follows.

Definition I1.1.5. H,, is the identity on Q©), HI is the identity on QW and for
O0<a,fB<Qandk>1,

(Z) H(a,qo) = it°, H(—;qo) = It°,

(i) Hgay = (HF(it)" (x # q),
(iii) H<m1 z) = I‘Igc1 O0...0 ka.
Further, if f € QO then f, :== H,(f).

The general form of a name x € Q¥ for a functional is hence (ag,q) * y for

y:= ((14+ay, 1+51,9)), - - -, (1+ag, (14+6k, qo))) with 51 < ... < Bk, and the corre-
sponding functional is H, = it o (It"™71(it))1*1 o .. o (It" 7 (jt)) 1 +on,

Lemma II.1.6. For each x € Q¥ \ {qo} and each y € Q7 \ {q},
(i) Hy € QY and H € Q@)

(i) H, Cit and H; C It.

42

Proof Recall that if FF € Q"D then F is strictly inclusive, that is, F(G) C G for
each G € QM and further, F1** € QM+ for each o (cf. Lemma 1.3.12). Moreover,
F'*o C F| as is readily seen by induction on «, and if 3 < o, then F* C F?. Hence,
both claims are obvious if y € Q¥ \ {g}, as then, y = (148, q) and H} = It'7,
and It € Q) by Corollary 1.3.13.

For z € Q¥ \{qo}, the two claims are shown simultaneously by induction on the build
up of Q. Hija =it € QW and it' ™ Cit. If y # o and (1+a,y) € QF\{q},
then y € Q@ \ {qo} and H € Q® and H} C It by (i), hence H (it) € Q) and

Hvay = (H(it))F* C Hf (it) C It(it) C it

And if both claims hold for xj, and = (@1,...,7%) and k > 1, then Hi,, .,y =
H, o...0H, CH, Cit and Hal e QW as QW is closed under composition.
O

Lemma I1.1.7. For each x € Q¥ \ {qo}, t(H,) Cito H,.
Proof It[H,, f,a] € (H,)*™(f) C (H.)*(f) Cr.ir1e6 (ito Hy)(f). o
Finally, the following is readily observed.

Lemma II.1.8. For each x € QY , Hu) 0 Hipay = Higram-

II.1.2 Names for operations

We have already discussed that we need different names for the operations pp; and
(V& < v)(p1patép1), and that we plan to use (1, (7, ¢)) as a name for the former, and
(1,(,q0)”) as a name for the latter operation. The following auxiliary definition
helps us to implement such a naming schema.

Definition I1.1.9. Given a set X, then we denote by X~ a disjoint copy of X, and
byt : X~ — X a corresponding bijection. If (X, <) is an ordered set and Y C X,
then j: XUY — X, j(z) =z ifr € X, and j(y) :=(y) ify e Y. (XUY,<) is
the ordered set with field(<) = X UY, and

2<Z e jiz)<j@)YV(HRE) =iE)AzeY AN e X).
Further, we write x= for .= (x).

The set of names @, for operations is a superset of the names Q4 for functionals.
Names of level two are now not only formed using names ¥ € (); of level one, but
also so-called prenames, elements of)7 of the form (v, qo) .

Definition I1.1.10 (Names for operations). qo := () and Qo :={qo}, and

43

(1) (Q1,<1):=Qo U {{(a,q0)) : 0 < a} and P, :={(v,9)” : v € Lim(Q)} C Q7.
Now (Q1 U Py, <4) is the ordered set explained by Definition I1.1.9.

(11) (Qq, <2) is the ordered set with
Q2 == {{(ar,v1),... (ap,vp)) : TE PLUQ vy <1 ... <y U},

and <g:= <oy, where < orders (Q\{0}) x Q1UP; as follows: forv,w € Q1UP,
and ordinals 0 < «a, 3, we have gy < (a,v), and further, (a,v) < (B,w) iff
v<iwV (v=wAa<p).

Further, Q7 == Q1\{qo} and Q% := Q2\{q}. Again, Q1 C Q2 (i.e. in the definition
of the set QQ, U may be empty).

Note that if 2z~ € P;, then z is the <,-least element above z~. Further, it is readily
seen that (Qq, <5) and (Q2 U Pp, <) are well-orderings.

Convention I1.1.11. We let z,y, z range over QQo, and v, w over Qs U Py. If f is a
function defined on names, then we write f(a,x) for f({(«,z))). For instance, we

write (7, qo0)~ for {(7,q0)) -

Provisional definitions of the operations (Op, : z € Q%)

Below, we assign to each x € Q5 an operation Op,, and to each z € Q] an operation
Op,". The definition is provisional, as this assignment is semantical: given z € Q3,
Op, is an operation, and it is assumed that we can represent this operation by
an Ly(P)-sentence, by using some way to code x as a natural number. Later, this
assignment is superseded by Definition I1.4.1, the proper definition of the operations
(Op, : x € Q3) and (Op; : z € Q%), which provides Ly(P)-formulas ¢(u) and ¢ (u)
so that Op? represents Op,, and Opf+ represents Op. . There, it is assumed that we
have a primitive recursive relation which codes ()3, which is also denoted by Q3.

Definition 11.1.12. For all0 < a, 5 < 2, and k > 1,
(1) OP(ay) := P and Op(, . := P,
(1) OP(n(ago)) = (PSP1)"™ and OP(y 1141 (ago)) = (PSP1) T,

(iii) OP(y,(aq0)) = (p1PSP1)” and OP(a,(y.00)-) = (V€ < 7)(p1p§+§p1))°‘,
(iv) Op<w1,m7mk> :=Op,, 0...00p,,.

44

We see that for all z € @7,
Op () © (Opyp1)" and Op(, 414y < (Opfp1)"™" and Opy, .y < (P10p,p1)7,

which matches almost (cf. discussion prior to Lemma I1.0.10) the corresponding
Definition II.1.5 for functionals. Further, we also have the following lemma which is
the counterpart of Lemma I1.1.8. A proof (cf. Lemma I1.4.4 (iv)) is only given after
the proper definition of Op,, is presented.

Lemma I1.1.13. For eachv € Ql UP1 and O/HOQO(,B, Op(am)OOp@U) = Op(ﬁ+a7v).

II.2 Approximations and normal forms

In this section, we have a closer look at the names in (), which we use to name
operations. In particular, we define normal forms and two kinds of approximations,
z[a] and x(a). Finally, we define - : Q; — Q¥ so that Op, corresponds to H,u.

Before we hint at a relevant property of the approximation z[a] in the next para-
graph, we give the definition of degree deg(x) and ordinal o(z) of a name right
away. A look at Definition II1.1.12 then readily confirms that Op,(T) is IT! Lo if
deg(z) = m+1 (where m € {0,1}). The role of o(x) will become clearer later. For
now, just note that for names x with deg(x) = 1, we have o(z) = 1 if z is a successor,
and o(x) € Lim(Q) if x is a limit w.r.t. (Q2, <2).

Definition I1.2.1. For x € @y and f € {deg,o}, we let f(x) = f((x)y) and
fla+1,v) := f(1,v). Further,

(i) deg(qo) := 0, deg(1,27) := 1, deg(1, z) := deg(z)+1 and deg(y,v) := 1.
(ii) o(qo) =1, o(1,27) := o(x), o(1,x) := o(x) and o(~,v) := 7.
We extend deg and o to Q2 U Py by setting, deg(z~) := 0 and o(x™) := o(x).

A key property of the approximation x[«] is the following (cf. Lemma I1.4.2), which
yields to a definition of Op, by means of the Representation Theorem.

(i) If o(x) = 1 and deg(x) = m+1, then Op, < pyi1 0 Op,),
(ii) if o(x) = v and deg(z) = m+1, then Op, < (Vo < 7)(Pm+1 © Op,py))-

Let us illustrate this with an example. If = := (1, (2, ¢)) and y := (1, (w, q)), then
z[0] = (1,(1,90)) and y[n] = (1,(n,q)), and by Definition I1.1.12, Op,q iff pap1,
and Op,, iff potp;. Now a) and b) (see next page) are instances of (i) and (ii),
respectively.

45

a) Op, iff P%Pl iff py o pap1,
b) Op, iff pspy iff (Vn < w)(p2ops™'p1).

Next, we define a partial function o : QYo X Q3 — ()2, so that if x oy is defined, then
Op,., < Op, 0 Op,, and if further z oy € Qf, then H,., = H, o H,,.

Definition I1.2.2. If () € {z,y}, then x oy := x xy, and if v = (x1,...,x) with
Ty = (Oé,'U), and Y= <y1> s ayl> with = (5,111), then
T kY afrxy € Qo
oy~ (xy,..., 51, (BH+a,v),ys, ...,) : if v=w,

undefined . else.

If x and y are names and z o y is defined, then z o y is a name, too. Also observe
that o is associative. ~Further note, that the reading of (0,v) as an abbreviation
for go helps to avoid case distinctions: in the sequel, we often use that (a+1,v) is
(1,v) o (e, v), which thus also holds for o« = 0.

The following property is essentially trivial, yet important enough to phrase it as a
lemma.

Lemma I1.2.3. If x oy € o, then deg(z o y) = deg(z) and o(z o y) € Lim(Q) iff
o(z) € Lim(2).

Definition I1.2.4. We say that x oy is an expression in normal form, if lh(z) =1,
and either

(i) x = (1,v), or
(1)) © = (y,v) and xoy =z *y.

We write z =np xoy if z = xoy and xoy is an expression in normal form. Further,
if x oy is an expression in normal form, then we call x simple.

So if z € @)y, and z =np x 0y, then x = (1,v) or x = (y,v), where v € Q1 U P,
and thus is either qo, or of the form (145, qo), (7, qo) or (7,q)~. Also note that a
simple name of degree two is of the form (1, (144, q)). Each name z € Q) can be
uniquely written in normal form.

Lemma I1.2.5. If v € ()2, then there are unique y € Q% and z € ()2, so that
T =Np Yoz

46

Proof 1f deg(z) = 1, then either (z)o = (a-+1,q0), ()o = (1+5, (1,40)"), or (2)o =
(v,v) with v € Q1 U P,. Therefore, if + = () * 2/, then either x = ¢, o z for
z:= (a,q0) x 2/, or x = (1,(7,q0) ") o 2z for z :== (B, (7,q) ") * ', or & = (7,v) * 2

for z := 2/. Further, these representations are unique. And if deg(z) = 2 and
xr = (z)gx2', then () is of the form (a+1,y'), and z =np (1,¥y') 0 2. Again, 3 and
z are uniquely determined. O

We use this unique normal form to assign approximations z|a] to each z € Q5.
Clauses (i)—(iii) address names of degree one, clauses (iv)—(v) names of degree two.

Definition I1.2.6. Let © =yp y oz € Q5. Then, z[o] := ylo] o 2, where
(1) (1,q0)[a] = qo.
(i) (v,v)[e] == (1+a,v) if « <7, and else (v,v)[a] := (v,v).
(i) (1, (7. 90)7)a] == (1, (7, @)[a])-
(iv) (1,(B+1,q0))[e] == (140, (B, q))-
(v) (L, (v, q))le] := (1, (7. q0)[e]).

It is immediate by this definition, that x[a] <5 z, and if @ < o(z), then z[a] <3 z.
Actually, if o(x) = =, then only approximations z]a] for @ < v will matter in the
sequel. The case distinction in clause (ii) just assures that z|a] is always defined
and in Qs (setting (v,v)[a] := (14a,v) for all & would mean that e.g. for z :=

(2, (w,q0)) =nrF (1, (w,q0)) o (1, (w,qo)), x[w+1] >~ (1, (w+1,qo)) o (1, (w, qo)) is not
defined).

Definition I1.2.7. If v € Qo U Py, then we denote by v+1 its successor w.r.t. the
ordering (Q2 U Py, <) (cf. Definition 11.1.9): if x € Qs, then x+1:= g o x, and if
x~ € P, then x=+1 := x.

Note that (o, qo)+1 = (a+1, qo). Further, (z1,...,z5)+1 = (z1+1,. .., xp).

The following properties of z[a] are immediate by the definition. Recall that v
ranges over (o U P;, while z,y range over ()s.

Lemma I1.2.8. We have the following.
(i) (z4+1)]a] = z and (1, 241)[a] = (1+a, z).
(i) if v = (x)o * y, then z[a] := (x)o[a] x y,
(iii) (B+1,v)le] == (1,v)[e] o (B,v),
(iv) (1,0)[a] := (1,0]a]) if v # y+1 (for some y € Qs).

47

We also record the following simple fact, as it is used later in some proofs.

Lemma I1.2.9. Assume that v € Q5 and x oy € ()3, and let

5y = {5: x=(v,v) A (y)o = (0,v),

0: otherwise.

Then, for each o, x[a] oy = (x o y)[dp+«], and o(z oy) = dp+o(x). In particular, if
deg(x) = 2, then z[a] oy = (z o y)[a].

Proof The claim obviously holds if x = (y,v). If z = (8+1,v), then we have two
cases: oy = x %y, hence (z *xy)la] = z[a] *xy, or (y)o = (6,v) and x oy =
(1,v) o (6+06,v) * z, where y = (y)o * 2. If In(x) > 1, then x = (z)p * z and
(xoy) = (z)o*(z0y). Hence, (xoy)la] = xo[a]*(z0y) = (xola]*2) oy = (zoy)[al.
The second claim is also readily checked. a

The next Lemma tells us in what cases we have that © = sup_, {z[a] <, z : v € Q}.

Lemma I1.2.10. If deg(xz) =1 and o(x) = v, and deg(y) = 2 and o(y) = 1, then
r=sup_{zja] i <~} and y=sup_,{yla]:a <Q}.

Proof By the above Lemma, if © =y p yoz, then z[a] = y[a]oz, and sup,;(yoz)[a] =
(sup,eryle]) o z, readily follows. Thus, it suffices to show the claim for simple
names. So assume that x and y are as assumed in the lemma, but simple. If z
is of the form (v, z), then the claim is readily observed, and if x is of the form
(1,27) with z = (v,q0), then 2’ <y (1,27) entails that 2/ <o 2", where 2" =
((B1,v7), ., (B, vh)) <1 (1,27) and v] <7 ... < v} <1 z~. Hence, there is an « so
that 2" <5 (1, (14, o)) = (1,27)[a] = z[a]. The first claim follows. As y is of the
form (1, (5+1, o)), it is immediate that if z <5 y, then already z <5 (1+«, (5, q))
for some «. This yields the second claim. O

If deg(x) = 2 with o(x) = 7, then x =y (1, (7, qo0))oz. Then, fory := (1, (v, qo) ")oz,
we have x[a] = y[a]. By the above lemma, y = sup,.y[a] = sup,..z[a] < z. This
is where the approximation z(a) := (14a, (7, o)) o z takes over.

The approximation x(«) is only defined for names = with deg(x) = 2. It is defined
so that if o(z) € Lim(Q2), then sup,z[a] = x(0) and sup,z(a) = x. Further, it is
arranged that deg(z(a)) = 1.

Definition I1.2.11. If deg(x) = 2 and z is simple, then

(1) (L, (7,9))(@) := ((1+a, (7,40)), and

(i1) if o(x) =1, then z(a) := z[a]+1.

48

If deg(z) =2 and x =nxp yo z € @5, then z(a) :==y(a)o z
The next lemma lists some easy consequences of this definitions.

Lemma I1.2.12. If deg(x o y) = 2, then z(a) oy = (x o y)(«), and if deg(z) = 2
and o(z) =1, then z(«a) = z[a]+1.

Below, we summarize the properties of the approximations z[a] and z(«) for names
of degree two. The proofs are simple and along the line of the proof of Lemma
I1.2.10, and therefore omitted.

Lemma 11.2.13. If v € Qo with deg(x) = 2 and o(z) =, and qy # y € Q¥ is not
a successor, then

(i) £(0) = sup_ {z[a] : @ <}, and x = sup_, {z(a) : o < Q},
(i) y = suppiyla) < y:a € Q}.

The following straightforward observation will prove very useful once we have proper
definitions of the theories (T, := Op,(ACA) : x € Q3), to see that e.g. for names of
degree two, T¢ T, — Tm(o)

Lemma I1.2.14. Assume that z is a simple name with deg(x) = 2. Then,

(i) If o(z) € Lim(Q), then deg(z(e)) = 1, o(x(0)) = o(x), z(0)la] =
o(z(v)) =~ and z(v)[a] = z(a) for a <. Further, (0) o z(a) = x(a+1).

(i1) If o(x) = 1, then deg(z[y]) = 1, o(z]v]) = v and z[y][a] = z[a] for a < 7.
Further, (0] o z[a] = x[a+1].

a[al,

We conclude this section by introducing the relation ~» on () whose transitive
closure ~* will take the role of the relation < in the Representation Theorem when
we define internal representations of the operations (Op, : x € Q%), and by defining
the map -7 : Q, — Q¥ which adjust the skewed correspondence between Op, and
H, and is tailored so that Op, corresponds to H, .

Definition 11.2.15. All all z,y € Qq, y ~ z :& (Ja < o(z))(y = x[a]). Further,

*

~* is the transitive closure of ~, and ~} is the reflexive closure of ~*.

Note that e.g. gy ~ q1, ¢1 ~ ¢ and q; ~ ¢, and that further, ¢» and ¢? are
incomparable w.r.t. ~»*. Further relevant properties of ~»* are collected below.

Lemma I1.2.16.

(i) (Qa,~*) is well-founded.

49

(it) go ~ x.

(iii) If y ~* x, then either y ~ x or y ~* x[a] for some a < o(x).
(iv) Ifyoz € Qy and x 0z € Q, then y~* = yoz~*roz.
(v) If 1 < a < B, then (a,v) ~* (5, v).

(vi) If y ~* x, then (1,y) ~* (1,x).

(vii) If o < B < o(x) =7, then x[a] ~* x[f].

(viii) If y ~*x and z ~* x, then y~* 2z V y =2 V z~"y.

(iz) If deg(z) =2 and o < B, then x(a) ~ ().
(x) Wo«(z).

Proof (i) If y ~ x, then y <5 x, therefore, as (@2, <2) is well-founded, also (Q,~*).
(ii) Immediate by induction on x along ~»*, using that for ¢y # z, z[0] ~ x. (iii)
Directly by definition of ~*. (iv) By induction on z along ~»*: if y ~»* x, then either
y ~ x, that is y = z[a] for some a < o(x), and then for some Jy (cf. Lemma I1.2.9),
zla] oz = (x o 2)[0p+a] ~ z oz, or y ~* z[a] ~ z for some a < o(x) = o(z o z),
hence y o z ~7%, zla] o z, and as above, z[a] o z ~ x o 2. (v) By induction on
g > a. If B =+isa limit, then (a,v) ~ (7,v) by definition. For the successor
case, note that, using (iv), (8,v) ~= (1,0)[0] * (8,v) = (8+1,v)[0] ~* (6+1,v).
(vi) By induction on = along ~*: if y ~» x, then y = z[a] for some o < o(z), and
if © = y+1, then o = 0 and (1,y) = (1,y+1)[0] ~ (1,z), and if x # y+1, then
(Ly) = (1 7la]) = (L2)fa] ~ (L2); and if y ~* z[a], then (L) ~y (1, z[al),
and the claim follows as above. (vii) By (iv), it suffices to consider simple names.
Then x[a] is either of the form (1+c«,y) and the claims is by (v), or z[a] is of
the form (1,(14a,qo)), and the claim is by (iv). (viii) If y ~* z and z ~* =z,
then there are «a,f < o(z) so that y ~F z[a] and z ~} z[3]. By (v) y ~F 2
or z ~F y. (ix) Let a < B. By (iv), it suffices to consider simple names, so
either (1,y+1)(a) = @ o (Ly+1)[a] ~{,) 0y (Ly+1)[0] o (Ly+1)[o] =r1121400)
(L, y+D)[at1] ~7 (Ly+1)[B] ~* quo (1, y+1)[8] = (L, y+1)(B), or (L, (v, q0))(e) =
(I+a, (7,90)7) ~" (145, (7,90)7) = (1,(7,90))(8)- (x) By (i) and (viii). O
Finally, we define 2. As already mentioned, we have that e.g. OP(a,40) (p$) corre-
sponds to H(a, g (ity), and that Op (, 4y (P5P1) corresponds to H(y (n4)) (It5(it)).
As discussed in the first section of this chapter, Op(y (, 4,)-) corresponds to H(1 (.q));
OP(1,(w,q0)) COrTESPONAS t0 H(1 (141,49)), and as we will see Op(y (14, 40)) COTTESPONAS

t0 H(1,(win+1,0))-

20

We word the definition of -7 so that is directly extends to the general case. Therefore,
we make use of a “correction” corr(z) € {0, 1}. For the case Ny = 2, we need corr(x)
only for x € @1, and if x € @1, then corr(x) = 1 iff (w, qo) < x, that is, if = is of the
form (y+n, q). Recall that all names in QF have length one. However, with regard
to the general case, we define corr for each z € (). The idea is that corr(x) = 1 if
xr = (7v,y) * 2, and it is taken care that corr(z+1) = corr(z)+1.

Definition I1.2.17. We define corr : Q2 — {0,1} and - : Qy — QI as follows.
(i) corr(z) :=1 if Jy,n[x = y+n Adeg(y) = 1 Ao(y) € Lim(Q2)]; else corr(x) := 0.
(i) q5" = qo, (v, y™)" = (e, y") and (a, y)™ := (o, y" +corr(y)),

(iii) if k > 1, then (xy,...,zp)" = (... 2f).

It is easily checked that indeed -7 : Qy — Q. Also note that (a,) = (a, qo),

(o, (7,q0) ") = (o, (7,q)) and («, (v+n,)7 := (o, (y+n+1,q)). Moreover, if
deg(x) = 2, then o(z) = 1 and by Lemma 11.2.10, x = sup,z[a].

Also the following is an easy consequence of the above definition.
Lemma 11.2.18. If z,y € Q3, then (zoy)! = 2% oyl

We close by a technical lemma, which will allows us show that if deg(xz) = 1 and
O(ZL’) =7, then ng[a] ﬁg(x[a])H S]g(xH[a+l})> and if deg(x) = 2, then ng[a] ﬁg(x(a))H Sl
9zH[a+1]-

Lemma 11.2.19. Let x € Q5.

(i) If deg(x) = 1 and o(x) € Lim(Q), then xf[a] ~} (z[a])T ~* 2H[a+1].

(ii) If deg(z) = 2, then xf[a] ~* (z(a)) ~* 2 [a+1].

Proof Let # =xr yo 2. Then 2 = y# o 2#. Hence 2 [a] = y"[a] o 27, (z]a]) =
(y[a]) o 2 and (z(a))f = (y(a))® o 2. By Lemma I1.2.16 (iv), it thus suffices
to check the claims for simple names. We just check the first claim of (ii), i.e. that
7o) = (z(a))? or 27[a]+1 = (x(a)). The rest is verified similarly. For n < w
and limits ~,

(1, (n+1,q0)) —— (1, (n+1,) (1, (7, 40)) —— (L, (y+1, 40))

'(a)l '[a]+1l '(a)l '[a]l
H H

(I+a, (n,g0))+1 — (I+a, (n, o)) +1 (140, (v,90)") — (I+a, (7, 9))

51

And for > w,
(17(ﬁ+17q0)) (17(ﬁ+27q0))

'(a)l '[04+1l

(1+a, (B, @) +1 —= (1+a, (B+1,q))+1

I1.3 Properties of the functionals (H, : x € Q)

In this short section, we collect some basic properties of our functionals. Below, we
write also H? for H, and H"' for H}.

The next claim states an expected property of o and is an immediate consequence
of its definition and Definition I1.1.5.

Lemma I1.3.1. Forn € {0,1}, ifvoy € QX ,, then H;Z(yl_") = H o g,

We have already seen that for ¢y # = € Q¥, H, € QU and H, C it and for
G #yeQl Hf € Q® and H, C It. More generally, we have the following.

xT

Lemma IL3.2. If y ~% x € Qf, then Hf C HS, and if y ~; x € QY then
H, C H,.

Proof Since It € Q) we have for each 8 < a, It* C It®, which yields (i), since
r € QF means that r = (a, q), and if further y ~* (o, q), then y = (3, qo) for
some [< a.

The second claim is by induction along ~»*. If x = y, the claim holds trivially, hence
assume that y ~* . We do a case distinction on the form of x.

(i) y~* 2 =yr (1,2) 0 z. If 2/ = qo, then y ~} z and by LH. H, C H,. Thus,
H,=itoH, CH, CH, If 2/ =q, then y ~ (1,q) * 2 = z[0]. Using the
LH. and that It(it) C it, H, C Hyo) € H,. If 2’ # qo and 2" # ¢, then there
is an & < o(x), so that y ~; z[a] = (1,2'[a]) x 2. By (i), H, € H,,, and so

Hy = H i (it) o Ho © Hjypy(it) o He = Hajo) Cr Hy.

(ii)) y ~* v =nF (7,2") * 2. Then there is an o < o(x), so that y ~* z[a] =

(1+a,2') 0 2. Since H}(it) € QW (Hf(it))” C (H}(it))'**, and so H, =

(H;; it)’Y e} Hz Q (H;(it))l—i_a e} Hz g[H Hy.

O

Next, we let f € Q@ and collect some properties of the functions (f, : € Q).
Recall that f, := H,(f), f is identified with its range and that f' = {«a : f(a) = a}.

52

Lemma I1.3.3. If deg(z) = 2 and o(x) = 1, then fy(a) = fip4aq)(0).

Proof If deg(x) = 2 and o(z) = 1, then z is of the form = =xnp (1, (8+1,q)) © 2,
and f, (o) = H,[f,a] = (P (it) o H,)[f, o] = W Tit, f., o] = (It7(it))>T[f.,0] =
fe+aBanoz(0) = fa+a)(0). O

Lemma I1.3.4. For each x € Q¥ with o(z) = vy, we have
(Z) ng <7, then fm[§+1] - fw[ﬂ-ﬁ-l}
(it) if § <, then foera) C frg,

(ZZZ) fx = m§<—y f:v[ﬂ = m§<fy fglc[f}'

Proof (i) z =nr y o z for either y = (v, (3, q)), and then Hye,y = It7(it) o Hy C
itoHype) = Hyje)+1, since It (it) C it by Lemma I1.1.6, or y = (1, (7, o)), and Hyep) =
It o Hy C ito Hy = Hy41 by Lemma I1.1.7. The claim the follows. (ii) By (i),
and since it C sh (cf. Lemma 1.3.15), we have fyeio C it(fojet1) € sh(fape+1)). And
as sh is monotone by Lemma 1.3.17, sh(fze+1) € (shoit)(fug) = [(iil) The first
equality is by definition of iteration of functionals, and the second follows using (ii)
and that f' C f, and therefore fo19 C f;[a} C falal- O

Lemma I1.3.5. For each x € Q¥ and each y € QY with o(y) = do+7, we have

(1) fo(7) = sup{fa(do+€) : € <7},

(i) 1,0) = sup{sol€) : € < 7} and fy(a+1) = suplsp i (€) € < 7}, where
55(0) = B+1, s5(6+1) = fyisore)(58(8)) and s(7') = supecrsp(§).

Proof (i) By Lemma II.1.6, f, € Q) and thus normal. (ii) By Lemma I1.3.4 (iii),
we have that fys,+er2) € fy501¢ a0d fy = ey Soiso+g. Now the claim is due to
Lemma I.3.19. O

I1.4 The operations (Op, : x € Q})

In this section, we first provide the proper definition of the operations (Op, : = € Q%)
and (Op) : z € Q3). This allows us to prove a collection of properties of these
operations in ACA(required for the modular ordinal analysis in the next section.
We like to highlight the following two: (i) is a useful generalization of Lemma 1.2.14,
and (ii) singles out an essetial step of the modular ordinal analysis.

(i) for each open ITi-sentence T/, Ty € Q% A Op(Ly)('T') AT = Op(Ly)('T"), (cf.
Corollary 11.4.7).

93

(ii) Tet deg(z) =2A T, — Prog_({a: 'T'x(a)}) (cf. Lemma I1.4.9).

Then, we show that the proper Definition I1.4.1 of Op, and the provisional Definition
I1.1.12 indeed agree.

From now on, it is assumed that we have primitive recursive relations that are
formalized versions of a < 3, (Qq, <32), ~», ~*, and primitive recursive functions
formalizing deg(z), o and -¥/. To emphasis that we now work within a formal theory,
we write a <1 8 for a < 8. The other function- and relationsymbols are overloaded.
It is further assumed that we have a recursive function, provably total in ACAg, that
computes the ordinal notation v(z,) of g,(a) from a code of the ordinal a and a
code of the name x. How to find notations for the ordinals used in this chapter, and
how to compute the ordinal notation v(z, a) of g,(a), is detailed in Chapter IV.

I1.4.1 The proper definition of (Op, : z € Q%)

To employ the Representation Theorem 1.2.26, we have to coach the definition of
the operation Op,, into the following form:

Op,(T) < (Vy ~ 2)(0p¥,..,(Op, (T))).

Recall that 653('7') = (0=uAT)V (0+#uA0p’(T)), an abbreviation that we use
since we cannot represent directly the identity operation by an Lo(P)-formula (cf.
page 26). Further, y ~ z iff (3a < o(z))(y = x[a]). Since we have for names of the
form x := (1, (8+1, q)) that o(z) = 1, only z[0] = (1,(8,q)) ~ =. And for names
of the form z := (1, (7, qo)) where o(z) = v, we have that z[a] = (1, (14, q)) ~ =
for each o <1 .

Next observe, that by the provisional definition of the operations Op,, (Definition
I1.1.12), we have the following.

(i) Op41 < P1Op, and Opfi,, . & P2,

B+1

(i) OP,(g+1,00)) € P2™ P14 P22 OP(1 (5,40

(ii1) OP(1,(y.40)) & pap1 & (Va1 y)(p2 o OP(1,(14a,00)))

(V) OP(1,(3,00)) & (Yo) (P15 P1) & (Yo 19)(P1© OP(1 (1 4.00)))

This allows us to read off the ingredients of the proper definition of Op, and Op;’
which supersedes the provisional Definition II1.1.12 (¢, and ¢,, are as fixed in
Definition 1.2.15).

o4

Definition I1.4.1. Let ¥(u) := (u = 1 A gp,) V (u =2 A pp,), fy,x) = deg(z),
[y, z) ;== deg(z)+1, and

~* A + o -
p(u) = ") and @t (u) = @l 1@ IR ()

Y

where @l " 1Q1QW () s the formula claimed to exists in Theorem 1.2.26, and
defined in the Appendixz (see Theorem A.1.2 and Definition A.1.11). Then,

Op,(T) := Op?(T) and Op} (T) := Op?* (T) and T, := Op.(T).

Note that T, iff (z = 0AT) V (z % 0AOp,(T,)). The following Lemma is an instance
of the Representation Theorem and reviews the properties of Op, and Op; .

Lemma I1.4.2. The maps T — Op,(T) and T — Op? (T) are operations that satisfy
the following properties (provable in T¢). Below, m € {0, 1}.

(i) Op,(T) = = € Q5 AWoL(z), and Op} (T) — = € Qf A Wo_.(z),
(ii) if 1 ~* x € Qy, then Op, & (Va < o(x))(p2 o Op:[a]).
(ii) if @ ~* x € Q2 and deg(x) = m+1, then Op, & (Vo < 0(x))(Pm+1 0 Opyy)-

Further, as p(u) strongly implies py (this is also by the Representation Theorem),
we have that T+ (Vx € Q5)(Op, = p1).

Since ppi1(T) is IT}, . ,, also the following is readily observed.

Lemma I1.4.3. If x € Q}, then Op;(T) is II}; if x € Q3, then Op,(T) is T} 4oy 0)-

I1.4.2 Properties of Op, and Op_

In this subsection, we prove properties of the operations Op, in ACVAO. Recall that
we write e.g. Op, = Op,, if for all open Ly-sentences T, T Op,(T) — Op,(T).

The next couple of lemmas are all proved by induction along < or along ~»* using
Theorem 1.4.2 or Corollary 1.4.3. For all these proofs, we let A(x) express the
claim, and show, working informally in ACA,, that (Vy ~* x)a(z) — A(zx), or
that B A b A (Vy < z)e(y) — C(z) in case that A(u) := BAb — C(u). We
refer to the assumption (Vy ~* z)a(x) also as I.H. (in the sense of Theorem 1.4.2).
Since T¢ F =T, V ((ACA) A Wo..-(z)) (and trivially, Wo...(a, v) implies Wo(a)),
it is in all cases readily observed that indeed T¢ A(z) V ((ACA) A Wo.«(x)) (or
T+ A(a) V ((ACA) A Wo(v))), so that Theorem 1.4.2 applies and allows us to
conclude (Yy ~* x)A(x).

Lemma I1.4.4. The following is provable in T¢. For all z,y € Q3,

55

(i) if 0 <18 < a, then Opaqo) = Opz’@qo),
(i1) if y ~* x € Q3, then T, — pl'T'y,
(iii) if x,y € QF and v oy € Q7F, then Op;y & Opfo Op;,
(iv) if 2,y € Q3 and x oy € Q3. then Op,,, < Op, o Op,,
(v) if v € QF, then Op(, .y < Op,pr.

Proof (i) Let A(a) := O<1ﬁ<loz/\0pz;’qo)(-7') — Opz’B) ('T') If a <3, there is nothing to
show. So assume that f<a. If @« = o/+1, then Op (T) iff P20Pz;/7q0)(-T—)- By L.H.,
we have that for each X, Op (T) X — Op ()[X Since p; is an operation,
P20P(40) ('T') — ngqu (T) follows. As further, Op(mo)('T') is I13, ngpZF@qO)('T')
implies Op(ﬁ %) () by Lemma 1.2.12. Hence A(«) follows. And if « is a limit, then
Op(a) () iff (V€ < Oz)pQOp(lJr5 qo)(), and since § < « by assumption, Op (o) (T)
implies ngp(ﬁq (T), and Op(ﬁq (T) follows as above.

(i) Let A(z) ==y ~* 2 € Q5 AT, = pT,. If 2 = y+1, then 2[0] = y, and the

claim is by definition of T,. Otherwise, there is an « < o(x) so that y = z[a] or
y ~* z[a]. In the first case, T, — plT by definition of T, and since, in any case,

Pdeg(z) = P1- And if z[a] ~* z, then the L.H. ylelds for each X, T o[X — plT 1X.
Since p; is an operation, we obtain p1T o] — plT As T, iff (Va<go(x))pdeg()Tx[a]
and py = p;, we have also T, > plTIM By Lemma 1.2.12, plT — plTy, hence
T, — p1T follows.

(iii) As (vi), but simpler. 5 5

(iv) Let A(x) == qo # t ANz oy € Q5 — [Ty ¢ Op,(Ty)]. If x or y is qo,
then the claim is trivial, so assume otherwise. Now let m so that m+1 = deg(x),
and 9y so that (Vo < o(z))((z o y)[do+a] = x[a] o y), and therefore o(z oy) =
dot+o(x) (cf. Lemma I1.2.9). As T, iff (Va < 0o(z 0 4))pm+1(T (zoy)[a)), We have
that T, implies (Va < o(x))Pm+1(-T_x[a}oy) For each o <t o(z) and each X, the
LH. yields Op,jao (T) [X <> Op,q(T)[X Since pp,41 is an operatlon we obtain
(Pmy1 © Opx[a]oy)(T) iff (Prmt1 © Op,y)(T,). Now T, — Op,(T,) follows. For the
converse direction, note that (Va<iy)pm110p,(4) (T,) yields (Va<y)pms1 (-T'(my)[(;ﬁa]).
Using (ii) yields (Vo <1 Go+7)pms1 (T (oy)sota))- (v) Similar, using that deg(1,z) =
deg(z)+1, o(1,x) = o(z), and (1, z)[a] = (1, z[a]). O
The next Lemma generalizes Lemma 1.2.14.

Lemma I1.4.5. For each open I1i-sentence -T"

TF2e @ AOpi (T)/\T’—>Opm(.

o6

Proof Let T’ be an open IIi-sentence, and A(z) :=z € Q} /\Opx(JAT — Op (T').
Trivially, A(qo), and if z = ¢y, then by Lemma [.2.14, pQ(T) AT yields pQ(T’) Ifx=
y+1, then by definition, OPy+1() iff p2(Opy (T)). By Lemma 1.2.14, p2(Op, (THAT

yields p(Op,’ (T)AT'). By L H VX[(Opy (MYATHX — Op, (T")1X]. Since py is an
operation, we obtain p2(Opy(YAT) = p2(Op; (T’)). Hence, Op}(T) A T/ implies
Op;” (T). The limit case is shown analogously. O

The following observations are essentially trivial, but nonetheless important.
Lemma I1.4.6. Let (1,y) € Q3 be a simple name of degree two (soy € QF). Then,
(i) OP; = Op(1)
(it) Op(1y) < OpgyP1
Proof (i) Op;(v) implies py(T) Which is T3, thus by the above lemma, Op;r(v)
implies Op;pl(), that is Op, () by Lemma I1.4.4 (v). (ii) Op) < Op, pl, SO

(i) implies Op; ,yp1. For the converse direction, note that Op; ,\p1 4:> Op, pi. As
p2 = p1 by Lemma 1.2.12, also Opy p? = Op;pl, and the claim is by (i). O

This allows us to state the following useful variant of Lemma II1.6.6.

Corollary I1.4.7. For each open I1-sentence -T",
Ty € QA Opy,, (T) AT — Op, (T).

Proof Since Op(,) < Opy P1, Op(1y) () A T/ implies Opy (pl(T)) A T, which by
Lemma I1.4.5 ylelds Op,’ (T'), which in turn yields Op(,,)(T') by Lemma I1.4.6. O

The lemma following the next auxiliary lemma is a key step in our modular ordinal
analysis.

Lemma I1.4.8. Assume that x is a simple name with deg(x) = 2. Then,
(i) Op, = Op,(0)
(i1) OP,() © OPy(a) = OPy(ati);
(i) if o(x) =1, then for each limit v, Op,y; < (Va <17)0p,q),
() if o(z) € Lim(Q), then Op,(,, © (Va <7)Op,4)-

Proof We use that if deg(y) = m+1, then Op, iff (Va <1 0(y))pm+10p,(, (Lemma
I1.4.2 (iii)), and that if y o 2 € @3, then Op,,, < Op, o Op, (Lemma II1.4.4 (iv)).
Now assume that z is simple and deg(x) = 2. By Definition 11.2.11, deg(z(«a)) = 1,
and if o(z) = 1 then z(a) = ¢ o z]a].

o7

(i) If o(z) = 1, then Op, iff pyOp,. As x(0) = g1 0 z[0], p1Op,q iff Op,(). As
further, pa = p1, Op, = p10p,, thus the claim.

If o(z) = 7, then o(x) = o(z(0)) and z(0)[a] = z][a] by Lemma I1.2.14 (i). Further,
Op,) iff (Vo < 0((0)))p10p, (g iff (Voo < 0(2))p10p,(o)- Again, as p2 = p1, Op,
(that is (Vo < o(x))p20p,(y;) implies Op,).

(i) If o(z) € Lim(2), then z(0) o z(ar) = z(a+1) by Lemma I1.2.14 (i). Thus,
OP,(0) © OPy(a) © OPy(at1)- And if o(z) =1, then z[0] o z[a] = z[a+1] by Lemma
11.2.14 (ii). Further, either + = ¢y, and the claim reads p? o p¢*! = p{™2, which
holds, or z = (1,y+1) for y € Q. Then z[0] = (1,y), and Op(; ,\p1 < Op() by
Lemma I1.4.6. Hence, Op,(p) © Op,(a) < P10P.0) © P1OP,1o < P1OP,0) © OPe) &
P10P;(at1) © OPz(at)-

(iii) If o(z) = 1, then deg(z[y]) = 1 and so -T_xm iff (Vo < y)pl-T'x[a}. As further,
pl-T'x[a} iff -T'x(a), the claim follows.

(iv) Since deg(z(y)) = 1, we have Op,, iff (Va < o(2(7)))p1Op,(y- As o(z) €
Lim(Q2), Lemma I1.2.14 (i) states that o(z(y)) = v, z(a) = z(7)[a] for a < 7,
and z(0) o z(a) = z(a+1). Hence Op,(, iff (Vo <7)p10p,(,). Clearly, we have
(Va<17)p10p, () = (Ya<17)O0p,,), and since Op, 411y € Op,0)°0P,(0) = P10P, ()
also (Vo <17)0p, o) = (Vo <7)p10p,(, follows. 0

Lemma I1.4.9. T¢ - deg(z) = 2 A T, — Prog_({a : Tow).

Proof Assume that z =y (1,y) o 2, and so Op, iff Op(;,y o Op, and Op,,, iff
OP(1,4)(a) © Op,. By (i) the above lemma, Op(;) © Op, = Op(; 40 © OP. = Op,()-
For the successor case, note that deg(z(«)) = 1 and so -T'x(a) is ITL. Therefore, T, A
'T'x(a) iff Opgy) (T.) A 'T'x(a), and Corollary 11.4.7 yields Op(, , (‘T’x(a)). As Op(1,) =
OP(1,4)(0)» (ii) of the above lemma now yields Op(lvy)(aﬂ)('fz), that is -T'x(aﬂ). Now
to the limit case. If o(x) = 1, then z(y) = z[y]+1. By (iii) of the above lemma
we obtain that (Voo <) Ty iff Ty, Since deg(z]y]) = 1 and thus T, is 113, we

Y

obtain Op; ,(Tz[y) as in the successor case, which further implies py T, that is,

Y

'T‘x(y). And if o(z) € Lim(€2), then by (iv) of the above lemma, (Vo <1)Tyq iff
O

z(7)
I1.4.3 The proper and provisional Definition of Op, agree

Our next goal is to prove that the proper Definition I1.4.1 agrees with the provi-
sional Definition 11.1.12. From a technical point of view, none of the results in the
remainder of this section are used in the sequel.

We start with a simple observation.

o8

Lemma 11.4.10. The following is provable in T€.
(i) For all x € Q5, Op,p1 = Op,.

(i) If ¢ # v € Q3, then Op, = Op,p;.

Proof Both claims are readily shown by induction using Theorem 1.4.2. For (i), note
that p; o p;1 = p; is by Lemma 1.2.12. The induction step causes no problems. For
(ii), recall that if T is IT5f T is II, then T pa(T) <> popi(T) (cf. page 39), thus
also Op,, < p2p1 & p2p?. To apply the I.H., just note that if z € {qo, q1, ¢}, then
a1 # l0] € Q5. :

Recall also that Op] is an operation formed according to the convention following
Corollary 1.2.28, so that we have Op) < (V£ <17)Op”™ (note that on the right hand
side, the exponent is always a successor). That we also have Op) < (V3 <1~)OpL™*

turns out to be a consequence of the next lemma.
Lemma I1.4.11. T€ proves: for all x € Q3, Op, o Op, = Op,.

Proof Since Op, = p; and Op, is an operation, we have Op2 = Op,p;. As further
by Lemma I1.4.10 (i), Op,p1 = Op,, Op, o Op, = Op,, follows. O

Lemma I1.4.12. T¢ proves: if 0 < «, then (Op,)*™ = (Op,)°.

Proof Let A(a) :== 0 < a A OpS*(T) = Op2(T). We just show the limit case.

xT

Op}*! < Op, 0 Op] = (VB <17)0py ™ =y (V8 <7)0p. ™" < Op). O

xT x x

Corollary 11.4.13. For eachn € N, T¢ proves: if 0<13<a, then (Op,)* = (Op,)".

9 Y]

Proof Let A(a) := 0<13<1a AOp2T*(T) = Op%(T). We just show the successor case.

T ~

If @ = B+1, then A(a) is by the previous lemma. If 3 <t and Op ™™ (T), then

T

the I.H. and the fact that Op, is an operation yields (Op, o Op?)(T), and (Op?)(T)
is by the previous Corollary. O

Corollary 11.4.14. T¢ proves: for all x € Q}, Op) < (V€ <1v)OpL*te.

Proof Since Op] iff (V& <1v)OpS™, the claim is by Lemma I1.4.12. O

T

Lemma I1.4.15. T€ proves: if go ~: x and 0 < «, then
(7’) pl(opm)a = (plopm>a7

(it) (p1Op,)*™" = p1(Op,)*.

99

Proof By induction on « (in the sense of Theorem 1.4.2). For both claims, we just
consider the limit cases, as the successor cases follow readily from the [.H.

(i) p1(Op,)” = p1(Va<17)(0p,)*™! = (Va <17)p1(0p,)*™!, since p; is an operation.
Using the I.H. and that p;Op, is an operation, we obtain (p;Op,)(p1(Op,)**!) =
(p10p,)(p10p,)™ for each o <1y. By Lemma I1.4.12 we obtain (Va <1v)(p;0p,)*™,
that is, (p1Op,)7.

(ii) We have that (p;Op,)"™ = p;0p,(Va <1 v)(p10p,)*™. By LH., and as by
Lemma I1.4.2, p;Op,p1 = p1, we obtain for each 0<ia<17y that (p;Op,)(p:0p,)" =
(p10p,)p1(0p,)* = p1(Op,)*. Further, if A(u), B(u) are open Ly-sentences so that
Va(A(a) — B(a)), then also VaA(a) — VaB(«), and thus for each operation
Op, Op(VaA(a)) — Op(VYaB(«)). Therefore, we obtain p;Op, (Vo <1+)p;(Op,)™,
and we further conclude p;(Va <1 v)Op,p1(Op,)'™® = p;(Va <) Op,(Op,)™ =
p1(Ya <179)(0p,)*™" = p1(Op,)". O

Next, two auxiliary properties of the operations Op; .
Lemma I1.4.16. T¢ proves: if v € Q%, then Op, p; < Op, p2.

Proof With p? = p; also Op p? = Op, pi. As further, Op; = p;, Op; pl() yields
p2(T) which is I}, hence Op?p?(T) is by Lemma I1.4.5. O

Lemma 11.4.17. T€¢ proves: for all z € Q%, Oplp; & OP1.0)-

Proof If & = (1,qo), then Op, p; is pap1 is Op(y). Otherwise, (1,z)[a] = (1, z[a])
and deg(x) = 2. Then, Op/p; & (V& < 7)p2opx[§]p1 S (V6 <7)p20pg 4 <
(V€ <7)P20P 1 1)) & OP(1.2)- O
Now we can prove the aforementioned equivalence of our definitions of Op,. Most
of the work is done by proving the next two lemmas.

Lemma I1.4.18. T¢€ proves the following: if 0 < 3, then

pop1 o (p1psp1)” < (pop1)”.

Proof Recall that (pyp;)” < (V€ <1v)(pyp1)'+¢ (cf. Corollary 11.4.14). To show the
=--direction, fix an 7> 0. Since pgpl iff pgp% (cf. Lemma II.4.10), and (plpgpl)'Y =

(P1PQBP1)77Jrl =r.11.415 P1(P5p1)", we have pyp; o (plpgpl) = (pip1)"™! =141
(P5p1)". For the converse direction observe that (p5p;)” (V§ < fy)(p p1)tt! =

(V¢ m)pl(pzpl)f = (V¢ <W)(P1P2P1) Let C = (V€ <07)(p1pyp1)*(T), which is II},
and note that (pSp;)?(T) implies p(py(T)) A C. Hence Lemma I1.4.5 further yields

p; (C), therefore also ppy(C), that is, ppy © (p5p1)”(T). O
Lemma I1.4.19. T¢ proves the following: if v € Q7, then

60

(1) OP(ms1.0) € (Op(12)™ ", and Op(4 i1 zy & (Op(14) 7™

(i) Op(,.) < (P1OP(1 1))

Proof Using Theorem 1.4.2. We let A(a) so that A(m+1) and A(y+m+1) express
(i), and A(y) expresses (ii). First, we show A(y+1), ie., Op(, .y & (Opg)T

1% 1%

By LH. we have Op(, . (T)[X < (p1Op(;)7 (T)[X. As Opg,) is an operation,
OP(1,4) © OP(.2) € OP(1.4) © (P1OP(1 1))7 follows. By Lemma II.4.4 (iv) and Lemma
I1.4.18, we obtain Op(,;1,) < (P1Op(14))”. A(1) holds trivially, and A(m+1) and
A(y+m+2) are directly from the I.H.

Now we show A(y). Using the definition of Op,,) and Corollary II.4.14, this

amounts to show that

(V€ 1y)p10P(1 1.0y € (VE T7)(p1Op) ' .

To show that =-direction, fix a 7 <y with n > 0. (V§ < 7)p1Op4¢,) entails
P10OP(11,4)- Using the L.H. yields pi(Op()", and (p1Op(y)" follows by Lemma
[1.4.15. For the converse direction, also fix an n < v with n > 0. Note that
(VE€<17)(p10Op (1 1)) "¢ entails (p1Op(y)"+, Lemma I1.4.15 yields p1(Op; ,))". Using
the I.H. and possibly Lemma I1.4.4 (iv) and Lemma I1.4.12 yields p;Op,,). O

Theorem 11.4.20.
(1) OP(,4) & PT and OpaqO) & ps.
(i) OP(a,(1,40)-) & (OP(1,(7,00)-))"
(i61) OP (6,001 © (OP(340)P1)" and OP(i1 (5,40)) & (OP(3,40)P1) ™"

(1) OP(.(8,400)) & (PlOPzrquO)Pl)V-

Proof (i) By definition and our convention of how to read p{ and p$.

(i) Let v := (7,q0)” and A(e) := Opy,(T) ¢+ (Op.y)*(T). If & = a’+1, then
OP(q,v) iff OP(1,4) © OP (1), and A(a) follows using the LH. If a =: v is a limit, then
Op(v) iff (V€ <17)P10P(14¢,)- The L.H. implies that Op, ,, iff (V€ <17)p1(0p(17v))1+5.
As (Op(lﬂ)))l—’_5 18 H%? for 0 < 5 <7, pl(op(l,v))5 = (Op(l,v))gﬁ and Op(l,v))§+1 =
p1(Op(1,)¢, hence A(y) follows.

(iii) and (iv) are by Lemma I1.4.19. O

61

II.5 Modular ordinal analysis at work

In this section, we prove one of the main results of this theses for the case Ny = 2.
We fix T := (ACA) and g(a) := w'*®, and show in particular that the following is
provable in T¢: for each z € Q,, T, implies Wo_(g14.5(a)), under the assumption
that Wo4(«) and Tl4(C,,) for a suitable class C,. We refer to this statement as
“T, proves JtaH = Hl—i—xH (g)”‘

Remark 11.5.1. The theory ACAq can be presented as py(I1V-CAy), where py is
a variant of the operation py, and -CAy is a finitely aziomatized version of the
theory that extends T¢ by I19-comprehension with a positive set parameters U and set
induction (see Appendiz, Section 2). It can be argued that “TIY-CAg proves g(a)”,
which is the underlying reason why “p1(I1%-CAy) proves it(g)”, or put differently,
that “T! proves g, ” for T':=II9-CA; .

With a slightly more general notion of operation at hand, we would prove that for
all © € Q3, “Op,(IIY-CA;) proves g,u”, thus we had also that “Op, ., (II{-CAy)
proves gii1mu (Where 14+2 := z+1 if » <5 (w, q), and 142 := x otherwise). The
point is that Op,,, (II{-CAy) iff Op,(ACAy). As ¥ = z for x <3 (w,), and thus
(14+2)7 = 142 this explains why we show that “T, proves g, ,u".

I1.5.1 The definition of “Op, proves H, u”

The above discussion suggest to think of 142 as 2", where 2" is the name of the
function which corresponds to the theory T,.

Dz <
Definition I1.5.2. For z € Qy, 2" := (z+1) T <2 (@),
o : else.

Thus, 2" # 2 only if z is of the form (n, qo). In particular, " = 2% if o(z) € Lim(£2)
or deg(x) > 1. As (zoy) = 2% oy by Lemma 11.2.18, also (z o y)" = 2 o y".
We show that for each z € Q3. “Opx proves H,r”, which states essentially, that
if xoz € @Qyand "’ ‘T, proves g.»”, then “Op,(T,) proves H,u(g,»)”. Observe that

Op,(T z) iff Tpo., and that H,u (9:1) = Gwor)h-

We begin by defining when a theory proves a function, and when an operation proves
a functional. Thereto, we fix the auxiliary classes (C, : € @2). Since deg(z) = 2
implies deg(z(«)) = 1 and thus T) is IT5 (cf. Definition I1.2.11 and Lemma I1.4.3),
we have the following: if deg(z) = 1 then C, is IT1, and if deg(z) = 2, then C, is I1}.

Definition I1.5.3. C, := {« : [(deg(z) < 1 AWoy(g,n())] V [deg(z) = QATx(a)]}.

Next, we say when “T, proves g,”.

62

Definition I1.5.4. We say that T, proves g,, if Tt Prvo(x,y), where
Prvo(z,y) == T, Ay € Q= YaWo (@) A TI4(Cp, @) — Wo(g,())].

Since we just show that T, proves g,», we only need the one-parameter version
Prvo(z) := Prvg(z,z"). Further, we define when an operation proves a functional.
The formal definitions are given below, the idea (neglecting some details) is the
following. If Prvi(z) and Prvo(y), then also Prvo(z o y). Since things are set up so
that Prvo(go), i.e. T proves g, (ACAq proves it(g)), Prvi(z) implies Prvo(z). More

verbosely, Prv; () states that if “T, proves g,»”, then “Op, (T,) proves H,u (g,0)"
Similarly, Prvy(z) states that if “Opy('T'Z) proves Hu(g,»)”, then “Opj(Opy)('T'z)
proves H.[H,u, g.»]”, where z* := a*4-corr(z).

To avoid a logic of partial terms, we deal with the partial function o as follows.

We assume that “undefined” is some fixed natural number n that does notu coded a
name. For this n, let g, := g. Further, as by its definition, T, = z € 2, T,, <> L.

Definition I1.5.5. We fix the following formulas.

Prvo(z) == T, — VaWog(a) A Tl4(Cy,a) = Wo(gn ()],
Prvi(z) = Vylprv(y) = Prvo(z o y)],
Prvo(z) = Vy[prv,(1,y) = Prvi(1,z 0y)].

Further, for n € {0,1,2}, prv,(z) := VXPrv,(z)[X.

Moreover, we say that Op, proves Hyu, if T Prvi(x), and that Op; proves H}.,
if T+ Prvg(z) (where y* := yH+corr(y)).

Let us discuss this definition. Firstly, we point out that by definition of T, (cf.
Definition I1.4.1 and Lemma 11.4.2), T, — u € Qo, and therefore, Prvo(u) is trivially
true if u ¢ @Qy. Consequently, Prvy(z) iff Vylx oy € Q2 A prvy(y) — Prvo(z oy)], and
Prvo(z) iff Vy[zoy € Q1 Aprvi(1,y) — Prvi(1,z0y)]. Often, we use these equivalent
forms to focus on the non-trivial instances of these definitions. Moreover, note that
Prvi(qo), i.e. Yy[prvy(y) — Prvo(y)] is not provable as prv,(y) may hold trivially if
there are no w-models of -T'y.

Secondly, we elaborate on Op, proves H,#. For this purpose, let
jcm (gxh) = \V/Oé[WOQ(Oé) N T|<I(Cx7 Oé) - WO<I(g:ch (Oé))]

express that with Tl4(C;, @) at hand, we can jump from Wo(a) to Wo4(g,n(a)).
Now assume T, F je(g.»). Then, T*F T, — je.(g.n), that is, T¢ F Prvg(z), and thus
also T¢I prvy(z) by Lemma [.1.9. Next, we further assume T¢ F Prvy(y) (so again,

63

also T¢ F prvy(y)). The definition of Prv;(y) implies Opy('T'Z) — Jeyo. (Hym(g.n)) (as
Op,(T,) iff Ty, and Hyu (9yn) = GuHoyh = Gizoyr). This illustrates why we read
T F Prvi(x) as “Op, proves Hyu”.

Thirdly, we have a closer look at Prvy(x). The point of letting y* := y# +corr(y) is
that now (1, y) = (1,5*) (cf. Definition I1.2.17). Further, it is easily verified that for
x,y € Q1, (roy)* = z* oy*. Next assume Prvy(z) and that T F Prvy(1,y) (and still
T.Fjc.(g.n)). The definition of Prvy(x) implies that Prvi(1,z0y). As we have seen
above, this yields Op; ,o,) (-T'Z) = JC(1.voyyer (H (1,207 (g21)). Using basic properties of
operations and functionals (cf. Lemma I1.4.4 (iii) and (v), and Definition II1.1.5) we
see that Op(y o, iff Opy o Op, py iff Op; 0 Opyy), and Hy zoyym = (H o H)(it) =
H.(Hg ym). Summing up, we have that

Op; (0P (1,4 (T2)) = e oypo: (H (Hirgym) (9:1)).

Therefore, we read T¢ = Prvy(z) as Op;” proves H.. For instance, we will see that
Opaqo) proves H(J; o) and that Opz;’qo) proves H(J;H o). I other words, we have

Itn+1 Itw—l—l

that pi™ proves , and p§ proves

I1.5.2 Elementary properties of Prv,,(z) (m € {0,1,2})

Since by the very form of the formula Prvo(z), T F Prvo(z) v (ACA), it suffices
to show that ACAg F Prvo(z): then also T¢ F (ACA) — Prvg(x), and since T¢
Prvo(z) V (ACA), T¢ - Prvo(z) follows. The same holds true for Prvy(z) and Prvs(z).
In fact, we even have that for m € {0, 1,2}, T F Prv,,,(x) V ((ACA) AWo.,«(z)). This
immediately follows from the next lemma which unwinds the definition of Prvy(z).

Lemma I1.5.6. T¢F Prvy(x) <> Vy, z[prv, (1,y) A prvy(z) — Prvo((1, (x 0 y)) o 2)].

As T, implies Wo..-(z) A (ACA), and by inspection of Definition IL.5.5 and the
above lemma, for each m € {0, 1,2}, Prv,,(x) is equivalent to a formula of the form
'T'x — B, we have the Lemma below, which puts us into the position to prove e.g.
(Vo € Q5)Prvy(z) by transfinite induction along ~»* using Theorem 1.4.2.

Lemma I1.5.7. For eachn € {0,1,2}, T F Prv, () V ((ACA) A Wo._-(x)).

One more thing we like the recall is that if e.g. ACAg = A A b — Prv,,(z) (where
b=VXB[X), then as T* - (ACA) V Prv,,,(z), we also have T+ A — Prv,,(x), and
thus T F a AVXb[X — prv,,(z). By Lemma 1.4.5, ACAy - a Ab — prv,,(x) follows.
We refer to this as the “small variant” of ACAg = A A b — Prv,,(x). For instance,
we have the following.

Lemma I1.5.8. The following is provable in ACAq:

64

(i) xoy € Q5 Aprvy(x) Aprvg(y) — prvg(z oy).
(1)) xoy € Q7 Aprvy(x) Aprvy(L,y) — prvy(Ll,z oy).

Proof Note that the assumptions x oy €)5 and z oy € Q)] are superfluous, as e.g.
prvy(z o y) entails trivially z oy € Q5. However, we like to focus on the relevant
instances. (i) and (ii) are the “small variants” of Prvy(z) A prvy(y) — Prvg(z o y)
and Prvo(z) A prv,(1,y) — Prvi(1,z o y), which hold by definition of Prvi(x) and
Prva(x), respectively. O

Also the following simple observations are used tacitly in the sequel.
Lemma 11.5.9. The following is provable in ACAy:

(i) xoy € Q5 APrvi(z) Aprvy(y) = Prvi(z oy),

(i) x oy € QF A Prvo(z) A prvy(y) — Prva(zoy).

Proof (i) Prvi(z o y) holds, if prvy(z) implies Prvg(xz o y o z). To verify the claim,
assume prvy(z), and further Prvy(z) and prv,(y). By (i) of the above lemma, prv,(y)
and prvy(z) yield prvy(y o z), and Prvo(z o y o z) follows from Prvy(z). (ii) is shown
analogously. O

Finally, we move a last technicality out of the way, concerning the interplay of -[a],
(o) and 1. We will use (i) in the proof of Lemma I1.5.13 (ii), and (ii) in the proof
of Lemma I1.5.15.

Lemma I1.5.10. Let z € Q5. Then we have the following.
(i) If deg(z) =1 and o(z) =, then g.uia) L grajap)t -

(7’7’) Zf deg(z) = 2) then 9zH|a] g 9(z())H -

Proof By Lemma I1.2.19, we have in case (i) 2% [a] ~* (z][a])¥, and in case (ii)
2Ha] ~* 2(a))®. Thus the claim follows by Lemma I1.3.2. O

I1.5.3 A sketch of the proof

In this subsection, we sketch how we prove (Vo € Q5)Prvi(x). Thereby, we neglect
the difference between Prv,,(z) and prv,,(x) (m € {0,1,2}), and we occasionally
embezzle some details. In the next subsection, this sketch is then turned into a
correct proof.

For this sketch, we are pretending that for m € {0,1}, Prv,,(x) A Prv,,(y) implies
Prv,,(z o y) (our current reading of Lemma I1.5.9). Further, we assume for the
moment the following.

65

(a) if deg(z) = 1 then (Va < o(x))Prvi(z]a]) implies Prvy(z),
(b) if deg(z) = 2, then VaPrvy(x(«)) implies Prvy(x),
(¢) if deg(x) = 1, then T, A (Va <1 o(z))Prvo(z[a]) = Prog_(C,).

(a) and (b) provide means to conclude Prv(x), depending on the degree of the name.
We will justify these claims below. Moreover, we rely on (c¢) which hides technical
details (cf. Lemma I1.5.13).

In order to obtain (Vax € Q5)Prvi(x), we first show Prvy(1, qo) and Prva(1, gp). Then,
we prove by induction on § that Prvo(140, qo), that is, (Vy € QF)Prva(y). Finally,
an easy induction along ~* yields (Vz € Q3)Prv;(z); the possible cases are discussed
below.

(i) deg(x) =1Az # (1,q). By LH., (Va<o(z))Prvi(z][a]), and Prv,(z) is by (a).

(ii) deg(xz) = 2. Then z =nr (1,(148,9)) o y. As y ~* x by Lemma I1.2.16
(iv), the L.H. yields Prvi(y). Further, Prvo(1403,qy) and Prvi(1,qo) yield
Prvi(1, (1405, qo)) by definition of Prvy(-), which together with Prvy(y) yields
Prvi(x).

Now we explain how to obtain Prvi(1, qo). Note that Prvi(1,qo) states that Prvy(z)
implies Prvg(z+1), or in other words, if T, proves g, then T, 1 proves g 41 (e
p1(T,) proves it(g)). To show Prvy(1,qo), we hence assume Prvg(z) and aim for
Prvg(z+1). For that, we further assume T,1, Wo () and Tl4(Cyrr,), and verify
that Wo(guni1(a)). By (¢), Terr and Prvg(z) yield Prog_(Cy+1). Together with
T14(Cpy1, @), we conclude a € C,41, which says Wo(g,»,(«)) due to the definition

of C:v+1 .

More work goes into Prva(1, go): we have to verify that Prvy(1,y) — Prvi(1,y+1). To
do so, we prove by induction on « that Prvy(1,y) implies VaPrv;(1+a,y). Then, as
(14a,y)+1 = (1,y+1)(«), and since we already have Prvy(qo), VaPrvi((1, y+1)(«))
is readily obtained, and Prvy(1,y+1) is by (b). Back to the induction on «a: as
Prvi(1,y) APrvi (e, y) implies Prvy (a+1,), the successor case is immediate, and the
limit case is by (a), since deg(~,y) = 1, and (v,y)[a] = (14, y).

The induction on S which establishes V5Prva(143, qo) makes use of a characteristic
two-step approximation in the limit case (again, the successor step is for free). It
is assumed that (V3 <1 v)Prvo(143, qo), and we aim for Prva(y,qy). For that, we
further assume that Prvi(1,y), and verify Prvi(1,2) for z := (v, q) o y. We point
out that deg(1l,z) = 2. The first step uses (a). To be in position to do so, we
consider the name (1,27) which is of degree one. Note that (1, z)[a] = (1,27)[a].
The assumptions (V3 <1y)Prva(1+5, qo) and Prvy(1,y) yield (V8 <1v)Prvi((1, 27)[5]).
Now (a) yields Prvy(1,27). For the second step, observe that another induction on

66

a yields YaPrvy(1+4a, z7): the successor case causes no problems, and the limit
case is again by (a), as deg(7’,27) = 1 and (7,27)[a] = (14+«,27). Hence we
have YaPrvi((1, z)(«)), as (1, z)(a) = (14+a, 27), and (b) implies Prv;(1, 2z). Hence
Prva(7, o).

Next, we address (a). Assume deg(x) = 1, and (Vo < o(x))Prvy(z[a]), and aim for
Prvi(z). For that, we further assume Prvy(y), and verify that for z := z oy, Prvg(z),
i.e. that

(*) —T_Z/\WOQ(/6>/\T|<](CZ7B) _>WO<1(gz’L(B>>‘

For each o < o(x), Prvi(z[a]) and Prvg(y) yield Prvo(z[a] o y), that is, Prvo(z[a]).
Now T, and (c) yields Prog_(C,), so Wo4(8) and Tl4(C,,) imply 5 € C., thus the
definition of C, says Wo4(g.»(/)). This concludes the verification of Prvy(z).

Eventually, we look at (b). Similar to (a), assume deg(x) = 2 and VaPrv(z(«)), and
aim for Prvy(z). For that, we further assume Prvy(y), and again verify (x) for z :=
zoy. Thereto we fix a set Y and check that Tl4(Y, g.»(3)) follows from T, AWo(3)A
TIL(C., B) (say B > w, so 148 = f). Since Prog_(C.) follows from T, (cf. Lemma
I1.4.9), Wo4(8) ATI4(C., B) yields p+1 € C,, so 'T'z(ﬁﬂ), which implies pl('T'z(ﬁ)) (cf.
Lemma I1.4.4 (ii)). Further, -T'Z(ﬁﬂ) entails Wo(/3). Working in a model X of 'T'Z(g)
that contains Y, we also have Wo(5)[X and Tl4(C.5) [X, B) (as C.5) [X is a set).
By assumption we have Prvy(z(f)) and Prvo(y), thus also Prvy(z(8)). Actually, we
want prvy(z(5)), as we need Prvg(z(3))[X. However, this is indeed what we get,
if we take care of the distinction of Prv,, and prv,,. Summing up, the model X
satisfies -T_Z(ﬁ) A Wo(B) A TI4(C., B) and Prvg(z(5)), which yields Wo‘f(g(z(ﬁ))h(O))
by the definition of Prvo(z(8)). As YEX, we also have Tl4(Y, g (5):(0)), and as
9.1 (8) = g.115(0) < gea(pyyn (0) (cf. Lemma I1.5.10 (ii)), Tl4(Y, g.»(83)) follows. This
concludes the verification of Prvg(z).

I1.5.4 Proof of the main result (for the case Ny = 2)

Eventually, we can observe our modular approach at work. First, we show that T
proves it(g) (Le. that Ty, proves ggn).

Lemma I1.5.11. ACAq F Prvy(qo)-

Proof Assume (ACA), Wo(a) and Tl4(C) for C := {& : Wo,(f(§))} and f :=it(g).
It suffices to show that Prog(C). Clearly, 0 € C. Assume o € C and Prog_(Y).
Then, by Gentzen’s observation, Prog (Y*) for Y* := {8 : (V¢ CY)({+w? CY)}.
With a € C, f(a) CY*, so f(a)+1 € Y* and Y D w/@+ = g(f(a)+1) > f(a+1)
(as f = it(g) and by Lemma 1.3.9). The limit case is by the continuity of f. O

67

The next has auxiliary character. It states that if T, proves g,», then -T_x+1 and
Wo («) implies already Wo(g,»(a)). With enough transfinite induction at hand,
this allows to jump from a to it(gn, a) = gy ().

Y]

Lemma I1.5.12. ACA) - (Vz € Q2)[T 141 A prvy(z) A Wo(ar) = Wo(g,n(a))].

Proof Suppose T,41, Wo () and prvy(z). Further, we fix a set ¥ that is progressive
w.r.t. <, and aim to show that gy () C Y. As Topy iff py(T,), there is an X with
YEX and T,1X. Further, C,]X is a set. Hence Wo_ («) implies Tl4(C, X,).
Now T,[X A Tl4(C.[X, a) together with prv,(z) implies Wo? (g1 (). As YEX,
this yields Tl4(Y, g,n (@), and g.»(a) C Y is by Prog(Y). O

The next lemma is a refined variant of (¢) of the sketch in the previous subsection.
If o(z) is a limit of the form dp+~, then the assumption is slightly weakened to
(Vo a7)prvy(aldo-+al).

Lemma 11.5.13. ACAq proves the following.
(i) © € Qy A Tosy Aprvg(z) = Prog.(Coyr).
(ii) © € Q5Adeg(x) = 1Ao(x) = S+ A (Va <1v)prvy (z[do+a]) AT, — Prog_(C.).

Proof (i) We assume T,.; and prvy(z), and aim to show Prog_(Cy+1), that is,
Prog ({a : Wo,(it(gen,))}). If v C Cpyq, then v € Cyyy as it(gyn) is continu-
ous. Next assume that a € Cpyq, i.e. Wo4(it(g,n,). Then also Wo(it(g,n,)+1).
By Lemma I1.5.12 we have Ya[Wo,(a) — Wo4(g.x(a))]. Therefore, Wo4(g,»(5))
for § :=it(gyn, a)+1 follows. As it(g,n, a+1) < gen(it(gen,)+1) (cf. Lemma 1.3.9),
a+1 € C,yq follows.

(i) Assume (Vor < 7)prvy(z[0o+a]), Ta, deg(z) = 1 and o(x) = dy+v. Hence z =y
y o z where either y = (v,v) or y = (1,(7,q0)7), so o(z") = o(z) = o(x). We
aim for Prog_(C), where C := C, = {a : Woq(g.n(w))}. Since g,» is normal, it
suffices to show that o € C implies a+1 € C, and that 0 € C. Assume that o € C.
Let (s¢ : § <y) be a sequence with sup;, s¢ = gon(a+1) as in Lemma I1.3.5 (iii),
ie. 80 = gon(Q)+1, Seq1 1= Gunisore(Se) and sy = supe.s¢ (to show that 0 € C,
start with sp := 0 and proceed similar as below). Now a+1 € C follows if Wo/(s¢)
for each £ <. To show this, fix a {; <y and a progressive set Y. As T, entails
pl(-T'm[(;oJrgOH}) by definition of 'T'x, there is an X so that Y€X and -T'm[50+§0+1} X, so
also -T'm[50+§0]+1 X by Lemma I1.4.4 (ii). Next, we show that

(%) C = {€ Q& : WoZ (s¢)} is progressive w.r.t. < .

Since C' is a set and T, implies Wo_.(z) which in turn yields Wo(v), () implies
TI4(Y, s¢,). Since Y was arbitrary, we have Wo4 (s,), therefore Prog_(C).

68

For (x), we again just show the successor case (the limit case is by the continuity of
N+ sy). Let £ € C,s0 0<0& 1& <. By the premise of (i) we have prv,(z[dy+£]),
Now -T'x[50+§]+1 X and the “small variant” of Lemma I1.5.12 yields Va[Woi](() —
Wo‘i]((g(x[(;OJrf])h(a))]. Since by Lemma I1.5.10 (i), S¢11 = goniso+e] (S¢) LY(aio+e))n (S¢),
Wo?2 (s¢) implies Wo? (seq1), ie. €41 € C. O

As a consequence of Lemma I1.5.13 (i), we obtain that p; proves it.
Lemma I1.5.14. ACAq F Prvy(q1).

Proof Let x € @2, assume prvy(z) and aim for Prvo(z+1). For that, further as-
sume T,41, Wog(a) and Tl4(Cpy1,). Now T,4q1 and prvy(z) yield Prog_(C.41) by
Lemma I1.5.13 (i). Together with Tl4(C,41,a) we conclude a € C,q, which says

Wo 4 (gan1(a)). O

The next lemma corresponds to (b) of the sketch and shows that for names of degree
two, the approximation z(«) goes well with Prv;(z). Note that the proof only looks
simpler than in the sketch, as part of the proof is hidden in the proof of Lemma
I1.5.12.

Lemma I1.5.15. ACA¢ F (Vz € Q3)[deg(x) = 2 A Vaprv, (xz(a)) — Prvy(z)].

Proof Assume that € Q% with deg(z) = 2, and Vaprv,(z(«)), and aim for Prv,(z).
For that, further assume that prvy(y) and z := z oy € @2, and aim for Prvy(z). To
verify Prvo(z o y), note that (z oy)(a) = z(a) oy (cf. Lemma I1.2.12), and suppose

v

T. AWoy(B) ATI4(C:, B).

We have to show Wo(g.+(3)). T. and Lemma I1.4.9 yield Prog_(C.). Together
with Wo(8) and Tl4(C,, 8), we obtain —T_Z(ﬁu,_l), where ' := 14, which by Lemma
I1.4.4 (i) gives —T_Z(ﬁ’)+1. By assumption, we have prv,(z(5’)) and prvy(y), thus
prvy(z (') o y), that is, prvy(z(8’)). Since trivially Wo4(0), -T—Z(ﬁl)-i-l and prvy(z(5'))
yleld qu(g(z(ﬁ/))h(o> by Lemma I1.5.12. As gzh(ﬁ) = gzh[1+ﬁ}(0) = gzh[ﬁr](O) g
9y (0) (cf. Lemma I1.5.10 (ii)), Wo4(g.»()) follows. O

The first claim of the next Lemma corresponds to (a) of the sketch, and the second
is an immediate consequence, which readily entails Prvy(q;) (cf. Lemma I1.5.18).

Lemma I1.5.16. ACA, proves the following: for each x € Q% with deg(x) =1 and
o(z) = do+7, and each (1,v) € Q3,

(i) (Va < v)prvy(z[dp+a]) — Prvi(x).

(ii) Prvi(1,v) A prvy(1,v) = VaPrvi(1+a,v).

69

Proof (i) Assume z € Q3 with deg(z) =1, o(x) = dp+7, and (Vo < y)prv, (x[do+a]),
and aim for Prvy(z). For that, further assume that prvy(y) and z :== x oy € @3,
and aim for Prvg(z). Thereto, let d; so that for each g, z[8] o y = z[01+/], and so
0(z) = 01+d0+7 (cf. Lemma I1.2.9). To verify Prvo(z), we suppose that

We show Wo4(g.»()). First, note that for a <1, prvy(z[do+a]) and prvy(y) yield
prvy(x[do+a] o y), that is, prvy(z[d;+do+a]). Now T, and (Vo < y)prvy(z[61+do+a])
yield Prog_(C.) by Lemma I1.5.13 (ii). Finally, Wo4(5) and TI4(C,,) imply 5 € C..
The definition of C, yields Wo4(g.»(3)). This concludes the verification of Prvy(z).
(ii) By induction on « (in the sense of Corollary 1.4.3). For aw = 0, the claim holds
by assumption. For the successor case, note that Prvi(1,v) and prv, (14, v) yield
prv, (14+a+1,v). In the limit case, we need to show that (Va<1y)prv,(1+a, v) implies
Prvi(v, v), which is by (i). O

The next Lemma elaborates on the argument from the sketch that VSPrvy (144, qo)
follows from Prvy(1, go) by induction on . The first claim of the lemma addresses
the limit case. Observe that the Lemma is a special case (v = ¢o) of the one-up
variant of I1.5.16 where Prv; and prv; are replaced by Prvy and prv,, respectively.

Lemma 11.5.17. ACAq proves the following:
(1) (Va <v)prvy(1+a, go) — Prva(v, qo)-
(ii) Prva(1,q0) A prvy(l, qo) — YaPrvy(1+a, qo).

Proof Assumed that (V3 <0 v)Prva(1+/5,qo), and aim for Prvo(y, qo). Thereto, fur-
ther assume that prv,(1,y), and verify Prvi(1, z) for z := (v, q) o y. Observe that
deg(1l,z) = 2, deg(1l,27) = 1 and (1,2)[a] = (1,27)[e]. Further, note that the
assumptions (V5 < v)Prva(1408,q9) and prv,(1,y) yield (V5 < v)Prvi((1,27)[5]).
Hence Lemma I1.5.16 (i) yields Prvy(1, z27), and its “small variant” yields prv, (1, z7).
Now Lemma I1.5.16 (ii) implies VBprv, (1403, z7), that is VBprv,((1, 2)(5)). Finally
Prvi(1, 2) is by Lemma I1.5.15.

(ii) Again, this is shown using Theorem [.4.2: the case a = 0 and the successor case
are shown as in the proof of Lemma I1.5.16 (ii), and the limit case is by (i). O

Lemma I1.5.18. ACA(- Prvs(q1)

Proof To show Prvy(q;), assume that y € @ and prv,(1,y), and aim for Prv;(x) for
x := (1,y+1). Note that deg(z) = 2. Once we know that Vaprv,(z(«)), the claim
is by Lemma I1.5.15. By the small variant of Lemma I1.5.16 (ii), prv;(1,y) yields
Vaprv, (1+a,y). Further, prv,(1+a,y) and prv,(q) yield prv,((1+a,y)+1), that is,
prv, (z(a)). Thus indeed Vaprv, (z(a)). O

70

Theorem I1.5.19. T¢F (Vz € Q})Prva(z) and T F (Vo € Q5)Prvy(z).

Proof The first claim is immediate Lemma I1.5.18 and Lemma I1.5.17 (ii) (recall
that with ACAg F Prva(q) also T¢ F Prva(qq), hence T€ - prvy(qr)). The second
claim is shown by induction on ~* (in the sense of Theorem 1.4.2). We consider the
following possible cases.

(i) = y+1. If © = ¢, this is Lemma I1.5.14. Else, we have prv,(y) by LH.
Together with Prvy(q), this yields Prvi(x).

(ii) deg(z) =1 and o(x) = 7. Then by L.H., (Va < v)prv,(z[c]), and the claim is
by Lemma I1.5.16 (i).

(iii) deg(z) = 2. In this case, x =yr (1, (14+5,q9)) o y. Then y ~* = (cf. Lemma
I1.2.16 (iv)), thus by LH., prv,(y). Further, we have Prva(1+3,qo) by the
first claim, which together with prv,(1,qo) yields Prvi(1, (1403, q0)). Now,
Prvi(1, (145, q0)) and prv,(y) yield Prv(z).

Corollary I1.5.20. T (Vx € Q2)Prvg(x).

Proof T¢F Prvg(qo) is by Lemma I1.5.11, and if = € @3, then Prv;(x) is by Theorem
11.5.19, which together with prv,(qo) yields Prvo(x). O

The corollary immediately provides lower bounds for the proof-theoretic ordinal of
a theory of the form T, or T, + (ly) (formula induction, see page 18). Having (ly) at
hand, Tl4(C,,) is provable for each z € @y, and each « < 9. Thus, if T, proves
gur, then for each o < gg, T, F Wo4(g,»()).

Below, we list a few instances of the above corollary. The presentation of the ordinals
in the form ¢d is due to Definition IV.5.14 and Corollary IV.5.16. Also recall (see
Example I1.0.8) that p((ACA)) is (31-DC), p1p2((ACA)) is (ATR) and pyp;p2((ACA))
is p1p2((ACA)) A (X1-DC).

Example I1.5.21.
(1) |ACAq| = ggn(w) = gq (w) = 10 = &o.
(ii) |ACAo + (In)| > g4 (€0) = ¢leo.
(idi) |Pr(ACAQ)| = gy1(w) = g(a.q0) (W) = ©20.
(1) [p1(ACA)
)

+ (IN)] > 9(2.00) (20) = p2¢0.
(v) |p2(ACAg)| > g

() = g2 (w) = ng[w](o) = SOCUO-

71

(vi) [P2(ACAg) + (IN)] = 945 (€0) = Gaule0) (0) = 200.

(vii) |p1p2(ACAG)| > ggor1(w) = 9100 = Iy (Feferman-Schiitte ordinal).
(viii) |p1p2(ACAg) + (In)| > ggot1(€0) = 10eg.

(iz) |p2p1p2(ACA))| > g(2,41)(w) = plwO.

(z) [p2p1p2(ACA)) + (IN)[= g(2.41)(€0) = @lLegD.

(zi) |p1p3(ACAy)| > g(Lq%)H(w) = 1000 (Ackermann ordinal).

(IZZ) |p3+2(ACA0)| > g(17q?+2)[w](0) = g(%q?ﬂ) = QO(,UO ...00.

n

(xiii) [Py (ACAY) + (IN)] = gey oo1)(0) = @0 Q... 00,

n

(ziv) |p1psT2(ACA)| > Ia,qr+2y1 (@) = ©10...00.
n+1

(wv) |p1p3+*(ACAq) + (In)] > g(Lq?u)H(ao) =¢l10...0¢&.
n+1

(zvi) |U, p5T (ACA)| > sup,10...00 (small Veblen number).

0..

A tiny extension of the above procedure gives now a lower bound for p;p3(ACAy).
We pick ¢35 as a name for p3p;, and let

Prvo(qf’)) = -T_IIS A VO&[WOQ(Oé) A T|<1(C1137 a) — WO<(943 (Oé))],

where g,, = [It3, It,it,g] and C := {a : py**p;((ACA))}. Exactly as in the proof
of Lemma I1.4.9, one shows that psp;(ACAq) - Prog_(C,,). Then, ACAg F Prvo(gs)
is easily obtained: Assume that psp;((ACA)), Wo4(a) and Tl4(Cy,, r), and aim
for Wo4 (g4, (). For that, pick an <-progressive set Y. pspi((ACA)) implies
Prog_,(C,,), hence 2+a € C,,, that is p3t*p; ((ACA)), which is IT3. Since [I}-reflection
is at hand, there is an w-model X of ACA, with Y€X and p3™®pi((ACA))[X. As
z = (1,(24a,q)) € Q%, Theorem I1.5.19 yields prv,(z). Further, C,[X is a set.
Therefore, WoX (g,»(0)), in particular, WoZ (I1t***[it, g,0]), that is, TI4(Y, g4 ().

As Y was arbitrary, Wo4(g,,(«)) follows.

The proof of Prvi(g) immediately yields that pipspi((ACA)) proves it(g,,), and
therefore, p1psp1((ACA)) F Wo(it[gy,, n]) for each n, so |pips(ACAg)| > it(gy,,w).
We will see that this bound is indeed sharp, and that it[g,,,w] = g,.(0) = 9Q? (big
Veblen number).

72

Chapter 111

The general case

This chapter extends what we have done in the previous one to the general case,
where now all operations and functionals are considered which are built by iterated
transfinite composition from the basic functionals (It,4; : n € N) and the basic
operations (p,41 : n € N). All these operations play a role in the reduction process
of pn+1(ACAO)

In order to have enough names to address these operations and functionals, we first
extend the ordered sets (QL, <I7) and (Q2, <2) to (Q¥, <) and (Q, <), respectively.
Then, all the related concepts are generalized so that its relevant properties are
preserved, in particular, we still have that if deg(z) = m+1

Op, & (Ya <1 0(2))(Pmr1 © Op,)-

To state and prove the main result of this chapter, we also have to lift the notion
of Op, proves Hyu to higher types. Recall that we said that Op,” proves HY, if
whenever Op(; ,y proves H(y ,yn, then Op; (Opy) proves H.L(H y n). Accordingly,

we say that Op Tt proves H;(mﬂ , if for each i< m, Op(ly proves H(Jgiyz')H’
then
+(m+1) +0 +(m+1) +m +0
Op; "™ 0 Op(, 0 0 Op({,,) proves (Ho™ " HiTL oo Hi),

where Op™ and H*™™ are essentially obtained from Op and H by replacing each
pntr1 and each It, 11 by pmani1 and It,,1n11, respectively. We use Prv,, o(z) to

formalize the statement “Op+(m+1) proves H;Z(mﬂ)”.

The main result of the previous chapter can be summarized as T¢ F Prvy(go) and
TE Ap<a(Vz € Q5)Prvy,(x). Now, we show that T¢F Prvg(qo), and for each Ny,

T+ N\ (Vo € Qy,)Prvm(x).

m<No

73

Since this is true for each Ny, we have in particular, that for each n € N, p,,.1 proves
(Itns1, .-, 1t1), and so |pps1(ACAY)| > (Ituit, ..., I, g,w) (Where g(a) := w!'t®).
The bound Ny is given from outside, since there is no Ly(P)-formula ¥(u) so that
for all n, Opl).; < pny1 (there is only an Ly(P)-formula 9(u) so that for each Ny,
(Vn < No)(Op”,, < puy1)). Hence all the following is relative to some arbitrary
large but fixed Ny € N, as we have to restrict to operations and functionals with
names in)y, when it comes to proofs within ACA, or T¢.

This chapter is structured analogously to the previous one, and again it is assumed
that we know how to translate ordinals of the form g¢,(«) into ordinal notations
(cf. Chapter IV). However, instead of discussing differences between operations
and functionals, we start with an outline of how the various concepts extend to the
general case.

How to extend things

We first say how we extend the name structure for operations and functionals. Then,
we provide examples that illustrate relevant points. As we aim to draw the general
picture, some details are still suppressed.

The extension of (QI, <) to (Q, <) is rather straightforward. Instead of names
of level at most two, we now consider names of all finite level. So suppose that we
have already defined names of level n and know how to compare them. Then, if
x1 < ... <z are names of level n, ((a1,21),..., (g, xx)) is a name of level n+1.
Further, we assign to each n and each z € Qf a type-n+2 functional Hf". For
each n, each £ > 1 and each o > 0, we set

() Hily o= T,

(i) Hiy = (H"D (140))%, and

(a,z)

(iii) if (21, ...,) is a name of level n, then H "

— +n +n
) Hi"o...oH™

Further, H, := H° and H;} := H}.

Next, we extend (Q2, <3) to (@, <). Note that e.g. (1,(7,q0)”) € Q2\ QL. We refer
to (7,90)” as a prename of level 1, and let P, := {(v,q0)” : v € Lim(Q)}. Names of
level n+1 are now build form names and prenames of level n as described below.

Suppose that we have already defined names and prenames of level n and know
how to compare them. Then, if v; < ... < v, are names or prenames of level n,
((a1,v1), ..., (g, vx)) is a name of level n+1. Further, if x is a name of level n with
(x)o = (v,v) or (x)g = (B+1,y~), then £~ is a prename of level n+1. Observe that

74

now prenames may have length bigger than one; e.g., (1, (w, go)7), (1, (w, q)))~ and
((w+1, (w,q0)7))~ are prenames of level two.

To assign operations to names, we lift deg(v), o(v), z[a] and ~* straightforwardly.
We keep the definition of deg(v) and o(v) literally unchanged. One way to generalize
the definition of z[a] is the following:

() q1la] == qo, and if © = (x)o * y, then z[a] := (z)o[a] * v,

(i) (B+1,0)[a] := (1,v)[a] o (B,),

(iii) (1,241)[a] == (140,), and (1,2)[a] == (1,z[a]) if = # y+1,
(iv) (7,0)[a] = (@, v) if @ < 7, and else (7, v)[a] = (3,v),

(v) (La7)le] == (1, z[a]).

With z[a] at hand, the relation ~»* is defined as before. This allows us to keep
what we called the proper definition of the operations (seemingly) unchanged (it
is changed of course, since the underlying relation ~»[Qy, is a proper extension of
~>[Q2). That is, if deg(z) = m+1, then

n Antn
Op: And (‘v’a < O(x))pm-i-n—i-lopx[a]'

where the Ly(P)-formula 9(u) so that for all n < Ny, Opl),; < p,+1. Again, we have
that T, := Op, (T) is I} o if deg(z) = m+1.

As in the case Ny = 2, Op,, iff p1, Op(;,11 4, iff papy, and also Opmoy iff Op;" oOp;r".
To get an idea how the above definition works, we have a look at the operation with
name = := (a+1, (w, q)~). We have that deg(z) = 1 and o(x) = w, therefore Op,, iff
Vn(p1Op,,). So let us figure out what Op,, is. According to the above definition,

we find that x[n] = (1,(w,q0)_)[n] o (a, (wy90)7) = ((1, (n+1,90)), (o, (w,q0)7))-
Hence we have that Op, iff Vn(p.p5™'p; 0 OP (4, w,q0)-)) 1 OP(1,(w.q0)-) © Op(CY (wid0)-)"

Further, let 21 := (1, (1, (w,q0))), 22 := (1, (1, (w,qo)")) and x5 := (1 (1, (w,q0)7)7)-
thave that o(z1) = o(z2) = o(z3) = w, deg(x;) = 3, deg(xq) = 2, deg(:cg) =1,

(i) Op,, iff p§papy iff pp1,
(ii) Op,, iff Vn(p2p%p2)p1, and
(iii) Opxs iff Vn(pipip1).

75

As in the case Ny = 2, an operation Op, corresponds to the type-2 functional
H_#x, and behaves as a type-2 object, while Op;r(mﬂ) corresponds to the type-m+3
functional H;(mﬂ), and behaves as a type-m+3 object. Due to the higher type
nature of Op;m, Corollary I1.4.7, which stated that for each open IIi-sentence T ,

TRy € Qi AOpq, (T) AT — Opg, (T,

canonically extends to the following (cf. Corollary II1.6.8): for each open II} .-
sentence T/,

() T F Y € Qiynt AOPY" (T) AT = Op (T).

This allows us to prove that if deg(z) > 1, then T — Prog_{« : -T'm(a)}, analogously
as in the previous chapter, which is a key result that helps us lift the entire proof.

Let us look at an instance of (x). Thereto, observe that p§p; iff Opzrl’y)pl for y =
(w,qo) and that p§p; implies Vn(pap4p2)p1, in other words, Opay)pl = Opay)(o)pl
(we still have that (1,y)(a) := (1+a, (w,qo)”)). Further, with enough transfinite
induction at hand, p§p; implies Opzrly yP1, that is, (Vn(p2p4p2))®p1: suppose we

have that Op(ly p1 = Op)P1; since Op(ly (0 pl(T) is I13, Opay)pl('T') implies
(Op(1 9 Op)pl(Tv) usmg (), which in turn yields (Op(; 0y © OP(} 4 a))P1(T),

Now, let us anticipate that for each n, “(p4p1) proves (It3, It,it)”. Hence, it is plausi-
ble that “VYn(pa2pip2)"p1 prove (), (Itolt(It), It,it)”. However, (), (Itolt;(It), It,it) is
(It5, It, it). This indicates that (Vn(papip2))*p1 could prove (It5(It))*(it), which we
take as evidence that psp; corresponds to (It5™, It,it). That is, the operations with
name (1, (1, (w, qo))) corresponds to the functional with name (1, (1, (w+1, qo))).

To conclude, we hint at some further extension. We defined the partial function o
so that Op, o Op, iff Op,,,, and H, o H, = H,.,. Now we further consider partial
functions o,, for each m € N so that (given x o,, y is defined) Op;™ o Op,, iff Op,,_,.
We will see that if deg(x) = 1, then Op, iff Op, o Op,, and if deg(x) = m+2, then
Op,, iff Op; "0 Op,, where in the first case, y is a simple name of degree one (of the
form ¢, or (y,v) or (1448,y;), and in the second case, y is a simple name of degree
two (of the form (1,y), where deg(y’) = 1).

With functionals, application and composition are different. Therefore, we cannot
directly form a new functionals out of e.g. H;? and H,. When working with
functionals, it proves useful to write a name as z = L(zgo1(1, o) .. .01(1,ym)) € QF,
where L(y; o1 ... 01 y,,) indicates that we associate to the left. Then, it turns out

that () o)
+n __ +(n+m) +(n+m—1 +(n+0
H™ = (Hg"™™ Hy) o gy)

76

This form also works nicely with operations, where we have that for x = L(zg o4
(1,y0) o1 (Ly1) 01 ... 01 (L,ym)) € Q,

n n+m +(n+m—1) n
Op." < Op;ro(+tm) Op(Lyo) 0...0 Opaym).

This will help to lift the notion “Op} proves H;.” to “Op,™ proves H*” as men-
tioned at the beginning of this chapter.

III.1 Names

Now we introduce names in a more general form, still relying on Definition I1.1.9 and
Definition II.1.1 from Section II.1: names over an ordered set (X, <) are finite se-
quences ((aq, 1), ..., (g, xp)) of pairs (a;, z;) € (Q\{0})x X, so that 1 < ... < z.

Definition II1.1.1. Let (X, <) be an ordered set, and (2 x X, <) the ordering with
() <(,2)<(Byy) iff e <y V (x=yANa<p). Then,

name(X) := {((14aq,21), ..., (1+ag,zx)) € (A X X)<¥ 121 < ... < 24},
and name(X, <) is the ordered set (name(X), <je;).

Note that the empty sequence () is a name above any set. The following is readily
observed.

Lemma II1.1.2. If (X, <) is a well-ordering, then also (name(X), <e;).

If z and y are names over X, then x *y is the concatenation of these finite sequences
over (2 x X). In general, this is only a finite sequence, but not a name.

As in the case Ny = 2, we will assign functionals to names so that H ()0 H3,2)) =
H(34a,2)), and accordingly for operations. This motivates to extend the partial
function * : name(X)? — name(X) to a partial function o : name(X)? — name(X),

so that ((a,z)) o ((8,2)) = ((B+a, x)).

Definition II1.1.3. Let x and y be names over X. If () € {x,y}, then zoy := xxy,
and if x = (xq, ..., x) with xp = (o, v) and y = (y1,...,y) with y; = (5, w), then

T kY cif xxy € name(X),
roy: = <I1a~~~7xk—1a(ﬁ+aav)>y2a“'>yl> : ?:f’U:'LU,
0 . else.

77

Observe that if x and y are names and z o y is defined, then x o y is a name. Also
the following is readily checked.

Lemma III.1.4.
(i) o is associative, that is, (roy)oz >~z o (yo z).

(it) If y # (), then (x*xy)oz~xx(yoz) and (roy)*z~xo(y*2).

Note that the assumption y # () in (ii) is required, as for y = (), the claim reads
x oz~ x*z, which does not hold in general.

The ordered set (Q¥, <) and (Q, <), which will be used to name functionals and
operations, respectively, are such that (Q¥, <) = name(Q*, <), and slightly more
general, (Q, <) = name(Q’, <’), where @ C @', and <=<'[Q (you may want to peek
at Definitions I11.2.1 and II1.3.1). With such a situation in mind, we define partial
operations o,, : name(X)? — name(X) as follows.

Definition II1.1.5. oy := o, and for each n € N and all x,y € name(X),

T Opg Y 1 {((1,:60” zZ)ow : ify={((1,2))*w and z € name(X),

For instance, if © # () and y := ((1,()), (1, z)), then y = ((1,())) * ((1,x)). By
definition, z oy y = ((1,z 0 ())) o ((1,x)) which equals ((2,x)). This illustrates the
reason for writing ((1,x o, 2)) ow (as opposed to ((1,x o, 2)) * w) in the first clause
of the above definition.

w

By induction on n, it is readily seen that if z and y are names and x o, y is defined,
then x o, y is a name. Further, z o, ({(1, 2)) * w) is defined iff v := ((1,z o, 2)) is
defined and if v o w is defined.

Lemma II1.1.6. Assume that (X, <) = name(X’, <') with X C X’ and <=<'[X.
Then, we have for all ', x,y € X and all m € N,

if £ o,y is defined and x' < x, then 2’ 0, y < x 0,y (50 &' o, y is defined, too).

Proof By induction on m. If xogy is defined, either xxy € X, and then also 2/xy € X
and o' xy < xxy, or (2)h(z)—1 is of the form (o, 2) and (y)o is of the form (3,), and
then 2/ < x implies (2)in@)-1 < (@)in@)—1, hence 2’ oy is defined and 2’ oy < xoy.
And if x o,, 41 y is defined, then y is of the form ((1,y)) * w for some y € X, and
Tom1y = {((1,x0,y))ow. By LH., 2’ 0,9 is defined and 2’ o,,, 3y < xo,,y’. Since
<=<"1X, also 2’ o,,, ¥ <’ x 0, ¥/, hence ((1,2" o,, ¥/')) < ((1,x 0,, ¥/')), and by the
case m =0, ((1,2" 0, ¥)) cw < {(1,x 0, 4/)) ow. The claim follows. O

78

Lemma IIL.1.7. Assume that (X, <) = name(X', <') with X C X’ and <=<"1X,
and that x,y,w € Xwith v # (). Then,

((1,zomy)) ow is defined iff x onir ({(1,y)) x w) € X.

Proof If ((1,x o, y)) o w is defined, then (w)g is of the form (o, z) with z o, y <’
z, thus also z o, y < z. Since () < z, we have () o,, y = y < x o, y by the
above lemma. Since <=<'[X also y <’ x o, y < z. Thus ((1,y)) *xw € X. It
follows that x 0,11 (((1,¥)) * w) is defined and an element of X. Conversely, if
zomyi1 (((1,y)) *w) € X and hence defined, then it equals ((1, z o, y)) o w which is
thus defined, too. O

Lemma III.1.8. Assume that (X, <) = name(X', <') with X C X’ and <=<"1X.
For all z,y,z € X with x # (), and allm,n € N,

(i) (xony)oz=xo, (yoz),
(1) (T 0 Y) 0 2 22 T 0pip (Y 0p 2).

Proof (i) For m = 0 the claim is by Lemma II1.1.4. If (2 0,,,41 y) 0 z is defined, then
there are names y’, w so that y = ((1,y')) xw. If w # (), then, using Lemma II11.1.4
(i), we obtain (z o1 y)oz = ((L,zopy)ow)oz= (l,x0,y)o(woz)=rrr17
Tomyi1 ((L,y)x(woz)) =xopy (yoz). Conversely, if zo,,,1 (yoz) is defined, then
y oz is of the form ((1,%')) xw’, and it is readily checked that then w’ is of the form
w o z for some w. Thus, © 0,41 (y o 2) = x o1 ((1,¥) * (wo z)), and the other
direction follows as above. If w = (), the claim is shown similar but simpler. (ii) By
induction on n. The case n = 0 is by (i). For the induction step, observe that if z is
not of the form ((1, 2')) * w, then both sides are undefined. So we can assume that

= ((1,2")) *w and that 2’ € X. Then, (£0,,y)0n112 = (x0ny)ons1 ((1,2)) xw) ~
(1, (omy)on2'))ow ~rm (1,2 0m4n (yon2'))) ow = (T omint1 (1, yon2'))) ow =

L0 4nt1 (((1, yon2")) ow) ~p 11117 Tomagnt1 (Yont1({(1, 2'))*w)) ~ 20 4ni1 (Yont12).
0

As o, is not associative, it matters whether we associate to the left or to the right.
To deal with both cases, we introduce the following abbreviations.

Definition III1.1.9.
(i) L() == () (), L(z) == R(z) :== = and

—~

L(x1 0m, T2) = R(21 0, T2) = (21 Oy T2)
(i) L(x1 0y .. Omyyy Thg3) = (L(T1 Oy - - Oy Tht2) Ompys Thts)-
(iii) R(T1 Om, - - Omyyo Tht3) = (T1 Omy R(T2 Oy -+ - Oy Thits))-

79

Further, if m > n, then e.g. L(x,, 01 ...012,) = L().

The next lemma collects various properties that allow us to move from L(...) to
R(...), and to compute z o, L(...) and R(...) o, .

Lemma II1.1.10. Assume that (X, <) = name(X’, <') with X C X’ and <=<"1X.
For all 7 € X,

(1) R(xo0my - Om, Tk) On Tht1 = R(To Omyin - - - Omptn Tk On Thil)s
(it) L(xo Om, - - Omy, Tk) = R(To 0pgk @1 - .. Opp @),
where MF :=my, for 1 <i <k, MF:=my+...+m;.
(iti) o oppe L(x1 Omy - - . Oy Tk) 22 L(T0 Oy T1 Oy - - - Oy,).
() L(xo Omy - .. Omy k) 22 R(To Opgs - - . Opgi Ti) On,, L(%i41 0myyy - - Oy Tk)-

Proof (i) By induction on k. For k = 0 this is trivial and for £ = 1 this is Lemma
I11.1.8 (ii). The induction step is shown as follows.
R(Io Omy - - -Omk+1xk+1)onxk+2 = (Io Omy R(Il Omg - - -Omk+1xk+1>>onxk+2 ZLIIL.1.8 (ii)
Zo Omy+n (R('rl Omgy - - - Omk+1 xk‘—i—l) Op $k+2) =~

ToOmy+n R(xl Oma+n - - - Omk+1+n Tk+1%n $k+2) =~ R(l’o Omi+n--- Omk+1+n Tk+1%n xk+2)-

(ii) By induction on k > 1. For k = 1, the claim is obvious, thus we show the
induction step: L(Zg op,; - .. Omy,y Trg1) =~ L(To Oy - .. Omy Th) Omy) Thyl H
R(xo OM{c Ce OMII: xk) Okarl Tkl Z(i) R(xo OM{VH T1... OMI;:H T Oleill xk+1).

(iii) z 1= L(1 Omy - - - Omy, Tn) i) R(21 Ong - -+ Ongk xp).
To Ok 2 22 T Opgk R(@1 opgp - o @) 2
Lo ©pkym,y (71 Ok R(, Omp - OMmf 7)) = L.I11.1.8(i)
(To Omy @1) oy (R(2 0pgs -+ - 0pgr Tk)) = R((Z0 Oy 1) Opgt - - - Opgh Tie).-

Using (ii) again yields the claim.

(iv) By induction on i. If i = 0, then we have L(xg o, ... 01 %) ~ui) R(0) O ph

80

L(x1 04y ... O,). And if 0 < @ = j+1, we have for 2z := R(xg 0y ... 0, Tj),
i i

L(xoomy - Om, Tk) XyH 2 Ok, , L(xjtq Omjya « - Omy, Tr) (i)
Z Opk (l"j+1 OM{“H L(ifi+1 Omyiig + - Omy fl?k)) ~LII11.8
(Z Om; xj-l-l) OMZ.’C+1 L(xi-i-l Omitg - - - Omy zk) =)

R(SL’O OM{H ce OMJJ_i; :L’j_H) OMik+1 L(SL’Z-_H OmZ_Jr2 <+« Omy xk)

The following corollary singles out what is actually need in the sequel.
Corollary II1.1.11. Under the assumptions of the above lemma,
(i) L(SL’1 01 X201 ...01Tm—-10°1 xm) oz R(l’l Om—122Om—2-..92 Ty—1 01 SL’m) ©Zz,

(1) To Ooman L(z101...01 Tpy1) 02 =~ L((xg 0, 1) 01 ... 01 Typy1) O 2.

I11.2 Names for functionals

First, we introduce an ordered set (Q, <) of names. Essentially by its definition,
we have that name(Qf, <) = (Qf,<). Then, we assign to each z € Q¥ a
functional H.,.

Definition IIL.2.1. (Qf,<{) := ({()},0), and (QL. ., <HX.,) := name(QY, <I).
Then, (Q%, <) := (U, QZ,U, <k). Further, the least n so that v € QX is called
the level Iv(z) of x.

That is, QY = {{((1+ay, z1), ..., (L+ag,zp) oy <H oo <Hapa,. € QFY,
and <nH+1: <ox [Qfﬂ, where by Definition I1.1.1, < is the ordering on Q x Q¥ with

(0,2) < (By) T £ <5 y V (2 =y Aa < f).
By induction on n it is immediate that Qf C QX , C Q, thus </=<"1QH and

further, if Iv(z) < Iv(y) = n, then = < y. We just look at the induction step of
the last claim: if y € QX \ QF and z # (), then x = ((a1,21),..., (ay, 4)) and

v = ((Br,y1), .-, (B,y)) with yp < ... <H 4. Since y € Qfﬂ \ Q| the 1.H.
implies that y, € Q. Again by LH.,), <X y;, so <f., y. And if z = (), then
x <M y is directly by definition of <.

As names are used quite frequently in the sequel, in order to increase readability,
we stick to the following abbreviations, and further, to Convention II.1.3.

Definition IT1.2.2. We let qo := (), gns1 = ((1,qn)) and ¢} := {(a, qo)).

81

Since ¢ is the only name with Iv(gy) = 0, also the names of level 1 are very simple.

Lemma II1.2.3. If + € Qf with Iv(z) = 1, then * = {(a, q0)) for some a. In
particular, Ih(z) = 1.

Now we assign to each name z € Q¥ and each n € N a functional of type-n+2,
using our basic functionals It, ;1 (cf. Definition 1.3.10).

Definition I11.2.4. For each n, H(;;” is the identity on Q™ and for 0 < a, f <
and k > 1,

(a,90)

(ii) Hi = (HS " (1,0))° (2 # q0).

+n R n n
(ii) H' =Hj"o.. .o HI"

Further, if f € QO then f, := H,(f), and H, := H}° and H} := H}*.

Next, we check that HF" € QD and that H}" C It,,; (cf. Convention 1.3.5), a
simple but useful property. Then, we verify that Hf = HS" o H". Finally, we

oy
reveal a point of writing a name in the form x = L(yp 01 ... 01 Ymt1)-

Lemma II1.2.5. For each n € N and each x € Q% \ {q}, H™ € QY and
Hi Cltyg.

Proof Recall that if ' € Q1) then F is strictly inclusive, that is, F(G) C G for
each G € QM and further, F'** € Q"+ for each o (cf. Lemma 1.3.12). Moreover,
F*o C F, as is readily seen by induction on «, and if 8 < «, then F* C F¥?.

The two claims are shown simultaneously by induction on the build up of Q.
By Corollary 1.3.13, It € Q"D Hence, H(Jﬂ%qo) = (Itper)'™ € QD and
(Itps1)'*® C It,yq. If both claims hold for z € Q¥ \ {qo}, then Hy ™™ ¢ Q+2)
and H "V ¢ It,, 12, hence also H;(nﬂ)(ltnﬂ) e Q0+ and

H% oy = (O (1t,40)) 7 © B (1t,40) € lga(ltegn) C g,

And if both claims hold for xy, and z = (z1,...,z) and k > 1, then H+:‘

<fE 7777 ZBk) -
Hi'o...o HI™ C Hf™ C lt,1, and H&?) € Q0+ a5 QO+ 45 closed under

composition. O

Lemma I11.2.6. For each v € Q7 \ {qo}, tnia(H™) C lt,yq 0 Hi™.

82

Proof

(tna (™), f,) = Moo H™, o foa] € (H)™, . f) €
((H;n)2, ey f) gL_]]I_Q'g, ((ltn—i-l ©) Hx), ey f) = (ltn+1 @) Hx)[cey f]

Lemma II1.2.7. For all zg, ..., Tmio € Q% \ {qo},

o H™, . HS) Clito (H™, . HEO).

Tm

Proof By induction on m. For m = 0 this is by the above lemma, and

Itm+3[H+(m+1)7 ey H;:)O] = (Itm+3(H+(m+1))7 ety H;:)O) gL.III.2.6

Tm+1 Tm+41

((Mpgp 0 HITEDY L HSO) = Mty [HF D (HI™), L H) Crp

Tm+1 Tm+1 Tm

ito (MO (HI™), . .., HO) =ito [H ™D o

Tm+1 Tm+1

|

Lemma IIL.2.8. Ifzoy € QY, then H}} = Hi" o Ht".

oy

Proof Immediate by Definition II1.2.4 and the observation that for any functional
F e Q) oo [P = Fh+a (cf. Lemma 1.3.14). O

Lemma II1.2.9. Let x = L(yg o1 ... 01 ym) € Q¥ with lh(y;)) =1 (0 < i < m).
Then,
+n __ +(n+m +(n+m—1 +(n+0
HIm = (H) g hem=1 g o)),

Proof By induction on m. For m = 0 there is nothing to show. And if z =
L(ypor...01 Yms1) € QH, then x = L(yp 01 ... 01 Ym) ©1 Ymi1. Since this is defined,

Ym+1 is of the form (1, z), and therefore z = (1, L(yp o1 . .. 01 Ymm) ©). Hence,

+n +n _ prtn+l)
HZL‘ - H(l,L(yool...olym)oz) - HL(yool...olym)oz(ltn+1)

HHD o ey,) = HOFD e (i)

- (L(yoo1...01ym) L(y001...01ym)

— H+(TL+1) (H(-g?z)) — H+(n+1))(H-l,-n)

L(yoo1...01ym) L(yoo1...01ym Ym+1

n+m+1 n+m n+1 n
—IH (ng(_)(e)’H;;(*),,H;;E "))(H;:n+1)

— +(n+m+1 +(n+m +(n+1 +n
- (Hyo()’ Hyl()’ T Hyng)’ ym+1)‘

83

I1I1.3 Names for operations

In this section, we present an ordered set ((), <) of names for operations, and assign
to each gy # x € @ an operation Op,. However, as the situation with operations is
more complex than with functionals, we no longer have that name(Q, <) = (@, <),
but only that name(Q U P, <) = (Q, <), where P C @~ (cf. Definition II.1.9) is a

set of prenames. Prenames are not names, but used to form names.

Definition ITI.3.1. (Qo, <o) := ({()},0), and (Qni1, <nt1) := name(Q, U P,, <,),
where Py =10, and P41 C Q1 so that
Pn+1 = {Z_ : (Z)O = (77y)7y S Qn} U {Z_ : (Z)O = (1+Oé,’U) HEONS Pn}

Then, we set (Q,<) = (U, @n,U, <n) and (P,<) := (U, Pn,U, <n). Further,
Qf = Qn\{q}, Q" :=Q\{qw}, and the least n so that v € Q,, U P, is called the
level Iv(v) of v.

Note that when switching from (@, <,) to (Q, U P,, <,), the ordering <, is ex-
tended according to Definition I1.1.9, and that <, 1= <ex [(Qns1 U Pyi1), where <
is the ordering on Q x (@, U P,) with (a,v) < (B,w) iff v <, w V (v=wAa < f).

This time, Q41 = {{((1+a1,v1), ..., (I, vp)) 01 <p .. <p v € QU P}, and
x~ € Py iff x € Q41 and (z) is either of the form (v, z) with z € @, or of the
form (1+a,v) withv € P, C Q...

As with Qf, we have that Q, C Q.11 € Q, P, C P,.1 C P, <,=<|Q,, and
(Qn U P,, <,) is according to Definition I1.1.9. If Iv(v) < Iv(w) = n, then v <,, w.
Also note that if x € Q with Iv(z) < 1, then z € QY. Further, if 2~ € P, then z
is the <-least element above z~. Moreover, if <, [(Q, U P,) is a well-ordering, then
<ex 18 a well-ordering on Q x (Q,UP,), and s0 <, 41 [(Qn+1UP,11) is a well-ordering,
too. Therefore, (Q, <) and (Q U P, <) are well-orderings.

We extend Convention I1.1.3 as follows.

Convention I11.3.2. We let x,y, z range over), and v, w over QU P. If we write
v~ € P, then it is understood that v € Q) and v~ € P. Further, we write (co,v)”
for {(a,v))~, and moreover, if z— € P and x € Q, then z~ xx := (z % x)~.

Definition I11.3.3. We let qo := () and ¢ui1 := (1, n)-

Provisional definitions of the operations (Op, : z € Q%)

As in the case Ny = 2, we give first a provisional definition of the operations (Op, :
x € QF). Again, this definition is semantical: given x € Q*, Op,, is an operation, and
it is assumed that we can represent this operation by an Ly(P)-sentence, by using

84

some way to code z as a natural number. Later on (after introducing approximations
and normal forms for names in Q) it is superseded by Definition II1.6.1, the proper
definition of the operatlons (Op : € @), which provides for each n € N an
Ly(P)-formulas ¢+ (u) so that T — @™ (2){TU} is the operation Op;™. There, it
is assumed that we have a primitive recursive relation which codes Q*, which is also
denoted by Q*.

From a technical point of view, none of the remainder of this section is henceforth
required. It purpose is solely to convey some intuition of how the operations Op,
look like. Therefore, some proofs are a bit sketchy.

The next definition is by recursion on the build-up of Q U P, and is structured as
follows. The first group of clauses says what operation is assigned to a name in @,
the second says what operation is assigned to a prename in P. But the two groups
are interdependent.

Definition I11.3.4. For eachn, all (x1,...,x),z € Q* (k> 1), eachy~ € P, each
v € Q*UP and each a > 0, we have

(i) OP;rln ‘= Pn+1;

(i1) Op{y. 4 = (Op " Vppy)™ and Op(t,, .,y == (OpF " Vpypy)7*m,
(i11) Op(y i= (Pnr10P()7,

fi0) Op,) = (OpF "V,)i

(v) Opiﬁ(f;wﬂ%> = Op;” .0 Opmlc ,

and for all m,n with 0 < m < n, we have

(1i1)’ Op+(mn = (Va < 7)Pm+1(op(1nv),

+(mn) A, t(mntl) +n
(’UZ) Op (atly—)— "= Opy* Pn+41 © Op(a’y,),
+(m n) +(m,n) +n +n
(v)’ Op - = Opyf oOp,"o...00p,

Further, Op, := Op°, and Op} := Op}*.

(i)-(v) and (iii)” generalize Definition I1.1.12; the clauses (vi)” and (v)’ have no
correspondence, as x~ € P iff z = (v,q). The role of the extra parameter m
becomes visible in clause (iii)’. Also note that OpJ;(_Tlr;) - e Oer(m OIS Op(a ey
that is, would we extend o to QU P, then (1,v)” o (a, v) := (a+1, v) Slmllar w1th

clause (v)’, which is the reason for letting 2~ *x := (z*x)~ (cf. Convention I11.3.2).

85

Lemma II1.3.5. Let y~ € P and x € Q* with deg(z) = m+1. Then,
(i) for all 0 < k < n, Op+(kn (T) is I} .,
(ii) for all n, Opi™(T) is 0} is

Proof (i) By induction on the definition of Op+(k ™ Note that Opz;(lz’)@(f) is I o

by definition, since Opx, (T) is of the form VoeA(«r), where A is IT}_,. In the other
cases, the I.H. applies directly. (ii) By induction on the definition of Op}" using (i).
O

To gain some intuition for the operations Op", we state some relevant properties.
For the time being, we just add some proof-sketches. Rigorous proofs are provided
once we have introduced the proper definition of these operations.

Lemma II1.3.6.
(i) If 0 < k <m < n, then p,pr < PnPmPr-
(ii) If x € Q*, then Op!"™ = pui1.

Proof (i) If 0 < k < m < n, then p,p(T) implies py,(px(T)) which is II},.,, thus
Lemma 1.2.14 yields pnpmpk(-T'). Conversely, p,.px = pr is by Lemma 1.2.12, and

since p, is an operation, p,p,pPr = pnPx follows. (ii) By induction on the definition
of Op;™. O

For instance, pspap1 < p3p:-
The following is relevant in particular for n > 0. It generalizes Lemma 1.2.14. For
a proof, we refer to Lemma I11.6.6.

Lemma II1.3.7. For each open I1}, ,-sentence C, T¢ Op™(T) A C — Opi™(C).

A typical application of this lemma is the proof of the right-to-left direction of the
following lemma, which is the critical case in showing that Op, o Op, < Op,,,, (see
Lemma I11.3.9).

Lemma IT1.3.8. If (1,v) € Q*, then Op(; . © Op(,.,) < OP(y41,4)-

Proof By definition, we have Opy; ,, < Op, p1, Op(,,) < (V&€ <7)p1(Op, p1)'*¢, and
Op(,11.) < (Opyp1)7. As Op,p; is an operation, Op}p; o (V€ < 7)p1(Op, p1)'*¢
implies (V€ < v)Op, p1p1(Op; p1)'™¢, which in turn yields (V¢ < v)(Op.p;) ¢, so
(Op; p1)” follows.

For the converse direction, note that (V& < v)(Op,p1)**" = (V€ < 7)p1(Op, p1)**,
SO OP(7+1,U)(T) implies Op,, (). And clearly, (V€ < ~)(Opp;)™ = (Opifpy). By

86

the above lezinma, OP1,v) ()/\Op(w () — (Op 1,0) © OP(4.0))(), as OP(y.0) () is T13
and Op) (T) iff Op; (p1(T)). The claim follows. O

Recall that x o (1,v) is only defined if v € Q). Then, z o (1,v) = (1, (x o v)).
Lemma II11.3.9. Let x,y,x 0y € Q*. Then,

(i) Op.e, < Op;" o Op,", and

(ii) Opi < Opft™™ o Op)™.

Proof (i) is readily shown by induction on the definition of Op, using Lemma II1.3.8.
(ii) By induction on m. The case m = 0 is by (i). For the induction step, note that
if x oy € QF, then y = (1,2) or y = (1, 2) % 2’ for some z,2’ € Q. It suffices
to show the claim for y = (1, z), the general case is then by (i). If z # ¢, we
have Opxo o Op(l S Op;("H)an S (Op+(m+n+1) o Op+(n+1))p e

Oer(er"Jrl o Op If Z = qo, then m = 1, and the claim follows as Opxoly =
Op{i", < Op! "“ o pn+1 =1 Op; "™ 0 Op;™. O

The followmg corresponds to Lemma I11.2.9. Note that below, no assumption lh(y;)
is required. This is owed to the fact that in contrast to functionals, with operation
there is no difference between composition and application, i.e. (Op; o Op,)oOp, &
Op; o (Op, 0 Op,), whereas H (H,) o H, may be different from H} (H, o H.).

Lemma IT1.3.10. Let © = R(yo ©m Y1 Om—1 - - - 01 Ym) € Q*. Then,
Op o Op+(n+m o Op+(n+m 1) o Opy n+0

Proof By induction on m. For m = 0 there is nothing to show. And if z =
R(Yo Omt1 - - - 01 Ymr1), then = yo 01 R(Y1 O - . 01 Ymy1), hence

Opf™ & 0P pinon oy Sriirse Op ™ oopte
PR Op+n+(m+1 o Op (nt+m) Opy2 n+m—1) o Opym+1
O
Corollary IT11.3.11. Let z = L(yp o1 ... 01 Ym) € Q*. Then,
Op," < Op+(”+m o Op+(”+m Vo. ..o Op,".
Proof By Lemma II11.1.10 and Lemma III.3.10 O

We conclude by looking at some examples of operations.

87

N,y = (v, (1, (12, 90))),

Exercise I11.3.12. Consider the names =’ := (2, (3, (4, o
() ((77 qO)_)_)‘ CompUte Opx’;

T = (2> (3a (4> QO))); Yy = (2a (3> (’}/a QO)_)) and z :=
Op,, Op,, Op, and Op,.

Solution IT1.3.12. Below, we just give the solutions to (i)—(iv), (v) is explained in
detail. To obtain these solutions, we have used that (V& < ¥)pnp&pn < pY, that pip:

iff p3p3P1-
(i) Op, < ((p3p2)®)p1)*.
(ii) Opy < (p1(p2p3*)"*P2)7P1-
(iii) Op, < ((p3p2)’p1)*.
(iv) Op, < [(V€ < 7)(p2ps p2)?pi]*.
(v) Op, < [(Vn < 7)(p1ps™")p2 © ((VE < 7)(p2pst®)p2)?)pi)*.
We details for (v). Lety = (3,(7,q0)") and © := (v,q0). Then, z = (2,y~) and

= (3,27). Thus, Op, & Op(,-) & (Op;ﬁ(o’l)pl)? By definition,
a) Op, O o Opﬂo1 _ o Opg%x,
b) Op 01 < 0p;*py < 0p;“Ppy, and Opfy., -, < (0p; " Vpy)?,

¢) Op % & (vn < 7)(pips™) and Op " & (V& < 7)(paps ™).

Putting the pieces together, we obtain that

O0p Y & (¥ < 7)(prp™)p2 © (V€ < 7) (P23)p2)?,

which confirms (v).

II1.4 Approximations and normal forms

In this section, we have a closer look at the names in (), which we use to name oper-
ations. First, we lift the notions degree, ordinal, normal forms and approximations
defined for names in (), in Section I1.2 to (). We will see that all relevant properties
are preserved. For instance, we will have again for each name x with deg(x) = m+1,
T, iff (Va < o(m))(pmH(Tx 1)) (cf. Lemma II1.6.2). Then, we lift the well-founded
relations ~» and ~»* from Q2 to @, and the map H : Qy — Q¥ to H : Q — Q¥ so
that Op, corresponds to H,n.

Often, the definitions look exactly the same as in the case Ny = 2. However, as the
underlying names (@, <) are different, properties have to rechecked.

88

Definition II1.4.1. For x € @ and f denoting one of the function symbols in
{deg, 0}, we let f(x):= f((x)o) and f(a+1,v):= f(1,v). Further,

(1) deg(qo) := 0, deg(l,z7) :=1, deg(1,x) := deg(z)+1 and deg(v,v) := 1.
(ii) o(qo) =1, o(1,27) := o(x), o(1,x) := o(x) and o(~,v) := 7.

We extend deg and o to QU P by setting, deg(z~) := 0 and o(z™) := o(x). Further,
we read a name (0,v) as an abbreviation for qq.

As with names and prenames in Qo U Py, if v € QU P, then v+1 denotes its successor
w.r.t. the ordering (Q U P, <). Again, z+1 := ¢ oz, if 2= € P, then z~+1 := z,
and (zq,...,z)+1 = (141, ...).

We start with some simple properties of deg(z) and o(x).
Lemma II1.4.2.
(i) o(z+1) =1, and x~ € P iff o(x) € Lim(2) A deg(z) = 1.

(i1) If xoy € Q and x # qo, then deg(x) = deg(zoy), and o(x) =1 iff o(zoy) =1,
and o(x) € Lim(Q) iff o(x oy) € Lim(Q2).

(111) If v = L(xg o1 (1,41) 01 ...01 (1, ym)) and xo # qo, then deg(z) = deg(xo)+m,
and o(xg) = 1 iff o(z) =1, and o(zy) € Lim(Q2) iff o(x) € Lim(€2).

Proof (i) #+1 is of the form (a+1, qy) * 2, hence o(z) = o(a+1, qo) = o(1, q) = 1.

The second part is by induction on Iv(x). If Iv(z) = 1, the z= € P iff z = (v, q).
And if Iv(z) > 1, then 2= € P if either (z)o = (v,v) or (z)g = (f+1,y~) with
Iv(y) < Iv(z), so o(x) = o(y) €rm Lim(2). Hence in both cases o(z) € Lim(f2)
and deg(z) = 1. And if o(z) € Lim(Q2) A deg(z) = 1, then also (x)y = (y,v) or
(x)o = (B+1,y7), and = € P by definition of P. (ii) If zoy = z xy or lh(z) > 1,
then the claim is directly by the definition of deg and o. Otherwise, x = («,v) and
y = (B,v) * 9/, and deg(z o y) = deg(S+a,v), and o(x o y) = o(f+a,v). Since
f+a € lim(Q) iff o € lim(f2), the claim follows. (iii) By induction on m: for
m = 0, there is nothing to show, and if m = m/+1, and say x,, = (1,¥), then,
for z := L(xg o1 ...01 2p), x = z 01 (1,yy), and deg(zx) = deg(z o1 (1,ym)) =
deg(z o ym))+1 = deg(z)+1 =1y deg(zo)+m'+1, and o(x) = o(z o y,,), and the
claim is by (ii) and the I.H. O

We consider L(zgo1 (1,y1)...01(1,¥m)) ©Yms1 an expression in normal form, if zq is
either ¢, or of the form (1,27) or (v, v). In the third case, we want that ~ is largest
possible: (w4w, qo) o1 (1, qo) is in normal form, but (w, qy) o1 (1, (w, o)) is not. This
is why we additionally ask for z(* y; € @) in this case.

89

Definition I11.4.3. L(z0;...01Zp) 0 Yms1 € Q is an expression in (long) normal
form, if either m =0 and xo = q1 V o = (1,27) V (xg = (7,v) Azg *y1 € Q), or
m>1and 1 = (L,y1), .., Tm = (1,ym) and

(i) xg=q1 orxzog=(1,27), or

(i1) xo = (7,v) and xo *y; € Q.
We write z =xp L(xg 01 ... 01 Zp) © Ymer if 2 = L(xg 01 ... 01 Tp,) © Ype1 and

L(zgo1...01Tp) 0 Yme1 S an expression in normal form.

When we introduced normal forms in the previous chapter, we did not yet have the
partial function oy at hand. Thus, we considered (1, (7,q)) and (1, (a+1,qo)) as
normal forms. Now, we have (1, (v, q0)) =~r (7,) 01 (1, @) and (1, (a+1,q)) =nr

q1 01 (1, (@, o))
Each name z € @* has a unique normal form.

Lemma I11.4.4. If deg(z) = m+1, then there are unique xo, ..., Ty, € Q, so that
x=np L(xgo1...01 Tp) O Y-

Proof By induction on m. If deg(z) = 1, then either (z)o = (a+1,q0) = ¢1 © (@, qo),
(x)o = (145,yy), or ()0 = (7, o). Therefore, if © = (x)q * z, then either x = ¢ oy
for y; := (o, qo) * 2z, or x = (1,9,) oyy for y1 := (B,yy) * 2z, or x = (7,yo) * y1 for
y1 := 2. Further, these representations are unique.

If deg(z) = m+2 and © = (x) * 2, then (z)g is of the form (a+1,y), and x =
(1,9) © Ymao for ymio := (a,y) % z, where deg(y) = m+1. Note that y and y,,10
are uniquely determined. By I.LH., we have y =yp L(zg 01 1 01 ... 01) © Y1
Then, (1,y) = (1, L(zg 01 1 01 ... 01 Tp) © Yma1) = L(zg 01 ... 01) 01 (1, Yms1)s
and z =np (L(xg o1 ...01 Tpm) 01 (1, Yma1)) © Ymao. The conditions on zy and x; are
also immediate by the I.H. O

The following observations allow us to define short normal forms.
Lemma I11.4.5. Let x =yp L(xg 01 ...01 Tp) © Ymy1 and k < m.

(i) zx := L(xg oy ...01 zx) is in normal form and deg(zx) := k+1.

(1) If 0 <n <m, then x = L(xg 01 ... 01 Trn—n) % L(Tm—ns1 01 .. 01 Tpn) © Ys1-
Proof (i) By Definition I11.4.3 and Lemma II1.4.2 (iii). (ii) By Corollary II1.1.11. O
Definition I11.4.6. Let © =y L(xg01...01 %) 0 Ymy1 (so deg(x) =m—+1). Then,
we write for each n < deg(z),

L =NF Y On %,
ify = L(xgoy...01%p_p) and 2 = L(Tp_pnt101...01 L) OYme1. We then call yo, z

the short normal form of x. Further, we call y a simple name of degree m—n+1.

90

For the following discussion let # =yp L(z 01 ... 01 Zy) © Tmi1, so deg(x) = m+1.
Note that x =nF yog 2 is always available; then y = L(zgo1...012,,) and 2z = zp,41.
If deg(x) > 1, then we most often use the short normal form = =ng yo,,_1 2; in this
case, y = L(xgo1x1) is a simple name of degree two, and z = L(2501...01 %) 0Ym1-
Further, if x =yp y 0, 2, then y = x is a simple name of degree one.

Lemma II1.4.7. If deg(z) = m+1 and n < m, then there exists unique names
Y,z € Q, y simple with deg(y) = m—n+1, so that x =xp y o, 2.

Proof By Definition of the short normal form and since the (long) normal form is
unique. O

The following helps to find short normal forms.
Lemma I11.4.8. Let x € Q*.
(i) If t =np Yy o, z, then x o2 =xpyo, (z02).
(i) If © =NF yon 2, then (1,2) =nF y onyq (1, 2).
(111) If (1,v) =NF Yy on 2, then (B+1,v) =nF y o, ((5,v) 0 2).

Proof Let x =np L(xg 01 ...01) 0 Tyyq. Straightforward computation verifies the
claims. (i) Note that xoz' = L(zgoy...01%y,)0 (2yme102") by Lemma IT1.1.8. (ii) We
have (1,z) =np L(xg01...01 2501 (1, 2m41)), and (1,2) = (1,50, 2) = yonms1 (1, 2),
and z = L(Zp—n+101. - .01)0Zme1. Thus, (1,2) = L(Zy_pni101. - 012,01 (1, Zpy1))-
(iii) (B+1,v) = (1,v) o (B, v), so the claim is by (i). O

Example I11.4.9. Consider the name x = (1,(1,y)), where y := ((1,q1), (1,¢%)).
We have H, = It(it) o It*(it) and Op, iff (p2p1)(p3p1), and

(i) H, = H?[It,it] = (Ity(Its) o I£5(1t3), It, it).

(ii) Op, iff Op(;,yp1 iff Op; pap1 iff Op; *p1 iff (paps)(Pip1)-

It is readily checked that the (long) normal form and the short normal form look as
follows:

T =NF L(Ql ©1¢1°1 (LZ) 01 C_Il) =NF 42 92 (1, (LZ)); where z := (LQ%)-

Nezt, we have a glance at what will be instances of the Lemmas I11.2.9, I11.6.11 and
II1.6.10. These results state that the (long) normal form goes well with functionals
and operations, and the short normal form goes well with operations in the following
sense:

(i) Hy = (HX3, H** H . H,).

Q1T T (L2 @

91

(ii) Op, iff Op;’ o Op}?o Op(;.., © Op,, -

(iii) Op, iff Op.? 0 Op (1.0))

Let us verify these claims. First, observe that H, = (It%,it) and le = (I3, It, it),
Op, iff p3p1 and Opy .y iff P3p1. So Hiyzy = (I3, Its, It,it), and Opy 1.y iff Pip1-

(i) Indeed we have that

(HI HY? HF H,) = (Ity, Its, (I3, Its, It), it) =

(Ity(Its), (I3 (It3), It), it) = (Ity(Its) o 12 (It), It, it) = H,.

(i) OP;Z?) © OP;? © Opaz) o Opy, iff pa o p3 o (Pip2) o p1 iff (Pap3)(pip1) iff Op,.

(iii) Opgy’ © Opy 1.2y Uff (Pap3) © (pip1) iff Op,.

With functionals, the short normal form is not very helpful. H, is not easily recon-
structed from H}? = Ity(Its) and (It3, Its, It,it), as one would have to look inside the

type-2 functional (It], Its, It, it).

We use the (unique) normal form of a name x € Q* to define an approximation
z[a], and if deg(z) > 1 another approximation z(«). The definition is by recursion
on the level. For clarity, we list the case where deg(z) = 1 separately.

Definition I11.4.10. Let x € Q*. If deg(x) = 1, then either

(i) x =np q1 0 2 and z]a] := z,

(i) x =nF (7,v) 0 z and z[a] := (1+a,v) o z if a < 7y, and else x|a] := x,
(1) =y (1,y7) 0z and x[a] := (1,y[a]) o z
And if deg(x) = m > 1, then we have one of the following cases.

(i) x =nr L(g101(1,y2)01...01(1,ym)) oz, z[a] := L((1+a,yz)01...01(1,ym)) oz
and z(a) = x[a]+1,

(it) x =nr L((7v,y1)01(L,42) . .01(L, ym))0z, z[a] := L((7v, y1)[a]or. . .o1(1, ym)) oz
and z(a) := L((1+a,w) o1 (1,y3) 01 ... 01 (1,ym)) 0 2 for w:= ((7,y1) * y2)~.

(i) © =nr L((1,y1)01(1,y2) - . .o1(1,ym))oz, za] := L((1, y1[a])o1. . .o1(1, ym))oz
and z(a) := L((14+a,w) o1 (1,y3) 01 ... 01 (1, ym)) 0 z for w:= ((1,y7) * y2)~.

Below, we list some first properties of these approximations.

92

Lemma I11.4.11. Let x € Q*. Then we have the following.
(i) If © =nF Yy o 2, then z|a] = yla] oy, z, and if further deg(y) > 1, then
z(a) = y(a) oy, 2.

(11) If deg(x) = m+2, then deg(z(a)) = m+1, and if further o(x) = 1, then
z(a) = q o z|a].

Proof (i) By Lemma II1.4.5 (iii). (ii) The first part is immediate by Lemma II1.4.5
(iii). For the second part note that if deg(z) = m+2 and o(z) = 1, then z =xnp
(1,y4+1) oy, 2, and z[a] = (1,y) o, 2z and z(a) = (g1 0 (1,¥y)) om 2 =L.111.1.8= @1 Om
((1,y) o 2) = x[a]. O

When dealing with approximations, also the following simple properties are useful.
Lemma II1.4.12. For each z € Q* and allv € Q* U P,
(i) (z4+1)[a] = z, (1,2+1)[e] = (1+a, z) and (1,v+1)(a) = (14, v).
(i1) if © = (x)g xy, then x[a] = (x)o[a] *y and if deg(z) > 1, z(a) := (z)o() x y,
(iir) (B+1,v)[a] := (L v)[a] o (B,v), and (B+1, 2)() := (1, 2)(a) o (B,y).
(iv) (1,v)[a] = (1,v]a]) if v # y+1 (for some y € Q).

Proof (i)-(iii) is immediate by Definition I11.4.6 and Lemma II1.4.8. (iv) If v = 27,
this is by Definition I11.4.10. Else, x = v € Q). Say, © =nr yoz. By Lemma I11.4.11
(ii), z[a] =nF yla] 0 z. Then, (1,v) =xr y o1 (1, 2), and (1,v)[a] = yla] o (1,2) =
(1, ylaf o 2) = (1, z[e]) = (1, v]a]). 0
If deg(x) = m+2, then x =yp y o, z for some simple name of degree two, and
zla] = yla] oy, z and z() = y(a) o, 2. Therefore, we observe the following.

Lemma I11.4.13. Assume that x is a simple name with deg(x) = m+2. Then,

(1) If o(z) € Lim(Q2), then deg(xz(a)) = m+1, o(x(0)) = o(z), z(0)[a] = z[a],
o(z(v)) =~ and z(y)[a] = z(a) for a <. Further, (0) o () = x(a+1).

(i1) If o(x) = 1, then deg(z[y]) = 1, o(z[v]) = v and z[y][a] = z[a] for a < 7.
Further, (0] o z[a] = x[a+1].

Also the following technical results are obtained completely analogously to the case
Ny = 2.

Lemma II1.4.14. If deg(z) =1 and o(x) =+, then x = sup_{z[a] : o < 7}.

Lemma II1.4.15. If x € Q with deg(x) > 1, and qo # y € Q is not a successor,
then

93

(1) if o(x) =1, then x = sup_{z[a] < z:a < Q} =sup_{z(a) : a < Q},
(i1) if o(x) =7, then x(0) = sup_{z[a] : & <}, and x = sup_{z(a) : @ < Q},
(111) y=sup_rn{yla] <y:a < Q}.

Lemma I11.4.16. Assume that x € Q* and r oy € QF, and let

5 1= {5: x=(v,v) A (y)o = (0,v),

0: otherwise.

Then, for each o, z[a] oy = (x o y)[do+a], and o(x oy) = dy+o(z).

Lemma I11.4.17. Assume that x € Q* with deg(x) > 1. If x oy € Q*, then we
have that z(a) oy = (z o y)(a) and o(x o y) = o(x).

Finally, we extend the relations ~» and ~* to (). This is straightforward.

Definition I11.4.18. All all z,y € Q, y ~ z :& (Ja < o(z))(y = z[a]). Further,
~* is the transitive closure of ~, and ~»} is reflexive closure of ~*.

Lemma I11.4.19.
(i) (Q,~*) is well-founded.
(1) If o < x € Q, then gy ~"* x.
(111) If y ~* x, then either y ~ x or y ~* z[a] ~ x for some o < o(x).
(iv) Ifyxz€Q andx xz € Q, then y ~* = y* 2z ~" T % z.
(v) If 1 < a < B, then (a,v) ~* (5,v).
(vi) If y ~* x, then (1,y) ~* (1,x).
(vii) If a < f < o(x) = 7, then z]a] ~* x[f].
(viii) If y ~* x and z ~* x, then y~* 2z V y =2 V z~"y.
(ix) If yo,, z € Q and x o, z € Q, then y ~* x = y o, z~*xoz.
() Gm ~* Gmi1, and if deg(x) = m+1, then g1 ~F x (where g1 == (1,qm)),
(xi) If deg(z) > 1 and B < «, then z(B) ~* x(«a).
(xii) Wo«(x).

94

Proof We just show (ix) and (x), as the other claims are shown very similar to the
corresponding claims of Lemma I1.2.16. (ix) By induction on m. The case m = 0 is
shown as the corresponding claims of Lemma 11.2.16. To show the induction step,
assume y ~* x, xo,,1 2 € (Q and that the claim holds for m. As xo,,,1 2 is defined,
z=(1,2")%2". By LH., y o,, 2 ~* x o, 2/, thus (1,y 0, 2') ~* (1,2 0,,, 2') by (vi),
and the claim follows by the case m = 0. (x) By L.H. on m, one readily obtains
that ¢ni1[0] = gm. If deg(z) = m+1, then x =yp L(x1 01 ... 01 Tyi1) © Tppyo-
AS Gmi1 = L(q1 01 ... 01 1), the claim is by (ix). (xi) By Lemma II1.4.11 and
(ix), it suffices to show the claim for deg(z) = 2, which is done analogously to the
corresponding case of Lemma I1.2.16. O

As in the previous chapter, the map -7 : Q@ — Q¥ assigns to each €) a name
! € Q| so that Op, corresponds to H,x.

Definition 111.4.20. We define corr : Q — {0,1} and -1 : Q — QF as follows.
(i) corr(z) :=1 if Jy,n[x = y+n Adeg(y) = 1 Ao(y) € Lim(Q2)]; else corr(x) := 0.
(it) (q0)" = qo, (@, y™)" = (a,y™) and (o, y)" = (a, y+corr(y)),

(i) if k> 1, then (x1,...,xx)" = (x ... xl).

We also write H(z) for xf.

Note that corr(z) = corr(z+1) and that (z+1)# = 2 +1. To avoid case distinctions,
we extend corr by letting corr(z~) := 1. Note that (a,v)? = (o, (v+corr(v))?):
(a,y) = (a,y") = (a, (y~+1))), and further, (o, y)? = (o, (y7+corr(y)) =
(cr, (y-+corr(y))™).

Below, we verify the indeed - : Q — Q* .

Lemma I11.4.21. For alln and all v € Q,, v € Q7 and x < y = 2 < yH.

Proof We show the claim by induction on n. If z,y € @)1, then both claims are obvi-
ous. Now assume that both claims hold for n > 0, and let = = ((ay,v1), .. ., (ak, vk))
and y = ((B1,w1),...,(B,w)) with z,y € Qn+1 and * < y. We show that
" e QI and 2 < y”. Note that if 2~ € P, then by Lemma I11.4.2, deg(z) = 1
and o(x) € Lim(Q2), therefore (w,q) < x and corr(x) = 1. Further, corr(z) =
corr(z+1). Hence, if v,w € @, U P,, with v < w, then v+corr(v) < w4corr(w). As
v+corr(v), w+corr(w) € @Q,, the LH. yields (v+corr(v))? < (w+corr(w)). By the
initial remark, (a;,v;)" = (a, (v;+corr(v;)). Thus, 2 € QX . And as z < y,
either z is either an initial segment of y, and then z*! is an initial segment of y**, or
there is a first position form the right where x and y differ, say (a;,v;) < (8, w;).
By the above, also (a;,v;)® < (8, w;)¥, which is now the first position form the
right where z/ and y! differ, thus 2% <, y¥. O

95

Lemma I11.4.22. (zoy)? =z oy,

Proof By definition, (z * y)f = 2 x yf. As further, for z := v+corr(v), we have
((o,v) o (B,0) = (B+a, ") = (a,2") o (8,2") = (o,v) o (8,0)", the claim

follows. O

Lemma I11.4.23.

(i) deg(x) < deg(z™),

(i) if deg(x) = 1, then o(z) = o(a™),
(iii) if deg(x) > 1, then o(z") = 1.

Proof All claims are shown by induction on Iv(z). (i) As 2% = ¢y implies x = o,
the claim holds if deg(x) < 1. And if deg(x) > 1, we have that x = (a+1,y) * z,
and so deg(z) = deg(y)+1 and deg(x) = deg(y+corr(y))+1. If deg(y) = 1, then
the claim holds as deg(y”+corr(y)) > 1, and if deg(y) > 1, then corr(y) = 0, and
deg(y) < deg(y™) by LH., so deg(z) < deg(z").

(ii) If deg(z) =1, x is ofthe form yo := (1,q0)oz or yy := (y,v)ozorys := (1,27)0z
Using Lemma III.4.22, we see that o(y) = o(yll) = 1 and o(y;) = o(y!) = v. With
Yo, note that z € P. By Lemma I11.4.2, deg(z) = 1, so o(y2) = o(2) =1 o(z") =

o(ys).

(iii) If deg(x) = 2, it suffices, by the above Lemma, to check the claim for simple
names of degree two, names of the form (1, y+1), (1, (v,v)) and (1, (6+1,y~)), which
is straightforward. And if deg(z) > 2, then x is of the form (1,y) o z for deg(y) > 2,
then the claim is by I.H. O

Finally, we lift Lemma 11.2.19.

Lemma 111.4.24. Let x € Q.
(i) If deg(x) = 1 and o(x) = v, then 2% [a] ~7* (z[a])? ~* 2 [a+1].
(ii) If deg(x) = m+2, then xf[a] ~7 (z(a))? ~* 2Ha+1].

Proof Again, we just show the first claim of (ii). Let * =np y 0,, 2. Then y
is a simple name of degree two, and by Lemma I11.4.22 zf[a] = y*[a] o,, 2 and
H(z(a)) = H(y(a)) oy 2. By Lemma I11.4.19 (ix), it is thus enough to check
the claim for simple names of degree two. To do so, recall for each y, (y+1)7 =
y7+1 and corr(y) = corr(y) + 1. Hence, (1,y+1)"[a] = (1,y"+corr(y)+1)[a] =
(14a, y+corr(y)) = (1+a,y)? = H(z[a]), and further, for for y = (y,v) and y =
(B+1,27), corr(y) = 1, y~ € P, (I+a,y™) = (1+a,y7)", and (1,y)(e) = (1o, y 7).
The verification of the claim is now easily done.

96

(1) (L y+1)"[o] = H((1,y+1)[e]) ~* H((1,y+1)[o]+1) = H((1, y+1)(a)).

(ii) If y = (7,v) or y = (B+1,27), then (1,y)"[a] = (1,y+1)[a] = (1+a, y!) =
(I+a,y™)" = H((1,y)(a)).
O

II1.5 Properties of functionals (H, : x € Q)

In this section, we show that the properties of (H, : z € Qi) shown in Section I1.3
extend to the general case. Lemma II1.5.7 (as well as Definition II1.5.5 and Lemma
I11.5.6) is only used when we build a notation system (cf. Chapter IV). Again, it is
assumed that f € Q@ and for x € Q¥, f, = H,(f). Also recall that we identify a
normal function with its range and that f' = {a: f(a) = a}.

Lemma IIL.5.1. Ify ~* 2 € Qf, then we have for each n, H;™ C Hym.

Proof By induction along ~»*. If z = y, the claim holds trivially, hence assume that
y ~* x. We do a case distinction on the form of x.

(i) y~* o =np (1,2")0z. If 2’ = qo, then y ~} z and by LH. H}™ C H™. Thus,
Him"=lt, .o H" C H, C H,. If 2/ = ¢, then y ~ (1,q0) * z = z[0]. Using
the L.H. and that It o(It,41) C It,1, H™ C H;[g} C H" If 2" # g and
2’ # q, then there is an a < o(x), so that y ~ z[a] = (1,2'[a]) * z. By (i),
HLD € B, and so Him = B (i) 0 HET COH ™ (16,00) o
Hi" = H? Cro Hy™.

(ii) y ~* x =np (7,2')*2. There is an a < o(x), so that y ~* z[a] = (1+a«,2’)oz.
As H;<"+1>(|tnl+1) e QW (H;W“)(nnﬂl))v C (H" D (It,41))*, and so
Him = (H " (It0))7 0 HE™ C (S (1t 0)) 1+ 0 HE™ Cryp ™

|

Lemma II1.5.2. Ifx € Q”, deg(x) > 1 and o(x) = 1, then fy(a) = fop+a)(0).

Proof Assume that deg(z) = m+2. As z € QF and o(z) = 1, we have that
x =nr L((1,q0) o1 (1,21) 01 ... 01 (1,Zp11)) © Typaa. Using Corollary I11.1.11, we
see that © = (1,21+1) 0 z for z := L((1,23) 01 ... 01 (1, Z1y11)) © Tppya, 80 x[1+a] =
(24a,z1) 0z = ((24a,z1) 01 ... 01 (1, Zy11)) © Typyo. By Lemma I11.2.9,
m m—1
fm(a) - ((ltm+2’ H(—ii,ml)’ H(—g,(m))’ B H!)) © HmM+2>[f’ a]

(L-’Em+1

m «a m—1
- (((H('ii7x1))2+ ’ H(—;(u’vz))’ Y H(—li?merl)) © me”)[f’ 0]

— ((H"Fm ’H“F(m—l)’ el H+O)) o me+2)[f’ 0] — fx[l—l—a}(o)-

(24a,x1) (1,2) Lzt

97

Lemma I11.5.3. For each x € Q" with o(x) =, we have
(i) if € <, then fues1) C fafg+1,
(i) if § <, then foera) C frgs

(7;7;7;) fe= m§<»y fx[ﬂ = m§<»y :::[f]'

Proof (i) x = L((y,x0)01...01&m)02. So z[+1] = L(q1 o (14+&,20) 01...01) 0 2.
Thus, H, Itm+2 0 H(14¢ o) [JCito Huteagl | = Hujgra-

(1
(ii) By (i), faje1) € it(fa[g). Since sh is monotone (cf. Lemma 1.3.17), sh(fye41)) C
(Sh o it)(fx[g]) = f;[g] And as it C sh (Cf Lemma 1.3.15), fx[§+2] - Sh(fx[§+1})- (iii) If

o(x) =, then x =xp L((7,y) o1 (1,y1) 01...01 (1, 4m)) © Zpma1. So the first equality
follows by Lemma I11.2.9 and the definition of iteration of functionals. The second
follows using (ii) and that f' C f (so fajat2 C f;[a} C fala) O

Lemma II1.5.4. For each x € QY and each y € QT with o(y) = do+, we have
(1) fo(y) =sup{/fa(§) : £ <},

(ii) f,(0) = sup{so(§) : & < v} and f,(a+1) = sup{sy,)+1(§) : & < v}, where
s5(0) = B+1, s5(6+1) == fyiaore (s5(8)) and sp(7) = 5UP§<7’36(§)
Proof Completely analogous to the proof of Lemma I1.3.5. O

The ordinals that occur in the name x are called the components of x, and are
defined recursively as follows. Further, |z| is the largest component of x.

Definition IIL.5.5. k(qy) = 0, if z = ((«,y)), then k(z) = {a} U k(y), and
k({z1,...,xn)) = k(z1) U...Uk(z,). And |z| := max(k(x)), where max() := —1
(where —1 is below every ordinal, and (—1)+1:=0).

The following is readily observed.

Lemma II1.5.6. For all z € Q, 0 < «, and each f € QO f.(a) > £.(0) > |z|.
For later reference, we also note the following.

Lemma IIL5.7. If + <" y and |z| <~ € f}, then vy € f,.

Proof Fix z and assume that x < y and |z| < v € fy- We show the claim by
induction on y w.r.t. the ordering (Qf,<). If x = y, the claim holds trivially,
and if z <" y, we do a case distinction on the form of 3. Thereby, we use that for

z€ Q" and & <, 2[¢] = (1)) I¢]-

98

(i) y = 2+1. Asx < y = z+1, we have x <# 2. Further, with f.., = it(f.) C
fz, also fl; C f. by Lemma 1.3.17. Therefore, v € f;, C f.. By LH., the
claim holds for z, thus v € fI.

(ii) deg(y) > 1 and o(y) = 1. As z < y and |z| < v, there is a 8 < ~ so that

x <" y[A] (cf. Lemma II1.4.15). Since v = f,(7) = fy111(0) € Neo,y fuigs We
obtain y € fys+2) € fy(5 by Lemma I11.5.3 (ii). Applying the by L.H to y[5+2]
yields v € f1.

(iii) deg(y) = m+1 and o(y) =+'. Then y = z[v'] for some z, and v € f, C f.f,) =
Ne<y fo161 = Ne<y fog Py Lemma II15.3 (iii). Further, by Lemma I11.4.15,
there is a 3 < 7/ so that x < z[3]. Applying the LH. to f,5 yields v € f1.

O

“About equal”

The following interlude mentions some properties of the functionals H™ that we
only use for motivational purposes. For instance, we treat 14¢qo as g9, although
one could regard 1+¢, as a name of It(it) o it which is different from It(it), since
(It(it) o it)(f,n) = it®™"*(f,0) = (It(it)(f, n+1). However, It(it) o it and It(it) are
“about equal” in the following sense.

Definition I11.5.8. Let m € N. For each f € QO (m+f)(a) := f(m+a), and if
[F,F, f] € Q=Y then (m+F)|[F, f,a] == F[F, f,m+a].

Now, we say that F,G € QU+t are “about equal” if there is an m € N so that
F<G<m+F orG<F <ntq.

Note that “about equal” is an equivalence relation.

Next, we show that if deg(z) > 1, then H, and (H, o it) are “about equal”. We
start with two auxiliary claims. Recall that z[a] ~7 = and thus fy < fs.

Lemma IIL.5.9. For each v € Q, HF™ is <-monotone. That is if F,G € Q™
with F < G, then H}™(F) < HI™(G).

Proof An easy induction on the build up of H;™. O

Lemma II1.5.10. For each x € Q, Hyoit < H,. .

Proof By induction on ~»*. The claim is trivial for x = ¢9. If + = y+1, then
Hyoit=(toHy)oit=ito(H,oit) <;yitoH,. If deg(z) =1 and o(x) =,
then H,oit = ma<,y Hx[a] oit = ﬂa<,y Hx[a] as Hm[a} D) Hm[a} oit D Hm[a} o Hx[a]. And
if deg(z) > 1a then (H:c o It)(.fv Oé) = (Hac[l—i-a] o It)(f> 0) SIH ('t © Hm[l—i—a])(.fv O) S
(ito H,)(f,). O

99

Lemma II1.5.11. If deg(z) > 1, then H, oit < 1+H,.

Proof Using Lemmas I111.5.10,I11.5.9 and I11.5.2, we readily see that (H, oit, f,a) =
(Hafita) 0 it, £,0) < (it © Hypiga)s £,0) = (Hepa)+1: f50) < (Hpptaty, ,0) =
(1+H,, f,a). 0O

Lemma I11.5.12. If (w, qo) < z, then H, and H, oit are “about equal”.

Proof By the above lemma and since with H, ;) oit = H(,), also H 0o H(, ;)0 H oit =
H/OH(%:C)OHZ. (]

Lemma IIL5.13. Let z := (z oy (1,y)) € Q”. Then, H" and H+(m+1)(H(J;7Z))
are “about equal”, where x* := x+corr(x) (cf. Definition I11.4.20).

Proof Let z = x 0 (1,y) = (1,z0y). We consider the following cases. If x = (n, qo),
then corr(z) = 0 and corr(y) = corr(z oy), so H}" = H;(m+1)(Ha7;)H). And if

= (v,2") * z4n or if deg(z) > 1, then corr(x) = corr(z o y), so depending on
corr(y), H" is either HTm*1),. (H(er)H) r (HY o |tm+1)(HJfZ)H). In both

(
cases, the clalm follows by Lemma I11.5.12. O

Corollary IT1.5.14. Assume that z = L(x o1 (1,y0)01...01(1,ym)). Then we have

that H} and (H,. (min+1) H((in;gl . H+")H) are “about equal”.

Proof By induction on m. For m = 0 the claim is by Lemma II[.5.13. Now we
assume that the claim holds for m and we prove it for m+1. Thereto, we let
Zm = L(z o1 (1,y0) 01 ...,01...01(1,9m)), so that z = (2, 01 (1, Yms1)). By Lemma
I11.5.13, and since deg(z,) > 1 and so 2}, = z/!, H ' and H;E"H)(H(J;Z)H) are
“about equal”. By [L.H., " ’

+(n+1) (m+n+2) (m+n+1) +(n+1)
H y and (H - JHey gy o Hipy, o i)

are “about equal”. Applying both sides to H " (Lym » yields the claim. O
The point of this corollary is the following. For x € Q’{, Prvo(z) states that

Op(1,) proves Hyyn = Op, 0 Op(y) proves (Hyw, Heygpyn).

We will lift this definition with the idea that “Op+(m+1) proves Hy (m+1)» expresses
that if 2 = L(z oy (1,40) o1 ... 01 (1,4,)) and for each i < m, “Op ™" proves
Y Y) Pay) P
H(Jr(m)_’)”, then “Opfm*Y o Op(1 o) -+ © Opzrl?ym) proves (H;(mﬂ), o Ha?ym))”.
Since Opm St ooplm (Lyo) * - © Op(l Y 1ff Opz, and we also have that Op, proves H

H,u and (H7 ™ . H(Jg’oym)) should be “about equal”.

100

ITI.6 The operations (Op, : x € Q}‘VO)

As in the case Ny = 2, it is henceforth assumed that we have primitive recursive
relations that are formalized versions of (@, <), ~», ~* and primitive recursive
functions formalizing deg(x), o and . To emphasis that we now work within a
formal theory, we write a <1 8 for a < . The other function- and relation symbols
are overloaded.

IT1.6.1 The proper definition of (Op, : v € Q%)

We extend the definition of the Ly(P)-formula ¢(u) given in Definition 11.4.1 in an
obvious way, and show that the resulting formula indeed represents the operations
Op,. However, since there is no Ly(P)-formula 9(u) so that for all n, Op?_; < pni1,
all the following is relative to some fixed Ny € N, as we use the Ly(P)-formula

IV (u) = u < Ny A /\ (u=n+1—¢p,,,)
n<Ng

to represent for each 1 < n < N, the basic operation p, by ¢™°(m), where ¢, ., is
as fixed in Definition 1.2.15. Consequently, we can only represent operations with
names from Q.

Now, we supplement the proper definition of Op/™ (z € QN,—_n), Which supersedes

the provisional Definition I1.1.12. Again, /"~ 1€1~1Q1.9(y,) is the formula defined
in the Appendix (Theorem A.1.2 and Definition A.1.11).

Definition II1.6.1. For each n < Ny, we let f™"(y,z) := deg(x)+n, and

ot (u) = (pﬁ”,v*[szofmv[QNOfn,ﬁNO(u).

Then, Op;™(T) := Opf ™" (T), Op,(T) := OpZ " (T) and Op} (T) := Op¢" (T). Fur-
ther, we define T}" .= (x =qy AT) V (z # qo A Op;"(T).

The following is again essentially an instance of the Representation Theorem. The
addition of n < Ny in (i) of the lemma below is by the definition of ¥"°(u), as
0~*x ANy <nA ﬁgﬁU(deg(x)+n) < L. Also note that if x € @,,, then Wo_(z)

if WOM* [Qn (I)

Lemma II1.6.2. The map T — Op;™(T) is an operation that satisfies the following
properties (provable in T€).

i Op+"'T' - n< NoANO~*zAx e Qy._,, N\Wo_+(z),
T No—n
(ZZ) Op;;n@pn-i-l;

101

(i) if ¢ ~* x and deg(x) = m+1, then Op," < (Vo < 0(2))(Pmint1 © Op:[z]).

From a technical point of view, we only need the operations Op;" for = € Q% _,-
However, in order to compare the proper with the provisional definition, we also
supplement a proper definition of Op;,(m’") for each ¥y~ € Pyy_n.

Definition II1.6.3. For each 0 < m <n and y~ € Pyy_p,
Op, ™™ = (Vo <1 7)pm+10p; -

Since g (T) is ML, +n+2, the following is readily observed.

Lemma III1.6.4. Let y~ € P and x € Q}y, with deg(x) = m+1. Then,

(1) for all0 < k <mn, Op;r,(k’")(-T') is I},

(i) for all n, Op:”(v) is I} o

In the sequel, we drop the subscript Ny. It is assumed to be big enough.

I11.6.2 Properties of (Op, : z € Q*)

The next couple of lemmas are all shown using Theorem 1.4.2. For all these proofs,
we let A(x) express the claim, and we proceed exactly as described in Subsection
I1.4.2 (cf. page 55).

Lemma II1.6.5. The following is provable in T¢. For all x,y € Q,

i) if y~*x, then TI" — pn+1T . in particular, if x € Q*, then Op™ = ppi1.
Y z

(it) if voy € QF, then T} Op+n(T+")

Toy
(iii) if v € Q, OP}y o) < O Py

Proof (i) Let A(z) := y ~* z € Q*ATH" = p, +1'T'+" If z = y+1, then z[0] = y, and
the claim is by definition of T". Otherwise, there is an a < o(x) so that y = z[a] or
y ~* z[al. In the first case, T+" — pn+1T+" by definition of T3 and since, in any

case, Pdeg(z)+n = Pn+1. And if z[a] ~»* z, then the I.H. yields for each X, T;[Z] X —
pl-T';” I X. Since p,y1 is an operation, we obtain pn+1'T':[’;} — p: +1T;”. As T:" iff
(V€ <0 0(2))Pacg(z)+n T 4jg A0d Paeg(@)+n = Pn+1, We have also T — p, T, By
Lemma 1.2.12, 2, T;/™ = pnga T, ™, hence T;™ — pnyq T, follows.

(ii) Let A(z) == qo £ xAzoy € QF — [T « Op+"(T+”)]. If x or y is qo,

zoy
then the claim is trivial, so assume otherwise. Next, we let m so that m+1 =

102

deg(r) = deg(x 0y), and dy so that o(z oy) = dp+o(x) and thus by Lemma II1.4.16,
(Vo < o())((@ 0 9)[a] = z[o] o). Then, T11 & (Vo <1 o(z 0 y)pmar (T2 1))
Hence, T — (Va < o(x))pmH('T'x[a]oy). For each o < o(x) and each X, the I.H.

Toy

yields Opm[a Oy(TJF") X < Op+" (T*")[X Since p,,41 1S an operation, we obtain

z[a]

(Pms1 © Opx[a Oy)(T*") iff (py © Opx[a)('T';r"). Now Tin — Op+”(T+") readily

roy
follows. For the converse direction, observe that (V& < fy)pmHOp;[Z (T*") yields
(Va < 7)pm+1(T(£y J5oa])- Using (ii) yields (V€ < 50+7)pm+1(Taoy)[6O+a}).
(iii) Similar, using that deg(1,z) = deg(z)+1 and o(1,z) = o(x). O

The next Lemma generalizes Lemma [.2.14.

Lemma II1.6.6. For each open I}, ,-sentence -T",
T2 e @ AOp " (T)AT — Opf"™)(T").

Proof Let T’ be I, and A(z) :== x € Q* A Op; ™ (T)y AT — Opf™+)(T).
Trivially, we have A(qp), and if z = ¢y, then by Lemma [.2.14, pn+2(-T') AT yields
Pni2(T'). Next, let ¢; # = € Q* with deg(z) = m~+1, and assume OpF "D (T) A T/
and (Vy ~* x)a(y). By definition, OpF ™ V(T) iff (Vo <1 o(x))pernJrgOpm[awrl (T).

Hence for each o <1 0(%), Prsni2(Op T (T)) AT, thus pm+n+2(0p+("+1 (TYAT),

z[a]

again by Lemma [.2.14. Further, for o < o(x), z[a] ~* xz, thus a(z[a]) that is,

VX[(Op (T A THIX — op;j("“ (T1X].

z[a]

We obtain pyynia(Op ™ (T) A T = praniz(Op 7 (T7) for each o <t o(x),

z[a] z[a]

SINCE Prsnse i an operation. Hence, Op™(T’). Thus, we have A(z). O

Lemma II1.6.7. Let (1,y) € Q be a simple name of degree m+2. Then,

(i) Op; """ = Op(y,
(i) Oer("Jr1 < Op () Put1-

Proof (i) Op;("ﬂ)(-f') implies pny1(T) which is I}, ,, thus by the above lemma,
Oer(”Jrl (T) implies Op;”pnﬂ(-f'), or in other words, Op+(”+1) = Op?rl’fy). (ii)
Oer("Jr1 & Op;"pnﬂ, so (i) implies Op) Pn+1. For the converse direction, note
that Op(1 Pni1 < Oer(”Jrl pZ,,. As pn+2 = ppsr1 by Lemma 1.2.12, we further

obtain that Opy +H(n+1) an = Oer(”Jrl Pni1, and the claim is by (i). O

103

Corollary II1.6.8. For each open I} ,-sentence T,
T FyeQ AOp|, (T)/\T’—)Op(ly(.

Proof By Lemma II1.6.5 (iii), Op s Opy ot 1. Hence, Op(ly (T) AT yields
Op;("ﬂ)(pnﬂ(f)) AT, which by Lemma II1.6.6 implies Op;r(”Jrl (T’), which in turn
yields Op (T’) by Lemma II1.6.7. O

The proofs of the next few results for a change, do not make (direct) use of Theorem
[.4.2.

Lemma I11.6.9. The following is provable in T€.
(Z) Zfl'_ c P, then Op(l,x) = Op(le)
(i) Op2 ., & Op; ™V o Op iy

Proof (i) Assume that deg(x) = m+1. Since z~ € P, we have o(x) = 7, in particular,
x is not of the form y—l—l, and therefore, (1,z)[a] = (1,27)[a]. Hence Opg ,) &
(Voo < 0(2))Prm420P (1 pyja) = (Y < 0(2))Pms10P(o)) € OPa—)- (i) If ¥ = qo,
then Op (o (L)) & Op(lm & Opftp, 1 & 0pfntl o Op+" . and if gy ~* v,
then we have Op(,",.,) < Op; Vg < Oer(”Jr1 oOp, "*p; < Oer(”Jr1 oOp{,",,

O

Below, we present internal variants of Lemma II1.3.9 (ii) and Corollary III1.3.11.
With the above properties of Op, at hand, the proofs are almost literally the same.

Lemma IT1.6.10. If g # 2 and o,, y € Q, then Op! & Op ™™ o Opi™ if

y # qo, and Op}” Ly Op+(m+" , otherwise.

Lemma II1.6.11. T¢ proves: if x = L(yg 01 ...01 Ym) © 2 € QF, then,
Op;" & (Op, "™ 0 Op; "+ Vo ... 00p/") 0 Op ™"
Our next goal is to lift Lemma 11.4.9 to the general case.

Lemma II1.6.12. Assume that x is a simple name of degree two. Then,

(M') Opm(O oopm(a = Op (a+1)”

(iii) if o(x) = 1, then Op.

z[v]

& (Va<7)0p)

z(a)”

(iv) if o(x) € Lim(Q2), then Op;(" (Va <17)0pt”

z(a)”

104

Proof Almost literally as the corresponding proof of Lemma I1.4.8, now using that
(Va<io(z))Op™ iff pn+20p:[z} (cf. Lemma II1.6.2 (iii)), and Lemmas I11.6.5, 111.4.13
instead of 11.4.4, 11.2.14. O

Recall that if deg(z) > 1 and 8 < «, then by Lemma I11.4.19 (ix), z(8) ~* z(«),
and so by Lemma I11.6.5 (i), Opi(z) = Opi(%).

Lemma I11.6.13. T¢F deg(z) > 1 A T, — Prog_({a : -T'm(a)}).

Proof This time, assume that deg(x) = m+2, and * =yp (1,y) o, 2, so Op, iff
Opzrlf';) 0Op,. Now the claim is shown completely analogously to Lemma 11.4.9 using
the above Lemma, and Corollary I11.6.8 and Lemma I11.4.13 instead of Corollary
[1.4.7 and Lemma I1.2.14. O

I11.6.3 The proper and provisional Definition of Op, agree

This subsection is devoted to the proof that the proper Definition II1.6.1 agrees
with the provisional Definition II1.3.4. Again, from a technical point of view, none
of these results are used in the sequel.

Lemma I11.6.14. The following is provable in T€.
(i) For all x € Q*, Op;"pny1 = Op, ™.
(it) If g # x € Q*, then Op;™ = Op; " ppy1.

This leads for instance to the following results which correspond to Lemmas 11.4.11,
I1.4.12, and Corollaries 11.4.13 and 11.4.14.

Lemma II1.6.15. T¢ proves: for all x € Q*,
(i) OpS™ o Op;™ = Op;™,
(i) if 0<1 B <Qa, then (Op ™)™ = (Op;")?, and (Op;")" < (V€ <17)(Op,™)" <.

The following results corresponds to Lemma I1.4.15 and 11.4.16. The proofs are
omitted as they are easily lifted from the case n = 2 to the general case.

Lemma II1.6.16. T¢ proves: if g1 # x € Q* and 0 Q «, then
(1) Pnt1(0OpS™)* = (Pnr10p;"™)%,
(ii) (Pn10P;")**! = pust (Op)"

Lemma II1.6.17. T¢ proves: if z € Q*, then Op7 " Vp,.; < Op;("ﬂ)piﬂ.

xT

105

Lemma II1.6.18. T¢ proves: for all x € Q*, Op;("ﬂ)pnﬂ & Opzrl’fx).

Now we prove the aforementioned equivalence the proper and the provisional defi-
nition of Op;™. As in the case n = 2, most work is done in the proof of the next
two lemmas.

Lemma I11.6.19. For each n € N, T€ proves the following: if v € QF, then
Proof Recall that (Op;™)? (V§ < 7)(Op+")1+5 (cf. Lemma IT1.6.15 (ii)). To

show the =--direction, fix an n > 0. Since Op(m) iff Opzrlf‘w)pnﬂ (cf. Lemma

111614) and (pn+1Op(1x) (pn+1Op(1x)77+1 = L.II1.6.16 pn+1(Opzr1f‘x))", we have
that Op(lx (pn+10p(1x) (Op ")"*1 =I.1116.15 (Opzrln)7. For the converse
direction observe that (Op(lnx) = (V§ <w)(Op ")€+1 = (V¢ <w)pn+1(0p(1))¢ =
(V6 <17) (P10}). Lt € = (96 <17) (P Opil J(T), whieh is T, and note
that (Opzfx)) (T) implies Op "+ (p, 1 (T))AC. Hence Lemma III1.6.6 further yields

Op "D ((), therefore also Op; ™ Vp, 1 (C), that is, Op (i) © (Pus10P(") (T). O

Lemma II1.6.20. For each n € N, T proves the following: if x € QQ*, then
(7’) Op(m+1x (Op ")m-l—l; and Op?:yrfl-m—l—lm (Op ")ﬁH—m'

(ii) OP(WC (Pn+1OP(1TLx))V-
Proof Using Theorem 1.4.2. We let A(«) so that A(m+1) and A(7+m+1) express
(i), and A(7y) expresses (ii) First, we show A(vv—i-l), ie., Opz;il (Op(lx)L
By I.LH. we have Op+" (NX & (pn+1Op) (T)IX. As Opzrlf; is an operation,
Op(1) oOp(vx & Op (1) (pn+10p(17x)) follows. By Lemma I11.6.5 (ii) and Lemma
I11.6.19, we obtain Op (1) (pn+10pz’1’fx))7. A(1) holds trivially, and A(m+1)
and A(y+m+2) are directly from the I.H.

Now we show A(). Using the definition of Opz;’fx), Lemma I11.6.5 (iii) and I11.6.15,
this amounts to show that

(V€ <)Pur1Opte oy & (V€ 97) (Pus1 0P e

To show that =--direction, fix a n <~ with n > 0. (V§ < fy)anOpzﬁg’x) en-
tails pn+1Opz:7’_‘H7m). Using the LH. yields pn+1(Opzr1fo))’7, and (pn+1Opzr1’fm))77 fol-
lows by Lemma II1.6.16. For the converse direction, also fix an n <1y with n > 0.
Note that (V& < 7)(Pat10p(7)) ' ** entails (po110p([%,))""". Lemma I11.6.16 yields

pn+1(Op (1) Using the IH and possibly Lemma II1.6.5 (ii) and Lemma I11.6.15
yields pn+10pz§;ﬁv). O

106

Theorem I11.6.21. For eachn, all (z1,...,x),x € Q* (k> 1), eachy™ € P, each
v € Q*UP and each o > 0, we have

(i) OP;rln < Pn+1;

(ii) OP(l sy 4y < (0P " V)™ and Op(, 14 < (OpF " Vpy)7t
(iii) OP("y < (Pnr1OP(,)7,

(iv) Op o,y < (Op " Vp,, p)1ve

(v) Opr .y € Opilto...00p]",

.....

and for all m,n with 0 < m < n, we have
(iii)” OpF™™ & (Yo < 4)pus1 (Op(",)) 0

m,n m,n+1 n
(vi)’ Op-;(-;-l) Op;_,(-)Pn—i-l o Op?;%y,),

(v)’ Op+(m" @Opt(m" 0Op, o...00p,".

Proof (i) is by definition, (ii) and (iii) are by Lemma II1.6.20, and (v) is by Lemma
II1.6.5 (ii). To show (iv), we first observe, using the definitions of Op(1 ,—) and
Op;,("’"ﬂ) (i.e. Definitions I11.6.1, I11.6.3) and Lemma II1.6.5 (iii), that

Oy -y & (Ya <1 0(y)) (Pat10P",) & (Yo <1 0(y)) (Pns10p; puss)
(Vo <1 0(y)) (Pas10pf ")pni1 < Op ", 1.

Now we show, using Theorem 1.4.2, that A(«) := Opz;’fy (V) (Op(1 -)a(-T'), for
a > 0. (iv) then follows. A(1) trivially, holds. If 1 < a = a/+1, then Opz;’fy,) iff
Opzrl?y,) o OPZZ’LM)’ and A(a) follows using the LH. If o =: is a limit, then Op+’fy,
iff (V§<w)pn+10pz’11f)+ The LH. implies that Op - iff (V£<w)pn+1(0p(1 -))1+5.
As (Op(1 v))1+5 is H,11+2, we have that for all O<1£<fy, pn+1(0p(1 -)6 = (Op(1 -))f,
and Op(\",-))**" = p,11(Op(1,-))°, hence A(y) follows.

For the next clauses, recall that Oer(m "

that

(Va<10(:c))pm+10p:[z}. For (iii)’ observe

Op) & (Ve < 0(0))Pin1 OB .0y & (Ver < 0(0))Prst (Pa1Op(T)) '+ &

(Vor < 0(v))pm+1Pn+1(0Op(,) & (Ya Qo(v 0))Pm+1Pn+1(0P).

107

(iv)" Let (8+1,y7) = o(y) = . Then, Opz(flz - & (Yo <1 9)pms10p (41y-)a) AS
OP 541410l & OP{Hy-)ja) © OP(5,-)» the claim follows.

(v)" Assume that £ > 1 and z = (x1,...,7%). Let v := o(x) and y =: (xa,..., xy).
Recall that x[a] = zi[a] *y. By deﬁmtlon Op+(m" & Va < 7)pm+10p - As

Op. oOp," & Op:;’OOpy".
O

i © Op.l1,00p, ™, we have Op/tmn & (Ya<y)0p 1,

II1.7 Modular ordinal analysis at work again

In this section, we extend what we did in Section IL5 to the general case. Again,
we fix T := (ACA) and g(a) := w'™, and prove T* = A _\ (Vo € Qx,)Prvyii(2),
and obtain T¢ F (Vx € Qn,)Prvo(z) as an easy corollary.

I11.7.1 Lifting “Op, proves H,n”

Let us lift all the definitions to the general case. This is very canonic, and mostly
the definitions look the same. However, keep in mind that the underlying set of
names @)y, is now bigger, and that this change affects T, (e.g. T, — 2 € Qn,)-

N7 x<
Definition IIL.7.1. Forz € Q, 2" := {(:H_) 7 < (W,),

xH : else.

With Lemma II1.5.12 at hand, we can think of g,, as (H,w oit)(g) = f.u for
f=it(g).

Definition II1.7.2. C, := {a : [(deg(z) < 1AWo,(g,n(a))] V [deg(z) > 2/\'7}(06)]}.

Next, we define when Tx proves g,», when Op, proves H,x, and when Op”* proves

H;”“ where again, x* := zf+corr(z). The first two notions are as before, and the
third extends Op; proves Hj if for 0 <7 < m, Op(1 ym_s) PTOVES H) then

. m+1 m
Op; ™+ (OP (1,0) .01 Opzrl?ym)) proves H+(’)[H(J; yo) H(Jgoym) !

The definition below is worded differently, but the way to think of OpZmJrl proves
H™*' is as explained above. However, this only serves as motivation since for

2= L{z oy (1,50) o1 ... 01 (1,ym)), Op, iff Op ™+ (Op (190) .0y Op+0), and
by Corollary I11.5.14, H, is “about equal”’ to H+(m+1)[H(Jg";)) Haoym) | (cf.

Lemma I11.7.4).

108

Definition II1.7.3. We fix the following formulas.

Prvo(z) = T, = VYaWoy(a) A Tl4(Cp,a) = Wog(gun(a))],
Prvi(z) = Vylprvy(y) — Prvo(z o y)],
Prvigo(z) = Vylprv,1(Ly) = Prvna(Lzoy)].

Further, prv, () :== VXPrv,(z)[X.

We say that Op, proves Hym if T¢ F Prvy(z), and that Op; ™™ proves H;*("H), if
TF Prv,io(z).

Again, T, = u € Qn, (cf. Definition II1.6.1 and Lemma I11.6.2), and Prvy(u) is
trivially true if u € Qu,. So Prvi(z) iff Vy[z oy € Qn, A prvg(y) — Prvg(x oy)], and
Prvpio(z) iff Vylz oy € Qny—mPrVyn i1 (1,y) = Prvy, (1, z0y)]. Often, we use these
equivalent forms to focus on the non-trivial instances of these definitions.

The next lemma partially unfolds the definition of Prv,1(x). To do so, we use for a
possibly empty list § = yo, . . ., Y, the term ¢, (z, 7)) := L(xoy (1,y0)01...01 (1, Yn_1))-
In case that n =0, to(x) = =.

Lemma II1.7.4. T€ proves the following.

PrVn+1($) A V?Jay[Z = L(x 01 (Lyo) 01...01 (17 yn—l)) oYAN

/\ prv,,; (1, 4i) A prvo(y) — Prvo(2)].

<n

Proof By meta-induction on n. If n = 0, the right hand side is the definition of
Prvi(z). To show the induction step, let t,(x, yo, ..., Yn—1) := L(z o1 (1,yg) 01 ... 01
(1,yn—1)). By definition,

Prviya(x) <> Yyolprv, 11 (vo) = Prveii (1, 2 0 yo)].

By L.H.,

Prvayi(L,zoyo) < Vyr, .. Yn, yltn (L, 0 yo), Y1y .- -, Yn) O YA

/\ prvn+1—i(17 yz) A prVO(y) — PrVO(tn((L X o y0)7 Yy .o >yn) © y)]
1<i<n+1

Since tn($ ©1 (]-7 y0)> Yty .- >yn) = tn+1(x> Yo, Y1, - - - 7yn+1)a the claim follows. O

Looking at the definition of Prvy(z), we also have the following.

109

Corollary II1.7.5. T¢ proves the following.
Prv,1(z) <> Vijlz = L(z 01 (1,90) 01 .. 01 (1, Yn-1)) A

A\ Prva_i(Ly:) A prvg(y) — Prva(2)].
<n
Hence Prv,,.2(x) has the following alternative characterization, which justifies the
aforementioned motivation. If 2 = L(xo1(1,yo)o1. . .01(1,Ym)), then A, prv,, 1 (%:)
implies Prvy(z), i.e. Op, proves H,u.

Next, we check that (Vo € Qy,_,)Prv,41(x) can be proved using Theorem 1.4.2.
Lemma II1.7.6. T F Prv,,1(x) V ((ACA) A Wf_.(2)).

Proof We work informally in T¢ and assume —Prv,;(x). The above lemma yields
that there are z,7,y, so that z = L(x oy (1,50) 01 ... 01 (1,yn—1)) 0y € Q}, and
—Prvg(z). Further, =Prvo(z) implies T, which in turn implies (ACA) and Wf_.(z).
And finally, over ACAy, Wf_«(z) implies Wf_.(z): By Lemma II1.4.19 which is
clearly already provable in ACAg, we have that ' ~* " ~»* x implies ¢, (', i) oy ~*
to(2”,y) ~* t,(z,y) = z. Hence, an infinite descending chain xy ~» *xq ~ ... with
elements in {2’ : 2’ ~* x} gives rise to an infinite descending chain t,,(xg, 7) o y ~*
tn(z1,7) with elements in {2’ : 2/ ~* z}. 0
As discussed on page 64, if e.g. ACAg = AAb — Prv,,(z) (where b = VX B[X), then
we also have T F a AVXb[X — prv,(z) and ACAy - a A b — prv,,(z). Again, we
refer to this as the “small variant” of ACAy H A A b — Prv,(z). For instance, we
have the following which we will tacitly use in the sequel.

Lemma II1.7.7. The following is provable in ACAy:
(i) xoy € Qy, Aprvi(z) Aprvg(y) = prvg(z o y).
(ii)) xoy € QNg—n1 N prv, o(x) Aprv, (1, y) = prv, (1,2 0y).

(i) xoy € QN,_p NPrvui(z) Aprv, 1 (y) = Prvpgi(zoy).

Proof (i) and (ii) are the “small variants” of x oy € Qy, A Prvi(z) A prvy(y) —
Prvo(zoy) and oy € Qh,_,_1 APrvpea(x) Aprv, 1 (1,y) = Prv, (1, 7 0y), which
hold by definition of Prvi(z) and Prv, (), respectively. (iii) Prv,1(z o y) holds,
if zoyoz € Qy,_, and prv, (z) imply Prv,(z oy o 2). To verify the claim, assume
royoz € Qy,_, and prv, ,(2), and further Prv,,,(z) and prv,;(y). By (i),
prv,(y) and prv,(2) yield prv,(y o z), and Prv,(z oy o z) follows from Prv,(z). O

Again, all we need to know about the interplay of -[a], -(a) and - is collected below
(we will use (i) in the proof of Lemma II1.7.10 (ii), and (ii) in the proof of Lemma
I11.7.12).

110

Lemma II1.7.8. Let z € Q*. Then we have the following.
(i) If deg(z) =1 and o(z) =, then g.uia) L grajapyt s
(7,7,) Zf deg(z) > 1, then 92H|o] g 9(z(a))H -

Proof By Lemma I11.4.24, we have in case (i) 2% [a] ~* (z[a])®, and in case (ii)
2a] ~* 2(a))®. Thus the claim follows by Lemma II1.5.1. 0

I11.7.2 A sketch of the proof

In this subsection, we sketch the proof of T* = A _\ (Vo € Q},)Prv,y1(7) given in
the next subsection. Again, we neglect the difference between Prv,,(x) and prv,, (z)
(m < Np), and pretend that for m < Ny, Prv,,(z) A Prv,,(y) implies Prv,,(z o y).

Recall that in the case Ny = 2, the assumption Prvy(q;) allowed us to prove
VBPrvy (145, z) for all (the only) names = € Qo = {q}. In a next step, we then
proved (Vx € @Q3)Prvi(x) by induction on ~*. For x =xnp (1,y) o z, the LH. and
z ~* x gave us Prvi(z), and Prvy(y) and Prvi(1,qo) gave us Prvq(1,y). Together,
Prvi(1,y) and Prvy(z) implied Prv(x).

Now we briefly say how to extend the proof, more details are given in following
paragraphs. First, observe that Lemma I1.5.17, which allowed us to move from
Prva(q1) to YBPrvo(145, qo), is a special case (v = qo) of the “one-up variant” of
Lemma I1.5.16, where Prv; and prv, are replaced by Prv, and prv,, respectively. And
further, the “one-up variant” of Lemma II.5.17 (ii) is an easy consequence of (i),
and (i) is a consequence of Lemma I1.5.16 and Lemma I1.5.15. Moreover, as we will
see below, Lemma I1.5.15 implies its own ‘one-up variant”, which together with the
“one-up variant” of Lemma I1.5.16 implies a “two-up variant” of Lemma I1.5.16 ,
which then readily yields Prvs(1, o), and so on.

Let us elaborate on the above comment. For a start, we assume the following,
where (a,,) and (a,) are the “m-up” variants of Lemma I1.5.16, (b,,) is the “m-up”
variant of Lemma I1.5.15, and, as in the corresponding sketch for Ny = 2, (¢) hides
technical details (cf. Lemma II1.7.10).

(@) if deg(z) = 1, then (Vo < o(z))Prvy,41(x[a]) implies Prv,, 1 (x),
(a!)) if deg(z) = 1, then Prv,,11(1,v) implies (VaPrv,,1(14+a,v),
(by) if deg(z) > 2, then YaPrv,, 1 (x(a)) implies Prv,,1(x),

(¢) if deg(z) = 1, then T, A (Ve < o(x))Prvo(z[a]) — Prog_(Cy).

111

From the above assumptions we continue as follows: Prvi(q;) and Prvy(g;) are ob-
tained analogously to the case Ny = 2, and Prv,,1o(q1) is by (al,): if Prv,,.1(1,9),
then (a!,) yields VaPrv,,1(14a,y), which further, together with Prv,,1(¢:) yields
VaPrv, 11 ((14+a,y)+1), that is, VaPrv,,1((1,y+1)(a)), and now Prv,,.1((1,y+1)
follows by (by,).

While in the case Ny = 2, we first showed (Vz € Q7)Prva(z) and only then proved
(Vo € Q3)Prvi(z), we show in the general case (Vx € Q) ,,)Prvy,—n(x) by meta-
induction on n < Ny. Since Prvy,_,(z) implies x € Q,1, it suffices to prove
(Vz € Q*)Prvy,_n(z); the possible cases are discussed below.

(i) deg(x) =1Az # q. By LH., (Va<o(z))Prvy,—n(z[a]), and Prvy,_,(z) is by
(aNo—n—l)'

(ii) deg(z) > 1. Then x =nF (1,y)oz. As z ~* z by Lemma I11.4.19 (iv), the I.H.
yields Prv,,11(z). If n =0, then (1,y) € @1, thus y = qo. Hence Prvy,(q1). If
n > 0, then Prvy,_(,—1)(y) by the meta-I.H. Together with Prvy,_,(1,¢qo) we
obtain Prvy,_,(1,y). Now Prvy,_,(1,y) and Prvy,_,(2) imply Prvy,_.(z).

Finally, we discuss where we get the assumptions (a,,), (a,,) and (b,,) from. (by) is

shown as (b) in the case Ny = 2, and (b,,+1) follows readily form (b,,): if deg(z) > 1
and VaPrv,,o(x(a)), then Prv,,.1(1,y) yields VaPrv,,.1(z(a)) for z := (1,2 o y),
which by (b,,) yields Prv,,1(z). This shows Prv,, o(z).

Also (ay) is obtained as in the case Ny = 2, and (a,) follows readily form (a,,).
Further, (a,,41) is by (a,) and (b,,). Again, we observe a characteristic two-step
approximation which works almost literally as in the case Ny = 2.

I11.7.3 Proof of the main result for the general case

Next, we observe our modular approach at work in the general case. The following
results are proved exactly as the corresponding results (Lemma I1.5.11 and 11.5.12)
in Section II.5.

Lemma II1.7.9. ACAq proves the following.

(i) Prvo(qo),

(ii) & € Qny A Toir A prvg(a) A Wog(a) = Wog(gun (@)
Lemma II1.7.10. ACA proves the following.

(i) € Qny A Topr A prvg(z) = Prog_ (Cos1).

(i) v € Qy, Ndeg(x) =1 Ao(x) =y A (VYa < v)prvy(z[a]) A T, — Prog_(C,).

112

Proof: Literally(!) as the proof of the corresponding Lemma I1.5.13, expect that we
now refer to Lemma I11.6.5) (i) instead of Lemma I1.4.4 (ii), and to Lemma II1.7.8
instead of Lemma I1.5.10.

Again, as a consequence of Lemma I11.7.10 (i), we obtain that p; proves it.
Lemma I11.7.11. ACAy - Prvi(q1).

Below, we lift Lemma I1.5.15 (which corresponds to (b,,) in the sketch) to the general
case.

Lemma I11.7.12. For each n < Ny,
ACAj - (Vz € QY)[deg(z) > 1 AVapry,, (x(a)) = Prv, i (z)].

Proof By meta-induction on n < Ny. The case n = 0 is literally as the proof of the
corresponding Lemma I1.5.15, but referring now to Lemma I11.7.8 instead of Lemma
I1.5.10. For the induction step, assume that n > 0, and that the claim holds for n—1.
Assume that z € Q}, with deg(r) > 1 and Vaprv,,,,(z(a)), and aim for Prv, (7).
For that, further assume that roy € Q3 and prv, (1,y), and aim for Prv,(1,z0y)).
prv, . (z(a)) and prv,(1,y) imply prv, ((1,z(c) o y), that is, prv,(1,z o y)(«)), as
deg(z) > 2 (cf. Lemma I11.4.16). Hence we have Vaprv,,(1,z o y)(«)), and the I.H.
yields Prv,(1,z o y). O

The next result corresponds to Lemma I1.5.16 and to (a,,) of the sketch.

Lemma II1.7.13. For each n < Ny, ACA(proves the following: for each x € Qn,
with deg(r) = 1 A o(z) = do+7, and each (1,v) € Qy,, then

(i) (Vo <y)prv,, . (z[do+a]) = Prv,iq(x) =: Ci(n),
(it) Prvp1(1,0) Aprv, 1 (1,v) = VaPrv, 1 (14+a,v) =: Cy(n).

Proof First note that (ii) follows using (i) by induction on « (in the sense of Corollary
[.4.3) exactly as in the case Ny = 2. Hence, it suffices to show (i), which is done
by meta-induction on n < Ny. The case n = 0 is literally as the proof of the
corresponding Lemma I1.5.16 (i), but referring to Lemma II1.7.10 (ii) instead of
Lemma II1.7.10 (ii). Next, we consider the induction step. It is assumed that n > 0,
and that (i) and (ii) hold for n—1, that is, Cy(n—1) and Cy(n—1). We show that (i)
holds for n, i.e. that Cy(n).

Assume that z € Qy, with deg(z) = 1 and o(z) = do+v and (Va<1y)prv,, ., (z[d+a]),
and aim for Prv,;(z). For that, further assume that z := (1,2 0y) € Q}, and
prv,(1,y), and aim for Prv,(z). Thereto, let d; so that for each 8, z[8] oy =
(xoy)[01+05] and o(z) = o(xoy) = 6+ (cf. Lemma I11.4.16). Recall that by Lemma

113

[11.4.12 (iv), (1, (zoy)7)[a] = (1, (zoy)[a]). The assumptions (Vo <17)Prv,,1(z[a])
and prv,,(1,y) yield for each o <, Prv,,(1, z[a] oy), that is Prv,,((1, (zoy)™)[d1+a]).
Hence the I.H. yields Prv,, (1, (zoy) ™), and its “small variant” yields prv,,(1, (zoy)™).
So by (ii), Vfprv,, (145, (xoy) ™), that is, VBprv,,(z(3)). Finally, Prv,(z) is by Lemma
II1.7.12. O

The next result lifts Lemma I1.5.18 to the general case.
Lemma I11.7.14. For all n < Ny, ACAg F Prv,1(q1)-

Proof By meta-induction on n. The case n = 0 is by Lemma II1.7.11. For the induc-
tion step, assume that the claim holds for n. To show Prv, 12(q1), assume y+1 € Qx,
and prv,(1,y), and aim for Prv,;(x) for z := (1,y+1). Note that deg(z) > 1.
Once we know that Vaprv, (z(«)), the claim is by Lemma II1.7.12. By the small
variant of Lemma II1.7.13 (ii), prv,(1,y) yields Vaprv, ,(14+a,y). Since z(a) =
zla]+1 = (1+a,y)+1, prv, . (1+a,y) and prv, . (¢1) yield prv,; ((14+a,y)+1), we
also have Yaprv, _(z(a)). O

Putting the pieces together yields a proof of the main result of part I. It generalizes
Theorem II1.7.15.

Theorem II1.7.15. For all n < Ny, ACAg = (Vo € Q)1)Prvn,—n(2).

Proof By meta-induction on n < Ny. If n =0 and = € QF, then = = (1403, q). As

we have Prvy, (q1) by Lemma II1.7.14, and thus also prvy, (q1), Prva, (1453, q) is by
Lemma II1.7.13 (ii).

For the induction step, assume n+1 < Ny and ACAy F (Vo € QF)Prvy,—,(z). We
show ACAq - (Vo € Q). 5)Prvy,—n—1(x) by induction on ~*[Q} ., (in the sense of
Theorem 1.4.2). We consider the following possible cases.

(i) © = y+1. If z = ¢, Prvyy—n—1(q1) is by Lemma II1.7.14. Else, we have
PV, _n_1(y) by LH. Together with Prvy,_,_1(q1), this yields Prvy,_,_i(x).

(ii) deg(z) =1Ao(z) =~. By LH., (Va <v)prvy,_,_i(z[a]), and Prvy,_p_i(x) is
by Lemma II1.7.13 (i).

(iii) deg(xz) > 1. Then there are y,z with deg(y) > 0 so that x =np (1,y) 0
z. As z ~* x by Lemma II1.4.19 (iv), the LH. yields prvy, , ,(2). As
(1,y) € @5 and deg(y) > 0, we have y € Q;,;, and prvy, _,.(y) is by the
meta-I.H. Together with Prvy,_,—1(1, qo) we obtain Prvy,_,—1(1,y). Finally,
Prvay—n—1(1,y) and Prvy,_p_1(2) imply Prvy,—n—1().

In particular, we have that for each name x €), T, proves g,.

114

Corollary I11.7.16. T+ (Vo € Qu,)Prvo(z).

Proof Let © € Qu,. We have ACAq F Prvo(qo), hence also T¢ F Prvg(qy), which
entails T¢ F prvy(qo). Togehter with Prvy(x), this implies Prvy(z). O

The corollary immediately provides lower bounds for the proof-theoretic ordinal of
a theory of the form T, or T, + (ly) (cf. the discussion following Corollary I1.5.20.

Below, we list a few instances of the above corollary. In particular, it is confirmed
what we claimed already at the end of Section I1.5, namely that |p;ps(ACAg)| > 9Q.
The presentation of the ordinals in the form ¥y is due to Corollary IV.5.13. Further,
QO =1 and Qn+1 = QQ".

Example IIL.7.17.
(i) |ps(ACAg)| > (Its, It,it, g,w) = (1t“(it), g,0) = IO (small Veblen number),
(it) |p3(ACAo) + (In)[= (Its, It it, g, £0) = (It (it), g, 0) = VO,

(iii) |p1ps(ACAQ)| > it(gg,)(w) = g, (0) = 9Q? (big Veblen number),

(1) |P1Pny1(ACAY)| = it(ggs) (w) = g4, (0) = D2,

115

116

Chapter IV

Notations for the ordinals
(go() - z € Q)

In this chapter, we discuss how to obtain notations for the ordinals (g.(c) : z € Q).
Further, we relate the functions (g,(a) : z € Q) to the ¥-function as e.g. introduced
in Rathjen and Vizcaino [18], p. 538, for the special case where |X| = ().

This chapter makes heavy use of Setzer’s work on notations systems [25], in par-
ticular his ordinal function generators (OFGs). To keep this thesis reasonably self
contained, we have included the proof of Setzer’s key lemma (cf. Lemma IV.2.7).
After examining how the functions H,(f) and H,(f) compare, we use Setzer’s OFGs
to obtain an ordinal notation system for the ordinal relevant for this work.

Since we build our notation system out of expressions corresponding to g.(«), a
variant of g, (a), we are left with the task to find notations for the ordinals g,(«).
This is done by defining a recursive function v which is provably total in ACA, and
assigns to an ordinal expression (z,«) a notation v(x,«) that denotes the ordinal
9o ().

We conclude the chapter by showing how the functions (g, : z € Q) relate to
the ¥-function. Together with the main results of Chapter II and Chapter III, this
allows to present the ordinals g,(w) of the theories Op,(ACA) in a more familiar
form.

Convention IV.0.18. As we work in this chapter exclusively with names x € Q¥
it is assumed that x,y range over Qf, and we lazily write v < y for v < y.

IV.1 How f,(«) and f,(5) compare

The idea is to represents ordinals by expressions containing only smaller ordinals as
their components. Essentially, an ordinal which is not additively principal is written

117

as a sum of smaller additively principal ordinals, and each additively principal ordi-
nal 7 is written as 7 = g,(«), where o and the ordinals occurring in the name x are
below «y, where again, g(a) := w!'*® is the function which enumerates the infinite
principal ordinals.

Definition IV.1.1. HZ := {w® : a € Ord} = {l,w,w? ...} are the additively

principal ordinals. We write « =np Bp+...+01 if @ = Bp+...+051, ﬁ € HZ and
b1 < ... < Bk < a. Further, E := {~:w? =~} is the set of e-numbers.

The following is readily observed.

Lemma IV.1.2. If1 < a ¢ HZ, then there are unique ordinals ﬁ € HZ, S0, that
o =N Br+---+01. Further, v € E iff for all o, B, @« =np Bp+...+01 and § < v
implies o < 7.

Note that ¢ = HZ \ {1}, and that ¢’ = E. Below, we recall the definition of the
components of a name (Definition II1.5.5).

Definition IV.1.3. k(q) = 0, if v = ((«,y)), then k(z) = {a} U k(y), and
k({x1,...,2,)) = k(x1) U...Uk(x,). And |x| := max(k(z)), where max() := —1.

Next, we extend (Q¥, <) to (Q¥ x Q,<’), and the functions k(-) and |-| from Q¥
to QY x Q.

Definition IV.1.4. For (z,q), (y,8) € Q% x Q, we define
(z,0) <" (y,8) ez <yV@=yra<p).
Further, k(z,) := k(x) U{a}, and |(z,a)| = max{k(z,a)}.

For a principle ordinal v there are in general many pairs (z,a) € Qf x Q with
|(z,a)] < v and g,(a) = . Thus, we need a way to pick one. To do so, we define
some notions which are relative to some f € Q. Later, ¢ will take the role of f.

In order to pick a pair (x,«) so that v = f.(a), we make use of the following
properties of the functions (f, : y € Q).

Lemma IV.1.5. Let x € Q" and f € Q©.
(i) If deg(z) > 1 and o(x) = 1, then fy() = faj144](0).

(i) If v = y+1, then f,(0) = fy(v) for v = [,(0), fu(y+1) = f,(7/+1), for
v = fo(7), and if a is a successor, then f,(a+1) = f,(v), for v := fu(a).

118

Proof (i) is by Lemma II1.5.2. (ii) Let = y+1. The first claim is by definition.
For the second and third claim, note that f.(y) € (sho f,) = f, (cf. Lemma 1.3.15),
and that f,(a+1) ¢ f'(y). Thus, the claims are by definition of f, = it(f,). O

In the above lemma, if (i) applies, we regard moving form f,(a) to fuj114)(0) as
performing one step in the computation of f,(«). And similarly, in case (ii), moving
from f,(0) to f,(v), from f,(v+1) to f,(7'+1), or from f,(a+1) to f,(y). We can
compute in this way, until we arrive that f,(3), where either y = gy or § is a limit
or o(y) is a limit. Such a pair (y, 3) where no computation step applies is called
good.

Definition IV.1.6. We say that (z,a) € Q% x Q is good, if
r=qy V o(r) €Lim(Q) V (r =y+1 A a € Lim(Q)).

If (z, «) is not good, then z = y+1Aa ¢ Lim(2), or deg(x) > 1 Ao(x) = 1. In these
cases, we can perform one of the computation steps shown in Lemma IV.1.5. Since
(Qf, <) is a well-ordering and z[a] < x and y < y+1, a good pair is finally reached.

Lemma IV.1.7. If (x,a) € Q x Q is not good, then there is an (y, 3) that is good,
so that v := fu(a) = f,(8), y <z, and if |(z,)| <7, then also |(y, B)| <.

Next, we give a first criteria to decide whether for good (z,), (v, 3) € Q¥ x Q,
fala) < [,(B).

Lemma IV.1.8. Assume that (z,«) and (y,) are good, and that (z,) <" (y,)
and |(z,)| < f,(B). Then f.(a) < f,(B).

Proof Assume that (x,) and (y, §) are good, and that (z,) <’ (y,) and |(z,)| <
fy(B). If x =y, then a < § and f,(a) = f,(a) < f,(B) as f, is normal. Hence we
may assume that z < y. As (y,) is good, y is either a successor, or o(y) € Lim(£2).
If y = z+1 for some z, then f is a limit, and f,(5) € f. by Lemma 1.3.15. As
r < zand |z| < f,(B), we have f,(5) € f. by Lemma IIL.5.7. Since o < f,(8) by
assumption, we obtain f,(a) < fu(f,(8)) = f,(5). And if o(y) = 7, then, as z < y,
there is a £ < v so that x < y[¢] (cf. Lemma II1.4.15 (iii)). By Lemma IIL.5.3 (iii),
fy(B) € fy C fg- As x <y, Lemma IIL5.7 yields f,(8) € f;. Since oo < fy(B) by

assumption, f,(a) < f.(f,(B)) = f,(B). O

If z, 2 € Q" and deg(z) > 1 and o(z) = 1, then the functions f, and a — fy(0)
have fixed points, hence it may happen that f,(«) € k(x,«). Obviously, f.(«) can
possibly only match |(z, «)|.

Lemma IV.1.9. If (z,«) is good and f,(a) € k(z,«), then either

fola)=aelim@Q) or fula)=o(z) € LimQ) Aa=0.

119

Proof Assume that (z,«) is good and f,(«) € k(z, «). In case that f,(«) > «a, then
fe(@) € k(x,0), hence a = 0 by Lemma II1.5.6. As (z,0) is good by assumption,
o(x) is a limit. As for each { < o(x), |z[¢]| < fag < f2(0), |z| = f-(0) is only
possible if f,(0) = o(z). O
Next, we define a finite set I(z,a) C k(z,), where [(x,) is k(z, o) with potential
fixed points removed. Note that if e.g. for z := (2, (7, q)), we have that z[0] =
(1,q0) * (7,90), and x[0] contains the additional component 1. To have [(z) C k(x),
we let I(z) := k(x) N k(x[0]) in this case.

Definition IV.1.10. To each (z,a) € Q x Q, we assign a finite set I(x,a) of
ordinals as follows:

k(x) o is a limit,
Uz, a) =< k(z,) :ais a successor, or « = 0 A o(x) ¢ Lim(9),
k(x) NE(x[0]) :a=0Ao0(z) € Lim().
The following is immediate by this definition and Lemma IV.1.9.
Lemma IV.1.11. If B € l(z,«), then 5 < f.(«).

Now we give the complete picture of how f,(a) and f,(f) compare for good pairs
(z,a) and (y, B).

Lemma IV.1.12. Let (z,a),(y,8) € Q" x Q be good. Then

fol@) < [y(B) & ((z,0) < (y, B) A |(z,)] < f,(B) V fula) <|(y, B)| V
fo() € U(y, B)

fola) = fy(8) & ((z,0) <" (y.8) A fy(B) = |(z,0)| A fy(B) ¢ U(z,a)) V
(g, 8) <" (@, @) A fal@) = (y, B A fal@) & Uy, B)) V
(z, @) = (y,)

Proof First formula, right-to-left. The first disjunct on the right implies the left
side by Lemma IV.1.8. The other two conjuncts imply the left side due to Lemma
I11.5.6.

Second formula, right-to-left. We just show that the first disjunct on the right implies
the left hand side, as the argument for the second disjunct is symmetric, and trivial
for the third. So assume (z,a) <’ (y,8) A f,(B) = [(z,a)| A f,(B) ¢ l(z,«). By
Lemma II1.5.6, we have f,(5) = |(z,a)| < fz(). Now we assume f,(8) < f,(a) and
argue for a contradiction. First note that = = y is impossible: then (z,) <’ (y,)
yields o < 3, contradicting f,(8) < f.(a). Hence z <’ y. By Lemma IV.1.9, we
have the following options.

120

(i) f,(B) = |(z,a)] = a (so « is a limit). Then, f,(8) ¢ l(z,a) = k(z), so
lz| < f,(B). Hence, for each { < a, (z,§) <’ (y,8) and |(z,8)] < f,(B),
therefore, by Lemma IV.1.8, f.(§) < f,(8). As f,; is normal, also f,(a) <

fy(B), contradicting f,(8) < fo(a)!

(i) f,(B) = |(z,)] = o(x) =: v. Then f,(5) ¢ l(z,«) implies that o = 0. Note

that sup._. fan4(0) = f.(0). For each §{ < v, we have (z[¢],0) <" (y,5)
and |(z[¢],0)] < fy(B), therefore, by Lemma IV.1.8, fyq < f,(5). Hence,

f2(0) = fola) < f,(B), contradicting f,(5) < fu(a)!

First formula, left-to-right. The negation of the right hand side readily implies the
conjunction of the following formulas:

(i) (y,08) <" (z,0) V(y,8) = (x,) V [(z,)| = f,(8),
(i) fa(a) > [(y, B) V fala) = [(y, B)],
(ii) fz(c) & U(y,).

We show that the conjunction of (i)-(iii) implies f,(«) < f,(/5). This follows since

(y,8) = (z,a) V |[(z,a)| > f,(B) implies f,(a) < fx(ﬁ) (cf. Lemma III.5.6), and
(y,8) <" (xz,a) A fo(a) > |(y,)| implies f,(a) < fz(8) (Lemma IV.1.8), and

furthermore, (y,) <’ (z,) A fo() = |(y, B)|A fo(a) € (y, §) implies f,(a) = f,(B)
(second formula, right-to-left).

Second formula, left-to-right. The negation of the righthand side readily implies the
conjunction of the following formulas:

(i) (y,0) <" (2,0) V f,(B) > |(z,)|V [, (B) < |(z,0)[V f, () € Uz,),
(i) (z,a) <" (y,8) V fole) > [(y, B V fole) < |(y, B)| V fala) € Uy, B),
(iii) (z,a) # (y,5).

We show that the conjunction of (i)-(iii) implies f,(«) # f,(5). This follows, since

(y,0) <" (z,a) A (z,a) < (y,0) A (z,a) # (y,) is impossible, and f,(a) # f,(5)
follows if f,(8) € l(z,), or if fi(a) € U(y,B) (cf. Lemma IV.1.11), or if f,(8) <

(2,)|, or if fo(a) < [(y,B)] (cf. Lemma IIL5.6), or if (z,) # (y,5) v f,(8) >
|(z,a)| Vv fy(B) > |(z,)] (cf.Lemma IV.1.8). O

This characterizations becomes considerably simpler if we impose the additional
restrictions that |(z,)| < fz() and |(y, 5)| < f,(5).

Corollary 1V.1.13. Let (z,), (y, 8) be good, so that |(x,a)| < fo(a) and |(y, 5)| <
£,(8). Then, fu(@) = £,(8) < (z,0) = (y, 8), and fu(a) < f,(8) iff cither

(1) (z,0) <" (y,8) N(z,)| < fy(B), or

121

(i) (y,B) <" (w,a) A fe(@) < |(y, B)|-

Proof Just observe that by the extra assumptions |(z,)| < f.(«a) and |(y,B)| <
f4(B), the possibilities f,(5) < [(z,)|, fy(8) = [(z,a)| and fi(a) = |(y, B)| are

ruled out. So the claim follows readily by the above lemma. a

The restriction to good pairs (z,«) is a bit awkward. Note that only if = is of the
form y+1 does it depend on a whether (z, a) is good. To improve the situation, we
arrange things so that each pair (z,a) € Q¥ x Q that is good corresponds to a pair

(, B) := good(z, @) € Qp x 2 s0 that fr(a) = f,(B).
Definition IV.1.14. We define Qo, Q and good : Qg x Q2 — Q x Q as follows.
(i) Qo= {zr € Q" : deg(x) > 1 = o(x) € Lim(Q)} and @ := Qo \ {¢0}-
(ii)
(z,) c &= qo Vo(z) € Lim(Q),
(r,w(l4+a)) :deg(z) =1Ao0(z) =1.

Definition IV.1.15. If z € Qq, then

sho f, :deg(z)=1A0(x) =1,
fu : else.

Observe that fy+1 = fy (cf. Lemma 1.3.15), and if z = gy V o(z) € Lim(Q), then
= fo =Nexr I +i¢) (cf. Lemma II1.5.3). In particular, if z > qo, then f, C f".

Further, as f, and f, have the same fixed points (cf. Lemma 1.3.15), and further
ly| < f,(0) < fy4+1(0) € Lim(€2) and so |y+1| < fy+1(0), we again have the following.

Lemma IV.1.16. If f,(a) € k(z,a), then f.(a) = a or fo(a) =o(z) Aa = 0.
Also the following is readily observed.
Lemma IV.1.17.

(i) good[Qy x Q] = {(z,a) € Q¥ x Q: (z,a) is good}.

(i) good : (Qy x Q, <') = (good[Qq x Q), <) is an order isomorphism.

(iii) If (z,a) € Qo x Q and (y, B) := good(z, a), then f.(a) = f,(B).

122

I~f o= fy(ﬁ), then either y = z+1 and fy = f,, or o(y) =~ for some limit ', and
fy = Fypnz = Newry Lo € 1,10 (cf. Lemma I11.5.3). Therefore, by Remark 1.3.8,
v = w(1+p5) for some F, and thus o < 7 iff wa <. Further, I(y+1,7) = k(y+1) =
[(y+1,w(147)). The lemma below summarizes this discussion.

Lemma IV.1.18. Let (.flf,Oé), <y75> < QO X Q; (']‘JO/> = gOOd(.ﬁL’,O&) and v = ng(ﬁ)
Then, |(z,)| <7 iff [(2',)| <, and v € l(z, @) iff v € I(2',).

As a result, we have the following.
Lemma IV.1.19. For all (z,), (y,5) € Qo x Q we have the following.
fol) < £y(B) & ((z,0) < (v, B) A,)| < f,(8)) V fule) < |(y,8) V
fe(a) € Uy,)

(,0) < (y,8) A fy(B) = (@,)| Ay (B) ¢ Uw,0)) v
(y.8) <' (x,) A fola) = |(y. B)| A fala) & Uy, B)) V
a) =

&
(
(z, (4, 5)

IV.2 Ordinal function generators (OFGs)

In this section, we look at ordinal expressions and ordinal function generators as
introduced in Setzer [25]. These tools are then used to obtain ordinal notations, and
to relate the functions (g, : # € Q) to the ¥-function. Before we review Definition
and Lemma 2.5 from Setzer [25], we start with a specific instance of what is later
called an ordinal function generator (OFG).

Below, we define a set of ordinal expressions A and a well-ordering <’ on A. Then,
we assign to each a € A an ordinal G(a).

Definition IV.2.1. The set A is defined as follows.
(1) Lase = {0} U {{apg, ...,) g < ... <y} (weidentify 0 with ()).
(ii) A=Y U Q x Q.
The intended value of an ordinal expression a € A is given by G(a) defined below.

Definition IV.2.2. We define G : A — Q2 as follows.
(i) G(0):=0
(i) G({ag, ...) = w4 . 4w,

(i) G, @) := go(e).

123

Definition IV.2.3. We extend the well-ordering (Q, <) to (A, <’) as follows.
(i) If a € Syse and b € Q x Q, then a <'b,

(i1) {ag,...,ax) < (Bo,...,0) iff o < By or there is an i < min{k,l} so that
(ak_,-, ceey ak) = <bl—z’, RN bl> and App—im1 < bl—i—l'

(i1i) (z,) <" (b,0) iff c <yV(zr=yANa<p).
We point out that for a,b € X5, a <" b iff G(a) < G(b).

Next, we extend ||, k and [from Q¥ x Q to A by saying what these functions do
with elements in >,..

Definition IV.2.4. If 0 := (ag,...,), then k(o) := {ao,...,ar}. In case that
ag is a limit and lh(o) =1, then (o) = 0, and if ag is not a limit or lh(c) > 1, then
l(0) := k(o). Further, k(0) =1(0) = 0, and |o| := max(k(0)) (where max(0) := —1).

Note that k(a) is a finite set of ordinals. Further, if k(a) # 0, then | J k(a) = |a|, and
as a+1 =aU{a}, l[a|Uk(a) = |a|U{|a|} = |a]+1, and moreover, since [(a) C k(a),
we have that |a| U l(a) = |a| if |a| ¢ l(a), and |a| Ul(a) = |a|+1 if |a| € {(a). That
all this also holds for k(a) = 0, we let for each X C Ord, —1U X := X, and we
consider —1 C X as true, and —1 € X as false.

The quadruple Oy := (A, <',k,l) is an ordinal function generator in the sense of
the next definition. Definitions IV.2.5 and IV.2.8, and Lemma IV.2.7 correspond
to Lemma 2.5 in Setzer [25]. As there, if f is a function and X C dom(f), then
fIX]:={f(x): x € X}. Further, X Cg, Y states that X is a finite subset of Y.

Definition IV.2.5. A quadruple O = (Arg, <', k,l) consisting of a well-ordering
(Arg, <') and functions k,l so that for each a € Arg, l(a) C k(a) Cg, Ord, is called
an ordinal function generator (OFG). By recursion on (Arg, <') we simultaneously
define for each a € Arg a set C(a) C Ord, and a function eval : Arg — Ord.
Further, we define sets NF, Cl and Arg[Cl] C Arg. If we want to indicate that the
objects eval, C, NF, Cl and Arg[Cl| are induces by the OFG O, we denote them by
evalo, Co, NFo, Clo and Arg[Clo|, respectively.

(i) C°%a) = |a|Ul(a), C"(a) = {eval(d) : b <" a A k(b) € C™(a)} and
Cl(a) == U,<, C"(a). Further, eval(a) := min{a: a ¢ C(a)}.

(i) NF:={a € Arg: |a| < eval(a)}.

(iii) CP =0, CI"" .= {a € NF: k(a) C eval[CI"]} and Cl:=J,_,, CI".

n<w

(iv) Arg[Cl :={a € Arg: k(a) C eval[Cl]}.

124

Since |a| C C(a), eval(a) > |a|. So if b ¢ NF, then eval(b) = |b| € k(b). Further, as
k(a) is finite, C'(a) is the least set X so that

la|Ul(a) C X and {eval(h):be NFAb< ank(b) C X} CX

(if b ¢ NFAb <" aAk(b) C X, then already eval(b) = |b] € k(b) C X). Also by the
finiteness of k(a), C1 C NF is the least set Y so that {a € NF : k(a) C eval[Y]} C Y.

Lemma IV.2.6. If C°(b) C C(a) and b <’ a, then C(b) C C(a).

Proof Assume that C°(b) C C(a) Ab <’ a. We show (Vn € N)C™(b) C C(a) by
induction on n. for n = 0 there is nothing to show, and if eval(c) € C""1(b) \ C™(b),
then ¢ <’ b <" a and k(c) C C™(b) C; . C(a), hence eval(c) € C(a). O

Lemma IV.2.7.
(1) C(a) is an initial segment of the ordinals.
(i1) eval] NF is injective.
(i1i) eval[Cl is an initial segment of the ordinals.
() For a,b € NF we have

eval(a) < eval(b) < (a <" bAla|l < eval(b)) V (b <" aA eval(a) < |b]).

(v) Fora,be Arg[Cl,
eval(a) < eval(b) < (a <" bAla|l < eval(b)) V eval(a) < |b| V eval(a) € I(b)

eval(a) = eval(b) < (a <" bA eval(b) = |a| A eval(b) ¢ l(a)) V
b <" aA evalla) = |b| A eval(a) ¢ I(D)) V

a=1b

Proof (i) To prove that C'(a) is an ordinal, we show by induction on a w.r.t. <’ and
side induction on n that (Va € C"(a))(a € C(a)). Note that if C'(a) is an ordinal,
then eval(a) = C(a). C°a) = |a| Ul(a) is either |a| or |a|+1, hence an ordinal.
Thus, if a € C%a), then a € C%a) C C(a). If eval(b) € C"(a) \ C"(a), then
b <’ a and k(b) C C™(a), so |b| € C™(a) and (b) C C™(a). By side L.H., |b| C C(a),
thus |b| U 1(b) = C°(b) C C(a), so by Lemma IV.2.6, C(b) C C(a). As b <’ a, the
main [.H. yields that C'(b) is an ordinal. Therefore eval(b) = C(b) C C(a).

(ii) Assume that a,b € NF, b <’ a and eval(a) = eval(b). We have |b| < eval(b) =
eval(a) =) C(a), so k(b) C C(a). Since b <" a, eval(b) € C(a) = eval(a), contra-
dicting eval(a) = eval(b)!

125

(iii) We show by main induction on a w.r.t. <’ and side induction on n that C"(a) C
eval[Cl]. This implies the claim: if a € Cl and § < eval(a), then for some n,
p € C"a) C eval[Cl]. Fix a € Cl. By definition of Cl, i(a) C k(a) C eval(a),
in particular, |a| € eval[Cl]. Thus, |a| = eval(b) € eval(a) for some b € Cl. If
a <" b, then k(a) C C(b) would entail eval(a) € C(b)! Hence b <’ a, and by
LH., eval(b) = C(b) C eval[Cl]. That is, C°(a) = |a| Ul(a) C eval[Cl]. And if
eval(c) € C"1(a) \ C™(a) for some ¢, then ¢ <’ a and k(c) C C"(a) Cq.s.p. eval[Cl].
As eval(c) # ||, ¢ € Cl follows. Hence C™"*1(a) C eval|Cl].

(iv) Assume that a,b € NF. Left-to-right. Assume eval(a) < eval(b). Then |a| <
eval(b). If a <’ b we are done, and if b <’ a, then also b <’ a. If we had |b| < eval(a),
then b € C(a), contradicting eval(a) < eval(b), so eval(a) < |b].

Right-to-left. a <’ b and |a| < eval(b) implies eval(a) € C(b) = eval(b), therefore
eval(a) < eval(b). And if eval(a) < |b|, the claim follows from |b| < eval(b).

(v) Using (iv) and proceeding as in the proof of Lemma IV.1.12.

O
We like to point out that (v) becomes much simpler if we have that I(a) = k(a).
In this case, |a| < eval(a), a € l(a) implies a < |a|, and o = |a| implies a € I(a).
Hence, if a,b € Arg[Cl] Al(a) = k(a) ANI(b) = k(b), then eval(a) = eval(b) < a = b,
and

eval(a) < eval(b) & (a <" b Ala| < eval(b)) V eval(a) < |b].

Knowing that eval[Cl is injective, we can assign to each a € Arg[Cl] a finite set
k°(a) C Cl as done below, so that eval[k®(a)] = k(a). Further, length(a) assigns to
each a € Arg[Cl] a length that is bigger than the length of each b € k%(a).

Definition IV.2.8. k°(a) := eval '[k(a)]|NCl and I°(a) := eval '[I(a)]NCI. Further,
length(0) := 0, and if 0 # a € Arg[Cl], then length(a) = max(length[k®(a)])+1.

IV.2.1 The OFG Oy := (A, <", k1)

Now we look at the OFG Op = (A, <',k,1) with A = X,,, UQ x Q, and k and [as
specified by Definition 1V.2.4. Below, NF, Cl and eval are w.r.t. the OFG Oy. We
aim to show that for each a € A, eval(a) = G(a).

By definition, eval(a) is the least ordinal not in C'(a), that is, if @ = (z,), then by
definition of C'(a) and since C'(a) is an ordinal, eval(a) is the least ordinal £ so that
la| Ul(a) C & and for each b <’ a with |b] < &, also eval(b) < £. Exactly the same
holds for G(a).

Lemma IV.2.9. For each A 3 a := (z,0) € Q x Q, we have that G(z,a) = &,
where

€0 == min{€ D |a| Ul(a) : (¥b <’ a)(Jb] < € = G(b) < &)}

126

Proof By Lemmas II1.5.6 and IV.1.19, we have that G(z,«) 2 |a| Ul(a) and that
b <" aA|b] < G(z,«a) implies G(b) < G(z,a), hence & < G(x,a). Next, we show
that G(z, a) < . If (z,0) = (¢1,0), G(q1,0) = gy, (0) = (sh oit)(g,0) = ¢'(0) = &o,
and g9 < & follows, as it is readily seen that £ € E. If (z,«) # (¢1,0), then we
provide a sequence (b; € A : i € I) with sup,.;G(b;) = G(z,«) and for each ¢ € I,
G(bi) < &. We do so by a case distinction on the form of (z,a).

(i) «is a limit. Then I(z, @) = k(z), hence |z| < & and a < &. For each § < a,
let bg := (z,5). Then, for each a < 3, (z,0) <’ (z,«a) and |(z, 8)| < &, so
also G(x, 8) < &. And by Lemma II1.5.4 (i), sups.,G (7, 8) = G(x,) (recall
that G(z,) is g.(w(1+5)) if deg(x) = 1 and o(x) = 1, and g¢,(5) otherwise).

(ii) (z,a) = (y+1,8+1). Then I(z,) = k(x,a), |(z,)] < &, and as & € F,
& > [+w. Further, we have that G(x,a) = g.(7 + w) for 79 := w(1+0).
Let by := (1,(x,)) and b1 = (y,G(by,)) if deg(y) = 1 and o(y) = 1, and
bps1 == (y[G(b,)],0) otherwise. Note that G(b,) is a limit and thus b, € Q x €.
By induction on n, we show that G(z,v+n) < G(b,) < &,. As (1, (z,5)) <’
(z,a) and (L, (z, 8))] < &, we have Glx,7) < G(bo) = G((L, (,)
And if G(b,) < &, then |b,11| < &, so as by1 <’ (x,), also G(b,11
If G(x,v+n) < G(b,), then G(z,v0+n+1) is either below G(y,G(
G(y[G(bn)],0) by definition of it and since it(g,,70) € g,

<
) < 50
b,)) or

(iii) o(z) =~ and a = 0. For each 8 < 7, let bg := (z[f],w). Then, for each 5 < v
(z[f],w) <" a and |(z[B],w)| < &), hence G((z[f],w)) < &. Using Lemma
II1.5.4 and TI1.5.3 yields that G(x,0) = sups_.,G(bg).

(iv) o(z) = v and a = S+1. Then, {(z,a) = k(z,a) and |(z, B+1)] < &. We
let by = (0,(z,0)), b = G(z[¢],G(be)+w), if 1 < & > =, then beyy =
G(z[€],G(be)), and if v' < 7, by := G(x[7'], G(by)). Similar as in case (ii), one
shows by transfinite induction on ¢ using Lemma II1.5.4 that for each £ < 7,
G(be) < &o, and that &y = sup,_,G(be).

The above holds also for a € ¥,..
Lemma IV.2.10. For each a € X5, we have that G(a) = &, where
& :=min{& D |a|Ul(a) : (Vb < a)(|b] < &= G(b) < &)}

Proof Again, G(z,«) 2 |a|Ul(a), and as a € X, b <’ a implies that also b € ¥,
and so G(b) < G(a). Hence, £ < G(a). Next, we show that G(a) < &. If a = 0,
the claim is readily checked, and if G(a) € E, then |a| = G(a) < &. In case that
G(a) ¢ E, then a = (ag,...,a). If ag = 0, then b := (ay,...,0,_1) < a and

127

k(b) < &, so G(b) < &, thus G(a) = G(b)+1 < &. If ap = f+1, then I(a) = k(a),
and we have for each b, := (8...,5,a1,...,q,_1) of length k+n that b <’ a and
|| < &, hence G(b,) < &. As G(a) = sup,(G(b,)), G(a) < & follows. And if
ag = 7, then either a = (), or Ih(a) > 1 and I(a) = k(a) and |a|+1 < &, hence
for each 5 < v, bg := (B, a1,...,ax) <" a and |bg| < &, thus G(bg) < &. Again, as
G(a) = sups,G(bg), G(a) < & follows. O

Combining the two previous lemmas yields the following.
Corollary IV.2.11. For each a € A, we have that G(a) = &y, where
§o :=min{¢ 2 la| Ul(a) : (Vb <" a)(|b] <& = G(b) < &)}
The following is now readily obtained by induction on (A, <’).
Lemma IV.2.12. For each a € A, eval(a) = G(a).
Proof Let a € A and suppose that the claim holds for each b <’ @ with b € A. By
the above corollary,
eval(a) = min{& D |a|Ul(a) : (Vb <" a)(|b| < £ = eval(b) < &)} =1
min{& 2 |a| Ul(a) : (Vb <" a)(|b] < £ = G(b) < &)} = G(a).
O
Summing up, we can characterize the ordinal eval[Cl] = G[C]] in the following way.
Corollary 1V.2.13.

(i) eval[Cl] = G[CI] is the least ordinal A so that for each (z,a) € Q x Q with
|(z,)| < A, also g.(a) < A.

(i) For a < b & eval(a) < eval(b), the map eval : (Cl, <) — (eval[Cl, €) is an
order-isomorphism.

IV.2.2 Fixed point free variants of the functions (§, : z € Q)

Let O = (Arg, </, k,l) be some OFG. In some sense, for a € Arg \ NF, eval(a) is a
fixed point of eval, as eval(a) € k(a). Note that if |a| € I(a) for some a € Arg, then
C%a) = |a|Ul(a) = |a| U{|a|} = |a|+1, and therefore |a| < eval(a), that is a € NF.
In particular, if k£ and [agree on Ay C Arg, then Ay C NF.

Next, we consider the OFG Oy = (A, </, k,ly) which is obtained from the OFG
Oy = (A, </, k,l) by changing [to Iy according to the following definition. We
examine how evaly := evalp, and evaly, := evalp, relate. In order to describe this
relationship, we consider the order-isomorphism introduced in the next lemma.

128

Definition IV.2.14. Let Oy = (A, <', k,l) be the OFG from the previous subsec-
tion, and

k(a) :a€QxQ,
lH’() = ~
l(a) :a¢QxQ.
Further, Opr = (A, <',k,lg), and evaly = evalp,,, Cly = Clo,, and NFy =
NFo,.
Hence I [(Q x Q) = k[(Q x Q) and thus Q x Q C NF .

Given a well-ordering (X, <) (so it makes sense to speak about z+1 := z+_-1 and
x+n) which is closed under successors, and a set L C X of elements without an
immediate <-predecessor (0 or a limit), we consider a canonic order-isomorphism
between (X, <) and (X \ L, <): to an = € L, we simply assign z+1, and to obtain
an order-isomorphism, an element of the form xz+n for z € L is mapped to z+n+1.

Lemma IV.2.15. Let (X, <) be a well-ordering where X is closed under successor,
and L C X a set of elements without an immediate <-predecessor. Then, the map
@ (X, <) = (X \ L, <), given by

z+1 :(y € L)(In € N)(z = y+n),
r®r 1=
x : else,

s an order-isomorphism.

Next, let L := (Q x Q) \ NFy (so (Q x Q) NNFy = (Q x Q) \ L). Note that
(x,a)+n = (z,a+n). Hence, for § € Lim(Q2) U {0}, (z,0+n) @& 1 is (x,0+n) if
(x,0) € NF, and otherwise, (z,d+n) @& 1 = (z,0+n+1).

Below, list some further simple observation.

Lemma 1V.2.16. Let © = @ (for L := (Q x Q) \ NFy). Then we have the
following for each a € A = 35, U (Q X Q).

(1) If () # a € Eyse, then a+1l € Xos and |a| = |a+1].

(ii) Ifa € Q x Q, then a+1 € Q x Q and |a| < |a+1| < |a|+1.
(iii) a+1 € NFy, a+1 € NFy, and Q x Q C NFy.
(iv) evaly(a) < evalg(a+1).

() Ifa®1=a, then a € Yoge, or a € Q x Q and a = b+n for b = 0 or some
limit b € NFy.

129

(vi) Ifa € Q x Q, then a® 1 € NFy.

Proof (i) Note that if a € ¥y, then a+1 = (0) x a. (ii) As (z,a)+1 = (x,a+1).
(iii) I(a+1) = k(a+1) and |a| < |a+1]|, hence C°(a+1) = |a+1|Ul(a+1) = |a+1| U
k(a+1) = |a+1]+1 > |a[+1, so evaly(a+1) > [a|, that is, a+1 € NFy. Analogously,
a+1 € NFy. QxQ C NFy follows from I/ [(Qx Q) = k[(Qx Q). (iv) Asa <’ a+1
and |a| < |a+1| < evaly(a+1), the claim is by Lemma IV.2.7. (v) If a € Q x Q
is not of the form a = b+n for b = 0 or b € NF a limit, then a = c+n for some
limit ¢ ¢ NFp, ie. ¢ € L, the and so a ® 1 # a! (vi) If a ® 1 = a+1, this is by
(iii). If a ® 1 = a, then a = b+n for some b € NFy, and then |b| < evaly(b) implies
|b4+n| < |b|+n < evaly(b) < evaly(a). 0

Lemma IV.2.17. Let ® := & q)\nr,- For all a € A, evaly(a) = evaly(a ® 1).

Proof By induction on <’, we prove that Cy/(a) = Cgx(a @ 1) by showing by side
induction on n: (i) VnC%/(a) € Cy(a® 1) and (ii) VrC(a ® 1) C Cyi(a).

(i) First, we argue that C%,(a) C Cx(a®1). If a®1 = a+1, then C%,(a) C |a|+1 <
evalg(a+1) = Cgxla ®1). And if a @ 1 = a, then either a € X, and C%,(a) =
C%(a) C Cyla),ora € Q xQ and a € NFy, and thus C%, (a) C |a|Uk(a) C Cy(a).
Note that Cy(a) and Cy(a @ 1) are in E. Now,

Ci () = {evalpr(b) : b <" a A k(b) C Cp(a)} Crar
{evalg(b 1) :b <" a ANk(b) CCrlad 1)} C
{evalgp(b@ 1) : b1 < a®1Nk(bD1) CChlad 1)} C
{evaly(0) :b <" a® 1A kD) C Crla® 1)} C Crlad®1).

(ii) First, we show that C%(a) C Cy/(a). If a ® 1 = a, then as l(a) C Iy (a),
C%(a) C C%(a). And if a ® 1 = a+1, then a = (z,a) € NFgs, so C%(a® 1) C
la|+1 < evalg/(a) = Cy/(a). For the side-induction step, recall that Cy:(a) is an
initial segment of the ordinals, and assume that C}(a ® 1) C Cy/(a). To see that
Ciil(a® 1) = {evaly(b) : b <’ a® 1 AKk(b) C Cx(a @ 1)} C Cpr(a), we need to
check that evalgy(b) € Cy/(a) for each b with b <" a & 1 and k(b) C Ck(a & 1).
If b <" a(soa® 1l = a+l), then evalg(b) < evaly(b® 1) =y evaly/(b). As
@l <|la®1 CClla® 1) C Cyla), also evaly (b) € Cys(a). And if b = a, then
either a ¢ NFy and evaly(a) = |a|] € Cgr, or a = c+n+1 for some ¢ ¢ NFp, and by
LH., evalg(a) = evalg((c+n) & 1) = evalg/ (c+n) < evalg(a) = Cy/(a). O

Lemma IV.2.18. Let @ := &y nr- Then evaly[Cly] = evaly [Clir].

130

Proof evaly[Cly] C evaly: [Cly/]: else, there is a least a € evaly[Cly] \ evaly/[Cly/].
So a = evaly(a) for some a € Cland k(a) C evaly[Cly]. Asa € NFy, |a|] < a, hence
by L.H. k(a) C evalg/[Clg/]. Since a € NFg and also a < evaly(a @ 1) = evaly/ (a),
a € evaly [Cly/|!

evalg [Cly] C evaly[Cly]: else, there is a least a € evaly/[Cly/] \ evaly[Cly]. So
a = evaly/(a) for some a € Cly and k(a) C evaly/[Clg]. As a € NFy, |a| < a,
hence by L.H. k(a) C evaly[Cly]. Since a = evalg/(a) = eval(a & 1), and also
a®1eNFy, a € evalg[Cly]! O

With the previous two lemmas at hand, we readily obtain the following.
Lemma IV.2.19. Let & := ®guqpnyp- Then, Cly ={a®1:a € Clg}.

Proof First we show that a € Clyg: = a® 1 € Cly. Assume that a € Cly,. Then
la| < evaly/(a) = evalg(a @ 1). Hence, a & 1 € NFy, and with k(a) C evaly [Cly/],
also k(a @ 1) C evaly[Cly]. Therefore, a @1 € Cly. For the converse direction,
we let a € Cly and look for a b € Cly with b@® 1 = a. If a = a & 1, then
la| < evaly(a & 1) = evalg(a), so a € NFg. As with k(a) C evaly[Cly| also
k(a & 1) C evaly[Cly| = evaly/[Cly/], a ® 1 € Clg. And if a+1 = a & 1, then
a = b+n for some b ¢ NFy. As a € Cly C NFy, n = m+1. Hence a = (b+m) @ 1
for b+m € Cly. O

Remark 1V.2.20. Let L' := g, U{0} if o(x) is a limit, and else, L' := g,. Then,
for x € Q, evaly (x,a) = go(a @ 1). Hence a — (o G 1) is monotone and
Je(a®p 1) > |(z,0)|. We regard this function as a fized point free variant of g,.

We conclude this section by presenting an OFG Opg«, so that evaly: = evalg: :=
evalp,.. Thereto, we use some notations form Rathjen and Vizcaino [18]. This
allows to relate evaly«[(Q x Q) to the ¥-function in the next section.

Definition IV.2.21. The (finite) set Eq(«) consists of the e-numbers below 2 which
are needed for the unique representation of o in Cantor normal form.

(1) Eq(0) := Eq(Q) := 0,

(i) Eo(y) ={n}, if y€e ENQ,
(i1i) Eq(a) := Eq(ag)U...UEq(ay), if a =np w+ ... +w.
Further, o* := max(Eq(a) U {0}).
Since w® is additively principal, we have the following.

Lemma 1V.2.22. For all o, § < 2, we have that a < = o* < §*.

131

Lemma IV.2.23. Let k*(a) := {a* : a € k(a)}, I*(a) := {a* : a € lg(a)}, and
Oy = (A, < k*,1*). Then, evaly = evaly~, and NFy« = NFy:, Clg = Cly: and
A[Cly] = A[Cly].

Proof First, observe that for a € Y., evaly«(a) = G(a) (this is shown similar as
Lemma IV.2.10). So for a € S, evaly-(a) = evaly/(a). Next, we let a € Q x €
and show by induction on a: o* € Cy«(a) iff &« € Cy«(a). If a € E, then a = o*
and we are done. Else, a = () and the claim holds trivially, or a =yp w+ ... 4w
with By < ...06k < a. Then b := (6o,...,0k) < a. If a* € Cy+«(a), then as
o = B, also G5, ..., 0 € Cy«(a), so by LH., B € Cy-(a), that is |b| € Cy-(a),
hence evaly«(b) = a € Cy«(a).

Replacing H* by H’ in the above argument yields that for each a € A, o* € Cy(a)
iff @ € Cpr(a). Now the Cpi(a) = Cp+(a) is immediate by the definition of these
sets. O

IV.3 How to obtain a notation system for G[Cly]

In this section, we sketch how to define notations for the ordinals in G[Cly]. Essen-
tially by course of value recursion, we define a primitive recursive well-ordering
(O, <) that is order-isomorphic to (evaly[Cly],€). It is however convenient to
actually have an ordering (O’, <) that is order-isomorphic to (A[Clg], <), where
a = b:eevaly(a) < evaly(b).

First, we consider a slightly more general form of course of value recursion. Towards
its formulation, let [z,y] := 1(z+y)(z+y+1)+y be Cantor’s pairing function with
associated projections [-]o and [-]1, that is, if z = [z, y], then [z]p = z and [z]; = y.
Recall that [-,-] is bijective and monotone in both arguments. Further, [0,0] = 0.

The course of value of a function f(n) is the function f(n) := (f(0),..., f(n—1)).
Then, with g(n) also the function f(n) with f(n) = g(f(n),z) is primitive recursive.
When working with binary functions (characteristic functions of binary relations),
it is convenient to consider the following form of course of value recursion.

Definition IV.3.1. Let f(0,0) := () and for {z,y} # {0},

f@@y) == (f([0]o, [O11), -, f([nlo, [n]1)), where n := [, y]—1.

Lemma IV.3.2. Assume that g(x) is primitive recursive. Then also the function

f(z,y) with f(z,y) = g(f(z,y),z,y).

Similar to standard course of value recursion, we can also define functions by si-
multaneous recursion. We can of course combine this with standard course of value
recursion.

132

Lemma IV.3.3. If ¢;(%) (0 <i < k+l) are k+I4+2ary primitive recursive functions,
then also f; and h; (0 <i <k, 0<j<I)with

(7;) fl(xvy> :gi(?l(xvy)a"'7?k(xay)7ﬁl([xay]>v‘”7El([xvy])7xvy>7
(7'7') h]([l’,y]) :gj(?l(l’,y),,fk(l’,y),ﬁl([l’,y]),,El([l’,y]),l’,y)

Using such a simultaneous recursion, we define codes for ordinals and names, and
orderings on names and ordinals. In order to keep codes of names distinct from
codes of ordinals, we use two different kinds of sequence numbers. Namely, (...),
which yields even numbers, and (...), which yields odd numbers. Below, p: N — N
is the primitive recursive function that enumerates the prime numbers.

Definition IV.3.4. For eachn € N, (...), : N* - N and (...), : N* — N, where
():=0,():=1, and

(i) (zo, .., Tp_1)n =2 Wicn,p())* T and (xg, ..., Tn_1)n =2 Wicpr1p(i)* 141,
(7,7,) |h(<.§lf0, Ce 7xn—1>n> = |h((1170, e ,l’n_l)n) =n,
(153) T(({(xo, .. s Tn_1)n),7) :=7((Tos ...y Tpn_1)n), 1) :=x; (i <n).

seqy = U, mg((...)n) and seqy = U, mg((...)n)), and we write (z); for m(z,1).
For both kinds of sequences, concatenation is denoted by *, e.g. (a,b)*(c) = (a,b,c).

We use (- -) to code names, so names are coded by odd numbers, and (- - -) to code
ordinals, so ordinals are coded by even numbers. () = 0 is a code of the ordinal 0,
and () := 1 is a code for the name ¢y. Further, we use 3 as a code for —1.

Below, we also make use of finite sets. The idea is that they are coded as finite
sequences. If X is a finite set (or a finite sequence respectively), then X < a states
that for each x € X, x < a. Further, we let 0,7 range over elements of seq o, and
z,y, ... over elements of seq.

Next, we define primitive recursive subsets O”, Q”, ¥7 and L” of the natural

numbers. The idea is that O” is a set that has the structure of the codes O of
A[Cl], 37 . C O" has the structure of (the codes of) ¥.s., Q" has he structure of

Qf, and L" the structure of limit ordinals. Then, we define primitive recursive
functions o, deg, k, length, which do on codes what the functions o, deg, k, length
do on names and ordinals, respectively. It is readily seen that these sets and the

functions are primitive recursive.

Definition IV.3.5. By simultaneous recursion, we define the set O", Q", X!

asc’

L//;
and the functions o, d/eTg, k and WL.

(i) g€ Q",0€ X! and0€ O". Further, 6(q) := 1, and ge\g(qo) =0.

asc

133

(i1) If ag,...,ax € O", then o := (ay,...,ax) € 3.
if ag # 0, then (ag, ..., a;) € L".

and o € 0", and

(11i) If ag,...,ar € O" and xy,...,xx € Q", then ((ag,xo), ..., (ax, zx)) € Q".

() If © = ((ag, xo),- .., (ag, zx)) or x ¢ Q", then 6(x) := () :=0. Else,
if x = ((ag, o), - - -, (ag, 1)) and ap € L", then 0() = ag and deg() =1

if ag ¢ L", then o(x) := 6(xq) and deg()= deg(0)+1
(v) If v € Q" and a € O", then (x,a) € O" and (x,a) € L".

(vi) k(@) = 0, k({ar. .-, ar)

L ag)) a))U...Uk(ag), k(z,a) =
k((z1, ..., 2p) = k(z1) U...

L (z k
k(xy). Otherwise, k(m) = 0.

(vii) length(0) := length(qo) = 0,
for 0 #a € 0", length(a) :=
for1#x € Q", length(x) =

33

ax({length(a) : a € f(z)})+1.

Next, we define an auxiliary function z ~— z[0], and then [: N — N.

Definition IV.3.6. First, let x — x[0] so that for each x = ((ap, xo), . . .

(i) if o(z) € L" Nag € L”, then x[0] := ((1, z0), ..., (g, xk)),

(ii) if 6(xz) € L" N ag = 1, then x[0] := ((avo, 20[0]), . . ., (g, xx))

(iii) if o(x) € L" Ny = B+1 A B # 0, then x[0] := ((1,z0[0]), (B, x0), - - -,

(iv) and else, x[0] := x.
Secondly, let [: N — N so that
(i) iflh(c) =1 A (0)y € L, then (o) :=0, and else, I(c) := k(o).
(ii) I(x) == k(w),
(iii) if a € L, then [((z,a)) = k(z),

() if 6(z) € L" Na =0, then [((z,a)) = k(z[0]) N k(z),

I
D
—~
—~
8
S
~
~—

(v) if 6(z) & L"V 0+ a, then I((z,a))

134

ax({m(a) ca € k(a)})+1, and

(r)U{a}, and

) (akv xk))?

(o, 1)),

Below, we define the primitive recursive ordering (O, <'). It is defined by a simul-
taneous recursion, in which course we also define other primitive recursive sets and
orderings. The names for these sets and relations are overloaded, except for O, O,
< and ~. O’ (in contrast to O) contains also codes of elements in A[Cly]| \ NF,
and a ~ b expresses that a and b are codes of elements in A[Cly] that evaluate to
the same ordinal.

Further, we use the following abbreviations. Below, Q, Q" and ¥,,. are overloaded
and denote the sets of the codes of the corresponding names and ordinals.

(i) x € Q is short for x € Q7 A (x # qo V (aé\g(x) >1—o(x)eL”).
(ii) a € O is short for a € O' A k(a) < a.

(iii) a <b is short for a <1bV a ~ b, where a ~ b is defined below so that a ~ b iff
a and b code the same ordinal. Hence if a,b € O, then a ~ b iff a = b.

(iv) a € Y is short for a € seqyy, and a € Q' x O is short for (a)y € Q@' A(a)o € O.

Further, recall that for any ordering <, the derived ordering <. orders finite se-
quences as follows (cf. Definition I1.1.1): o := (ao,...ar) <iex (bo,...b;) =: 7 iff
there is an ¢ < min{k+1,l} so that (agy1i,...ax) = (br1-i,...b;) and further,
1< k— Ap—; < bl—i-

Definition IV.3.7. By simultaneous recursion, we define (among other sets and
relations) the set O', Q¥ , <1, ~, < and <', where Q, < and <’ get overloaded.

(i) () € Base, () € 0" and () € Q7.
(ii) If ag,...,ax € O and ag < ... <ay, then o := (ag,...,a;) € Ygse C O'.

(iii) If ag,...,ar € O and xq, ...,z € QF and xy <# ... <H z, then
r = (g, 20), . .., (g, zx)) € Q.

(iv) Ifx € Q and a € O, then (x,a) € O'.
(v) m := 3 (the code for —1) if k(a) = 0 and else, |7;\ = maxg(k(a)).
(vi) (a,z) < (by) iff v <HyV(x=yAa<b).
(vii) © <"y iff v <jery.
(viii) o <' T iff 0 <eu 7, (x,0) <' (Y, b) iff vt <HyvVe=yAa<b, and o < (z,a).

(iz) a<b:(:>(a<’b/\|/a\|<b)\/a<1|€|\/a€lA(b)), and 3 <z iff a # 3.

135

() a~biffa<'bAb~a|Abé&l(a) orb< aha~ |Z| ora=b.
Next, we assign to each a € O" and ordinal expression, and to each x € O’ a name.

Definition IV.3.8. For each a € O" and each x € O, define f(a) and f(x) as
follows.

(1) f(Q) =0 and f(()) == qo,

(i) f((er, 1), -5 (o, wx)) o= ((f(a), f(21)), - - (f o), f (1))
(iii) f({ar, s an() = (flen), ..., flaw)),

(w) f({z,a)) = (f(z), f(a)).

The following is then readily checked.

Lemma IV.3.9. f: (0, Q) — (A[Cly], =), where a = b :& evalg(a) < evaly(bh),
and evalg o f : (0, <) — (evaly[Cly], €) are order-isomorphisms.

Proof First, we let Q[Cly] := {z € Q : k(x) C evaly[Cly]}, and extend the function
length : A[Cly] — N (cf. Definition IV.2.8) to names as well by setting length(qo) :=
0, and if 0 # = and z € Q[Cly], then length(z) := max(length[£°(z)])+1.

Now, an easy induction on @1(@) yields that for each a € (O’ U Q), @1(@) =
length(f(a)), and further, k(v) = k(f(v)) and {(v) = I(f(v)). Another easy induc-
tion on l@l(a) then yields that for each a € (O’ UQ), l@l(a) = 1@1(()) A
f(a) = f(b) implies a = b, thus f : O'UQ — A[Cly] U Q[Cly] is injective. That
f is also surjective is shown by induction on the length length(w) of the output
w € A[CI] U Q[Cly].

By a simultaneous induction on @(a%@@(b) and l@(m)+@1(y) one
next shows that a < b iff f(a) < f(b), x < y iff f(z) <¥ f(y), and a <’ b iff
f(a) <" f(b). Then, we also have that a € O (i.e. a € O A \/a\| da), iff f(a) €
A[Clu] AK(f(a)) < F(a) iff f(a) € Cli.

This yields that f: (0’, 9) — (A[Clg], %) is an order-isomorphism. As by Lemma
IV.2.7, evaly : (Cly,<) — (evaly[Cly], €) is an order-isomorphism, the second
claim follows as well. O

It is not hard, but a bit cumbersome to turn this into a full-fledged notation system.

136

IV.4 Finding notations for the ordinals g, («)

The notation system is based on the functions g,, however, in our proofs in Chapter
IT and IIT we used the functions g, instead. Therefore, we need to know what
notation corresponds to the ordinal g,(«): given (z,a) € Qﬁo x €, we need an
ordinal expression v(z, a) € A[C]] so that g,(«) = G,(z,) = G(v(z, a))G(v(z, a)),
where G : A —) is the function form DefinitionIV.2.2, and CI and eval are w.r.t.
the OFG Oy = (A, </, k,1) from subsection IV.2.1.

Further, the (coded version of the) function v should already be provably total in
ACA,. Moreover, ACA should be able to prove the following for each a, 8 € eval[Cl],
and z,y € Q]HVO with (z,0), (y,0) € A[C]] and o(y) = 7o:

(i) a < f implies Gy(z, a) < Gy(x, B),
(ii) Gu(x,7) = sup,e,Gy(7,a), and

(iii) for each v < o, Gy(y[do+7], a+1) = sup,, s¢, where sg = Gy (y[do+0], @) +1,
ser1 := Gy(y[do+E], s¢) and for 7' < 0, 5 1= Gy (x[do+7'], 50) = SUpg_s5¢.

These properties are used in the proofs of Lemma II1.7.9 and II1.7.10 (ii), and the
corresponding results in Chapter II. The reason why these properties are required
is that ACAq does not know that g, is normal. Within ACA, we cannot argue using
properties of the functions (g, : * € Q). We just know how to compare notations
v(z,) and v(y, f) which correspond to the ordinals g,(«) and g,(5) (where §, = g,
if o(z) € Lim(2) or deg(x) > 1 or « = qo, and gy41() = g, (w(14a)).

It is convenient to extend G to G : AU({qo } x2) by setting G(qo, @) := g(«). Further,
for this subsection, we let 2 := eval[Cl] = G[C]] and «, 3,...,7 range over eval[Cl]]
(now §2), where again, ~y,v/, possibly with subscripts, range over limit ordinals.
Moreover, for a,b € A, we let a < b :< G(a) < G(b). Note the by regarding 2 as
eval[Cl], A becomes A[C]] and @’ becomes {z € Q' : k(x) C eval[Cl]} = {z € Q' :
(x,0) € A[Cl]}.

In order to ensure that the function v : %O x 1 — Q is provably total in ACA,,

we define it by recursion on ||(z, a)f;, where (for No > 1) [|-|l; : QF, x Q — wyy is
defined below.

Definition IV.4.1. Let Ny > 0. First, we define |-|g : QF, — wn, as follows: if
r=qoVo(x) € Lim(Q), then |x|g := 0, and otherwise,

(7;) fOT’ n > 0; |(n7 I)|Q = wan and |(’y—i—n7x)‘@ = w\xk)n;
(ZZ) ka >]'7 then |<l’1,l’2, s 7xk>|Q - |x1|Q+|<fE2, . 7xk>|Q

137

Now, we define ||-|l; : QF, x Q@ — wy, as follows: if (x,a) is good (cf. Defini-
tion 1V.1.6), then ||(z,n)||; := 0, and else ||(x,n)|; == |z|g+n and ||(x,v+n)|; =
|z]q+n.

The following properties of || - || and |-||; are readily checked.
Lemma IV.4.2. For each (x,0) € QR x €,
(1) If |x|g = 0, then x = gy or o(z) € Lim(Q2).
(11) ||(qo,)|+ < w, and if Ny > 0, then ||(x, o) < wny,
(111) if deg(x) > 1 and o(x) = 1, then |[(x[14+al,0)|; < ||(z,)|,
(w) forally,y" and a, ||(z,)]l < [[(z+1,0)[|, [z, +D)]le < [[(z+1, v+, and
| (z4+1, a+1)]|; < ||(z4+1, a+2)]];.
Next, we define v : Q¥ x Q — A[C]] by recursion on ||-||; so that g,(a) = Gy (x,).
Definition TV.4.3. v : Q% x Q — A[C]] is defined as follows.
(i) v(qo, @) = (14a), v(z+1, w(l+a)) = (z+1,), and if o(y) € Lim(Q), then
v(y,a):= (y,q).
(11) If deg(z) > 1 and o(z) = 1, then v(z, o) = v(2[1+a],0).
(1it) v(z+1,0) = v(z,G(v(2,0))), v(z+1,7+1) = v(z, G(v(z+1,7))+1) and
v(z+1,a42) = v(z, G(v(z+1, a+1))).

It is in general not obvious how v(z, @) and v(y, §) compare. However, if the ordinal
argument is a limit, the following cases are quite easy.

Lemma IV.4.4. Let (x,a) € Q¥ x Q. Then we have the following.
(1) v(z,w(l4+a)) < v(z,w(1+P)) iff a < 5.

(ii) v(z,w(l+a)) 2 v(rz+1, w(l+a)), and
v(z,w(l4+a)) < v(z+1,w(l+a)) iff « < G(z+1, «).

(i1i) If v := G(x+1,«), then G(v(z,7)) = 7.

Proof All claims follows by applying the definition of v and then Lemma IV.2.7 (v).
O

To learn more about v, we start with a couple of simple observations.

138

Lemma IV.4.5. Let (z,7) € Q7 x Q, a € A[C]), and z € QT with deg(z) > 1 and
o(z) = 1.

(i) If v(z,a) # (z,«), then v(z,) <" (z,).

(i1) v(z,v) = (x,7) 2 v(r,wy). Hence if w < v € HZ, then wy = « and thus
Go(,7) = G(z,7).

(1)) If < B and v < ~, then v(z+1,7") < v(z+1,7), v(z,7) < v(z,7), and
v(zly], @) <oz, B).

Proof (i) By induction on ||(x, «)||s. (ii) and (iii) are immediate by the definition of
v and Lemma IV.2.7. O

Lemma IV.4.6. Let (z,7) € Q7 x Q, a € A[C]).
(1) If x ~*y, then v <y and |z| < |y.
(11) If x ~*y, then v(z,w) < v(y,w).

(111) If o(z) =y, then y ~* z, then v(y,w) < (z,0).

Proof (i) It suffices to check that x ~» y entails z < y and |z| < |y|, which is
straightforward. (ii) By (i) and Lemma IV.2.7. (iii) Assume that o(z) = v and
y ~* z. Then by (i), (y,w) <’ (2,0) and |(y,w)| < |(2,0)] < G(z,0). In case that
|(2,0)] = G(2,0), then G(z,0) = v and v ¢ [(z,0) = k(z[0]). So for each a < 7,
|z[a]| <. As y~* z[a] for some a < 7, also |(y,w)| < |(z]a],w)| <. Thus in any
case, |(y,w)| < G(2,0), so v(y,w) < (y,w) < (z,0). O

With the above auxiliary result at hand, the following is readily shown by induction
on |z|g.

Lemma IV.4.7. Let 6 € Lim(Q) U {0}. Then v(z,d+n) < v(x,d4w).

Proof By induction on |z|g. This is immediate by Lemma IV.2.7 if z = ¢o or o(z) =
v. If deg(z) > 1 and o(z) = 1, then v(z,d+n) = v(z[0+n],0) <;g v(z[d+n],w) <
v(z[d+w],0). And if x = y+1 we show the claim by side-induction on n. For
the case n = 0 and 0 = 0, let v := G,(y,0) and +' := G,(y,w). By the main
LH., v < «/, and further, by Lemma IV.4.4 (ii), v := G,(y+1,w) > 7. Hence,
v(y+1,0) = v(y,v) < v(y,7) < v(y,7"), and by Lemma IV.4.4 (iii), G,(y,v") = +".
If n =0 and 6 € Lim, then the claim is obvious, and if n = 1 and § € Lim, then
for v/ == G,(y+1,9), v < Gu(y+1,0+w) € E, thus also v+w < G,(y+1,04w).
Therefore |v(y, v +w)| < G,(y+1,d+w), and thus v(y,y'+w) < v(y+1, d+w). Now
Go(y+1,041) = Go(y,¥+1) <ty Gu(y,v'+w) < G, (y+1, 6+w) follows.

139

For the side induction step, note that v(y+1, 6+n+1) = v(y, v(y+1,0+n)). By side
LH., v(y+1,d+n) < v(y+1,04w), hence by the main L.H., v(y, G,(y+1,04+n)) <
v(y, Gy(y+1,0+w)). The claim follows as G,(y, G,(y+1,d+w)) = G, (y+1, 6+w) by
Lemma IV.4.4 (iii). O

For the next lemma, we need a slight generalization of the auxiliary Lemma IV.4.6.
Observe that v(qo,w) = v(q1,0) = (w). Further, we have the following.

Lemma IV.4.8. Ifx,y € Qﬁo and qo ~* x ~* y, then v(z,w) < v(y,0).

Proof By induction on |y|g. Let ¢y ~* =z ~* y. If |y|g = 0, then o(y) = 7,
so v(y,0) = (v,0), and v(z,w) < v(y,0) is by Lemma IV.4.6 (iii). If y = 2+1,
then v(y,0) = v(z,7) for v := G,(2,0). If z = 2z, then w < 7, and so v(z,w) =
v(z,w) < v(z,7) = v(y,0). And if = # 2, then x ~* z, and by Lemma IV.4.6 (ii),
v(z,w) X v(z,w) < v(z,7) = v(y,0). Finally, if o(y) = 1 and deg(y) > 1, then
(y,0) = v(y[1],0). As |y[1]le < [yle and y[0] ~" y[1], the LH. yields v(y[0],w) <
(y[1],0). As z ~ y[0], v(z,w) < v(y[0],w) by Lemma IV.4.6 (ii). Therefore,
(

z,w) < v(y[l], 0) = v(y,0). =

<

z
Y
vy

<

Lemma IV.4.9. Let § € Lim(Q2) U {0} andn > 0. Then v(x,d) < v(z,d+n).

Proof By induction on |x|g. This is clear if z = qo. If o(z) = 7, then v(x,0) = (x,0)
and v(z,d+n+1) = (z,0+n+1), and the claim is by Lemma IV.2.7. If deg(x) > 1
and o(z) = 1, then by Lemma IV.4.8 and IV.4.7, v(z,d) = v(z[1+d],0) <iu
v(z[1+6],w) < v(z[l+d+n],0) = v(z,d+n). Finally, if z = y+1, then we show
the claim by side-induction on n > 1. First, we consider the case § = 0. v(y+1,1) =
v(y,v) for v/ := G,(y,0) and by Lemma IV.4.7, v(y,0) < v(y,w) = v(y,7). And
in case that 0 € Lim() 1s a limit, then for ' = G,(y+1,0), v(y+1,6+1) =
v(y,¥Y+1) =ru v(y,7") = 7' by Lemma IV.4.4 (iii). For the side-induction step,
observe that for v := G, (y+1,5+n), v(y+1,9) <rg v(y+1,64n) < v(y,v) =
v(y+1, 6+n+1). 0

An easy induction on n now yields the following.
Lemma IV.4.10. Let § € Lim(2) U{0}. Then v(z+1,0+n) < v(z+1,5+n+1).

Proof By induction on n. We just consider the case 6 = . If n = 0, v(z+1,9) <
v(z+1,0+1) is by Lemma IV.4.7. The induction step: v(z+1,7+n+2) = v(x,7')
for v/ := G,(x+1,7+n+1)). By LH., v’ := G,(z+1,7v+n)) < v/, so also v"+1 < ~.
Hence, using Lemma IV.4.4 (ii), v(z+1,v+n+1) < v(z,7y"+1) < v(z+1,v) =
v(z+1,y+n+2). O

Finally, we show that notations v(z,a) also behave as expected when it comes to
taking supremas.

140

Lemma IV.4.11. Let z,y € Q¥ where o(y) = w(1+a). Then,
(i) Go(z+1,w(1+a)) = G(z+1, a) = sUpey(14+0)Go(T+1,§), and

(7'7') Gv(y7 O) = G(yv 0) = Sup§<w(1+a)Gv(y[£]7 0)

Proof (i) If € Lim(2), then in view of Lemma IV.4.7 and IV.4.9, we have that
SUP¢y(14a) Go(T+1,§) = supe,Go(z+1,w(1+E)) = supe,)G(z+1,§) = (z+1, a).
So it remains to deal with the case where a = 0 or a = f+1. We show by induction
on the length length(a) of a € Cl that if a < (z+1, @), then there is an n so that
a < v(z+1,n). The proof depends on whether &« = 0 or @« = y+1 or the successor
of a successor. Exemplarily we treat the case a = 0.

So assume a < (z+1,0). Either a <’ (z+1,0) or (z+1,0) <’ a. If (z+1,0) <’ a,
then G(a) < |(z+1,0)|. Let v := Gy(z,0). As w* <~ € HZ, we have wy = v and
so v(z,wy) = v(x,7y). As |(z,0)] < G(z,0) < G(x,7), also G(a) < |(z+1,0)] <
G(z,v) = Gy(z,v) = Gu(z+1,0). That is, a < v(z+1,0). Next, we consider
the case a <’ (z+1,0). By LH., eval '(|a|]) < v(z+1,n) for some n. Now for
v = Gy(z+1,n), a < (z,7) and |a|] < 7, hence G(a) < G(x,v) = Gy(z,7), so
G(a) < Gy(z,7) < Gy(z+1,n+1).

(ii) This time, if a € Lim(Q), sups 10 Go([E],0) = supe.,Go(y[w(1+E)],0) =
supe G (y[w(1+£)],0) = G(y,0), and the claim is again by Lemma IV.4.7 and IV.4.9
and Lemma IV.2.7. Hence it remains to consider the case where w(l4+a) = d+w
for § = 0 or § € Lim(Q2). Again, we show by induction on the length length(a)
of a € Cl that if a < (y,0), then there is an n so that a < v(y[o+n],0). If
(y,0) <" a, then G(a) < |(y,0)|, thus G(a) < G,(y[d+n],w) < G,(y[d+n+1],0)
for some n. And if a <’ (y,0), then a < (y,0) implies that G(a) < |(y,0)|, and
G(a) < Gy(y[o+n],w) < Gy(y[d+n+1],0) for some n. That is, a < v(y[d+n+1],0).

O

Lemma IV.4.12. Suppose that y € QY with o(y) = So+vo. Further, let sy :=
Gy(y, a)+1, for 0 < & < v, Ser1 1= Go(y[0o+E], se) and for each v < o, Ssotry =
Goy(y[0o+7], 80). Then, for each v < o, s, = supg_.,Se.

Proof We just consider the case dp = 0, the general case runs completely analogously.
Let 7' := Gy(y,a) = G(y,). Then sy := v'+1, hence for each & < 7o, G(y[¢],7) =
v (cf. Lemma IV.2.7 (v)). Firstly, we show by induction on § < v that G(y[vy], a+1)
is an upper bound of (s¢ : £ <), i.e. that for each £ < v, s¢ < G(y[v],s0). As
so =7+l < Gy, v+1) = G(y[], s0) € E, also sp+w < G(y[v], s0), and thus
s1 = Gy(y[0], s0) < Gy(y[0], so+w) < G(y[v], s0) by Lemma IV.4.8. If0 < £ < v,
then s¢ is a limit. By LH., s¢ < G(y[7], s0), hence ser1 = Go(y[€], se) < (y[v], s0)
readily follows.

141

Secondly, we show that G(y[v], so) is the least upper bound. By induction on the
length length(a) of a, we show that if a < v(y[v],s0) = (y[7], s0), then already
G(a) < s¢ for some & <. Thus assume a < (y[v],s0). If (y[7],s0) <’ a, then
G(a) < |(y[v],s0)] = so as so = G(y[y0),®)+1. And if a <’ (y[v], so), then either
a = (y[v], B) for B < sg, and then G(a) < sg, or a = (z,9) for some z with z < y[v].
As (by assumption) G(a) < G(y[v], s0), la] < G(y[7], s0). By L.H. (on the length),
there is a £ < v so that |a|] < se. We may assume that z < y[¢]. Therefore,
G(a) < GulylE], 5e) = ser 0

Observe that in the above proof we employed transfinite induction up to 7. This is
no problem, as the sequences (s¢ : £ <) play only a role in the proofs of Lemma
[11.7.10 (ii) and the corresponding results in Chapter II. There, we prove in ACA,
that under some additional assumptions, if z € @, deg(z) = 1 and o(x) = 7, then
T, — Prog_(C,), where C, := {o : Wo(g,n(a))}.

Recall that @ also contains names of degree one the form (5+1, (70, 2)7) oy. Then,
2" = 1+2% = (841, (v, 27)) o y*: the degree of " may increase, but still o(z") =
Yo (cf. Definition I11.4.20). By definition, T, implies Wo..(z), which as o(z) =
Yo, entails Wo (o). Therefore, in the context where the above lemma is applied,
Wo (7o) is at hand. Also note that Wo,(7o) is already required to ensure that
(se 1 & <) is total.

IV.5 Relating g, and the ¥J-function

In this section, we will see that the the OFG Opg+ defined in Lemma IV.2.23 is
isomorphic to the OFG Oy = (Zuse U €qi1, <, ko, ly), where eqyq is the first e-
number above €, and that evalp, := evaly is the ¥-function from [18], p.538, for the
special case |X| = 0.

We say that f is an isomorphism between the OFG O; := (Ay, <1, k1,11) and the
OFG Oy := (Ag, <g, ks, o), if f: (A1, <1) = (Ag, <2) is an order-isomorphism, and
for all a € Ay, k1(a) = k2(f(a)) and l1(a) = l3(f(a)). It is immediate that then
Co,(a) = Co,(f(a)), and therefore evalp, (a) = evalp,(f(a)).

Definition IV.5.1. Oy = (Ay, <y, kv, ly) is defined as follows.
(7') Aﬁ = Zasc U EQ+1;
(7'7') <y rzasc ::<,r2asc and <y f59+1 =& T5Q+1-

(i1i) For o € eqq1, ko(a) := ly(a) := {a*}, and for 0 € Yoy, ko(o) = k(o)
and l(o) = l(0), where k and | are as in Definition IV.2.4. Further, |aly :=
max(ky(a) U {—1}).

142

Recall that by definition of evaly(a), we have that evaly(a) is the least £ so that
laly Uly(a) C &, and for each b € Ay, if b <y a and |b|y < &, then evaly(b) < €.

Lemma IV.5.2. For each a € ¥, Ueqyq,
evalg(a) == min{{ : £ > |aly Uly(a) A (¥b <y a)(|bly < & = evaly(b) < &)}.

If 0 € Yyse and a € €41, then 0 <y a. Hence (Vb <y a)(|bly < & = evaly(b) < &)
splits into the two clauses

(i) (Vn < a)(n® < &= evaly(n) < &), and
(il) (Vo € Xuse)(|o]y < € = evaly(o) < §).

For o € Yo, evaly(o) := min{{ : £ > |o|Ul(o)AN(VT <y 0)(|7| < & = evaly(T) < §)}.
Therefore, an easy induction on (X, <y) yields that evaly(o) = evaly (o) = G(0).
Further, if o € g1, then (ii) expresses that ¢ is an e-number. Hence, we have the
following.

Lemma IV.5.3. For each o € €q.q,
evalg(a) :==min{{ € E: &> a" A (Vn < a)(n® <& = evaly(n) < &)}
We use the ¥-function from [18], p.538, for the special case where |X| = 0.

Definition IV.5.4. The sets of ordinals C"(«,), C(«, 8) and the ordinals Yo are
defined for alln € N and all ordinals o and B by recursion on a as follows.

(1) {0,92} U 8 C C"(a, B),

(ii) if € € C™a, B) and € =yp W+ ... 4w, then & € C"(a, B),
(iii) if € € C"(a, B) N, then Y€ € C™(a, B),
(iv) Cle, B) =U, C™(ev, B),

(v) da=min{{ <Q:C(a,§)NQCEN ae Cla,§)} if there exists an ordinal §
so that C(a, &) N C & and o € C(a, §); otherwise Yo is undefined.

The next lemma collect some standard properties of the ¥-function. This lemma is
taken form [18]. A proof can be found there.

Lemma IV.5.5. Ja is defined for each o < eqi1. Further, for all o, f < eqq1,
(i) Ya € E,
(ii) o € Cla,Ya),

143

(111) Ya = C(a,Ya) N Q, and da ¢ C(a, da),

(iv) § € Cla, B) iff 0* € C(a,),

(v) o < da,

(vi) do = VB implies a = 5,

(vii) da < VB iff (a < BAa* <VP) V (B < aAda < [Y).
(viii) B < Yo iff W’ < Yo
In order to relate ¥ to evaly, we slightly rewrite the definition of Ja.
Lemma IV.5.6. For each o < g1,

Jda=&:=min{{ e E:{>a"AN(Vn<a)n"<&=Un<§)}.

Proof By definition, da = min{{ < Q: C(a,) NQ C & A a € Cla,§)}. Knowing
that Ja € E, it suffices to let range £ over E N Q. As further, a € C(«,§) iff
a* € C(a, &) NQ, we have that for each £ € ENQ,

Cla,)NQC &= (V< a)(n <&=dn<§).

Moreover, given C'(a,§) NQ C &, o € Cla, &) iff iff a* < €. Thus the claim follows.
([

Analogously to Lemma IV.2.12, we obtain by the following.
Lemma IV.5.7.
(i) For each a € Ay N Xyse, evaly(a) = evaly(a) = G(a).
(11) For each a € Ay Neqya, evaly(a) = Do

Proof (i) See the discussion following Lemma IV.5.2. (ii) Let aw € Ay and suppose
that the claim holds for each § <y a (i.e. f € a) with § € Ay. By the above
Lemma and Lemma IV.5.3, we obtain that for each o € Ay Neq.q,
evalg(a) =min{é € E: > a" N (V8 <y a)(* <& =evaly(fB) < &)} =n
min{{ € E: &> a" N (VB <y a)(f*<E=90 < &)} =da.
O

Hence we have that evaly(a) = Ya. To see that also evaly«(a) = Yo, we just have
to show that the OFG Opg-+ is isomorphic to the OFG Oy. We start by defining an
order-isomorphism between (Q, <) and (eq,1, €).

144

Definition IV.5.8. We assign to each x € QY an ordinal ||z|| below eqy1 as follows:
(1) lloll =0,
(ii) [{(awan), .. (o,)} = Q= 4.+ Qv

As we work with @ rather than Q¥ we further need an order-isomorphism between
(Q", <) and (Q, <). To define it, let L := {z € Q" : deg(z) > 1 A o(z) = 1}, so
each z € L is a limit in (Q¥, <). It is readily seen that @ : (Q, <) — (Qo, <) is
an order-isomorphism. An order-isomorphism between (Q¥, <) and (Q, <) is then
given by the function which maps 14+ to @, 1, where for z € Q¥, 14+ := z+1 if
r < (w,q), and 14z =z if x > (w, qo).

We also give the reverse direction of the isomorphism that maps 14+ to x @, 1, in
order to define an order-isomorphism between (@ x 2, <’) and (g1, €).

Definition IV.5.9. Let L := {z € Q" : deg(z) > 1Ao(z) = 1}. Thenig: Qo — Q"
and iy : Q — QY are defined as follows. If x = y+n+1 for somey € L, theniy(z) :=
y+n, else ig(x) == x. And iy (x) :=ig(x) if © > (w,q0), and i1(n+1,q) := io(n, qo)-

An order-isomorphism between Q x Q and (eq+1, €) is then provided by the map
x| := ||li1(z)]|, and an order-isomorphism between @@ X Q0 and (eqy1, €) is then
provided by the map (x, o) — Q||x||'+c.

Lemma IV.5.10. We have the following:
(1) (a+p5)* = max(a*, f*), Q* =0 and (Q+a)* = a*.
(i) (Q 1+ ... +Q% ;)" = max{a],...,aL, B1,...,0;}
(iii) For each x € Q, ||z|* = |z|* = (|z]')*.
Proof (i) is immediate by the definition of -*. (ii) Since Qa = wa, (Qa)* = a*. So,
as QB = WP (Qa + B)* = max(a*, %) by (i). Now (ii) follows from (i).

(iii) As [b@ 1| < |b[+1 and a* = (a+1)*, we just have to show the first equality,
which is done by induction on the build-up of z := (51, z1), ..., (B, 2x)) € Q:

Jz|* = Q=g+ Q= gy = max(B5, ..., B8 |zl - - llzwl®) =rm
max(f57, ..., Br, lxa|™, - oy |zl ™) = |2
O

Finally, we can define the sought-after isomorphism ¢ : O« — Oy.

145

Lemma IV.5.11. Let t: X 5. U @ X Q — Ay be as follows:

a D4 € Ygses
t(a) == S ~
Qlz|'+a: a=(r,a) € @ x Q.

Then, t : Oy« — Oy is an isomorphism between OFGSs.

Proof Since ¢t : Y 4. UQ x) — Ay is an order-isomorphism, it remains to check that
for each a € ¥usc UQ x Q, k*(a) = ky(t(a)) and [*(a) = ly(t(a)). However, this is
by Lemma IV.5.10 (iii).

As further, by Lemma 1V.2.23, evaly: = evaly- and by Lemma IV.2.17, for & :=
D axannry and each a € A[Cly], evaly(a ® 1) = evalp(a), we have the following.

Theorem IV.5.12. Ifz € Q and v, |z| < eqi1, then evaly((z,2)®1) = H(Qz||'+a).

All we actually use of this theorem are some the following instances. Recall that
gz = H,(g) for g(a) := w'®. Below, ¢§ := (1,¢¢) = (1, (w, q)) is the name of the
functional It“(it).

Corollary IV.5.13. Let x € Q. Ifdeg(z) > 1, x > ¢§ and |z| < €9, then we have
the following:

(i) Gey1(w) =9z,
(ii) if o(x) = 1, then g,(w) = V||z[w]|| and g.(c0) = V| z[eo]|l.

Proof Since |(z,a)| < €, we have that (z,a) € Q x Q implies that (z,a) € NFp,
and so (z,a) ®; 1 = (x,a) for L := (Q x Q) \ NFy. Further, if deg(x) > 1 and
x > ¢y, then x{w] > ¢5, and if x > ¢§, then [|z| > Q“, and thus ||z|| = Q||z||. Now
both claims easily follow:

(1) got1(w) = Gut1(0) = evalg(z+1,0) = evaly((z+1,0) &L 1). Since deg(x) > 1,
|z+1||" = ||z|| by definition of || - ||, hence the claim. (ii) As o(z) =1 and v < &y,
then g,(v) = G241(0) = Gu(0) = evaly((x[y],0) @1 1). By definition of || - |’,
|lz[Y]II' = ||z[v]]]. The claim follows. 0

IV.5.1 The nary Veblen functions and (§, : z € Qy Az < ¢&)

Since ¢5' = (1,¢) = g3[w], we have by Corollary 1V.5.13 that g,(0) = ¢.(0) =
[t“[it, g, 0] = ¥ is the small Veblen number. So, the functions (g, : * € QoAz < ¢5)
relate to the nary Veblen functions: for L := {z € Q¥ : deg(z) > 1 Ao(z) = 1} and

r € Qf with z < ¢§, we have that §,e1 = ., as we will show below (cf. Lemma
IV.5.15).

The following definition of the Veblen functions is taken from Setzer [24].

146

Definition IV.5.14. [The k+2-ary Veblen function]

O 2 QM2 5 O is defined by recursion on the lexicographic ordering on %2

(i) ©**2(0,...,0,00) := W't and if a;y1 # 0, then

(ii) "2 (pst, - .., ig1,0,...,0,a0) is the agth common fized point of the func-
tions hy : Q — Q, (a < 1) with ho(€) == * 2 (ppr, - ., Qiye, . €,0,...,0).

A name r € QF with z < ¢§ has to form z = (8, q)) * {(ny, @71), - - - (W, ¢1%)),
with ny < ... < ng, where 5 may be 0 (in which case (z)o = (o, q1"), as we write
(0,qo) for ()). For the following, it is convenient to identify a k-tuple (ay,...,a;)
with the name (v, ¢?) * (ag, q}) * ... * {ag, ¢¥71), where ¢ = qo. Further, we write
D(ap,...ar) for the function ag = @(a, .. ., ag).

In order to formulate the next lemma, we let L := {z € Q" : deg(z) > 1Ao(x) = 1}
and @ := @r. Then, ® : Q7 — Qo, and §,e, is defined for all z € Q.

Lemma IV.5.15. For each v € QY with v < ¢5, Gug1 = Pu-

Proof By induction on (Q¥, <). Recall that shofix = fix (cf. Lemma 1.3.15) and thus
J.. = g.. By definition, @%0) = g = Jq- 1f © # qo, we consider the following two cases.
Firstly, let vy = (agy1,...,0q) and x := y+1 (so * = (Qgs1,...,01+1)). Then,
T2 = fix(€ = ©5T2(E)) =11 9ye1 = Jae1. Secondly, let x := (a1, ... ,Qiya+1,0)
(that is, a1 = ... = a3 = 0). Then z[¢] = (1, ..., Qito, 1—|—§,6), and

P2 = fix(§ = O (appn, - iga, 14€,0)) =1u

fix(§ > gw[ﬂ@l(o)) = fix(§ — gx[s}(o)) = g;/p = Got+1 = Jae1-

Here, we used that { + g,je1 and { + g, have the same fixed points. As
only limit ordinals are fixed point candidates, and g,[,je1 = gu[y by definition, this

clearly is the case. Finally, let = (ag41, ..., @i12,7,0). Note that for a; g < 7,
ZL’[O&Z'_H] = (Oék+1, ey Olyo, 1—|—Oéi+1, O) This time, we have

it = ﬂ fix(& = "2 (g, - Qiga, 41,6, 0)) =

Qi1 <Y
. k+2 M) —
ﬂ fix(§ = @ (Qhy1, - -+ Qigr, 146,0)) =11
a1 <Y
!/ — N = a
ﬂ ‘g(OékJrl,---70li+2704i+1+176)€91 ZLAI5.3 Y(ayiq,.ipay,0) — Jz = Jadl-
Qi+1<Y

|

All we actually use of this lemma are some the following instances. Below, we write
Oyt - .. g for @* 2 (qpyy ... p).

147

Corollary IV.5.16. Let x € QY. We have the following.
(1) gm+1.00) (W) = (n+1)0 and gini1,40)(€0) = p(n+1)eo,
(ii) if deg(x) > 1 and o(x) = 1, then gupy = Pafy-
(111) if deg(x) > 1 and o(x) = 1, then g,+1(w) = ¢.0 and g,11(g0) = Pao-

Proof Let L := {z € Q" : deg(z) > 1 Ao(z) = 1}. Note that (n+1,q) & 1 =
(n+1,qo), and if deg(x) > 1 and o(z) = 1, then x &1 1 = x+1 and z[y] &L 1 = z[].
Further observe that for each 2 € Qf, g,41(w) = Guy1(0) and go41(0) = Gur1(0),
and that g,) = guy).- The claim is now by the above lemma. a

148

Part 11

Bounds

149

Chapter V

*

The infinitary systems (T, : z € Q)

In this chapter, we introduce most of the notions used to compute bounds of the
theories (T, : x € Q). For reasons discussed below, we work in a language £ which
extends Ly by additional relation symbols Uy, Us, ... And since we are dealing with
cut-elimination, we introduce for each of the theories (T, : z € Q) a finitary and an
infinitary Tait-style system.

The notion of a bound f : Q2 — € of T, is tied to the infinitary Tait-style system Tx
corresponding to the theory T, and ceils the costs of eliminating cuts in the following
way: for each limit ordinal v and each finite set I' of arithmetical formulas,

T, =T,

where in the derivation on the left, the cut-rule is restricted to instances of axioms
of T, and some further formulas that do not impede the cut-elimination process,
while the derivation on the right is cut-free. Since I' is arithmetical, we also have

T

We will see that the function g,», which we have shown to be provable in T, in the
first part, is also a bound of T,. Moreover, if h is provable in T, and f is a bound of
T,, then A[Lim(Q2) < f[Lim(Q2). Therefore, g,» is the largest normal function that
is provable in T,, and at the same time, the least bound of T, (in the sense that if f

is another bound, then g,»[Lim(2) < f[Lim(€2)). We call a normal function which
is provable in T,, and at the same time a bound of T, a sharp bound of T,.

In order to deal with the operation p;, we also stack theories on top of each other:
T1|To (“Ty over Ty”) is essentially the theory T¢ + Ty A IX(To[X), that is, Ty|T,
extends T; by an axiom asserting that there is an w-model of T. For the subsequent
arguments it proves however more convenient to have an explicit class term for the
w-model above Ty, say {z : Ui(x)}, where U; is a fresh relation symbol. That is

151

why we work in this second part mainly in the languages £ which extends Ly by
additional relation symbols U;(u) for each 0 < i, where Uy := U.

The motivation for stacking theories on top of each other is that the theory p;(T)
asserts that above each set Z there is a set X with Z€X and 'T'[X . As a proof in
p1(T) makes only use of finitely many instances of this assertion, it seems at least
plausible that for each arithmetical Ly-formula A with FV(A) = 0, p1(T) b A entails
that for some n € N, A is already provable in T¢ from the assumption that there
are sets Xo€ ... €X, with T|X; for each i < n, and this assumption is provided by
the theory T|...|T.

N—_——

n

We start this chapter by having a closer look at theories of the form T;|Ty (we call
T1|To also the composition of Ty with Ty, since if f; is a sharp bound of Ty and f;
is a sharp bound of Ty, then fy o f; is a sharp bound of T;|T).

V.1 The language £ and composition of theories

In this second part, we work with the languages £ which extends L, by additional
relation symbols U;(u) for each 0 < 4, where Uy := U. Again, U; denotes also the
class term {z : U;(x)}. It is assumed that the free number variables of the language
L are ug, uq, ..., and the free number variables are Uy, Uy, ... Moreover, we extend
the theory T€ to the language £, which in particular means that we have an axiom
U;(u) V =U;(u) for each i € N.

In the sequel, we often care which relation symbols U; occur in a formula A. The
relation symbols U; are used to axiomatize theories of the form Tg|...|Ty (see Def-
inition V.1.6). We let S range over such theories which are also of the form T¢ + S.

Definition V.1.1. We write A € L to indicate that A is an L-formula. If an
L-theory S is given, then we say that A € L(S), if A contains besides the relation
symbol U at most the relation symbols U; that occur in S. The set of L(S)-literals is
denoted by L1(S), and the set of arithmetical L(S)-formulas is denoted by Ly (S).

It also proves convenient to consider the sets Lem and Lexi of formulas that are
essentially I} and essentially 3! defined below.

Definition V.1.2. Let C be a set of L-formulas. Then, the set eX(C) is the smallest
superset of C that is closed under conjunction, disjunction and existential quantifi-
cation in both sorts. Accordingly, ell(C) is the smallest superset of C that is closed
under conjunction, disjunction, and universal quantification in both sorts. Further,
Y(C):={3XA: AecCY}, where C' is C closed under conjunction and disjunction,
and II(C) := {VXA: AeC}.

152

Note that A € ell(C) iff =A € eX(—C).

Definition V.1.3. Loy = Loy = Ly, and Lesy | = eX(Lerm) and Lo, =
eH(,Ceg}L).

It is obvious that over a theory T that implies arithmetical comprehension, each for-
mula in Les1 is equivalent to one in Ly1 with the same free variables. An analogous
result holds for the formulas in Ler .

Lemma V.1.4. Let A € Les1. If S comprises (ACA), then there is an A" € Lxy
with FV(A) = FV(A') so that SF A < A'.

Remark V.1.5. Recall that in the first part, we said that A is 113, if T*F A <> A’
for some T} -formula A" with FV(A) = FV(A'). As it is assumed that each theory
T implies arithmetical comprehension, we have e.g. that T e Lem implies that T
is 1T}, in the above sense. However, note that A is II}, does not imply A € Lem :
for instance, let A := pa((ACA)) AVeAXVy3Y B for an arithmetical B. Then, A
is only in Ly, but A is I3, as over pa(ACAg) (already %1-AC,), Ya3XVy3IY' B is
equivalent to a X1-formula.

The purpose of the additional relation symbols in the language £ is to have a
specific set term that denotes an w-model of the theory S when we have a look at
the composition of S with T, or as we usually put it, the theory T|S ("T” over ”S”)
defined below.

Definition V.1.6. Assume that T, Ty, Ty,... are Ly-theories that imply (ACA).
Then,

(i) T|T :=T, and T¢|T¢ := Te.
(7,7,) ZfS = Tk‘ ce ‘To, then Tk+1\S = Tk+1 + érUk+1 N E'X[X = Uk+1]; and
TS =T+ é[UkH, where S is the aziom of S besides the axioms of T€.

Further, TO := T¢ and T .= T|T". Moreover, T|S denotes the axiom of T|S
besides the axioms of T€.

By induction on k it is readily observed that the theory T§+1| ...|To proves that
UoE ... €U 1, that U; is a set for each ¢ < k+1, and that T,;]U;;; for each i < k.
This is the case as each T; implies (ACA) and thus (ACA)[U;,; for each i < k.

Convention V.1.7. As before, T, T/, T, T1,... range over Ly-theories that imply
(ACA). Further, we let S range over L-theories of the form Tg|...|To or T or T€.
If we introduce a theory as T|...|To|S, then for 0 < n < k, M,, refers to U, in
case that S is T¢, and in case that S is Ty|...|To, then M, refers to Uy y1)4n; in
particular, My refers to Ugy1 an is thus an w-model of S.

153

The theories T that we have encountered in the first part, say ACAy and Op,(ACA,)
for x € Q*, have all the property that with T F A(U) also T + VXA(X), in
particular, T + Tl4(U, a) iff T F Wo,(«). This is the case as all a theory T claims
about U is that it is a set, and further, the operations Op, do not treat any set
special.

As theories of the form T|T’ lack this property, we adjust the notion of a provable
function (cf. Definitions I11.7.3 and II1.7.2). To do so, we introduce composite names
to address theories of the form S := Ty ... |Ty, and we assign to each composite name
¢ a degree and a class term C¢ (cf. Definition I11.7.2).

Definition V.1.8. A composite name c of length n is an element of Q™ (an n-tuple

(x1,...,x%) of names 1, ...,z € Q). The empty composite name is denoted by O
and T :=T¢. And for ¢ := (x1,...,21), we let

(7,) Tc = Tm1| . |ka, O/ﬂd Hc = Hmk o... OHml;
(7’7’) deg(c) = deg($1)7 Ce:= le and Ch = (I’?, . ,.CL’Z),

(iii) Prvo(c) := T = Va[TI4(C¢, o) A Wo(a) —= TI4(U, g¢" ()], where
g(@) == W' and ¢¢" == H"(g). We say that T¢ proves ¢¢", if T F Prvy(c).

If xg, ...,z € Q, then (xo,0) := zo and (zo, (x1,...,2%)) = (To, T1, .., T)-

We conclude this section by showing that for each composite name ¢, T¢ proves ¢°".
To show this, we use that if S+ A, then T¢|S F My = A, which is rather obvious.
We give a proof, though, but only after we have introduced Tait-style systems (cf.
Lemma V.2.8 (i)).

Lemma V.1.9. Let T := ACAy, g(a) := w'™ and ¢ a non-empty composite name.
Then T¢ proves gch.

Proof Since the composite name c is represented by a closed term, we have that
Tk Prvg(c) iff T¢F Tl4(C¢, o) A Wog(ar) — Tlg(U, ¢¢" ().

We prove the claim by induction on the length of ¢. If ¢ = (x) then the claim is by
Corollary I11.7.16. Next, we assume that ¢ := (x1, ..., z) is a non-empty composite
name so that T¢ proves ¢ and that o € Q. We have to show T, |T¢ F Prvo((xo, ¢)).
Thereto, we work informally in T,,|T¢. To show that Prvo((zo,c)), assume that
TI4(Cyy, @) A Wo4(r), and aim for TIQ(U,gCh(gIS(a))). By Corollary I11.7.16, T,,

proves g,n, therefore we obtain Wo<(gm8(oz)). As T¢ proves ¢°° by assumption, we
have

T+ \V/S[T|<I(C:c1aﬁ) /\W0<1(5) - T|<‘(U’90h(ﬁ))]

154

By the above remark (or Lemma V.2.8 (i)), we have for My := Uy,
() Too| T VB[TIA(CEY,) A WO (8) = Tla(U, g (5)))

As CMo is a set, Wo (g, () yields TIQ(CMO,gxg(oz)), and further, Wo';/'o(gxg(oz)).

1

Hence TIQ(U,gC}L(gxg(a))) follows by (). 0

V.2 Finitary Tait-style systems

A Tait-style system for a theory S derives finite sets ', A, A of L-formulas, also
referred to as sequents (cf. e.g. Tait [30]). We write A instead of {A}; I', A for TU{A}
and I', A to abbreviate 'UA. Further, fori € {0,1}, FV,(I') := [J{FV;(4) : A€ T'}.
In similar fashion, we lift the functions = A, A[X /)], and A[C from formulas to
sequents: for instance I'[C := {A]C : A € T'}.

We map sequents to formulas as follows.

Definition V.2.1. If T' := {Ay,..., A1}, then (') == \,_, Axq), where is a
permutation on {0,...,k—=1} so that "Ar) ' < ... < "Arg_1)", and "A7 is the
Godelnumber of A. We consider two sequents I' and A as equivalent over some
theory T, if the corresponding formulas (I') and (A) are equivalent over T. IfT' =),

then (I') := L.
The notion C |= A is lifted to sequents as follows.

Definition V.2.2. Let C be a class term of L, I' a sequent of L-formulas with
FVi(I') \ FV1(C) = {VA, ..., V,,} and Var a finite set of number variables. Then,

CEval :=A[C)y/Vi,...,(C)u,/Va], where A :=T1C,

and vy, ...,v, are the first variables w.r.t. some fized enumeration that are not in
Var and do not occur in I'[C. Further, C=T :=C |y T.

Note that due to the way we pick the fresh variables vy, ..., v,, the sequent C =
' U A may be different from the sequent C =T",C = A, which would be annoying.
However, if Var is the set of number variables that occur in (I', A)[C, then C = TUA
is C Evar TUA s C FEvar I,C Evar A. Thus, if a sequent ', A is given, then we
read C ET,CE A as C Eva I, C FEvar A, where Var is a above.

All finitary Tait-style systems considered in this thesis share the axioms and rules of
the Tait-style system for T¢: for each atom A, each sequent I' O {A, ~A} is an axiom
with main-formulas A and ~A. Besides, we have axioms for the primitive recursive
function and relation symbols. We assume that the main-formulas of these axioms

155

consist of literals only and are closed under substitution, i.e. if I'(%) is an axiom,
then so is I'(S) for all number terms §. The rules are the usual rules for conjunction,
disjunction and quantification in both sorts displayed below. A(v), B(V), Ay, Ay, C
and the elements of I" range over L-formulas and s, over L-terms.

I, A(s) I, A(u) I, B(U) I, B(U)
I, 3zA(z)’ I, VzA(z)’ I 3XB(X)’ I'VXB(X)’

where U ¢ FV{(I',2VXB(X)) and u ¢ FVo(I',VxA(z)) is required for the V-rules.
Additionally, we have

F,Al,Ag F,Al F,Ag d F,C P,_\C
an
LAV Ay DLAINAy r

(cut).

A formula displayed beside I' in the conclusion of the above rules is called the main-
formula of this rule, and the formulas C' and =C displayed in the cut-rule are referred
to as cut-formulas. Restricting the cut-rule to a certain set C of formulas means
that the cut-rule is only applicable if one of the cut-formulas is in C.

Next, we assign a Tait-style system to a theory S := T + S. We could consider the
extension of T€ by all sequents that contain the formula S. However, for reasons
related to cut-elimination, we do not want the main-formula of an axiom to be overly
complex. Instead of S, we consider the L-instances inst(S) of the theory S.

Definition V.2.3. The L-instances inst(A) of an L-formula A is the set of L-
formulas inductively defined as follows.

(i) If A is not of the form VX A', Ve A" or Ay A Ay, then inst(A) := {A}.

(ii) inst(A A B) :=inst(A) Uinst(B), inst(VXA(X)) := U,y inst(A(U;)) and
inst(VeA(z)) := (U, inst(A(s)), where s € L states that s is an L-term.

We refer to inst(S) as the L-instances of the theory S.

Example V.2.4. Pl() = VZ3X[ZEX A T[X] A pair A trans. The instances of
p1(T)|S are thus the following:

(i) the instances of pair and trans, that is, AY[Y = (U),] and 3Z[Z = U+V]
(where U4V = {(z,0) : 2 € U} U{(y, 2+1) : (y,2) € V'}), for all set variable

U,V and each number term s.
(i) AX[UEX ATIX] for each set variable U, and 3IX[X = My, unless S is T¢.
(i1i) the instances of SIMy, unless S is T¢.

Observe that (i) and (ii) are 3}, and (i1i) are arithmetical.

156

Definition V.2.5. The Tuit-style system assigned to a theory S := T¢ +S extends

v

then T¢ by azioms I', A for each A € inst(S), where A is the main-formula of this
ariom. And S I% I’ states that there is a derivation of the sequent I of depth n,
where the cut-rule is only applied if one of the distinguished formulas of the cut-rule
is an element of inst(S).

The next result states some standard inversion properties of Tait-style systems.
Observe that formulas of the form AA B, VX A(X) and VzB(z) are not L-instances
of S and are thus not main-formulas of axioms of S.

Lemma V.2.6. Assume that the displayed formula AV B below is not an L-instances
of S. Then, we have the following.
(i) If SE- I,VXA(X) and S T,VzB(z), then also SE- T, A(U;) and
S % I, B(s), for each i € N and each s € L.

(1) IfSI% ', AV B, then also S}% I'A, B.

Having a notion of derivation at hand allows us to also give a proof-theoretic proof
of Lemma 1.1.9.

Lemma V.2.7. For each class term C, T{SFI' = T|SFC =T.

Proof By induction on the depth of the derivation. The only axiom of T¢|S, where
the main-formulas contain set variables is t € U, =t ¢ U. As C(t),~C(t) is deriv-
able in T¢ for each formula C, also t € (C),,t ¢ (C), is provable. And if e.g.
WXA(X) with FV(I',VXA(X)) = {Vi,...,Vi} is obtained form I', A(U) with
U ¢ FVi(I''VXA(X)) by a VX-rule (we may also assume that U ¢ FV,(C)), then
by LH. ['|C[Cs/V], A(U)IC[C./U,C5/V]}. As #,u are fresh and pairwise distinct
variables, a Va-rule yields I'[C[V/C5], V2(A(U)IC[(C)./U,Cs/V]). As (VXA(X))IC
is Yz (A(U)[C[(C)./U]), the claim follows. The other cases are similar or simpler. O

The following technical lemma will be used in the proof of Lemma VI.2.3, which
is a key step in the reduction of p;(T) }% I' to T" = I' for an arithmetical T.

Since T|T™*2 implies that 'T_[UnJrg, but also that 'T_[UHH, we can, under suitable
assumptions, substitute U,.o for U, ;. Further, we have added a consequence of
the above result.

Lemma V.2.8.
(i) SET = T|SE Mg =T
(ii) if T C L(T"2S), then
TITHS E T = TIT™2IS b T[Myso/Muga, -, Ma/My].

157

(iii) if T C L(T?|S), then T|T"1|S F T = T¢|T™2|S I [[My/M,].

Proof (i) If S is T¢, this is by Lemma V.2.7. Else, S F I" implies T¢ =S, T, and
thus T¢ F ﬂé[Mo, Mo = T by the Lemma V.2.7. Hence T¢ +§[M0 F My E T, that is
TS+ My = T. (ii) We show that T¢|T"2|S F T'[M,,.2/M,, 41, ..., May/M] for each
axiom I' of T¢|T""1|S. Then the claim follows easily by induction on the depth of the
derivation. The non-trivial case is if the main-formula of I' is A,, := -T'"+1|S[Mn+1.
We show by induction on n, that T|T""2S = A/ = A,[Mui2/Myi1, ..., My/My],
that is, T""2|S[M, 4o implies A’ .

n = 0. 'T'2|SH\/|2 implies T[My and MyEM,EM, and -T'|S[M1 and S[M,. Since M,
satisfies (ACA), My is transitive, so Mg€My, and T|S[My, that is, Ag[My/My] ie. Aj.
Next, assume that n > 0 and T"+2\§[Mn+2 implies A’ . Further observe that A, =
T[Mn_i_g /\Tn+1|5“\/|n+1’ SO A/n—l—l = TrMn-‘r?) /\Tn+1|S[Mn+1[Mn+2/Mn+1, ceey Mg/Ml],
which is T[M,43 A Al. Now the induction step follows as -T'"+3\S[Mn+3 implies
TIM,.3 and T"2|S[M,,.», which by L.H. yields A’.

(iii) is immediate by (ii) as M, 4, ..., My do not occur in T' C L(T?|S). O

V.3 Infinitary Tait-style systems

An infinitary Tait-style system derives finite sets of L*-formulas (£-formulas without
free number variables) usually denoted by I' or A. We write s € £* to indicate that
s is a closed number term of £* and A € £* to indicate that A is an £L*-formula. Ac-
cordingly, 1’5[(1) (S) are the formulas in L3 (S) without free number variables. Further,
an L-formula A is identified with the £*-formula A* obtained from A by replacing
each free number variable u,, by the numeral 7.

An infinitary Tait-style system imports the natural numbers N from the meta-theory
into the infinitary system via the w-rule, which asserts that VxA(z) holds if A(7)
holds for all n € N. As a consequence (cf. Pohlers [11]), the infinitary system Teis
complete w.r.t. IIj-sentences of £*(T): if for each interpretation U € P(N) of the
relation symbol U, the II}-sentence A is valid in the (standard) model of arithmetic
(P(N),N,u"), then T< |- A.

In the standard model (N,...), each s € L* evaluates to a natural number s. Two
L*-formulas are numerically equivalent if they are syntactically equivalent modulo
number terms which have the same value. Literals of £* that do not contain the
relation symbols (U; : i € N) and € evaluate to true or false in the standard model.
Those that evaluate to true are referred to as the true literals of £*, and those that
evaluate to false are referred to as the false literals.

The axioms of T¢ are all the sequents of L*-formulas of the form I'; A and I', B, ~C,
where A is a true literal and B and C' are numerically equivalent literals. The rules

158

of T¢ are the rules of T restricted to L*-formulas, but with the Vz-rule replaced by
the following rule, called w-rule,

' A(m) for all n € N
[VzA(x)

(w-rule)

An infinitary Tait-style system corresponding to a finitary theory S then extends
T¢ by axioms I', A, where A is now an £*-instances inst*(S) of S. The £*-instances
of a formula A are defined similarly as the L-instances, but we close inst*(A) under
numerical equivalence, and further, the definition is so that if A is a true literal,
then inst(A — B) := inst"(B). With these modifications, the L£*-instances of the

infinitary systems T, (z € @) are simple enouth to allow for a lean cut-elimination.

Definition V.3.1. The L*-instances inst*(A) of an L*-formula A are inductively
defined as follows:

(i) If A is true literal or B is a true literal, then inst*(AV B) := (. If A is a false
literal and B is not a true literal, then inst*(AV B) := inst"(BV A) := inst*(B).

(ii) inst”(A A B) := inst*(A) Uinst™(B), inst"(VXA(X)) := |,y inst™ (A(U)), and
inst"(VzA(z)) := U,ep- inst™(A(s)).

(11i) inst*(A) := {B : A and B are numerically equivalent}, if neither (i) nor (ii)
applies.

We refer to inst*(S) as the L*-instances of theory S.

Definition V.3.2. If S is a theory, different form -i'ﬁ, then the corresponding in-
finitary Tait-style system S extends T€ by axioms I', A, where I" is a finite set of
L*-formulas and A € inst*(S). Further, A is the main-formula of this axiom.

Next, we define when S }% I', that is, when S proves a sequent I' with depth a and
the cut-rule restricted to the set

cut(C,S) := {A(U) € L*(S) : A(V) € CU-C} U inst*(S) U —inst*(S),

where inst*(T€) := (). Observe that to obtain cut(C,S) from C, we first close under
substitution of set variables and restrict to formulas in £*(S), and then add the
L*-instances of S and their negations since we cannot avoid these cuts.

Definition V.3.3. For all ordinals o and each set C of L*-formulas, we define
S }% I' by recursion on « as follows.

(i) If T is an axiom of é, then S }% I’ for all ordinals a.

159

(i1) If for alli € I, S}% [, A; and o; < « for all premises I'; A; of a rule that is
not a cut, then S }% I', A for the conclusion of this rule.
(111) Ifé }% I, A and S }% [, —A with ay,as < a, and {A,-A} C cut(C,S), then
i
S }i T states S }% I', where L* denotes the set of all L*-formulas, and S }%ﬁ r

states that S }% I’ for some o < B. Further, we write S }% I’ for S }% I, and S }% r
states that I' is obtained without using the cut-rule at all.

We point out that T }T Tis T }j I', so the derivation is cut-free, while if S is

different from T¢, then the derivation :IF'E\S — T still contains cuts with £*-instances

v

of T¢|S, that is, formulas in inst*(S[My).

Although the following properties of Tait-style systems are essentially trivial, we
consider them important enough to summarize them in a lemma. Note that the

axioms of S are by design closed under numerical equivalence.
Lemma V.3.4. Let sY =", and B a false literal. Then,

(i) S| T, A(s) iff ST, A(t),

(ii) SK-T, B iff ST

Next, we state inversion properties of Tait-style systems. Observe that formulas of
the form A A B, VXA(X) and VzB(z) are not L*-instances of S and are thus not

main-formulas of axioms of S.
Lemma V.3.5.
(i)]f§ = I, VXA(X) and S = I',VzB(z), then also S}% ', A(U;) and
é% I, B(s), for each i € N and each s € L*.
(ii) If AV B ¢ inst*(S) and SI T, AV B, then S} T, A, B.

Also the following simple observation is occasionally useful. It is often used tacitly
if we prove results by induction on the depth of the derivation.

Lemma V.3.6. [fé }% I' is not obtained by an w-rule, then S }% r.

Proof If S }% I' is not obtained by an w-rule, then the last rule applied has at most
two premises which are derivable with depth a@ < 7. As then also a+1 < ~, the
claim follows. a

160

Next, we show kind of an infinitary deduction theorem, see Lemma V.3.9. Here, and
often in the sequel, it suffice to bound the depth of a derivation by a limit ordinal.
Thus, the following definition.

Definition V.3.7. For each o, at == a+w.

If A € inst”(B), then Te+ B — A and T¢+ —=A — —B. Essentially, this is behind
the next auxiliary Lemma.

Lemma V.3.8. If A € inst*(B) and S }% I',—A, then S }% I',-B.

Proof By induction on the build-up of B. Let A € inst*(B). If B is a true literal,
then —A is a false literal, and the claim is by Lemma V.3.4; if B is a false literal, then
—A is a true literal, and the claim holds trivially. And if e.g. B is of the form By A B,

then e.g. A € inst*(By). By LH., S|"5 T, =By, s0 also § [So— T, =B, V ~B,. The
other cases are shown similarly. O

Lemma V.3.9. If T\S = T, then 'i'E|S }% ~T,T.

Proof Immediate by induction on a. If e.g. T|S }O‘Tﬂ I' is obtained from T|S }% r,—-A
for A € inst*(‘T’|S) by a cut, then by I.H. i’f\S }% —T,T, —A, thus by Lemma V.3.8,
Tes 2= ~T,T. O
Further, we give an infinitary variant of Lemma 1.1.9 for the case where C is a set
variable or a relation symbol. When we apply it, the set D in the formulation of the

lemma which specifies the range of the cut-rule is) or L, so the assumed closure
properties are met. For its proof, we use the following auxiliary result.

Lemma V.3.10. Suppose that C is a set variable or a relation symbol of L*(T|S),
and that with A € D also A[(C)s/U] € D. Then, T|S}5- T = TS| I'[(C),/U].

Proof Straightforward by induction on «. Since the main-formula of an L£*-instance
of T¢|S does not contain free set variables, the claim clearly holds for axioms. O

Lemma V.3.11. Suppose that C is a set variable or a relation symbol of L*(T|S),
and that for each s € L*, D contains (C)s # (C)s and with A € D also A[(C)s/U] € D.

IfC ¢ FVA(D) = {Zy,.... 21} and T|SI&- T, then T|S}50- Z ¢ C,TIC.

Proof By induction on a. We just show the case where I' = A VXA(X) and
-T'E|S }am%l I' is obtained from -T'E|S = A, A(U), where U ¢ FV,(T) is different form
C. By LH., T|S[52- U ¢ C,Z ¢ C,AIC,(A[C)(U). As U ¢ C is Va[U # (C).],
inversion yields for each s € L£*, -T'E|S }% U+ (C)s,Z ¢ C,AIC,(AIC)(U). Using

161

Lemma V.3.10 to substitute (C)s for U, cutting with -?E\S }% (C)s = (C)s, and
applying an w-rule yields T|S 52~ 7 ¢ €, AIC, Va((AIC)((C),)), that is, TS K-
Z ¢c,TC

Also for later use, we state this substitution property.

Lemma V.3.12. IfS|& T[X/UJ, then also S 5o X #C,T[C/U].

Proof By induction on a. Note that T¢}— (C); # X,s € (C), s ¢ X, this handles
the case of an axiom of the form I', s € X,s ¢ X. If A(X) € inst*(S), T — X #
C,~A(X), A(C), so §* =X X 4 C,—A(X), A(C), and § =2 X +# €, A(C) follows
by a cut. The induction step is straightforward (if S }a]'%l I'[X/U] is obtained
from S = T[X/U], A[X/U] by a cut, then note that for B := A[X/U], also S I
I'[X/U], B[X/U], and by L.H. S o~ '[C/U], B since U does not occur in B; in the
same way we obtain S |5 T[X/U],~B). O

Before we review the basic facts about partial cut-elimination, we fix a notion of
subformulas and rank of a formula.

Definition V.3.13. The set sufo(A) of subformulas of an L*-formula A is defined
as follows:

(i) sufo(A) := {AY}, if A is a literal.

(ii) sufo(Aj B) := {AjB} Usufo(A) Usufo(B), where j € {A,V},
(iti) sufo(QrA(z)) := {QuA(x)} UU{sufo(A(s)) : s € L},
() sufo(QXA(X)) := {QXA(X)} U U{sufo(A(T})) : i € N}.

Further, sufo™ (A) := sufo(A) — {A} are the proper subformulas of A. Moreover, for
a set C C L*, sufo(C) := (J 4¢¢ sufo(A) and sufo™ (C) := [4 sufo™ (A).

Definition V.3.14. To each L-formula, we assign a rank as follows. The rank rk(L)
of a literal is 1, rk(Aj B) := max(rk(A), rk(B))+1, and rk(QzA) = rk(QXA) :=
rk(A)+1. Further, rk(C) < n is short for (YA € C)(rk(A) < n).

Partial-cut elimination now reads as follows, where a#3 denotes the natural sum
of two ordinals.

Lemma V.3.15. Let ', A, A Cy, L, C C L* and assume that sufo™ (A) C cut(C,S)
and sufo™ (C) C sufo(D).

(i) Ifé}%F,A andé% A, -A, theng}#lﬂ.

162

*

(i1) é%FﬁS%Fandé}ﬁFﬁé@F, where E = {a : a = w*}.

Proof We only provide some hints. (i) We consider the case where A := VzB(x) with
B(m) € cut(C,S) for all m € N. Assuming that A and —A are the main-formulas
of the last inference, we have for some o’ < a, 3/ < /3, some s € L* with s = m,

that S }% I' A, B(m) and S }%’ A,=A,-B(s). Hence the I.H. and Lemma V.3.5

(iii) yield S }iﬁ, I') A, —B(s) and S }a,ﬂ I', A, B(s), and the claim follows by a
cut. (ii) Induction on « using (i) yields the first claim, since with A € cut(C,S),
either also A € cut(DD,S) or sufo” (A) C cut(D,S). Induction on « using the first
claim yields the second. O

Also a simple but relevant property is the following, for whose formulation we use
the notion of a substitution instance of I'.

Definition V.3.16. If T is a finite set of L-formulas with FV(I") = {V, 7}, then for
all set variables U and § € L*, T'|U/V,5/7] is called a substitution instance of I

Lemma V.3.17. If S + ' with FV(I') = {V, &}, then for all set variables U and
se L,

(i) S| T,

(ii) S T[TV, 5/4).

Proof (i) By partial cut-elimination and completely standard. (ii) From (i) by in-
duction on n. For n = 0 the claim is readily checked. If S }n—H I' is obtained by a

cut, a QX-,A-, V- or Jz-rule, the claim follows immediately by the I.LH. So assume
that S % T, va (x) is obtained from S - T', A(u) with u ¢ FVo(T',VzA(x)). By

LH., S }i—w I, A'(m) for each n and each substitution instance 1", A'(w) of T', A(m).
Now I",Vx A'(z) follows by the w-rule. O

For later reference, we collect some further auxiliary results. The next lemma helps
us to deal with instances of induction and transfinite induction.

Lemma V.3.18. Let C be a class term and ng so that Te }n_—o s & C,s €C for each
s € L*. Then we have the following.

(i) -T_E}MO§ZC,—|B,SEC, for B :=Vzlx € C — z+1 € C].

(i1) Te }w —Prog(C),a € C.

Proof (i) By induction on s". If s = 0, then the claim is by choice of ng. For the
* N *
induction step, assume T¢ }w 0¢C,-BseC AsT |~ s+1 ¢ C,s+1 €C,

163

we obtain T¢ }M 0¢C,—B,seCANAs+1¢C,s+1€C. An application of the
J-rule yields the induction step. (11) By induction on . We just show the induction

step. By L.LH. we have for each § < «, Te }w —Prog_(C),—~(f < «),B € C.
Hence,

) Te Rt et2 —prog_(C), (V8 < a)(5 € C), and

(ii) TE}M —Prog_(C), (V< a)(BeC)Aa¢C,acCl.
An application of the 3-rule yields the induction step. O

V.4 Cut-formula replacement

The result of this section is used to cheaply eliminate a cut of S % I', A with

S }% [,—A, if A € eX(C). The strategy is to replace the cut-formula A by an
equivalent formula A° € 3(C), without a significant increase of the depth of the
derivation, say, S }fc—w I'A° and S }% I',—A°. Then S }% I' is by Lemma V.3.15.
This result is then used to provide criteria when two equivalent theories S and S’
d at - at

satisfy S }% riff s }% I.

In the proof of the above mentioned result, we use an instance of arithmetical com-
prehension to code two sets U and V' into one, namely 3X[U = (X)g AV = (X)4].
Then, we need to eliminate a cut with this instance. To avoid a relevant increase of
the depth of the derivation, we assume that sufo™ (3X[U = (X)o AV = (X)1]) C C;

an assumption that is met whenever we employ Lemma V.4.2 or one of its conse-
quences obtained in this section.

First, we assign to each A € eX(C) a formula A° € ¥(C) with the same free
variables, so that ACAqg - A «+» A°. Arithmetical comprehension is required to

have VX, YA(X,Y) iff VXA((X)o, (X)1) (or equivalently, that 3X, Y A(X,Y) iff
AXA((X)o, (X)1))-

Definition V.4.1. To each formula A € eX(C), we assign a formula A° € ¥(C)
that contains the same free variables as follows.

(i) If A € ¥(C), then A° = A.
(i1) If A(U, V), B(U,u), D1(U), Dy(U) € C, then for j € {A,V},

(a) BYIXA(X,Y)) := 3XA((X)o, (X)1)),
(b) (3y3XB(X,y))® = 3XTFyB(X,y),
(¢) BXDy(X) j 3XDy(X))* := IX(D1((X)o) j D2((X)1)).

164

(iii) (A j B)° :=(A°j B°)°, (3XA)°:=(3X(A°))°, and (3xA)° := (Fz(A°))°.
Further, if A € ell(C), then A° := —(—=A)°.

Lemma V.4.2. Assume that sufo” (3X[U = (X)o AV = (X)1]) C cut(D, TI|S). If
A € eX(C), then

TISI T, A= T|SFS- T, 4°, and T|S & T, ~A — T|SSor T, - A°.

Proof We just show the first claim; the second is shown similarly. Below, we write
A°(U) for (A(U))° which is justified as FV(A) = FV(A°). Further, we just write T
for T\S The proof is by induction on the definition of A° and side-induction on a.
If A€ ¥(C), then A° = A and the claim holds trivially. Next, we have a look at the
cases (ii)(a)—(ii)(c) of Definition V.4.1. We start with the following auxiliary claims:

(i) T T, 3XA(X,U) implies T o T, 3X A((X)o, (X)1).
T I T, 3X A(X, s) implies T }— [3X3rAX, z).

(iii) T}% I''AXA(X), B(U) implies T}<L I3Y (A((Y)o) vV B((Y)1), and
T}2 I, 3XA(X) and T T, B(U) imply T }% LAY (A((Y)o) A B((Y)1).
All three claims are shown by induction on a. Exemplarily we show the first
one. If IXA(X,U) € inst*(S), then as T =% -3IXA(X,U),3IXA((X)o, (X)1),
the claim follows by a cut. If T }% IVAXAX,U),A(V,U) for a f < a, then

T }% I 3AXA((X)o, (X)1), A(V,U) is obtained by the I.LH. Hence, for some fresh
Y, Lemma V.3.12 yields

* +
T2 0L 3XAX), (X)), V £ (V)ouU £ (V)1 A s (V)1)
Since T }% Y[V = (Y)oAU = (Y)4], the claim easily follows using Lemma V.3.15.

With the above auxiliary claims at hand, one following corresponding claims are
readily obtained by induction on a.

TIE I, 3XIYA(X,Y) implies T % [, 3XA((X)o, (X)1).
T I I', 323X A(X, z) implies T }— I 3X3arA(X, z).
(iii) T I T,3X D1 (X) j 3X Do(X) implies T }% I 3X(D1((X)o) j Da((X)1)-

165

Now for the induction step, i.e. case (iii) of Definition V.4.1. We just show the
first two cases, the third is shown similarly. If T }% I', A is obtained form T }%

I', Ay, Ay, then by LH., T }% I', A7, A3, so T }% I A; v A3, and again by
IH., T }% [, (A Vv A9)°. Further, if T }ﬂ [, 3X A(X) is obtained form T }%
[, 3XA(X), A(U), then by side LH., T ﬂ I, (3XA(X))°, A(X), and by LI,
T 25 I, (3XA(X))°, A°(U). Then also T & I, (3XA(X))°,3X A°(X), and
again by LH., T }% [, (3XA(X))°, (3XA°(X))°. As (FXA(X))° = (3XA°(X))°,
this is the claim. O

This allows for the following strengthening of Lemma V.3.15.

Lemma V.4.3. Let sufo” (3X[U = (X)o AV = (X)1]) € C and sufo” (A°) C C. If
TISEE T, A and T|SE A, = A, then T|S =20 1.

Moreover, it allows us to replace A by a provable consequence B, if sufo™ (A°) C C,
without a significant increase of the depth of the derivation.

Corollary V.4.4. Let sufo” (AX[U = (X)o AV = (X)1]) € C and sufo™ (A°) C C.
IfTISE A, B and T|S[o- T, A, then T|S 2T, B.

Finally, we consider two theories T|S and T’|S, where say, T|S F B for each B €
inst*(T’|S). We look for criteria which guarantee that T'|S }% =T|S }% r.

Lemma V.4.5. If for each B € inst*(T'|S), there is a A € inst*(T|S) so that for each
T, TIS[T, =B = T|SEe™ T, =4, then also for cach T, T|SF- T = TIS|e-T.

Proof By induction on a. We just give the relevant case. If T S }QTH I' is obtained
from :Ik"|S |= T', =B by a cut with some B € inst*(T’|S), then by L.H., T|S }% I',-B,

. x <at . 5 /= .
and by assumption, T|S —z— I', ~A for some A € inst*(T|S), and the claim follows
by a cut with A. O

The next lemma describes a situation where this criterion applies.

Lemma V.4.6. Let sufo” (3X[U = (X)o AV = (X)1]) C C. Assume that for each

B einst*(T'[S), TISF B and sufo™ (B°) C C. If T/|S|> T, then T|S o T

Proof The criterion given in Lemma V.4.5 clearly holds: under the given assump-
x @ x w . : at

tions, T|S}& I, =B and T|S}- B yield T|SFe— I by Lemma V.4.3. O

When we later consider equivalent theories with different axiomatizations, we are
in an even better situation. We do not have to cut with an instances of T’|S, but
only with a subformula, since corresponding instances A of T|S and B of T’|S only

166

differ by some equivalent subformulas A’ and B’, and it is further the case that
if T|S }% I',—A, then we can dig out —A’ using inversion, replace —A" by —B’
by cutting with T|S }i—w =B’, A, and then obtain T|S }% I', =B by undoing the
inversion steps.

The following lemma describes such a situation. The idea is that “VXA(X) is an
instance of T|S and =VX B(X) the corresponding instance of T|S. In the lemma
below, we could replace the assumption sufo™ (4;,) € C by sufo™ (A7) € C and
sufo” (XU = (X))o AV = (X)4]) CC.

Lemma V.4.7. Let I be finite, and A(U) := \/,.; Ai(U) and B(U) :=
so that A; = B; fori e I\ {ip}, and T|SF —A;,, By, and sufo™ (A;,) C

10

VB()
C. Then

TIS I T VXA(X) = T|SFS- T VX B(X).

167

168

Chapter VI

Finitary and infinitary reductions
and sharp bounds

Our aim is to show that for g(a) := w'™, T := ACAg and T, := Op,(T), g,» is indeed
that largest normal function which is provable in T, by which me mean that for any
other normal function that is provable in T,, we have that f[Lim(Q2) < g, [Lim(Q).
We call such a largest provable function a sharp bound of T,.

To show that g,» is a sharp bound of T,, we employ the more general notion of
a bound f of T,, that is, a normal function, so that for each name x € @), each

derivation Tx|S }% I" of an arithmetical £*(T|S)-sequent I" can be transformed into
a derivation 'i_€|S }%@) I', where Tx|S }% ' indicates that the cut-rule is restricted

to formulas in inst*(T,|S) and some additional formulas that do not impede the cut-
elimination process; these additional cuts can be eliminated cheaply at a later stage.
We show that g, is a bound of T,. Using the Boundedness Lemma, we obtain that
g, is also a sharp bound.

We start this chapter by reviewing the axiomatizations of the theories (T, : x € Q).
Then, we are ready to prove the reduction properties listed below. Thereby, we make
use of the approximations x[a] and x(«) (cf. Definition I111.4.10). First, we look at
the following reductions which are feasible without resorting to infinitary systems.

(i) If z € @, and I' Cgn L33 (TIS), then for some n,
To|SEFT = TV SEM, =T
Note that if T" is arithmetical and FV{(T") = 0, then M; =T is T
(ii) If v € Q with deg(x) = m+2, and I' Cin Lesn | (T|S), then for some n,

169

Next, we look at the related infinitary reductions.

(iii) If x € @, f is a bound of T, and I' Cg, l’i[(l)(T|S), then

i+1|s}£% r = T,|s<2
0

(iv) If x € @ with deg(x) = m+2, and I Cg, EZZ}R (T|S), then
T,|S }7 T = To|S o T.
m+1 eE}nJrl

In order to obtain (iii), we use that if f is a bound of T, and say Ti|5 }% M; =T,

then $E|TI|S }%(7) M; = I', which in turn yields Tx|S }%(’7) I' by Lemma VI.3.13,
an important auxiliary result, that we show prior to the above reduction properties
(iii)—(iv). With (iii)—(iv) at hand, we are ready to produce a first proof that for each
x € Q, g,n is a bound of T,.

In the final section, we then show, dually to what we did in Section II1.7, that in some
higher type sense, H,# is a bound of Op,, and that H;Z("H is a bound of Op 1)
(recall that z* := z¥+-corr(z); see Definitions I11.4.20). Finally, we conclude by
discussing what meta-theory we implicitly used to prove these results.

VI.1 Revisiting the axioms of (T, : x € Q)

When transforming a derivation of one theory into a derivation of another, clearly
the exact form of the axioms T, of the involved theories T, matter. However,
whenever possible, we avoid working with the rather complicated sentence 'T_x, but
work instead, if say deg() = m+1, with the axiom T, := (Va <t o(x))pm+1(-T'm[a) of
the theory T/, := T+ Tf,c, which by Lemma IIL1.6.2 (iii) proves the same formulas.

Although the axiom (Vo <1 o(z))p;" +1(Tx[a]) contains Tm[a} as a subformula, we can
mostly avoid looking inside T 4.
If we are concerned with finitary reductions where provability is all that matters,

looking at T’ instead of T, causes no problems. However, when considering infinitary
reductions, also the derivation’s depth and the complexity of its cut-formulas become

relevant. Therefore, switching from T to T’ needs some justification, which involves
inspecting the non-arithmetical £*-instances of T, and T’,, respectively.

This inspection reveals (see Lemma VI.1.2 bglow) that if deg(z) = m+1, then
for each A € inst*(T,|S) and each B € inst*(T,|S), we have A, B € 'CeZl K and

therefore, sufo™(A%) C L, and sufo™(B°) C Ly, . As further, T,|S B and
T.|SF A, Lemma V.4.6 yields the following.

170

Lemma VL1.1. Let deg(z) = m+1 and T, := (Vo < o(x))pmﬂ(:f'm[a}). Then,
= <at x <at
T;JS}@F@TIAS}@F

Now we inspect the £*-instances of T, and T. Recall that T, = ¢(2){T U}, where
p(@)sy = ol HTIU } is obtained from the L(P)-formula ¢(z) by replacing each

occurrence of P(X) by T]X, and ¢(u), specified by Definition I11.6.1 and Theorem
A.1.2, is defined by means of the L£(P)-formulas (X, u) = 3IY¢'(X,Y,u), where
¢'(X,Y,u) has no set quantifiers, and 9™ (u) = u < NoA A,y (u=n+1 = @p,,,).
Ny is an arbitrary large but fixed bound on the level of the names. Further,

(i) pp, :=VZ3IX[ZEX NP(X)] A pair A trans, and
(i) @pn.p = VZVx,e3X[ZEX ANP(X) A Ryy2(X, Z,z,e)] A pair Atrans.
Since p(u) = go ~" u A Woo-(u) A good(~, <) A (Vy ~ u)d(deg(u)){¥(X,y)},
To = go~" u A Wor(u) A good(~, <) A (Vy ~ u)d(deg(u)) {vr,, (X, y)}.

Now we let & be a closed term and observe how the L£*-instances of T, look like.
Recall that good(~», <) is an arithmetical sentence that asserts that < is the transi-
tive closure of ~» (cf. Definition 1.2.24), and note that the £*-instances of Wo.,+(z)
are arithmetical. Next, we unwind (Vy ~ x)d(deg(z)){¢+,,(X,y)}, which yields

(Vy ~ x)[deg(z) < Ny A /\ (deg(z) = n+1 = @p,,,) A pair A trans|{1¢;(X, y) }-

n<Ng

At this point it comes in handy that inst*(A — B) = inst*(B) if A is a true literal,
and inst"(A — B) = () if A is a false literal. We see that the non-arithmetical
L-instances of ¢(z)+; (those different from the L*-instances of pair A trans) are of
the following forms, where y is a closed terms so that y ~ x, i.e. y = z[a] for some
a < o(z):

(i) 3X[ZEX A by, (X,)], if deg(x) = 1,
(iv) 3X[ZEX A g, (X,y) A Rpya(X, Z, 5, 1)], if deg(x) = n+2.

Since ¥4, (X,y) is a Xj-formula and R,12(X, Z,s,t) € L, , each L*-instance
n+2

of T, is in L* . The same holds for the L*-instance of T|S: as pn+1(-T'x[04) is

X
Ppn, +1{Tm[a} U}, we see that the corresponding L*-instances of T, and T’ possibly
only differ by the subformulas ¢4, (X, z[a]) and T,[X. Therefore, the assump-

tions of Lemma VI.1.1 are clearly justified.

171

Lemma VIL.1.2. Let deg(z) = n+1 and T, := (Vo < o(x))pnﬂ(:f'm[a}). Then,
inst*(T) U inst*(T") C E:E}LH.

However, we can do better. Since for each x € Q*, T, F p1((ACA)), we have by

Lemma [.A.1.13, that

(%) Tobtsy(X,y) & T,1X, and therefore also T/, b by, (X, y) > T,[X.

Hence, () together with Lemma V.4.5 and V.4.7 yields the following sharper result.

Lemma VI.1.3. Let deg(z) = n+1, and T, := (Va < o(m))pnﬂ(fx[a}). Then,
T.IS }% e TS }% T.
g 5

V1.2 Finitary reductions

Now we are prepared to perform the finitary reductions announced at the beginning
of this chapter. Many of these results are proved by induction on the depth of the
derivation. Thereby, the auxiliary result below is of good use.

Lemma VI.2.1. If for some n and each I' Cqn Lesn , S I% I' = ST, then also
for each A Cg, ﬁeH}nH’ S }% A =S FA.

Proof By induction on ¥ acark(A), the sum of the ranks of the formulas in A. If
A Ciin Lest , the claim is by assumption. Hence, assume that A Cg, ﬁen}n o is of
the form A, A for A € (Lo |\ Lesy,). Then A is of the form VyB(y), VY B(Y),
B1V By or By A By, where B(U), B(u), By and By are still in Eeﬂ}nﬂ' Ife.g. Aisof
the form VX B(X), then by inversion, S I% A’ B(X), hence by LH., S+ A’ B(X),
and S’ F A’) A follows. And if e.g. A is By A By, then by inversion, for i € {1,2},
S }% A, B;, hence by LH., S+ A/, B;, and S’ = A’, A follows. The cases where A is
YyB(y) or By V By is handled similarly. O

VI.2.1 Reducing T,;; to T}

The L-instances of pi(T)|S consist of the L-instances of SIMo, AX[X = M), pair
and trans (cf. Definition 1.2.3), which are also among the L-instances of T[S, and
L-instances of the form A_ 4)(Z), called the relevant L-instances, defined below.

Definition V1.2.2. For each set variable Z, A, +/(Z) := AX[ZEX ATIX] is called

a relevant instance of p1(T)|S.

172

Next, we show a first auxiliary reduction property.

Lemma VI.2.3. Let I Cqin L3 (T[S) and n > 0. Then,
TITSEM; E-A) (2, M ET = TIT"HSEM, = T.

Proof Assume that T°[T"|S = My = —A_ +)(Z),M: = I', where we suppose that

1
Mi = —A 4)(Z) is Vz[(My). ¢ (My), Vv 'T'[(Ml)]. Since M; is a transitive set, we
have that

(%) TITSF Z ¢ X, X ¢ My, =T X, (M, = D)[Z/(M,).]).
Using Lemma V.2.8 (iii), we obtain that
(%) TITS FVX(ZEX AXEMy ATIX — (My = D)[Z/(Ms).]).

Now we work informally in T¢|T"™|S. Assume (x). As M is a set with M;EM, and
TIMy, we can instantiate X with My, and obtain that ZEM; — (M = I)[Z/(Ms).].
As (') is arithmetical and M; € Ms, we also have ZEM; — (M, = T)[Z/(M,).].
Instantiating Z with (M), finally yields M; =T O

Lemma VI.2.4. Let I Cqin L3 (T[S). Then,
pi(MISE-T = TIT"|SFM; T

Proof By induction on n. If n = 0, then I' is an axiom of p;(T)|S. As I' is arith-
metical, its main formula is an instance of §[M0 or T¢. Thus, I' is already an axiom
of T¢|S. Hence T¢|SF+ I', and by Lemma 1.1.9, T¢|S+ M; ET.

The induction step is immediate from the [.H., except if I' is obtained by a cut
with a non-arithmetical instance A of py(T)|S which is not an instance of pair or
trans. Hence, assume that I' was obtained from p;(T)|S -~ I',—A by a cut, where
A is either A (Z) or 3X[X = Mo]. In both cases, we can assume that n > 0
(else, already I' is an axiom). In the first case, we obtain from p;(T)|S = T,-A
by VX-inversion, that p;(T)|S - T,U # M for U ¢ FV(I'). Now the LH. applies
and yields T¢[T"|S = M; = T', (My), # Mg, where u is a fresh variable. Recall that
Vz[(My): # Mgl is Mg ¢ M;. As n > 0, T¢T"|S proves that Mg€My, therefore
TEIT"|S - M; = T follows. Hence, T¢|T"™|S My = T’ by Lemma V.2.8 (iii). As
[is arithmetical and M; C Ms, we also have T¢|T"*}S - M; = I'. And if ' was
obtained from p;(T)|S - = Ay 1) (Z),T by a cut, then by V.X-inversion we also have
p1(T)[S = Z ¢ X V-TIX,T for X ¢ FV{(I'). Hence the LH. applies and yields
TTS M, = Z ¢ XV —T]X,M; =T, from which we further conclude

TS - My A) (2),M; T

173

Now T¢|T"*|SF M, T follows by Lemma VI.2.3. O

By Lemma I11.6.2 (iii), T¢ F T,41 < p1(T,). Hence T,41|S and py(T,)|S prove the
same formulas. Thus, we the following corollary.

Corollary VI.2.5. Let I' Cgin L1y (T[S). Then,

Tor1|SE-T = TIT2S+ M, =T

VI.2.2 Reducing T, to T, for names r € Q with deg(z) > 1

If deg(z) = m+2, then Op™(T) iff (Ve <t o(x))(pm+n+20pi[z}(-7')) (cf. Lemma II1.6.2
(iii)). Also recall that

Prsa(T) = VZVu, vIX(ZEX ATIX A Rpya(X, Z,u,v)) A pair A trans,

where R, 2(X, Z,u,v) = 7} 5(Z,u,v) = 7. o(Z,u,v)[X (cf. Definition 1.I.2.8).
For each T and each = € @ with deg(x) = m+2 and n € N, we let

At o(Zya,8,t) = a<o(r) = IX(ZEX A Op/ " (NX A Riyinio(X, Z, s, 1)).

z[a]
Then, T° F VZ, o, u,vAx , (Z, a,u,v) A pair A trans <> Op}™(T) by Lemma I11.6.2

(iii), and for all number terms a, s,t, A+ (Z,c,8,t) € Lesn is a relevant L£-
T z,n m+4n+2

instance of T := (Vo < o(x))pm+n+2(T;[a]), one that is not also an instance of
v

some Tx(5)-

The following simple observation will be employed in the proof of Lemma VI.2.9,

the key lemma of this subsection.

Lemma VI.2.6. If TISFT and Y ¢ FV,(T) = {Zy,..., Z}, then
TISEMy ¢Y,Z ¢Y,~T|Y,TY.

Proof If T|S + T', then also T¢ F A for A := —(S[M), ~3X[X = M), =T, T, and so
TFY E Aby Lemma V.2.7. As T+ (=3X[X = My])[Y < M, §é Y, and —(SIMj)
is arithmetical without free set variables, T¢ - —|(§[M WMo 2Y,Z¢Y,-T|Y,T)Y
follows from T¢+ A. Hence, TS My ¢ Y, Z ¢ Y,-T|Y,T|Y. O

Next, we review some properties concerning the interplay of names, normal forms
and operations. If deg(z) = m+2 and x =xp yon,z, then y is a simple name of degree
two and thus of the form (1,y") with deg(y’) = 1 (cf. Definition I11.4.6). Further,
o(y) = o(z) (cf. Definition I11.4.3 (ii) and Lemma II[.4.2 (ii), (iii)). Moreover, we
have the following.

174

Lemma VI.2.7. Lety be a simple name with deg(y) = 2.

(1) If o(y) =1, then y(B+1)[0] = y[0] o y[5] and y(0)[0] = y[0].

(i1) If o(y) € Lim(Q) and a<to(y), then y(f+1)[a] = y[a|oy(5) and y(0)[a] = y[a].
Proof As y is a simple name of degree two, we have that y = (1, z), where deg(z) = 1.
(i) If o(y) = 1, then y(6)[0] = (y[6]+1)[0] = y[6]. Further, y[S+1] = y[0] o y[f]
by Lemma II1.4.13. The claim follows. (ii) If o(y) € Lim(Q), then 2~ € P and
o(z) = o(y) (cf. Lemma II1.4.2 (i)). Then, y(0) = (1,27) and y(0)[a] = (1, z[a]) =
y[a] by Definition I11.4.10, and y(5+1) = (1,27) o (1+8,27) = y(0) o y(B). So
y(B+1)[a] = y(0)[a] o y(B) = yla] o y(B). O
The next lemma provides some auxiliary properties of operations. Recall that
for each operation Op, T° = T — T’ implies T* = Op(T) — Op(T’). Further,
Op = Op' states that for each T, T¢ - Op(T) — Op’(T). Moreover, (cf. Definition

I16.1), TI":= (x =g AT) V (9: + qo A OpI™(T). Thus, we have that for z # qo,
T & Op "(T), and we can use T1™ as a more compact way to write Op}™(T).

Lemma VI.2.8. Assume that T is IT,.,. The following is provable in T¢. If
20,21 € QF and y 1s a simple name of degree two, then

(a) OpZ"(T) — T, (Opt™ 0 Opl")(T) — OpL(T), and if deg(z1) =1, then
Op." o Opi™ = Op.".

() o <qoly) ATH, 1 = Pt (T ATHLY, and o < o(y) ATHE = puit (TH0).

Proof (a) By Lemma II1.6.5 (i), Op" = pn+1, and as Tis I} ,,, Lemma 1.2.12 yields
Tk pusr(T) = T. So T OpZ(T) = T, thus T+ (Op" 0 OpL")(T) — OpL(T)
followvs. And if deg(z) = 1, then by Lemma I11.6.4 (ii), OpZ" (T) is IT} ., hence for
each T, (OpZ" o Op’ ")(T) — Op+"(T’) by the first claim.

(b) We just show the first claim, the second is shown similarly but simpler. First,
we show that Opy(ﬁJrl = pn+1(Opy[a o Opy(ﬁ) for each @ < =, and then that
(Opy[a o Opy(ﬁ)(T) implies Op (V) and Op (). This yields the claim.

If o(y) = 1, then y(8) = y[f]+1. OPy(5+1 = Pn+1OPy(73+1)[0 < Pn+1(OPy[6L] © OP;[Z})
is by Lemma VI.2.7 (i). By (a) we obtain (Opy[g o Op,;) (T) — Op;r[&(T), and
further Op:[g] oOp;[g] = Prii1 oOp:[g] = Op;(%). And if o(y) € Lim(Q2) and a<o(y),
then Op;(%ﬂ) = pn+1(0p;r[z} oOp+") by Lemma VI1.2.7 (ii). Since deg(y(3)) =1 by

Lemma IIL4.11, (Op", o Op))(T) — Op (T) A Op 7 (T) is by (a). O
There is one more thing we wish to recall. If deg(y) = 2 and § < «, then by Lemma

[I1.4.19 (ix), y(B) ~* y(«), and so by Lemma II1.6.5 (i), T+m - pm+1(Ty(Z°)), and

175

Y

as deg(y(a)) = 1 further T F pya (T 1)) — 'T';;(Z) (e.g. by Lemma VI.2.8 (a)). So
+m T+m

Tyl Thwls:

After these preparatory steps, the following reduction property is readily proved.

Lemma VI.2.9. Let y be a simple name of degree two. Further, assume that T is
I}, ., and T’ Cg Lsy (T[S). Then,

T7y7m y(TL+1

Proof Suppose that 'T', I" and y meet the assumptions of the lemma and that further
TS T, —As (2, s,t), where FV(D) U{Z} = {Z1,..., Z;}. As the formula

y(n)
_'AT,y,m(Zv a, s,t) looks as follows,

o <o(y) AVX[Z & XV ~(T) XV (mhyo(Z, s, t) Ao, o(Z,5,8) 1X)],

we obtain for XY ¢ FV,(I"), using inversion,
(i) TXISET,a<o(y),

y(n)

(it) TImISET, Z ¢ Y, =T 1Y, wh (2, 5,1),

y(n) ylo]

(ifi) TjmISET, Z ¢ X, =T/ "X, ~7h (2,5,)X,

y(n)
By Lemma VI.2.6 (i) implies (iia) (see below), where we dropped the assumption
Z€X, as this follows form Z€Y and YE€X and T;(ZL) [X. Next, we rewrite (iia) as
(iib), and then exploit that if X is a model of 'T';F(Z':), then we have by Lemma VI.2.8
(b) that for all ZEX and a <1 o(y), there is a YEX with ZEY and 'T_;F[ZS Y. More

precisely, 'T‘;:’Z)|S Fa<o(y) — IY[ZEY A 'T':[Zj] Y], so by Lemma VI1.2.6

TSk a<o(y)) AMEX AT X — IY[ZEY AYEX AT/ Y.

(n) ylo]
This yields (iic).
(iia) TS+ My ¢ X, ﬁ;{g) X, Z¢VY,Y ¢ X T|X, ﬁ;[gj Y, 7l o (Z,5,8) X

(iib) TS My & X, =T " X, VY [ZEY AYEX ATINY,TIX, 7l (7, 5,8)1X.

(iic) TEIS+ ~(a<o(y)),Mo ¢ X, =T/ IX,Z ¢ X, TIX,7},.5(Z,5,0)|X.
Now (iic) and (iii) yield

(iv) TS F (o <iofy)), B,

176

for B:=3X[MEX A ZEX ATIMIX AT X A —(T)[X].
Next, we will show that

(v) Ti IS E =(a<o(y)),T, B.

For that, we work informally in T sminy|S. We assume a<o(y) and —(I"). By Lemma
VI1.2.8 (b), we have pm+1(T;r[Zj A T;;(’ZZ)) Hence, as =(T') is II;, ,, B follows. Finally,
as T+ y(me1y mplies Tye, T;r(:’;rl IS T"is by (v), (iv) and (i). O
For the proof of the corollary below, we use these auxiliary properties.

Lemma VI1.2.10. Assume that deg(x) = m+2 and © =N Yo, 2, and that T is I13.
Then,

(c) Tk Afxo(Z,a, sit) < Ax_, o (Z,a,s,1).

Proof (c) As T =NF Y Om 2, [] = yla] om 2, so deg(z)+0 = deg(y)+m. Further,
by Lemma TI1.6.10, Op,,; iff Opy[a o Op.. Thus also T+m 1 X iff Opy[a (T.)1X, and

the claim follows. (d) As z =xnp y o,, 2, also () = y(ﬁ) o 2, and the claim is by
Lemma IT1.6.10. O

Corollary VI.2.11. Let x € Q with deg(x) = m+2 and v =nF y o 2. Further,
assume that T is I3, and T’ Cgy Loy (T|S). Then,

Proof By induction on n. If I' is an axiom, then as I' C Ley1 (T[S), I' is also an
axiom of T;(ZZ)|S. Since with 'T'm(n IS T, also 'T' (n+1)|S F T, the only interesting case
of the induction step is if T,|S In—Jrl I is obtained by a cut with an instances of T,|S
which is not also an instance of T, (n+1)|S. In this case, T,|SE- T, —As,0(Z,a). As
At 0(Z,a) € Lan,, also Ty[S - T, —As . o(Z,a) by Lemma VI.2.1 and the
LH. Hence also Op,,)(T)[SFI',~As_, | (Z,a) by Lemma VI.2.10 (c). As Op,,(T)
iff Opy(n (T.) by Lemma VI.2.10 (d), we have Op;((T[S F I, -4+, . (Z,),
hence Op (ni1y(T2)[S T by Lemma VI.2.9. Again by Lemma VI.2.10 (d), we have
Opy(nJrl (T,) iff Opx(nJrl (T), s0 Tym+n)|S F T follows. O

V1.3 Infinitary reductions

We will observe that the results form the previous section hold also (to some extend)
in the infinitary systems. In order to fully exploit these results, we require that
T¢|S }% Mo =T iff S }% I' (Lemma VI.3.13), shown in the next subsection.

177

VI.3.1 From TSFEL M =T to SEL T

*

For an arithmetical sequent I', we will need the property displayed in the subsection
heading to go from Tx|S }% I' via 'i'E|S }%l I' and 'i'E\S }%l My =T to S }%l I.
Since the aforementioned and the following results are only required for S different
from T€ we stick to the following convention.

Convention VI.3.1. In this subsection, it is assumed that S := Ty_q|...|To for
k>0, so Mg refers to Uy.

We start by refining the definition of My = A. The purpose is twofold: firstly, we
need a definition that is simpler to work with, and secondly, we want that My = A
stores enough information to easily reconstruct A.

To achieve these goals, we let, My = A be an Ly,-formula which contains *-variables

x; that are in some sense substitutes for the set variables U;, and then identify the
Lw,-formula My = A with the £-formula (Mg = A)®° (see Definition VI.3.3).

L,-formulas are build using a third kind of variables, denoted by ¢, *q,... A vari-
able x; can be quantified, and it can occur free or bound in a formula in the same
may as a number variable x can occur free or bound in an Lo-formula. We let x
denote some x; in the same way we use u to denote some u;. Further, FV,(I") denotes
the set of free x-variables that occur in I'.

Definition VI.3.2 (Ly,-formulas).

(i) Each literal of L without set variables, except s € Mg and s ¢ Mg for s € L,
is a literal of L, .

(1) For each s € L, s € (Mg). and s ¢ (My). are literals of Lm,, where s € (My).
is short for (s,*) € My.

(i7i) The Ly,-formulas are build from the literals by closing under A, V, Qx and
Qx, where Q € {V, 3}.

The L3y, -formulas are the Ly, -formulas without free number variables.

Using an assignment ¢ that maps *-variables to closed number terms, we map Ly,-
formulas to L-formulas.

Definition VI.3.3. Let ® be a map that assigns to each variable *; a closed number
term. If s € L*, then ®[x; = s](x;) = s, and if i # j, then ®[x; = s](*;) = D(x;).
Further, each Ly,-formula A is mapped to the L-formula A® as follows.

(i) For each literal, L® is obtained form L by replacing x; by ®(x;).

178

(ii) (AjB)® := A% j B®, (QuA(z))® = Qu(A(x))?, and (Q*A(x))® := Qu(A(x))®,
where x is the first number variable w.r.t. some fized enumeration that does
not occur in (A(0))%.

If the context suggest that the Ly,-formula A should be read as an L-formula, then
we identify A with A® where ®q(*,) := 0, and if the context further suggest that A
is an L*-formula, then we identify A with (A%®0)*.

Next, we assign to each L-formula A an Ly,-formula My = A with the same free
number variables, and conversely, we assign to each Ly,-formula B an L-formula
B" with the same free number variables. It is readily observed that (Mg = A)T = A
and B = (Mg = B").

Definition VI.3.4 (M, = A). To each L-formula A, we assign an Ly,-formula
Mo E A as follows.

(i) Mg = L := L if L is a literal (without a set variable).
(i) My = (s € U;) := s € (Mg),, and Mgy |= (s ¢ U;) := s ¢ (Mp)s, -
(i1i) My = QrA(z) := Qx(My = A(x)) and
Mo = (Aj B) := (Mo |= 4) (Mo |= B), where j € {\,V}.
(iv) Mg = QU A(U;) := Qx;(My = A(U;)).
Definition VI1.3.5 (A"). To each Lw,-formula A, we assign an L-formula A" as
follows.
(i) L' := L, if L is a literal without a *-variable.
(ii) (s € (Mg),,)" :=s€U; and (s ¢ (My),,)" := s & U;.
(iii) (QxA)" := QzA" and (AjB)" := AT j B', where j € {A,V}.
(iv) (Qx;A)T = QU;AT.
Now the following is readily checked.

Lemma VI.3.6. My = T" according to the old definition (Definition 1.1.5) agrees
with Mo |= I' according to the new definition (Definition VI.3.4) (up to names of
bound variables). Note that here My |= T is short for (Mg = I')®o.

If Ais an £(S)-formula without dummy set quantifiers (i.e. A contains no subformula
of the form QX A(X) where X does not occur free in A(X)), then we call My = A
an Ly, (S)-formula. It is easily seen that Lu,(S)-formulas can also be characterized
as follows.

179

Definition VI.3.7. An Ly,-formula A is an Ly,(S)-formula, if AT € L(S) and if
A contains no subformula of the form QxA(x) where x does not occur free in A(x)
(no dummy *-quantifiers).

A key property of Ly, (S)-formulas is that A% = B® entails A = B (we removed
formulas with dummy *-quantifier from the Ly, (S)-formulas, as (Vxo(0 = 0))®° is
(Vuo(0 = 0))®0). To show this, we need the following auxiliary lemma.

Lemma VI1.3.8. Assume that u € FVo(A(u)). If A(x) € Lm,(S), then A(t) ¢
L, (S), and if A(t) € Lwm,(S), then A(x) ¢ Lm,(S).

Proof By induction on the build-up of A. The claim is readily checked for literals.
Note that (s € (Mg)«) € Lm,(S), but (s € (My):) ¢ Lm,(S), and conversely, for i < k
where U; is different from My, s € (U;); € Lm,(S), but s € (U;). € Lm,(S). The
induction step is straightforward. O

Lemma VI.3.9. If A, B € L\,(S) and A* = B® then A = B (up to names of
bound x-variables).

Proof By induction on the build-up of Ly, (S)-formulas. If L = A% is a literal,
then A can only differ from B if L is of the form L(7). But by Lemma VI1.3.8 only
either L(m) or L(*,,) is literal of Ly, (S). If e.g. A% = B® and A = Q*C(x), then
B = QuzD(x) is impossible: Since Qx is not a dummy quantifier, x occurs free in
C(x). And as -®° does not change the structure of the formula, also z occurs free in
D(z). Further, A% = B® implies (C(x))® = (D(x))%°, so by LH., C(x) = D(x),
a contradiction! The other cases are shown similarly. O

Next, we modify -T'E|S so that it derives Ly, -sequents. We call this system $€¢|S.

Definition VI.3.10. ?6¢|S derives finite set of Ly -formulas. It contains the axioms

and rules of T¢ adjusted to L, -sequents, for each A € inst*(S) an aziom T',My |= A,

and the Qx-rules y y
r ; r ;
A() T AG)

F,\V/*Z',A(*i)’ F, El*ZaA(*z)’

where x; does not occur in I',Vx; A(x;).

Note that inst*(S[Mg) = {(Mg = A)® : A € inst*(5)}. Therefore, T[S is essentially
T¢|S, with the QX-rules replaced by the Qx-rules.

The following is immediate by induction the depth of the derivation.
Lemma VI1.3.11. Let " Cg, L5(S). Then,

SIET & THS X M, =T,

180

However, we want to show that for a finite set I' of L} (S)-formulas, -?E\S = T®
implies S |- I'". This follows rather straightforward since for A € Ly, (S), A®
already determines A due to Lemma VI.3.9.

Lemma VI.3.12. Let I' Cqin Ly (S). Then, all of following statements are equiva-
lent.

(i) TYSE-T,
(ii) T¢|S == I® for each @,
(iii) T¢|S & 1%,

Proof (i)=-(ii) is immediate by induction on «, and (ii)=-(iii) holds trivially. It
remains to show (iii)=(i). We prove the claim by induction on a. If @ = 0, then
['®0 contains L*0, ~L®0 or an L*-instance of S|Mg, which is (Mg = A)®° for some
A€ inst*(g). By Lemma VI.3.9, I is also an axiom of -?E¢|S. Of the induction step,
we exemplarily consider the case where :IF_E|S }a*i (I, VzA(x))®0 is obtained by an

w-rule from 'T'E|S = (T, A(m))® for all m € N. Then, (VzA(z))® is either of the
form (VxA(x))* or (VzA(z))*, and due to Lemma VI.3.9, only one is possible. In

the first case, the I.LH. yields :Ik'€¢|S = T, A(*) for some x that does not occur free
in I', V¢ A(x), and the claim follows by an Vx-rule. And in the second case, the I.H.

yields -T'E¢|S = T, A(m) for each m € N, and the claim follows by an application of
the w-rule. O

Combining the two above lemmas into one yields the following.

Lemma VI.3.13. Let I Cg, £(S) without dummy set quantifiers. Then,

SIET & TS M = T.

VI1.3.2 Reducing :i_:v+1 to Tx and if deg(z) > 1, then Tm to "?w(a)

We present infinitary versions of the Lemmas VI1.2.3, VI.2.9 and Corollary VI.2.11.
These results are obtained very similarly to the finitary versions. The following
variant of Lemma VI.2.1 is used which is proved completely analogously.

Lemma VI1.3.14. If for some a, 3 and each I' Cn Ll S}% r = ¢ % I, then
% * o * /B
also for each A Cgp, EeH}nH, Stz A = ¢ }@ A.

Further, we need an infinitary versions of Lemmas V.2.8 (iii). Here, we need just
the case n = 0. The proof is easily adapted.

181

Lemma VI1.3.15. IfT' C L*(T?|S), then
TITIS K T = TT|S 52 T[Ma/M,).

In the proof of the next lemma, we cut with formulas of the form (Mg)s = (Mg)s
and Z€My, and further, with the formula B specified at (x) in the proof below.

Therefore, we assume that C in the lemma below is so that cut(C, $€|T"|S) contains
these formulas. There will be enough room to eliminate these cuts in a further step.
Also note that now Mg = I" is an Lf, -sequent which we identify with the £*-sequent

(Mo (= D).

Lemma VI.3.16. Let I' Cg, l’i[(l)(T|S) and C C El’i[(l)(T|S) so that cut(C,i’e|T|S)
contains all formulas of the form (Mg)s = (Mg)s and ZEMg, and the formula B
specified at () in the proof below. Then,

. o *6 at
TITISIE My A, 5 (2), My ET = TT?S 55— My = T

Proof Assume that T’E\T"|S = M = —A,))(Z), My |= I, where we suppose that

M, ﬁApl(f)(Z) is Vz[(My). gé (My), V —|T[(M1)x] and " ¢ FV,(M; = T'). By
Lemma VI.3.11, we also have for each ®,

TITIS [(M)e ¢ (M) V =THML)L)®, (Mg = T)*,
By Lemma V.3.12 we obtain that for all s,t € £*,
TITYS 5o Z # (M1)o X # (M), Z ¢ X, =TIX, (My = T)[Z/(M).),
which readily yields
« ot . . . o
Te‘Tz‘S}% Z¢M, X ¢M,Z ¢ X, —-TIX,(M; =D)[Z/(My).].
Thus, since T¢|T|S F XEM; A ZEX — ZEMy, and since ZEM; € cut(C, T¢[T|S),
* a+ . . 9
TITASFe— X ¢ My, Z ¢ X, =TIX, (M, = 1)[Z/(M)).].
Using Lemma VI.3.15, we obtain
(+) TITS o VX (ZEX A XEMy ATIX — (My |=T)[Z/(My).]) =: B.

As we have T¢|T?S F —B,M; | T (by the proof of Lemma VI.2.3), and thus
TT2S = —B,M, |= T, Lemma V.3.15 yields T¢|T2|S 52— M, (= T. O

For the infinitary variant of Lemma VI.2.9, we use the following infinitary variant
of Lemma VI1.2.6.

182

Lemma VL.3.17. If T|S|S T and Y ¢ FVo(T) = {2y, ..., Z} and L (TIS) € C,
then . . ' . y
TISFEe— Mo ¢ Y, Z ¢ Y, ~TIY,T|Y.

Proof If T|S % I', then by Lemma V.3.9, jl"e|S }% ﬂ-T',‘v’X[X # Mo|,I". Now
Lemma V.3.11 yields 'i'6|5 }% -T Y, VXX # MllY, A §é Y, I'TY. Since further,
VX[X # Mo]lY is My ¢ Y, the claim follows. O

Lemma VI1.3.18. Let y be a simple name of degree two. Further, assume that T is

I}, and T' Cg *2717L+1(T|S) and C Cg, ;%H(T‘S)' Then, for each o < o(y),

*im a * im <at
T;(B)|S}f I -Ar . (Z,a,s,t) = T)|S}T r.

T,y,m y(B+1

Proof Almost literally as in the finitary case. We just use Lemma VI1.3.17 instead
of Lemma VI.2.6. Further, we use that if T|SFI', A, then also T|S }i—w I', A, and if
x <at — * <at
further T|S}==— T, —A and sufo” (4) C C, then by Corollary V.4.4, also T|S|F=— T
(actually, when this situation applies, A is a Xi-formula, so A° = A and sufo™ (A)
are arithmetical). O

Corollary VI.3.19. Let x € Q with deg(x) = m+2. Further, assume that T is I3,
and I' Cen L1 (T[S). Then,
m—+1

* ﬁ * ﬁ+

eEerl eEerl

Proof By Lemma VI.1.3 it suffice to show the claim for ji’;|5, where still, T/ :=
(Voo < o(2))pmt2(Taa)). We let C := EZZ},LH' Recall that then inst™(T7, 4 [S) Cn C
(cf. Lemma VI.1.2). The claim is now shown by induction on /3, very similar as in
the finitary case, using Lemma VI.3.14 in place of Lemma VI.2.1. We just hint at

some differences.

If 8 is a limit, then by Lemma V.3.6, we may assume that Tx|S % [, VaB(x) is
obtained from Tm|S }%ﬁ I', B(m), for all m € N. Since 'i'x(g)\S }i—w -T'x(a)|5 for
each a < (8, we have by Lemma V.4.6, that for each A and =, :f'x(a)|5 }% A =
fm(ﬁ)\S }% A. Using the I.LH. we obtain that fm(ﬁ)\S }%ﬁ I', B(m), for all m € N,
hence also :Ik'x(g)|5 % I, VaB(z).

Further, we need that Tx|S I% I, —Az , o(Z, @) yields Tx|S l% I, A+ (Z,).

T.,ym
As =As, (Z,a) € Lem, this is either directly by Lemma VI.2.10 (c) and Lemma

V.4.3, or alternatively, one may observe that ~Ay , ((Z,«) and Az, (Z, «) only

183

differ in the subformulas ﬁ('T'):[g] X and ﬁ(-T'Z);[Zﬁ I X, which are equivalent over
T.(s)|S for o < o(y). Hence we can employ inversion to dig out ﬁ(-T')I[(;} [X, replace

Y

it by —|(Tz);r[gi X by cutting, and then undo the inversion steps. O

V1.4 Bounds

Finally, we prove that for each x € @), g,» is a sharp bound of T,, so according to
our provisional definition of sharp bounds, g, is the largest normal function which
is provable in T, or more precisely, for any other normal function f that is provable
in T,, we have that f[Lim(Q) < g,»[Lim(2), where now again, g(a) := w!'*® and
T := ACA, is fixed for this and the final section.

We prove this result by showing that g,» is a bound of T,. A bound of T, ceils the
costs of cut-elimination for derivations T,|S }1—7 I', where the cut-rule is restricted

to formulas in inst*(T,|S) and some additional formulas that do not impede the
cut-elimination process; these additional cuts can be eliminated cheaply at a later
stage. The next two definitions explain the concept of a bound.

Definition VL.4.1 (T,|SI-T). Let T Cpo £* and z € Q.
(1) If deg(x) = m+1, then Tx|S |- T states that Tm|S = T for C:= L, .

(11) T4lS }% I states T |SE-T.
For the next definition, we let m =1 :=m—1if m > 0,and 0 =1 := 0.
Definition VI1.4.2 (Bound of T,). Assume that x € Q with deg(x) = m. A normal
function [+ Q — Qs a bound of Ty, if for each S, each I' Cqn L35 (T,|S) and
each v € Lim(§2),

TSEL T = Tos =% .

f is a weak bound if the above only holds for S = T¢, (i.e. Tx }% I = T I%W) r).
f is a sharp bound, if f[Lim(Q2) < hlLim(Q2) for some h that is provable in T,.
Remark VI1.4.3. If for each T, Tm\S I% r = TE|§ }%(V) I, then also for each T,
i—x|5 }% I = T€|§ }@ I, by Lemma V.3.6 and as f is continuous.
A key property of bounds is that a function that is provable in T, is majorized
already by each weak bound of T,. This is, as we will see, essentially a consequence of

Pohlers’ Boundedness Lemma (cf. e.g. [11]). Below, we give a slightly strengthened
version which is due to Beckmann [1]. Recall that TI4(U, 8) is Prog_(U) — 8 € U.

184

Lemma VI.4.4 (Boundedness Lemma). If Te = —Prog(U), 3 € U, then 8 < a.
For the aforementioned majorization property, we need the following observations.

Lemma VI.4.5. If deg(z) < 1, then we let C; = {a : Woq(gn(a))}, and if
deg(x) > 1, then C, := {a: Ty}

(i) T,-C.=C, and T, F a € C,, — Wog(a).

and

(i) If deg(x) < 1, then (a € C;) € Ly and sufo™(a ¢ C7)° C Ly

m
if deg(z) = m+2, then (e € Cl) € EZH},LH and sufo™ (a ¢ C.)° C 52271n+1

(111) Tm }i—w aeC. and Tm }% a¢C T imply Tm }% .

(i) If o <, then T, }1—7 aeC.

Proof (i) The first claim is trivial, see Definition II1.7.2. For the second claim,
note that if deg(z) < 1, then o € C., says Wo,(g,»(«)), thus also Wo(«), and if
deg(xz) > 1, then a € C, says -T'm(a), which by its definition implies Wo.«(z(a)),
which in turn yields Wo4(«v), as for each f < a, 2(8) ~* z(a) (cf. Lemma I11.4.19
(xi)). (ii) by inspection of the definition of C,. (iii) By (ii) and Lemma V.4.3. (iv)
By induction on a < . Assume that Tx }% g € C. for each f < a. Then also
T, |55 A= (Vf<a)(8 € C,). Since T, F Prog_(C,), also T, =% =4, a € C,. Note
that if (8 € C)) € E:H71n+2, then also A € L2H}n+2 and sufo™ (A°) C EZH,ELH’ Hence,

Lemma V.4.3 yields T, }% aeCl. O

Theorem V1.4.6. Ifx € Q and f a weak bound of T, then g,»[Lim(Q2) < f[Lim(Q).

Proof Assume that f is a weak bound of T,. By Corollary II1.7.16, T, proves
guh, that is; T, F Wog(a) A Tl4(CL,) — Wo4(g.n(a)). Noting that —=Tl4(C., «)
is Prog(C.) N a ¢ C., we also have T, - =“Wo(a),a ¢ C., TI4(U, g,n(cv)). As
T.Fa¢C,,Wos(a) by Lemma VI.4.5 (i), T, Fa & C., TI4(U, g.»(a)) follows.

Now let @ < 7y and A := g,n(a). By the above, T, == a ¢ C., —Prog,(U),\ € U,
and T, }% a € C, by Lemma VI.4.5 (iv). Now Lemma VI.4.5 (iii) yields T, }%
—Prog_(U),A € U. As f is a bound of T,, we have T¢ }%(7) —Prog_(U), A € U. By
the Boundedness Lemma, g,»(c) < f(7), and since g, is normal, g () < f(v). O

Next, we fix an axiomatizations of T, that is, of ACAy, and then compute a bound
of ACAy. We find it convenient to work with the following finite axiomatization.

185

Definition VL4.7. Let T,, := (ACA) := VXIND(X) A A, A Ay A Ay A Ay, where
IND(U) :=Vz[0 € UAYy(y € U = y+1 € U) — = € U], and the instances of A;
(1 <i < 4) have the forms 3X[X = C;], where C; = {0}, Co ={x: 2 ¢ Y}, and

Cs={z:ze(Y)Vre (Y)i} and Cy = {x: {e}(z,y) € Y},

where {e}({(T), (y)) € Y is a X9-formula which states that there is a computation of
the recursive function with index e that yields on input (z,y) a value in the set'Y .

The idea is simple: Ay tells us the {z : x ¢ U} is a set. A; and Ay imply in
particular, that for each atom R(@), Z := {(Z) : R(Z)} = {(Z) : chg({Z¥)) = 0} is
a set. Then, also by Ay, {y : (¥,y,2) € Z} = {y : R(¥,y,Z)} is a set, too. And
using Az, we can code two sets into one. This allows to prove by induction on the
build-up of A(V, ¥, u) that for all Y, , there exists a set {z : A(Y, 7, z)}.
Next, we compute a bound of T,,, using the axiomatization of Definition VI.4.7.
Note however, that for any alternative axiomatization 'T';O with inst*('T';O) C Ly,
1
cut-elimination comes at the same costs due to Lemma V.4.6: if I' Cq, £*(T|S) and
T, IS }% I’ for some C C £1*'1(1) with rk(C) < Ny, then also T[S }% I’ for some

D C £;, with rk(D) < N,

Since A € inst*(S[Mg) U cut(C, S) contains no free set variables, the following aux-
iliary claim is immediate by induction on «a.

Lemma VI1.4.8. Suppose that Te }@ s €C,s ¢ C. Then, for each arithmetical T,

TSI T = TS P2 pie/u).
Lemma V1.4.9. Assume that T’ Cg, E(l)(T|S) and D C £1*'1(1) Further, let No so that

for eachi € I, T2 ¢, = ¢, tk(C; = C;) < Ny, rk(IND(X)) < Ny and rk(D) < Nj.
If 6 € {0} ULim(Q2), then

To|SEEL T = Tejg et fon)

Proof By induction on the depth a of the derivation. If a = 0, then the only
interesting case is if I' contains an L*-instance of VXIND(X), in which case the
claim is by Lemma V.3.18. If « is a limit, then by Lemma V.3.6 we may assume
that the last inference was an w-rule, and the claim follows immediately by the I.H.
and the continuity of it(¢). And if o = d+n+1 for some 6 € {0} ULim(2), then the
only cases where the I.H. does not apply directly are when -?qo IS }M;ﬁﬂ I is obtained
from 'i'qO|S }JTTH I'-Abyacut. If A ¢ inst*('T'qO), then by I.H., $E|S }M r,-A

it(g,0+Non

and -T'E|S =) T, A. Since rk(4) < Np and it(g, 8+1) > w9 by definition

186

of it(g), Lemma V.3.15 yields T¢|s f@Z M0 80) 1 1p 4 ¢ inst*(VXIND(X)), then
-T'E|S }i—w A by Lemma V.3.18, and by I.H., jl"e|S Iw I', = A. Since rk(A) < Np,
-T'E|S }M " follows as above. Further, if A is 3X[X = C;] for some i € I,
then inversion and the I.H. yield $E|S Iw LU # C;, where U ¢ FV(I',C).
By Lemma VI.4.8, 'HS IM I',C; # C; follows. Since Te |<*—w C = C and
rk(C; = C;) < No, 'i'E\S IM ' again follows as above. O
The following corollary is a direct consequence.

Corollary VI.4.10. it(g) is a bound of T,,.

Eventually, we can prove that g,» is a sharp bound of T,. We start with an auxiliary
result. Recall that 2" = 2 unless x = (n+1, q), in which case 2" = (n+2, qo).

Lemma VI.4.11. Let £ = {a: a = w}.
(7’) [fﬁlf S Q* \ {q07q1}7 then goh © E.

(i) If tk(C) < w, then § =2 1 o §1<00(0)
(it1) For each x € Q with deg(¥) > 1, gan(a+2)(0) > gur (o) (E(a7)).

Proof (i) First, let y € Q% \ {qo,q1}. We show by a case distinction on y that
H, C fix. Since x € Q* implies z" € Q¥ \ {qo, ¢}, we obtain H(9) C ¢ = E.

If y = z+1 for some qo # 2 € Q¥ then by Lemma I11.4.19 (x), ¢; ~* y, and so by
Lemma II1.5.1, H, C it. Further, by Lemma [.3.17, sho H, C shoit = fix. As it C sh,
H, =ito H, C fix follows. If o(y) = v, then by Lemma IIL5.3, f, = N, f}a}:
and as fyo C f, also f;[a} C f'. This shows that H, C fix. And if deg(y) > 1 and
o(y) = 1, then first note that Hyp; C fix: as Hyjg C it, we have shoH,jq C fix; further,
Hyy) C itoH, g by Lemma II1.5.3, and it C sh implies H,[;; € shoH o). Next, observe
that by Lemma I11.4.19, y[1] ~} y[1+a], so by Lemma IIL5.1, Hy1q © Hypy.
Therefore, using Lemma I11.5.2, H,(f, o) = Hynya)(f,0) € Hyp(f) € fix(f). Thus
also in this case, H, C fix.

(ii) Immediate by (i) and Lemma V.3.15.

(iii) We show the claim for y € Qf with deg(y) > 1 and o(y) = 1. Then we observe
that if x € Q with deg(z) > 1, we have 2/ = 2" € Q¥, and by Lemma I11.4.23,
deg(z™) > 1 and o(2") = 1.

Let y € Qf with deg(y) > 1 and o(y) = 1. We have it(f,0) = f(f(0)), and for
a < 7, yla] = y[yl[a] by Lemma II1.4.13. So by Lemma II1.5.3, gyat1] € it(gy[a)),
in particular, gya411(0) > Gyja)(9y1(0)). Using Lemma II1.5.6, gyjat1 > a™.
Hence, gyja+2(0) = gyjar1(a™) > E(a™) by (i), and gy(a+2)(0) = gya+2+1(0) =
Gyes2(E(01) > gyiey (E(a™)). 0

Next, we recall the following results concerning the interplay of 2", z(«) and x[a].

187

(pl) if deg(z) = 1 and o(z) € Lim(2), then 2" = 2 so o(x) = o(z") by Lemma
I11.4.23. Further, have that 2"[a] ~* (z]a])" ~* 2"[a+1] by Lemma I11.4.24,
so by Lemma ITL.5.1, gorjat1] € Gafa))r € gat[a], and by Lemma II1.5.3, g,» =
ﬂaq 9zria] = Nacry Tofah = ﬂaq gzm[a})h. In particular, for each 8 and each
a <7, g(w[a])h(gmh (ﬁ)) = gaﬂ(ﬁ)

(p2) If deg(x) > 1, then 2 [a] ~* (z(a))¥ ~7 ¥ [a+1] by Lemma I11.4.24 (ii).

T

Hence by Lemma 11151, ng[a+1} - g(z(a))H and g(z(a))H < ng[a+1}'

Next, we introducing some notations. Then we explain the proof-strategy and pro-
vide a further auxiliary result which we use in the proof of the theorem below.

If = y+1, we let T/ = pl('T'y), and if deg(z) = 1 and o(x) = =, then we let

T = (Ve < Y)P1(Tapg). In both cases, we read :f'mr\S }% I' as :f'mr|S }% I' for
C:= ﬁl’il(l), and by Lemma VI.1.3, TI|S }% I iff TﬁE|S }% [. In all other cases, we
let T, :=T,.
The proof-strategy is as follows. We will prove by induction on
gzr(@)+w :a € Lim(Q2)U{0},
Geh(0T)+n :if a = d+n+1 for some 6 € Lim(2) U {0},
that for each S and each I' Cg, El’il(l)(Tx|S),
(i) T,ISE-T = TS =2 T if o is a limit,

(i) TS T = TS %) T if o is not a limit.

Concerning |(x, «)|, note that by definition, |(z,a)| < |(x,a+1)|, and if @ < 7, then
|(x,)| < |(x,7)|. Moreover, we have the following, which is exactly what we need
to apply the I.LH. in the proof of the next theorem.

Lemma VI.4.12. Assume that v € Q, § € Lim(2) U{0} and n < w.
(a) If x = y+1, then |(y, g.n(64n))| < |(x,d+1)].
(b) If deg(x) =1 and & < o(x) ==y, then |(x[€]+1, g.n(0+n))| < |(x,0+1)].
(c) If deg(z) > 1, then |(z(d4+n), E(6T))| < |(z,d+1)].

Proof (a) Since fix = sh o it by Lemma 1.3.15, |(y, g,»(d4n))| = g,n(g,r(6+n))4+w <
Gy (gon(07)) = go1(67) = |(z,0+1)[. (b) If & < v, then |(z[¢]+1, g,n(6+n))| <
Gaig)i1(gen (04n+1)) = gun (0+n+1) < gn(6%) = |(2,0+1)]. (c) By Lemma VI.4.11
(iii) and (p2) from page 188, we conclude |(x(d+n), E(67))| < go@pnsnn (£(61)) <
g;p(5+n+3)h(0) < gmh[5+n+4](0) < gach[cSﬂ(O) = Gzh (5+) = |($, 5+1)\- O

188

Theorem VI1.4.13. For each x € Q, g,» is a bound of T,.

Proof We proof (i) and (ii) on page 188 by a case distinction on z. If x = qo, the
claim is by Corollary VI.4.10.

Next, let z = y+1 for some y € Q. If T;|S }% I', then as I' is arithmetical, already
:f'E|S }g r. If T LIS }ﬁ I' is not obtained by a cut, or a cut with an instance of
TE|S then the claim follows dlrectly by the I.H. Hence, assume that T’ LIS }M r
was obtained by a cut from T;|S }MTTL I', A with T;|S }MTH I, -A, wheie A is not
an L*-instance of T¢|S. If A is arithmetical, then by LH., T¢|S }%(6) I [-]A
and the claim is by Lemma V.3.15 and Lemma VI.4.11. And if A is a relevant
L*-instance of T[S, say A, t,,(Z), then T "1S }M—" I',=A, 5,,(Z). Using inver-
sion so that we can apply the IH and then undo the 1nver81on step, we ob-

T 2h(0F) T 2h (67)

tain T¢|S %220 T A, 1, (2), he:ilce also T,[S =22 1 ,7AL 1,)(Z). Now
Lemma VI.3.13 yields T¢|T,|S }%(5) Mi | T'Mi E =4 +,(Z), so Lemma
VI3.16 yields T(T2S 2200 My = T Asfor A == My =T, M, = T'is
M; = A, Lemma VIL.3.13 yields T,|T,|S }gl‘h(iﬂ M; = I for some m. By
Lemma VI.4.12 (a), [(y,g.x(6 +m))| < |(z,0+n+1)|, so the I.LH. applies, and we
obtain T¢|T,|S }M M; = T, since gyn(gen(6+m)) < gn(d+m+1). Again,
Lemma VI.3.13 yields :Ik'y\S }M I'. Another application of the I.H. yields
-T'E|S }79”(61”1”) I, that is, jl"e|S }7<g””};(6+) I.

Next, we consider the case where deg(z) = 1 and o(z) = v € Lim(2). We just
consider the case where T’|S }O‘Jri I' is obtained from T’|S }% I',=A by a cut

with some non-arithmetical A € inst*(T’|S) of the form IX[ZEX A 'T'x[ﬂ [X], for
some £ < . Applying VX-inversion, using the [.LH., and undoing the inversion,

we obtain 'i_6|5 }%(Oﬁ) I',=A. So also ?;[§]+1|S }M I'. By Lemma VI.4.12
(b), for each n, |(z[¢]+1, gun (a+n))| < |(x,a+1)|, thus the I.LH. applies and yields

TS | ‘<g<“€+”’*9 D) P that i e[St @)

Finally, we look at the case deg(x) = m+2. If TI|S }% I, then the claim holds
trivially if 6 = 0, and if 6 € Lim(Q2), then we may assume that I' is obtained

by an w-rule and the claim is immediate by L.H. If Tx\S }O‘Jri I', then Corollary
V1.3.19 yields that Toasn)|S 2 T, 50 Taaen]S 24, T By Lemma VI4.12 (c),
|(z(a+1), E(a™))| < |(z,a+1)|. The I.H. applies and yields ff\S }<gz(““):(E(a+)) T,
hence jlle|S }M I' by Lemma VI.4.11. O

As each bound is also a weak bound, the following is a direct consequence of Theorem
VI1.4.6.

189

Corollary VI1.4.14. For each x € Q, g,» is a sharp bound of T,.

We continue by showing some additional, slightly more refined properties of bounds.
Most of these properties are already implicit in the proof of Theorem VI1.4.13.

Lemma VI.4.15. Let I' Cq, l*_lé(T\S), C = El*]é, d € {0} ULIm(Q) and f a bound
of T,. Then,

To|SEEE T — T,|s B2

Proof By Lemma VI.1.1, it suffices to show the claim for pl(:lk'x)|5 instead of -?m+1|5,
which is done by induction on a = d+n. If o = 0, then as I' is arithmetical, it is
already an axiom of T,|S, hence T|S }% I'. If a is a limit, then by Lemma V.3.6,

we may assume that pl(ﬁ'x)|5 |= T is obtained by an w-rule, and the claim follows
directly from the I.LH. and the continuity of it(f). And if &« = d+n+1, the only

interesting case is if I' was obtained by a cut from pl(:lk'x)|5 }% VA, If Ais

arithmetical, then by I.H., Tx|S }M I',-A and Tm\S }M I', A. Using
LemmaV.3.15 (ii), and since by Lemma VI.4.11, it(f,d + 2n+2) is bigger than the

next e-number above it(f, 0+2n), we have in particular TI|S }w I'. Andif A
is a relevant £*-instance of T[S, say A, +,(Z), then by the LH. and Lemma V1.3.14,

T,IS P22 1 = A 4/(Z). Now Lemma VL3.13 yields T¢[T,[S 2220 M, |
I'=My | A 5,)(Z), so Lemma VI.3.16 yields T T2S }M M; T for some
C < Lf, with rk(C) < m for some m, and T¢|T2|S }w M; = T follows.
Asfor A:==M; =T, My =T is My = A, Lemma VI.3.13 yields jlli|5 }w
M; = T'. Since f is a bound of T,, we obtain $€|TI|S }M M; =T, and one
more application of Lemma VI.3.13 yields Tx|S }w I. O

That it(f) is a bound of T, given that f is a bound of T, now readily follows.
Lemma VI1.4.16. If f is a bound of T,, then it(f) is a bound of T,.1.

Proof Assume that g,» is a bound of T,, and that I' Cg, E%(T|S). By Lemma
) C

VI.4.15, we have that T,.4|S }% I entails T,|S }M I’ for some 8 < ~. Since

g.» is a bound of T, 'i'E|S }M I" follows, so -?E\S }M I. O

The next results tell us how to obtain a bound of T, if deg(z) = 1 and o(x) € Lim(f2),
given that we have already bounds of the theories (T, : 0 < o <) for some § < .
By the above lemma, we then also have bounds of the theories (Tyq11: 6 < a < 7).
The reason for working with the theories T,pq)4+1 is that deg(z[a|+1) = 1, and thus

Y]

inst”(Tyja41) € Li5, in fact, each such instance is 1
1

190

Lemma VI1.4.17. Assume that deg(x) = 1 with o(x) € Lim(Q)). Further, assume
that for each § < & < o(x), guepn is a bound of Ty, Then, g,n is a bound of T,.

Proof Assume that deg(x) = 1 with o(x) = . By Lemma VI.1.1 (or Lemma VI.1.3),
it suffices to show that T;|S =T = :IZE|S Ig””’;& I, for each I' Cg, El"i[(l)(T|S),
where T/ := (V&€ < y)pl('T'xm) and C := EE})' We show this claim by induction
on «. The interesting case is if Tf,c|S }a(ci I' is obtained from T;\S = I,-A
by a cut with some non-arithmetical A € inst"(T,[S) of the form IX[Z€X A
Tap 1 X], for some n < v. Applying VX-inversion, using the LH., and undo-
ing the inversion, we obtain 'i'€|S }M I',=A. Now for some & > max(d,n),
pl('i'x[g])|5 }w I as p < & xfn] ~* x[€], thus Tgy F -T_x[g], and since p;p is

Y

an operation, also py(T.p) F p1(Tapy); further, by Lemma V.4.6, pl(:f'x[g])|5 }% r
implies pl(:f'x[m)\S }% I'. As g(ze+1)r is a bound of T,g41 (and Lemma VI.1.3), we

obtain that -i—e|5 }<9<x[§]+1)h(gw”(a+l)) I, that is -T'E|S }M I'. And if T;|S }—agl r

*

is obtained from T;|S = I, [-]A for some arithmetical A with rk(4) = n, then by

LH., jl"e|S IM I', [-]A, and jl"e|S IM I' follows by Lemma VI.4.11 (ii).
O

V1.5 Modular ordinal analysis at work yet again

In this final section, we show, dually to what we did in Section III.7, that in some
higher type sense, H,» is a bound of Op,, and that H;Z("H) is a bound of Op}™*+V

T

(recall that z* := xf +corr(z); see Definitions I11.4.20). We conclude by discussing
what meta-theory we implicitly used to proof these results.

Bd,.(z) is the dual notion of Prv,(x), where Bdg(x) states that g,. is a bound of
T,, and Bd,,1(x) is the corresponding assertion for (higher type) functionals and
operations.

Definition VI.5.1. By Bd;(z) (i € N) we denote the following statements.
(i) Bdo(z) says “if x € Q, then gyn is a bound of T, 7,
(i1) Bdy(z) says “for each y, Bdo(y) implies Bdy(z o y)”,

(11i) Bd,12(x) says "for each y, Bd,.1(1,y) implies Bd, 1(1,x0y)”.

If Bdg(z), we call g,» a bound of T, if Bd;(x), we call H,» a bound of Op,, and if
Bd,,2(z), then we call H-""™" a bound of Op} ™). Recall that z* := z# +corr(z)
(cf. Definitions 111.4.20). The next result corresponds to Lemma I11.7.7.

191

Lemma VI.5.2.

(i) If xoy € Q and Bdy(x) and Bdy(y), then Bdy(x o y).

(i1) If xoy € Q and Bd,12(x) and Bd,+1(1,y), then Bd,1(1,z 0 y).
(111)) If xoy € Q and Bd,41(x) and Bd,+1(y), then Bd,i1(x o y).

Proof (i) and (ii) are immediate by Definition VI.5.1. (iii) Assume that z oy € Q.
First, we check the case n = 0. Assume Bd;(z) and Bd;(y). To show: zoyoz €) and
Bdo(2) yield Bdy(zoyoz). Indeed, Bd; (y) and Bdy(z) imply Bdy(yoz), which together
with Bd;(x) further yields Bdy(x o y o z). Next, we check the case n > 0. Assume
Bd,+1(x) and Bd,,41(y). To show: zoyoz € @ and Bd,(1, 2) yield Bd,(1,z 0y o 2).
Indeed, Bd,1(y) and Bd, (1, z) implies Bd,,(1,y o z), which together with Bd, 1 (z)
further yields Bd,(1,z 0y o 2). O

In our terminology, the claim of Corollary VI.4.10, that it(g) is a bound of ACA, is
now expressed by Bdy(go). Further, the claim of Lemma VI.4.16, that it is a bound
of p1, reads now Bd;(q;). Observe that these statements correspond to the Lemmas
[11.7.9 and II1.7.11. Moreover, we rephrase (and slightly weaken) Lemma VI.4.17,
so that it nicely corresponds to Lemma II1.7.10 (ii).

Lemma VI1.5.3.

(i) Bdo(qo) and Bdi(q1).

(11) If deg(x) =1, o(x) =7 and (Vo < v)Bdo(z]a]), then Bdy(x).
Next, we present the Lemma corresponding to Lemma IT1.7.12.
Lemma VI.5.4. (Vz € Q)[deg(z) > 1 AVaBd,1(z(a)) — Bd,41(x)].

Proof By meta-induction on n. First, we deal with the case n = 0. Assume that
x € @ with deg(z) > 1, and VaBd;(z(a)), and aim for Bd;(z). For that, further
assume that Bdy(y) and z := xoy € @, and aim for Bdy(z). To verify Bdyg(xoy), note
that (z oy)(a) = z(«) oy (cf. Lemma I11.4.17), and suppose that I' Cg, El’il(l)(T|S)

and TZ|S }% I'. We have to show 'HS }@th(v) T

By Corollary VI.3.19, TZ|S }% I yields -i'z(ﬁ)|5 }i I for a § < 7 (we also used
that f < 8 and :i_z(ﬁ/)‘s }% I’ yields :Ik'z(g)|5 }% ['; see the argument given in

the middle of the proof of Lemma VI.4.17). Hence we have T’Z(B)|S }@ I'. As
VaBd; (z(«)) and Bdy(y) by assumption, we obtain Bdy(z(5) oy), that is, Bdy(2(5)).

Therefore, using Lemma VI.4.11 (iii), 'i'€|S }M [. Since by (p2) from page
188, g.(s1+2)n(0) < gonip43(0) < g.1(7), the claim follows.

192

For the induction step, assume that n > 0, and that the claim holds for n—1.
Assume that z € @ with deg(z) > 1 and VaBd,+1(z(«)), and aim for Bd, ().
For that, further assume that z oy € @ and Bd,(1,y), and aim for Bd,(1,z o y)).
Bd,+1(z(«)) and Bd,(1,y) imply Bd,((1,z(a) o y), that is, Bd,((1,z o y)(a)), as
deg(z) > 2 (cf. Lemma I11.4.16). Hence we have YaBd, ((1,z o y)(«)), and the I.H.
yields Bd,,(1,z o y). O

Lemma VI1.5.5. For each n and each x € Q with deg(x) = 1 A o(x) = dp+7, and
each (1,v) € Q,

(i) (Yo 97)Byas (2[d0-+0]) = By (2) = Cr(n),
(ZZ) Bdn+1(1,’11) — \V/OéBdn_,_l(l—l—Oé,’U) =: Cg(n)

Proof First note that (ii) follows using (i) by induction on «, as (i) settles the limit
case. Hence, it suffices to show (i), which is done by meta-induction on n. First, we
look at the case n = 0.

Assume z € Q with deg(z) = 1, o(z) = dp+7, and (VYa<iy)Bd, (z[dp+«]), and aim for
Bd;(z). For that, further assume that Bdy(y) and z := xoy € @, and aim for Bdy(z).
Thereto, let d; so that for each 3, x[8] oy = z[01+03], and so o(z) = o140+ (cf.
Lemma I11.4.16). As for each a < 7, Bd;(z[dp+a]), we also have Bdy(z[dp+c] o y),
that is, Bdg(z[01+d0+a]). Therefore, Bdy(z) follows from Lemma VI.4.17.

Next, we consider the induction step. It is assumed that n > 0, and that (i) and (ii)
hold for n—1 (Cy(n—1) and Cy(n—1)). We show that (i) holds for n, i.e. Ci(n).

Assume that = € @ with deg(z) = 1 and o(x) = dp+7 and (Va <v)Bd,,+1(z[0p+0)),
and aim for Bd,, 1 (z). For that, further assume that z := (1, zoy) € @ and Bd,, (1, y),
and aim for Bd, (z). Thereto, let d; so that for each 3, z[f] o y = (z o y)[d1+0] and
o(z) = o(x oy) = 01+ (cf. Lemma II1.4.16). Recall that by Lemma I11.4.12 (iv),
(1, (zoy)7)[a] = (1, (zoy)[a]). The assumptions (Vo <1v)Bd,+1(z[a]) and Bd,(1,y)
yield for each o < 7, Bd, (1, z[a] o y), that is Bd,((1, (x o y)7)[d1+«]). Hence the
I.H. yields Bd, (1, (x oy)~). So by (ii), VABd, (145, (x o y)~), that is, VBB, (2(5)).
Finally, Bd,,(z) is by Lemma VI.5.4. O

Lemma VI.5.6. For alln, Bd,+1(q1).

Proof By meta-induction on n. The case n = 0 is by Lemma VI.5.3 (i). For the
induction step, assume that the claim holds for n. To show Bd,2(q1), assume
that y+1 € @ and Bd,;:(1,y), and aim for Bd,;(x) for x := (1,y+1). Note that
deg(z) > 1. Once we know that VaBd,1(z(«)), the claim is by Lemma VI.5.4.
By Lemma VI.5.5 (ii), Bd,4+1(1,y) yields YaBd, +1(14a,y). Since x(a) = z[a]+1 =

193

(14, y)+1, and Bd,;1(14+a,y) and Bd,i1(q1) yield Bd,i1((14+a,y)+1), we also
have VaBd,+1(z(a)). 0

Putting the pieces together yields a proof of the main result of part II.
Theorem VI.5.7. For each x € QQ and each m > 0, Bd,,(z).

Proof Fix Ny so that v € Qny+1-m- We show by meta-induction on n < Ny, that
(Vo € Qny1)Bdy,—n(z). For n:= Ny —m, Bd,,(x) then follows.

If n =0, then Bdy,(go) holds trivially, and as we have Bdn,(¢:) by Lemma VI.5.6,
Bdn, (145, qo) is by Lemma VI.5.5 (ii). Therefore, (Vo € Q1)Bdy, (2).

For the induction step, assume n+1 < Ny and (Vo € @Q,41)Bdy,—n(x). We show
(Vz € Qni2)Bdyn,—n_1(x) by induction on ~*[Q,42. We consider the following
possible cases.

(i) 2 = y+1. If v = ¢, Bdy,—n-1(q1) is by Lemma VI5.6. Else, we have
Bdn,—n_1(y) by I.H. Together with Bdy,_,_1(q1), this yields Bdy, _n_1().

(ii) deg(z) =1Ao(z) =~. By LH., (Vo < 7)Bdny—n-1(z]c]), and Bdy,—pn—1(x) is
by Lemma VI.5.5 (i).

(iii) deg(z) > 1. Then there are y, z with deg(y) > 0 so that z =y (1,y) 0 2. As
z ~* x by Lemma I11.4.19 (iv), the L.H. yields Bdy,—n—1(2). As (1,¥y) € Qni2,
Yy € Qny1, and meta-by LH., Bdy,_n(y). Together with Bdy,_n_1(1,qo)
we obtain Bdy,_n_1(1,¥), and Bdy,_»—1(1,y) and Bdy,_,_1(2) finally imply
Bng—n—l($>-

O

Since Bd;(x) and Bdy(go) yield Bdy(z), we have the next corollary.

Corollary VI.5.8. (Vz € Q)Bdy(x).

Furthermore, we obtain that for each composite name c, gch is a sharp bound of T¢.
Corollary V1.5.9. For each composite name c, gch s a sharp bound of T€.

Proof That T¢ proves gch is by Lemma V.1.9. That gch is a bound of T¢ is immediate

by induction on the length of the composite name ¢, using that if f; is a bound of

T¢ and f, is a bound of T,, then f,o f; is a bound of T®9): if I Cg, l*.ll(T(x’c)) and
0

T(@e) }% T, then 'ik'f|:lk'c }%(V) ', so by Lemma V.3.10 —?Eﬁ_c }%(7) My = I', and

further, by Lemma VI.3.13, Te }%(V) I'; the claim now follows by the assumption
that f; is a bound of T¢. O

In particular, we have obtained the results announced in the introduction. For
theories of the form T, + (ly), observe that by Lemma V.3.18 (i), T¢ }i—w A for each

194

instance A of (Iy). Therefore, T, + (Iy) F I' implies T, }i I, which by Lemma
V.3.15 yields Tx }% I'. Using that g,» is a bound of T, the Boundedness Lemma
implies | T, + (In)] < gun(€0)-

The presentation of the ordinals in the form pd is due to Definition 1V.5.14 and
Corollary IV.5.16, and the presentation of the ordinals in the form ¢y is due to
Corollary IV.5.13.

Corollary VI.5.10. Let Q := 1, Q41 := Q% Qp(a) := a, and Qi1 (o) := QW (@),
(1) |ACAq| = go and |ACA| = plgy.
(i) |P1(ACAo)| = 20 and [p1(ACAy) + (In)] = ¥2e0.
(iii) |31-DCo| = w0 and |L1-DC| = pg,0.
(iv) |ATRo| =Ty (Feferman-Schiitte ordinal), and |ATR| = ¢10e.
(v) |ATRy + (21-DC)| = ¢1w0 and |ATR + (£1-DC)| = p1g,0.
(vi) |21-TDCy| = w00 and |L1-TDC| = ¢e(00.
(vii) |p1(21-TDCy)| = p1000 (Ackermann ordinal).

(viii) |py T2 (ACAY)| = ww0...00, [phT*(ACAy) + (In)| = ©00...00 and

n n

PP 2(ACAG)| = ¢10...00.
n+1

(iz) |ps(ACA)| = 9Q¥ (small Veblen number), and |p1p3(ACAg)| = 9N (big Ve-
blen number).

() |Pnss(ACAG)| = 92 (), |Prss(ACA)| = 9 (c0) and pi|ppss(ACA)| = 921

VI.5.1 In which meta-theory did we prove (Vz € Q)Bd(z)?

To conclude, we provide a rough sketch of how to prove a formalized and restricted
version of the statement “g,» is a bound of T,” in ACAy plus some amount of
transfinite induction. To do so, we first of all need a way to express T,|T¢ }% r,

which is achieved by assigning a code '"i'm\TC }% I'" to such a derivation. :Ik'w|Tc }% r

is then expressed by rJI*':C|TC }% 'Y € D, where D is the set of codes of all such
derivations.

The set D of codes of such derivations is specified by a positive inductive definition,
that is, the least fixed point of X +— {x: A(X, x)}, where A(U, u) is an arithmetical

195

formula that contains U only positively. Actually, it is not required that D is the
least fixed point, we just need that D is a fixed point. In order for D to be a set,
provably in ACAq, we further have to arrange things so that D is a fixed point of a
positive IIY inductive definition A(U,u). In this case, assuming that 70(U, z, y, €) is
a universal T19-formula so that for each TI¢-formula B(U, z,y), there is an index ep
so that ACAg - VX, z,y[B(X, z,y) +> 7)(X,x,y,ep)], it is readily checked that for
an index e so that A({z: 7%(U, z,y,vy)}, z) iff 7¥(U,x,y,€), D :={z : 7%(0,z,€,e)}
is the desired II%-fixed point.

A straightforward coding of derivations leads however to a positive I19-V-X? induc-
tive definition, as e.g. in case of an Jz-rule, we need to guess a witness. Therefore,
we proceed as detailed in Schwichtenberg [23] section 4.2.2, and use codes of deriva-
tion which provide as additional information codes of immediate subderivations,
or more to the point, a recursive function, that computes these codes. A code of
:Ik'w|Tc }% ' is then a tuple of the form (e, z,¢,r, «,+,T'), where {e}(i) computes a
code of the ith premise of the last inference which is coded by 7; further we wrote
I' instead of "T"".

We just hint at how the clauses of such an inductive definition look like for the
w-rule and the Jz-rule. Assume that 0 is a code of the w-rule, and 1 a code for
the Jz-rule. Then, (e,z,c,0,a,+, T, VzA(x)") € D, if for each n, {e}(n) € D
and {e}(n) is of the form (¢/,z, ¢c,r, 5,4, T, A(m)7), where 8 < «. And accord-
ingly, (e,x,c,1,a,+,"T',3xA(z)") € D, if {e}(0) € D and {e}(0) is of the form
(e, x,c,r’, B,+,1', A(s)), where 5 < a.

Of course, we have to check that the previously shown reduction properties also
hold for derivations coded by D which store additional information, in particu-
lar, we would have to show that we can always provide indices of recursive func-
tions that compute the respective subderivations. More precisely, we would have
to provide recursive functions ti(d), to(d) and t3(d) that compute explicitly the
proof-transformations given in the Lemma VI.3.13, Lemma VI.4.15 and Corollary
VI.3.19: if d codes the derivation -i'E|Tx|Tc =~ My [= T, then ¢;(d) codes the deriva-
tion 'i'w\TC == T, if d codes the derivation 'i'E\Tm|TC }% I, then t3(d) codes the
derivation -T'E|T2|TC }% M; | T, and if d codes the derivation $I|TC - My =T,

then t3(d) codes the derivation -i'x(a) |T¢ }% ['. A recursive definition of these func-
tion t;(d) (i € {1,2,3}) can be read off from the proofs of the respective results.
The recursion theorem then provides us with an index of ¢;; that ¢; has the right
properties is then proved using transfinite induction on a. As we have to show that
for each code of a derivation d € D with depth below «, there is a computation of
t;(d) that yields a code of a derivation d’ € D, transfinite induction for all sets that
are I1y in D is required, that is, V2Tl ((D’),, a), where D' := {(z,¢) : 73(D, z,e)}
for some universal I13-formula 75(U, z, €).

196

Furthermore, it turns out that VzTl4((D’).,A) is what we need besides ACAq to
prove a formalized version of Theorem VI.4.13, that for each name x, g,» is a bound
of T,, given that the resulting derivation in -T'E|TC has depth at most A. That is, if we
let Bd)(z) := Vy[g.n(y) QX — Bdy(D, z,7)], where Bdj(D, z,) expresses that for
each d € D that codes 'i'w\TC }% I, there exists a d’ € D that codes :Ik'e\Tc }@%hm T,
then

ACAy 4+ VzTI4((D)., \) F (Vo € Q)Bd)(z).

Finally, to obtain a formalized version of Theorem VI.5.7, that for each x € () and
each m > 0, Bd,,(z), we let Bd} () := Vy[Bd} (y) — Bdj(z oy)], and for each n > 0,
Bd).,(z) := Vy[Bd)(1,y) — Bdp(1,7 0 y)]. So Bd),,(z) are modified versions of
Bd,.+1(x). These modifications are justified by the observation that the successive
reduction of a derivation :f'm|Tc }% I' to a derivation :Ik'f\Tc }% I only relies on
intermediate derivations whose depths are smaller than g, (7). Hence, we have for
each n, that

ACAy +Wo,(\) F (Vo € Q)Bd) (x).

Conclusion

In this thesis, we managed to compute sharp bounds of the theories (Op,(ACAy) :
r €) — in particular their proof-theoretic ordinals — using predicative methods
only. Therefore, the theories (Op,(ACAy) : x € Q) are meta-predicative. This
confirms that ordinal analysis with predicative methods allows to handle theories of
ordinal strength up to the Bachmann-Howard ordinal.

The essence of predicative methods is often described as “bottom-up”: ordinal no-
tations are constructed by adding new terms to build additional notations whenever
closure w.r.t. the previously introduced terms is reached. With regard to ordinal
notation systems, the “bottom-up” approach mainly accounts for the interpreta-
tion of the notations, the elements of a primitive recursive well-ordering: whether a
code (z, «) is interpreted bottom-up as H,(g,), or rather top-down as the collapse
Y(||z||'+a) (cf. Theorem IV.5.12). However, the “bottom-up” approach is visible
more clearly when considering the infinitary systems employed to eliminate cuts.

In our view, the characteristic feature of predicative methods is that the soundness
of the rules of these infinitary systems is self-evident and depends only on the rules’
premises; that is, T }g I, if there is a rule, so that all premises (I'; : ¢ € I) of
this rule are derived with depth «; < a, vyhere the depth is just the height of the

proof-tree. In fact, the infinitary systems (T, : € @) used in this thesis canonically
correspond to the formal theories (T, : z € Q). Therefore, all rules of T, are trivially

197

sound, and partial cut-elimination for Tm is obtained straightforwardly. This is in
clear contrast to the trademarks of impredicative methods: infinitary systems whose
soundness also depends on complex proof-transformation properties, as is the case
for infinitary systems equipped with the Q2-rule, where moreover, the height of the
proof-tree is measured w.r.t. an ordering that involves uncountable ordinals and
collapsing functions.

In the following, we reflect on how we obtained our main results and how the proofs
that (Vx € @Q)Bdy(z), and that for each n, (Vx € @)Bd,(x) given in the second
part relate to the proofs of T¢ = (Vo € Q,)Prvo(z), and that for all n < N,
T F (Vz € Qni1)Prvn,—n(x), given in the first part, where Ny is some fixed but
aritrary large number.

Underlying ideas and concepts

At the base of our modular ordinal analysis lie the sets @ and @ of names to
address all required functionals and operations, which are constructed by iterated
transfinite composition from the basic functionals (It, 1 : n € N) (where it := Ity
and It := Ity) and the basic operations (p,+1 : » € N) (see Definitions I11.2.1 and
I11.3.1).

With functionals, we assigned to each x € Q¥ \ {q} a functional H™ of type
n+2, so that H(J;f‘qo) = Ity , and if x # o, then H(E"w) = (H "™ (It,11))?, and
H&:‘ww = H"o...o Hi" Recall that if (z1,...,2x) € Q" then z; = (as,y;)
and y; < ... < y,. Furthermore, for z = L(yg o1 ... 01 ¥n) € Q with Ih(y;) =1
(0 <i<m),
+n __ +(n+m) +(n+m—1) +(n+0)
Hi™ = (Hf) B o HEO)

With operations, the situation is more delicate: for instance, different names are
required for the operations Vnp;p5p; and pyp;. We used (1, (w, o)) as name for the
former and (1, (w, go)) as name for the latter, where (w, go)~ is a prename. The main
difference between Q¥ and @ shows in names with deg(z) = 1 and o(z) € Lim(Q):
if z € Qf, then () is of the form (v,), while if z € Q, then (z)y may also be of
the form (14a, z7).

The operations (Op!” : x € Q*) are defined by recursion on ~»*, the transitive
closure of y ~ z & (Ja < o(x))(y = z[a]):

Op,." :© ppy1, and if deg(z) = m+1, then Op;™ :& (Ya < 0(z))(Pmins1 © OPJy)-

We point out that the ordertype of ~*[x is only about the size of the largest ordinal
|z| occurring in 2 (see Definition I11.5.5): indeed, if Iv(x) = n, then the ordertype
of ~*{y 1 y ~* o} is less than (|z] - w)™.

198

Similarly to functionals, we have that for = L(yp o1 ... 01 ym) 0 2 € QF,
Op;-n PN (Op;—o(n+m) o Opy1 n+m—1) o Op)O Op:-n

The main ideas of modular ordinal analysis are that we can adequately describe a
theory T by a sharp bound f (T proves f, and conversely, f is a bound of T), and
accordingly, that each operation Op, can be adequately described by a corresponding
functional H,u: if f is a sharp bound of T, then H, = (f) is a sharp bound of Op,(T).
We fixed T := ACA, and g(a) := w!'™®, and observed that indeed for each name
r € Q, gpn = Hy,,n(g) is a sharp bound of T, := Op,(T).

Technically, T, proves g,» is defined as
Prvo(z) := T, — Ya[Wo(a) A TI4(Cs, @) — Woy (g, (a))],

where C, is a suitable class term (cf. Definition II1.7.2). On the other hand, that
gr 18 a bound of T,, or Bdy(z) for short, states that if deg(x) = m, then for each
S, each I' Cgn L5 ;1(Tx|S) and each v € Lim(€2),

TSELT = Tos=0 .

Recall that Tx|S }% I' indicates that the cut-rule is restricted to formulas in

inst*(T,|S) and some additional formulas that do not impede the cut-elimination
process; these additional cuts can be eliminated cheaply at a later stage (cf. Defini-
tion VI.4.1).

Higher type variants of these notions read as follows: we have that Op, proves
H,n iff Prvi(z) := Yy[prvy(y) — Prvo(z o y)], and accordingly, H,= is a bound of
Op, iff Bdi(z) := Vy[Bdy(y) — Bdo(z o y). Further, Op: ™ proves H"™V | if
Prvyo(z) = Vylprv, ., (1,y) = Prv,41(1,z0y)], and H;Z("H is a bound of Oer("Jrl
if Bd,y2(z) := Vy[Bdus1(1,9) — Bd,i1(1,2 0 y)], where a* := xf+corr(z) (cf.
Definition I11.4.20).

Reviewing the proof strategies of the main results

In the first part, we showed T¢ - (Vz € Qn,)Prvo(z), and Te (Vo € Qn,)Prvpga()
for each n < Ny. In the second part, we then computed bounds of the theories
(T, : = € Q): we provided two different proof of (Vz € Q)Bdy(x) that differed
mainly w.r.t. the ordering used for the induction which has consequences mainly
for names x with deg(x) > 1. A direct proof transformed a derivation T, }% r

with deg(z) > 1 into a derivation T, }%(V) I for some 8 < v, which by the I.H.

199

could further be transform into a cut-free derivation. And the second proof made
use of higher type bounds: in order to show Bd; (z), we first proved a stronger result,
namely that for each n, Bd,,i(x), using that a name x with deg(x) = m+2, is of
the form = =nr (1,y) o z for some y, z with deg(y) = m+1, and then using that by
I.H., Bd,42(y) and Bd,+1(2), which then yielded Bd,1(x). Since Bdy(qo), and thus
Bd; () yields Bdg(z), we also have (Vx € Q)Bdq(z).

A direct proof of (Vx € Q)Bdy(x) was possible since we worked in a meta-theory and
assumed a reasonable amount of transfinite induction. More precisely, we showed
that for each arithmetical sequent I,

T,[SEL T = TS =%t 1,
by induction on |(x,)| (cf. page 188), using the following reduction properties.
(1) Ifr gﬁn ‘614:[(1) (T|S), then

*E « *E <C|{+
T |Ty|5}§ My = —A 52, M =T = T IHE }g M =T
(i) If z € Q with deg(z) = m+2 and I' Cgy L35 +1(T|S)’ then

'i'x|S }% r = 'i'x(g)|5 }%(V) I, for some < 7.

If deg(xz) > 1, then property (ii) immediately lead to a derivation that is simpler
in that |(z(5), E(y))| < |(x,7)]. If deg(x) = 1 and o(x) = 1, so x = y+1 for
some y, then property (i) allowed us to use the I.H., essentially as |(z(8), guh(a))| <
|(x,a+1)|. Finally, if deg(x) = 1 and o(x) = v (so T, iff (Vg < o(x))pl('T'x[m)),

then the [.H. allowed us to eliminate cuts with £*-instances of Pl(-T_x[m), since for
B <, [(@[B]+1, gon@)| < |(x,a+1)]. It is important, though, to note that the
negation of such an instance is I}, and thus, after using inversion, we are left with

an arithmetical sequent.

Next, we review the proof of the stronger result (Vo € Q)Bd,,.1(x), as the very same
strategy was applied in the first part to show (Vx € Q)Prv,,.1(x). We emphasize that
we do not use induction along (@, <). This is tempting, since reduction property
(i) yields YaBdg(x(a)) — Bdo(x), a result that readily extends, for each n, to

(%) VaBd, 1 (z(a)) — Bd,i1(z).

However, z(«) is not ~»*-smaller than x, only z(a) < = w.r.t. (Q,<). And even
if working in some unspecified meta-theory, it makes no sense to assume the well-
foundedness of (@, <) to prove a result whose purpose is mainly to obtain the proof-
theoretic ordinal of T, and thus its consistency, when |T,| is much smaller than the
ordertype of (@, <).

200

To show Bd,,(z), we fixed Ny so that © € Qny+1-m, and proved by meta-induction
on n < Ny, that (Vo € Qny1)Bdyy—n(x). The meta-induction step was shown by a
side-induction along ~»*. Letting n := Ny — m, we have got Bd,,(z).

We start by reviewing the side-induction step for names z with deg(z) = 1. As
the direct proof, using induction along ~* instead of |(x,)|, we saw that for such
names, Bdy(z) follows, if Bdy(z[5]) for all 5 < o(z) (if o(x) is a limit, then also an
end-piece suffices). Again, this was readily extended in the following way: for each
r € @ with deg(z) = 1 A o(x) = dp+7, and each (1,v) € Q,

(a) (Va < 7)Bd,11(z][dp+a]) = Bd,i1(x),
(b) Bdy41(1,v) = VaBd, 11 (14+a,v).

Both claims were shown simultaneously by induction on n. (b) was shown by trans-
finite induction on «. Only the limit case required some thought, and was obtained
using (a) doing the characteristic two-step approximation (see the proof of Lemma
II1.7.13, or page 66 for a more verbose discussion).

An easy induction on n now yielded Bd, 2(q;): using (b), we saw that Bd,1(1,y)
implies VaBd,+1((1+a, y)+1), i.e., YaBd,11((1+a, y)(a)), so Bd,1(1,y+1) by ().
This helps with the side-induction step for names x with deg(x) > 1 (see below).

Now we return to the proof of (Vo € Q,,+1)Bdn,—n(z). If n =0, then the claim reads
(Vz € Q1)Bdy,(x). For ¢y € Q1, the claim holds trivially, and Bdy,(q1) is by the
above observation, so Bdy, (1+a, go) is by (b). Hence (Vz € Q1)Bdy,(z). Concerning
the meta-induction step, we assumed that n+1 < Ny and (Vo € Qni1)Bdyy—n(z),
and showed by induction along ~*, that (Vz € Q,42)Bdn,—n_1(2).

If deg(x) = 1, then by the L.H., (Va < v)Bdy,—n-1(z[a]), thus Bdy,—n-1(x) by
(a). And if deg(z) > 1, we decomposed z into z =ng (1,y) o z with deg(y) > 0.
Since z ~* z, we have Bdy,_,—1(2), and Bdn,_n(y) is by the meta-I.H. (since
(1,y) € Qny2 and deg(y) > 0, thus y € Q;), which together with Bdy,—n—1(q1)
yields Bdy,_n_1(1,y) (note that ¢; = (1, qo)), so Bd,41(x) follows.

To be clear: if eg. = =yr (1,y) 0 2z, and Tx }% I', then we do not reduce this
derivation to —i_x(g) }%ﬁ) I' for some § < . Instead, we regard Tx }% I' as
(Op, o pl)(:lk'z) }% I'. Now we have Bdy(y) by the meta-I.H., which together with
Bdi(q1) yields Bd;(1,y+1), and Bd;(z) follows from Bd,(z).

Finally, we revisit the proof of T = (Vo € Q},)Prv,41(z) presented in the first
part. Since T¢ comprises no (transfinite) induction at all, we constantly employed
Theorem 1.4.2, to have a substitute for transfinite induction. We attempted to
approximate “T¢ = Prv,(x)” by prv,(z) := VXPrv(x),[X, stating that Prv,(z)
holds in all w-models of T¢. Then, by the theorem and the form of the formula

201

Prv,,(u), (Vx € Q)Prv,(x) is a consequence of the following variant of the induction
step: Vz[(Vy ~* z)prv,,(y) — Prv,(z)].

Since by the form of Prv,(x) we have only a substitute for transfinite induction
along ~*, we had no choice but to show (Vx € Q*)Prvi(x) using provable functions
of higher types. To make this claim at least plausible, we recall that, similarly to
VaBd,, 1 (z(a)) — Bd,41(2), we have got Vaprv,,, ,(z(a)) — Prv,41(x) (now working
in T¢). Thus, an obvious idea to obtain Prvi(z) from (Vy ~* x)prv,(y) is to show
VaPrvy(z(a)) using induction on « and the assumptions Prvy(x(0)) and prv,(z(0)),
and to leave the problem of how to obtain Prv;(x(0)) for later. If say deg(z) = m+2
with o(x) € Lim(2) and © =yF y o, 2 With 2 = L((1,y1) 01 ... 01 (1,Ym-1)), then
z(a+1) = (y(0) o y(a)) oy, 2 (cf. Definition I11.4.6). In this situation, prv,, (y(«))
and Prvy(z) yield Prvq(y(a) oy, 2), that is, Prvi(z(«)), as an easy induction on m
reveals. We consider this evidence that a detour via provable functionals is required.

When we were computing bounds, reduction property (i) allowed us to step form
Bdo(z) to Bdy(z+1). In the context of provable functions, property (i) corresponds
in some sense to

(i) ACAg F Toyiq A prvg(z) A Wo(ar) = Wo (g () (cf. Lemma I11.7.9).

Since -T_:v+1 implies that above any Y there is a X with Y€X and 'T'x(a) [X, having
prvy(z) at hand, and thus Prvg(z)[X, allowed us to conclude Tl (Y, g,n()), so
Wo(g,n(a)): the relativized assumption Tl4(C,[X,) in Prvo(z)[X is immediate
by Wo (), as C,[X is a set.

Reduction property (ii) corresponds to
(i) Tk deg(z) > 1A T, = Prog ({a: Taw?}) (cf. Lemma I11.6.13).

Using (ii)’, T, and Tl4(C,, a) entail 'T‘x(a), and also that for each Y, there is an

X with YEX and Ty [X. With prvy(z(a)) at hand, we obtained Wo4(g,1(41(3))
similarily as above. Hence, Yaprv,(z(a)) — Prvg(x) is an immediate consequence of
(ii)’, which was readily lifted to Yaprv,, ,(z(a)) = Prv, ().

This time, we showed by meta-induction on n < Ny, that for all n < Ny, ACA,
(Vz € Qi 1)Prvy,—n(z). Again, the meta-induction step was shown by transfinite
induction along ~»*; for names with deg(z) = 1, we first employed Lemma II1.7.10,
which states that ACA, proves the following.

1) € Quy A Tag1 Aprvg(z) — Prog_(Cotr)-
2) v € Qy, Ndeg(x) =1 Ao(x) = v A (Va qv)prvg(z[a]) A T, — Prog_(C,).

We saw that deg(z) = 1 implies (Vo < v)prvg(z[a]) — Prvo(z): if = y+1, this is
by 1) and the observation that Tl4(Cy11, @) yields o € Cyy1, that is, Wo4(g,n1()),

202

then indeed prv,(y) — Prvo(y+1); if o(x) € Lim(2), the claim follows along the same
lines using 2).

Again, (Va<7y)prvy(z]a]) — Prvg(z) extended to the following (see Lemma I11.7.13):
for each n and each = € @) with deg(z) =1 A o(x) = do+7, and each (1,v) € Q,

(a)" (Voo 99)prv,pq (2[do+al) = Prvnpa(2),
(b)" Prvp41(1,v) = YaPrv, 1 (1+a,v).

Then, an induction on n was used to show that ACAy F Prv,,+1(q1), which helped to
settle the side-induction step for names with deg(z) > 1.

Now ACA, = (Vz € Q%)Prvy,—n(z) was shown by meta-induction on n < Ny and
side induction along ~*, analogously to (Vx € Q,11)Bd,,(z).

203

204

Chapter VII

Appendix

1 Proof of the Representation Theorem

We start by recalling relevant notions and by proving an auxiliary lemma.

For an Ly(P)-formula ¢(u), (U, u){T1 X} is obtained from ¢ (U, u) by replacing each
occurrence of P(X) in ¢ by the formula T[X. Note that thus e.g. (U, u){TIU}
and @(U,u){T[X} are the same formula. We write @y,,(U, u) for (U, u){TIU}. If

©(u) represents an operation, then Op? is the operation that maps T to ‘PT[U(U)-
Further, recall Lemma [.2.19, which is tacitly used in the sequel.

A set is called transitive, if trans[X, where trans = VX, 23Y[Y = (X),|. Hence,
if trans[X, then Va, y[(X).,€X], and also Vz,y, 2[(X).,.€X]. The next auxiliary
lemma states that given trans, then for a 3i-formula B(U) := JY A(Y,U), we have
X E (H{B(U)}) is equivalent to X = (H{B’'(U)}), where B'(U) := UeXAB(U)| X.
Essentially, this holds since the range of Y is restricted anyway after substituting
Y A(Y, X) for P(X), and since each set variable W that occurs in some P(X) and
remains free after substituting is replaced by (X),. The transitivity of X is required
to obtain X€X from WeEX, in case X is of the form (W)s.

Lemma A.1.1. Assume that A(V,U) is an arithmetical Ly-formula, that ¥ is an
Ly(PT) formula, and B(U) := Y A(Y,U) and B'(U) := UeX A (FYEX)A(Y,U).
Then T€ proves:

trans[X — [X |= (H{B(U)}) « X | (H{B(U)})]-

Proof We prove the claim by induction on the build-up of ¥. As it is assumed
that the set variables occurring in B'(U) and 9 are disjoint, X will not occur in 9.
Assume that X is transitive. Exemplarily we treat the following cases.

(i) ¥ =P(X) and X = (W),. We have to verify that X = IYA(Y, (W),) iff X
FA(X)y, (W)s) A (W)€X, e, JYA(X)y, (X)uw,s) I FyA(X)y, (X)w,s)A

205

(X)wsEX, where w is a fresh variable. As trans|X implies (X), €X, this is
the case.

(i) 0 = VV(V, W), FV1(9) = {W} and W does not occur free in A(Y,U). For
B(U) := AYA(Y,U), B/(U) := UEX A (BYEX)A(Y,U), the LH. yields X |=
SV,WBWO)} X bV, W){B/(U)}, that is, $((X),, (X)) {BU)}X
iff Y ((X)o, (X)uw){B'(U)}1 X, where v, w are fresh variables. Quantifying v on
both sides, and observing (using Lemma 1.2.18) that for C' either B or B,

Vo((X), (X)) {CU)X) = (W (V, (X)u {CU)NIX =
X EYWV,IWH{CU)} = X EH{CU)}

yields the claim.

O

Below, we restate the Representation Theorem (Theorem 1.2.26) in a slightly more
explicit form. We let Wog_, _(u) := Wo_(u) A good(~», <). Recall that good(~+, <)
is an arithmetical sentence that asserts that < is the transitive closure of ~» (cf.
Definition 1.2.24).

Theorem A.1.2. Suppose that ¥(u) is an open L(PT)-sentence that strongly implies
p1, and that <,~», f(u,v) are primitive recursive. Then, there is an L(PT)-formula
(U, u) which is ¥} with ezactly the displayed variables free,

o(u) == " (u) =0 < u A Wog ., _(u) A (Vo ~ w)d(f(z,u)){(X, z)}

strongly implies p1, and T¢ proves that if 0 < v and Wog_, _(u), then
9] /\LP U
(%) Ops(T) « (Va ~> u)(0pf(,) (Op, (T))).

Throughout this section, which is devote to the proof of this theorem, ¥(u) and
p(u) are as assumed in the theorem. As ¥(u) strongly implies p;, T¢ proves that
V(f(x,uw){(X,)} implies ¢, {¥(X,)}, a fact that we use tacitly in the sequel.
Further, we let «a, 3, ... range over field(<) and v over limits w.r.t. <. We think of
< as a well-founded ordering with Wo_ () for each ¢ € field(<), and good(~, <).
If the context suggests that we consider an element o < 9, then we write a+1
for min{8 : @ < [=< ¢} (recall that Wo.(d) implies that {f : « < § < 0} is
well-ordered).

Firstly, we comment on the form of the formula ¢(u) introduced in the above the-
orem. By definition, ¢(u) contains P only positively. Further, for each Ly-formula
AWU), d(u){v(X,a) HAWU)} is d(u){aw)(X,a)} (Lemma 1.2.22 (ii)). Next, we

206

argue that ¢(u) represents an operation. It remains to show that T¢ F @r(u) —
pair A trans. We work informally in T¢ and assume ¢ (u). If 0 £ u VvV -Wog_, (=),
then pair A trans follows trivially, and if 0 < u A Wog_, (<), then there is an «
with a ~ u, hence 9(f(c, u)){r(X,a)}. Since each Ly-formula trivially implies T,
Lemma 1.2.19 yields U+ (f(a, u)). Further, as ¢ represents an operation, for each y,
U7 (y) implies pair A trans. Therefore, also ¢ (u) implies pair A trans.

Secondly, we explain the idea leading to this form of ¢. Assume for the moment,
that ¢(u) is of the form specified in the formulation of the theorem, that 0 < § and
Wog , _(d), and that (x) holds for each o < 0. Further, assume that the Ly(P)-

formula (U, u) is such that that for Dy (U,) := (& = 0 A T|U) and Ds(U, a) :=

J

(0 <aAOpf(T)IU),
(%) (Va < §)[W(X,){TIU} ¢ Di(X,a) V Dy(X, o).
By choice of ¢ we have that

pi1y(0) < (Yo~ 0)0(f (v, 0)){1hg)y (X, @)}

Further, by the assumption (*x), we have that VX [+ (X, 0) <> D1(X,0)], and if
0 < a, then VX[t (X, a) ¢+ Do(X, a)]. Therefore, p1,(d) is equivalent to

(Va~ 0)[(0 = a A I(f(a,0){Di(X,a)}) Vv (0 < a AI(f(e,) {D2(X,)})],
which by definition of Dy and Dy (recall: 9(z){T'|U}) = Op’(T’)) is equivalent to
(Ve 9)[(0 = @ A Opfo.6(T)) V (0 < a A OpY4(0pZ(T)))],

which is equivalent to (Yo~ 8)(OpYa.5 (Opa(T))). Hence (x) holds also for 4.

Before we can give the definition of ¢(X,), we need some terminology.

Definition A.1.3. If Z = (X),, we say that y is an X -index of Z. Further, Z&yX
abbreviates (3y € Y)[Z = (X),], i.e. that “Z has an X-index in Y ”.

We refer to Y as a set of X-indices, if we think of each y € Y as an index of
the set (X),. Now we consider the following hierarchy of X-indices. Its definition
contains a notational ambiguity that we resolve here: ¥(n){U€y),X} (and also
J(n){VEwy),X}) is obtained by replacing each expression of the form P(X') in 9(n)
by X é(y) BX .

Definition A.1.4. Hierr(Y, X, 6) := x3,4(Y, X, 0), where x(Y, X, 6) is the conjunc-
tion of the formulas listed below:

(1) 0<0—=[(Y)o={y: P((X)y)}].

207

(ii) (Vo< 0)[0 <o = (V)a = Nsualy - IF(B,) {UEw), XF(X)y}].

Note that only (i) is an Ly(P)-formula, as in (ii), P(X) is replaced by X'€(y),X. To
see more clearly what the above formula claims, assume that 0 < ¢ and Wog_, _(9)
and Hierr(Y, X, ¢), and additionally, that X is transitive. Then, for each o < 9,
(Y), is a set of X-indices. Some properties of the hierarchy Y are discussed below.

(i) (Y)o contains the X-indices of models of T, i.e. (Y)o = {y: TI(X),}.

(i) By definition, y € (V)1 i 9(f(0,)){UE€r), X}(X)y. As by (1), UEwy, X
implies T[U, we also have that y € (Y); implies J(f(0,1)){TIU}(X),, and
since ¢ strongly implies p;, also wpl{T—[U} [(X)y. So (X), is a model of p;(T)
and thus transitive. Since X is transitive, TIU A UE(X), iff U&yy,X A
Ué&(X),. Applying Lemma A.1.1 to the transitive set (X), and the formulas
A(V,U) := TIU and B(U) := 3Z(T|U), and then A(V,U) := (U&y,X) and
B(U) = 3Z(U&y),X), (37 is just a dummy quantifier, so e.g. U&(X), A
(3Z&(X),)(TIU) is TIU AUE(X),) yields

y € (V) & 0(f(0,){U&x), XH(X)y € I(F(0,){TIUH(X),.
Therefore, (Y); contains the X-indices of models of Op?(OJ)(T).

(iii) By the same reasoning, assuming that (Y'), contains the X-indices of models
of Op,(T), (Y)at1 contains the X-indices of models of Op?(avaﬂ)(Opa(T)),
hence of Op,,(T).

Lemma A.1.5. T proves that if 0 < ¢ and Hierr(Y, X, 0), then
(i) Uy, X — TIU,
(i) 0 < < IANUEW), X = (VB ~ a)I(f(B,a){VEN),X}U,
(iii) a < S NUEy), X — trans|U.

Proof Assume that 0 < ¢ and Hierr(Y, X,9). (i) If U€(y), X, then there is a y with
U= (X),Ay € (V) Asy € (V) iff T|(X),, TIU follows. (i) If U&y, X,
then there is a y with U = (X), Ay € (Y),. Therefore, Hierr(Y, X,) implies
(VB ~ a)d(f(B,a)){VEw), X }(X)y, hence the claim. (iii) If o = 0, then (i) yields
trans|U, and if 0 < o« < 0 AUE(y), X, then (ii) and the fact that 9(u) represents an
operation entails trans|U. O

We will see that X is model of Opy(T), if there is a “good” Y, so that Hierr (Y, X, 0).
Next, we are looking for conditions that make such a Y “good”. For each a < 0, (Y),
should contain enough X-indices. It is plausible that for each VE€X, there should be

208

a W so that W€y, X and VEW. This condition follows from ¢, {U€), X} X,
which unwinds to (VW3IW(VEW A W&y, X) A pair Atrans) [X

If op, {UE), X }1X holds for some stage o < 0, then also for all stages § < . This

is what the next lemma claims if we choose 7 := X.

Lemma A.1.6. The following is provable in ACAy:
Wog . _(0) AHiert(Y, X,) A <a <0 Ao {UEY) X} Z — (ppl{Ué(y)BX} [Z.

Proof Assume Wog_, _(d) and Hierr(Y, X,0). We fix some 3 with f+1 < ¢ and show
by induction on «, that

B<a<dA (ppl{Ué(y)aX}fZ — gopl{Ué(y)ﬁX}fZ.

Suppose that § < a < § and that the claim holds for all o/ < a. As good(~, <),
there is an oy < a with § < ag ~ a. We assume ¢, {U€y), X }[Z and aim for
o {UE(v)ay X }1Z. The claim then follows by the LH. To show ¢, {U€y),, X }17Z,
we fix some VEZ. ¢, {UE), X} Z implies that there is a W/€Z with W€y, X
and VEW'. ag ~ a and W€y, X imply J(f (a0, @)){UEy),, X} W' by Lemma
A.1.5, and since ¥ strongly implies ¢y, also @y, {U€(y),, X }[W’. Hence there is a
WEW’ so that W&y, X and VEW. This shows that o, {U€y, X}1Z. O

Corollary A.1.7. ACAq proves:

Wog. () A Hierr(Y, X, 0) A (Yo~ 0)9(f (o,))){UEw), XX —
(VB < 8)pp {UEw), XX

Proof If B8 < ¢, there is an o with 8 < a ~ 6. As ¢ strongly implies ¢,,,
I(f(a, 0)){UEy), X} implies pi{U€E vy, X}, and p{UEy), X} is by Lemma A.1.6.
O

In fact, if Hierr (Y, X, §), then (Yo ~ §)9(f(a, 0)){U€), X } 1 X is a sufficient condi-

9

tion to ensure Opg(T)[X. Hence, we let ¢(X,) claim that there exists a hierarchy
meeting the above condition. For technical reasons discussed below, we add another
condition.

Definition A.1.8. ¥(X,¢) := IYY'(X,Y,0), where ' (X,Y,d) is the conjunction
of the following formulas.

(i) 0 =48 — P(X),

(“) 0=<0— X(K X, 5) N ¢P1{Ué(Y)0X}rX7

209

(iii) 0 < 6 — (Yo~ O)I(f(a,) {UE), X} X

Clearly, v is ¥i. Again, only (i) and x(Y, X,0) contain the relation symbol P.
Further, (X, 0) iff P(X), so ¢4,(X,0) iff T[X. And if 0 < 4, then ¢4, (X, 9)
implies that there is a Y such that Hierr(Y, X, d) and ¢, {U€), X} X, and also
(Va ~ 0)04,(f(a, 0){U€w), X} X. As discussed above, U€y), X implies TIU,
therefore 0 < § and wﬂU(X, 9) imply pl(-T') [X.

Lemma A.1.9. T¢ proves the following.
(i) w’ﬁU(X,Y,cS) — Hiert(X,Y,9),

(i) Yi,,(X,0) > TIX,
(7;7;7;) 0 =<0 A wT[U(Xv 5) - @Pl{Ué(Y)OX} [X,

Y

() 0 =6 A s (X,0) = pi(T)[X.

Also note that by (ii) and (iv), ¥4, (X, 0) yields (ACA)[X. By Corollary A.1.7,
we also have the following

Lemma A.1.10. ACAq - Wog_, _ (<) A vy (X,9) = (Yo < 0)pp {UEw) X} X.

In view of Corollary A.1.7, the second conjunct of (ii) seems superfluous. We added
it so that the second claim of Lemma A.1.12 is provable in T€.

Now that we have discussed all the ingredients, we restate the definition of p(u).
Definition A.1.11.
(1) ¢'(u) = (Ya~ w)d(f(a, u) {$(X, a)}, and
(i) p(u) =0 <uAWog_ _(u)A¢(u).
Lemma A.1.12. Tk pz,(1) = pi(T) and T F 1 < 6 A s, (6) = p2(T).
Proof Assume ¢+ ;(1). By definition, ¢4 ,(1) implies J(f(0,1)){¢)4,,(X,0)}. As

¥ strongly implies p;, we obtain @, {)4,,(X,0)}. Since ¢4 ,(X,0) iff TIX, pu(T)
follows. For the second claim, assume 1 < § A ¢(d). For an o with 1 < a ~ §, we

Y]

obtain ¢p, {¢1;(X,)} as above. By Lemma A.1.9, ¢, (X,) implies pi(T)[X,
hence ¢, {t)¢,,,(X, a)} implies ¢, {p1(T)[X}, which is p2(T). m

As discussed below, claim (x) of Theorem A.1.2 is easily obtained, once we have the
following lemma, which we prove at the end of this section.

Lemma A.1.13. pi(ACA¢) =0 < d AWog_, _(0) = (V3,,(X,) > 3,(0)[X).

210

We argue why this lemma implies that T¢ proves that 0 < 6 A Wog_, _(d) imply (*)
of Theorem A.1.2. So assume 0 < 6 AWog_, _(0). If 6 =1, (x) holds as @4, (1) iff

@’T(U(l) iff I(£(0, 1)) {bs,,(X, 0)} iff I(£(0, D{TIUY iff Op?(OJ)('T'). And for 1 < 6,
¢+ (0) implies p2(T). Thus Lemma A.1.13 is at hand. Hence, ©11p(0) iff @’T[U(é)
iff (Va ~ 0)0(f(a, 0)) {44y (X,)} iff
(Va~ 9)[(0 = a AI(f(a,) {1, (X, 0)}) V (0 < a AD(f (e, 6)){t4) (X, a)})],
iff
(Vo 9)[(0 = a AI(fa,)){TIUY) V (0 < a AI(f(a,6)){r () 1X)})].

As ¢1,1(0) is Op§(T) and O(f (a, 6)) {11, (0) [X)} is Opn 5 (OPL(T)), the displayed
formula is just another way of writing (Vo ~ 5)(Op?(a7é)(0p2(f))).

Before we prove the above lemma, we need some further notions and auxiliary results
dealing with indices of sets.

Definition A.1.14. U C V = VaIy[(U), = (V),].

Hence if X€U and U C V, then also X€V.

Suppose that Y is a set of X-indices. For some set W with W&y X we may also have
WeX', so W has also X'-indices. Below, we define Y/ x so that it contains the
X'-indices of the sets with X-indices in Y. Further, if Y is a hierarchy of X-indices,
then we define Y[x//x] so that for each o and Y’ := (Y'), and (Y{x//x])a = Y_>’<,/X.

Definition A.1.15.
(1) Yxyx = {y': Gy € V)[(X")y = (X),]}, and
(1) Yixyx) = {{Y, a) : (Fy € (V)a)[(X")y = (X),]}.
Lemma A.1.16. The following is provable in T€.
(i) v € Yxi,x iff (X")yevX,
(1) WéyX,/XX’ WeX' NWeyX,

(iii) (YWEX)(WEyX) iff (VWEX)(WEy,, X),

/X)X/X!

(Z’U) ZfX/ Q X”, then YX’/X = (YX”/X)X’/X” and YV[X//X} = (YV[XH/)Q)[X//XH}.

211

Proof (i) v/ € Yx//x iff there is a y € YV with (X'), = (X), iff (X'),eyX. (ii)
If Wéy,, X', then clearly WeX', and since W = (X), for some y' € Yx/x, (i)
yields that W = (X'), €y X. Conversely, if WEX' and W&y X, then there is a
y with W = (X')y €y X, so ¢ € Yx/x, and thus Wéey,, X' (iii) Assume that
(VWEX")(WeyX). Hence if WEX', then also Wey X, and so by (i), Wey,,, X"
As also WeX, using (ii) again yields W€y, x)xy0 X For the other direction,
observe that by (ii), W€y,), X vields Wéy,, X', so WeX" and Wey X. (iv)
Let y' € Yy x. Then (X'), €y X, and thereisay € Y with (X'), = (X),. As X' C
X", there is a y” with (X"),» = (X),, thus (X"),»€y X, that is, " € Yx»/x. As
(X)y = (X")yr, (X)yEvyn, X", which says that y € (Yxn/x)xr/x». Conversely,
if y' € (Yxv/x)x//x», then (X’)y/éyx,,/XX”. Hence, there is y” € Yx»/x so that
(X)y = (X")y. But y" € Yxn/x says that (X”), €y X, hence also (X'), €y X,
that is, ¥’ € Yx/,x. The second claim follows easily from the first. a

Lemma A.1.17. T¢ proves the following: if Z is transitive, Z C X' and Z C X,
then H{Uey X} Z + ﬁ{UéyX,/XX’}fZ.

Proof Assume that Z is transitive, and that Z C X', Z C X. If WEZ, then WEX
iff WeX’, and so Wey X iff Wey,, X' by Lemma A.1.16 (ii). As ¢ has no free set
variables and since Z is transitive, we have, using Lemma A.1.1, that H{U€y X }|Z
iff {UEZ AUEyX}Z il {UEZ NUEy,,, X'}Z iff 0{UEy,, X'}Z. O

As a consequence, we obtain the next lemma.

Lemma A.1.18. T¢ proves the following: if X'€X, X' and X are transitive and
Y= YX’/X} then HierT(Y, X, 5) — HierT(Y’,X’,5).

Proof If § = 0 there is nothing to show. So assume that a < §, Hierr(Y, X, 4) and
Y' :=Yix//x]. We have to show that

(i) v € (Y')o iff TI(X"),, and
(ii) if 0 < a < 6§, then ' € (Y')y > (VB ~ @)O(f(B,) {UEwr), X'} (X')y.

By definition of Y', y' € (Y')o iff (X')y€w).X. If @ =0, then y € (V) iff TI(X),.
Hence i € (Y")g iff (X')y € X iff THX')y A (X")y EX iff TI(X"),, since X' € X
(X'€X and trans|X), thus (i). And if 0 < a < ¢, then y € (YV), iff A(X,Y)[(X")y,
for A(X,Y) := (VB ~ a)O(f (B, @) {U€w),X}. Hence y € (V), iff (X')yEy), X iff
AX,Y) (X)) A(X)y €X iff AX',Y)[(X), since X' € X and by Lemma A.1.17
(as Z = (X')y€w). X, Z is transitive, and since X and X' are transitive, we have
Z C X" and Z C X, hence the Lemma applies). This shows (ii). O

212

For the above lemma to apply, we require that X’ and X are transitive. In the
situations where we use the this lemma, these sets are transitive for the following
reason: ' (W,Y,d) as well as Wey, X Aa < d AHierr(Y, X, 0) imply the transitivity
of W (cf. Lemma A.1.5 and A.1.9).

Lemma A.1.19. ACA, proves the following: if Y' = Yx//x], then
Wog. _(8) At (X.Y.8) Aa < 6 A X'Ew), X = (XY, q).
Proof Assume Wog_, _(9), WT’[U(X’ Y,0), « < 6 and X'€yy X, andlet Y’ := Yix//x].
Note, that @D’ﬂU(X,Y,cS) entails Hierr(Y, X,), so also Hierr(Y, X, a) for o < 6. If
a = 0, then X'€y, X yields TIX', thus wth(X’,Y’,O). And if 0 < «, then
¢%[U(X/’ Y’ «) holds if
(i) Hierr(Y', X", a) A @p {UEwn, X'} X', and

(i) (Y8~ a)9(F(8,) {UEwn, X'} X

Hierr (Y’, X', o) follows form Hierr(Y, X,d) by Lemma A.1.18, as X'€xy), X and
thus transitive. The second conjunct of (i) follows from (ii) (which we show next)
by Corollary A.1.7. (ii) follows in two steps. By Lemma A.1.5, X'€x) X yields
(V8 ~ a)0(f(B,a)){U&w), X} X" by Lemma A.1.5, and now (ii) is by Lemma

A.1.17. O
We already know that if X’€X, X and X’ are transitive, and Hiert (Y, X, §), then also
Hierr(Y’, X", 6) for Y’ := Yix//x). Next, we show that under suitable assumptions,

(Y")<15€X for each 8 < 0.

Lemma A.1.20. Consider the formula
B(X,X")Y,0) := w’ﬂU(X,Y,cS) ANX'€X — (VYa < 0)((Yix/x))<a€X).
Then, p1(ACAq) = Wog_, _(do) — B(X, X", Y,dp).

Proof Let Cs, := {0 : § 209 — VX, X' Y B(X, X", Y,0)}. We show that ACA, proves
Wog., _(dy) — Prog_(Cs,), thus T¢ = (ACA)[W A Wog" () — Prog_(Cs, [W).
Then, working in p;(ACAy), we assume Wog_, _(do), fix sets X, Y, X with X'€X,
a < dp, and pick a set W with X, Y €W and (ACA)[W. With Wog_, _(dy), we also
have Wogfi ~(0g). Therefore, we have Prog_(Cs,[W), and thus dy € Cs,[W. Hence
B(X,X',Y,d), which implies (Y;x//x])<a€X.

Now we work informally in ACAy and show Prog_(Cs,). Trivially, 0 € Cs,. Next,
assume that 0 < 0 < &y and (VB < §)(8 € Cs,). To show that 6 € Cs,, let
a <6 and X, X', Y so that X'€X and ¢7,;,(X,Y,d). Set Y := Yx//x) and aim for

213

(Y')2a€X. 97(X, Y, 0) entails p1(T)[X by Lemma A.1.9. Further V7 (X, Y, 0)
and Lemma A.1.10 yield ¢p, {U€y), X }[X. This states that there is a set X"€(y), X
with X’€X”. So X" is transitive and X’ C X”. Let Y := Y|x»/x]. By Lemma
AL, V(X" Y). As Y = Y i by Lemma A.1.16 (iv), the L.H. (i.e.
B(X", X" Y" «)) implies that for each 8 < «, (Y')2peX".

By Lemma A.1.18, Hierr(Y’, X", §). So if @ = 41, then (Y')<o = (Y')<s U (Y')s,
which is arithmetical in (Y")<5 and X', since by definition of Hierr(Y’, X’,),

Y= (v : 9(F(& BUERH XX,).

&8

Thus (Y')zn€X. If @ =: 7 is a limit, then we have Hierr((Y”)<s, X', 8) for each
f < 7, and the relevant part of the hierarchy Y’ is unique: if also Hierr(Z, X', 3),
then (Z)<s = (Y')<s. Further, for each 5 < v, (Y')<3€X"” is by L.H. Therefore,

(Y)<y ={{y, 8) : B <y A FwlHierr((X")w, X', 8) Ay, B) € (X")u]}-
So (Y')<, is arithmetical in X’ and X", and so (Y’)<,€X. Hence 0 € Cy,. O

For the remainder of this subsection, we fix a hierarchy H=; w.r.t. X and T. The
hierarchy HZ; is such that for £ £ 6, (HZ5)e = 0, and otherwise,

(i) (HX)o={y:TNX),}, and for 0 < o < 4,
(i) (HZ5)a = {y: Y eX)PL ((X)y, Y, a)}.
Note that is HZ; arithmetical in X. We also point out that
Ué(Hfé)aX <« UEX A (EIYéX)w%rU(U, Y, a),
as U€ g, X iff Jy[U = (X), A (EIYéX)w’ﬁU(U, Y, a)l.
Now we prove the left-to-right direction of Lemma A.1.13.

Lemma A.1.21. p;(ACAg) F0 < 6 AWog., L(6) Ap(d)[X — oL (X, H%0).
Proof Assume that 0 < ¢ and Wog_, _(d) and ¢(d)[X. We have to check that
(i) Hierr(HZ5, X, 0),
(i) wp, {U€), X}HX, and
(i) (Yo~ 8)0(F (0,) {UE o), X} X

214

First, we show (iii). ¢+,,(6)[X yields (Va ~ §)I9(f(a, 0)){(X, a)} [X by definition.
By Lemma A.1.1, we obtain (Vo ~ 0)9(f(a, d)){A(U)}X, for A(U) := UEX A
(EIYéX)w/ﬁU(U, Y,). Further, by definition of H=;, we have A(U) iff Ué(Hfé)aX,

thus (Vo ~» 5)19(f(a,5)){Ué(H§6)aX}[X, hence (iii).

Now Corollary A.1.7 yields (Vo < 6)p, {U€px,), X}HX. This implies (i), and
further states that (Vo < 0)VVIW[VEW A W€ 1) X |1 X, which implies

(+%) (Vo < O)(YWEX)@AWEX)AY EX)[VEW A (WY,).

It remains to show Hierr(H=5, X, 0). We let Y := H=;, and verify that Y is formed
according to Definition A.1.4. For a = 0 this is evident, and for 0 < a < §, we show

by transfinite induction on « that

(*) ye(Y)a it (V8 ~ a)d(f(B,) {U€w), X}1(X)y.

Firstly, note that by Definition A.1.4, if (%) holds for all &’ < «, then Hiert(Y, X, «).
Secondly, by definition of V', y € (V)4 iff ¥, ((X)y, a)[X iff there is a Z€X, so
that

(i) Hierr(Z,(X),,a) and
(i1) ¢p, {U€2)(X)y}1(X)y, and
(iii) (V8 ~ a)I(f (B,) {UEz),(X)y} (X)),

Now we show the two directions of (*), assuming that (x) already holds for all
o’ < a. Keep in mind that (X), and X are transitive, so (X), C X.

Left-to-right: By L.H., Hierr(Y, X, a). For Y' := Y|x),/x], Lemma A.1.18 implies
Hierr(Y’, (X)y,). Hence, for the witness Z in (i), (Y')za = (Z)<a- Fix a 8~ a.
By (iii) we have J(f(8,) {U€w),(X)y}1(X)y. For Y :=Y/y, x|, Lemma A.1.17
yields 9(f(8,) {U€wn, X} (X),. Hence, ¥(f(8,a){U&y),X}(X), by Lemma
A.1.16 (iii). This concludes the proof of the left-to-right direction of (x).

Right-to-left: Assume that (V8 ~ a)O(f(8, @) {U€w),X}[(X),. Again by LH.
Hierr (Y, X, a), and Lemma A.1.18 yields Hiert((Yo)<a, (X),, a) for Yy := Y|x),/x]-
The right hand side of () and Lemma A.1.17 yield 9(f(8, @)){U€ vp),(X)y} [(X),
for each 8~ a. Now Corollary A.1.7 yields (V3 < a)@p, {U€ vy),(X)y }[(X)y, hence
w’ﬁU((X)y, (Y0)=a, @). It remains to show that (Yy)<,€X. First, we pick a ¢’ with
a = ¢ ~ 0. By (xx), there are W,Y'€X with (X),EW so that Ut (WY, 00),
notably Hiers(Y’,W,d’). By Lemma A.1.18, Hiers((Y")<y,(X),,0"), for Y =
Y{ix),/w) and Y"€X as X satisfies arithmetical comprehension. Hence (Yp)<a =
(Y")2a€X. This concludes the verification of (x). 0

The other direction of Lemma A.1.13 is proved next.

215

Lemma A.1.22. p;(ACAg) -0 <6 AWog_, _(0) A Y3(X,6) = w35(0) X

Proof We work informally in p; (ACA). Assume 0 < §, Wog ., _(9) and that there is a
Y with w%_rU(X, Y,). Fixa ~ §. Now WT’{U(X’ Y,0) yields 9(f(a, 6)){U€w) X} X.
If we can show that for each X', X'€(y), X implies Vi1p(X' @) [X, then we also
have J(f(a,0)){¢;y(U, a)}1 X, which then gives go’ﬁU(é) IX. Indeed, by Lemma
A.1.19, w’ﬂU(X, Y,0) and X'€(yy, X yield WﬁU(X/’ (Y")za,) for Y := Yx//x, and
by Lemma A.1.20, we conclude that (Y').,€X. 0

Finally, we show that ¢(¢d) strongly implies p;.
Lemma A.1.23. ¢ strongly implies ¢, .

Proof Let A(U) be a Xi-formula of L,. By definition, ¢ ()(u), implies 0 < u and
(Voo ~ w)O(f (v, 0)){vva@w)(X,a)}. As 0 < u, there is an o ~» u for which we have
I(f(a,u)){vaw)(X,)}, therefore also vy, {Ya@w) (X, @)}, as ¥ strongly implies p;.
If @ = 0, then Y4 (X, o) iff A(X) by definition of v, and thus ¢, {A(U)}. And
if 0 < a, then the definition of ¢ provides a Y, so that ¢, {U€y), X} X and
(Yo ={y: A((X),)}, i.e. UEw, X iff A(U) AUEX. Hence ¢, {UEy), X }X also
yields ¢p, {A(U)}1X. Summing up, @p, {¥aw)(X,)} implies ¢p, {p {AU)} X},
that is, p1(pp, {AU)}). As @p, {A(U)} is 113, @p, {A(U)} follows by Lemma 1.2.12.

O

216

2 The theory II1{-CA;

For the definition of the theory I1{-CA; it proves convenient to have bounded quan-
tifiers at hand. Therefore, we extent the language Lo as follows: if A(u) is an Lo-
formula and ¢ a number term with u ¢ FV,(t), then (Vx < t)A(x) and (3x < t)A(z)
are Lo-formulas, too. This gives rise to the following classes of formulas. The set
of Ad-formulas (also called TI3 or 39) of Ly contains all literals of Ly and is closed
under conjunction, disjunction and bounded number quantification. Further, A is
0., [X0.,],if Ais 19, [X9] or of the form VaB(z) [3zB(x)] with B ¥ [II9].

Definition A.2.1. Think of e as an index of a unary partial recursive function, and
let {e}(z) =y be a X%-formula of Ly expressing that y is the value of this function
with index e applied to the number x. Then, we set

(1) V-CL :=VXVedY[Y = {z : Yy, z({e}({x,y)) = 2 = z € X)}].
(i1) 3*-CL := VXVeVaIY[Y = {z: By < a)Vz({e}((z,y)) = 2z — 2 € X)}].
Definition A.2.2. TI{-CA; := T+ A{VXIND(X), pair, trans, V-CL, 3*-CL}.

Lemma A.2.3. For each I1{-formula A that contains all its set variables only pos-
itively, T19-CAy proves that {x : A(X,z, %)} is a set.

Proof N is a set. Let e so that Vaz{e}(z)T (i.e. Vz,y({e}(z) # 2)). Then, we
have that N = {x : Vy, 2({e}((z,y)) = 2 — 2z € X)}. 0 is a set: pick an a that
does not code a pair and let e so that Vz,y{e}({(x,y)) = a). Then, O = {z :
Vy, z({e}((z,y)) = 2 = z € N+N)}. For each primitive recursive R(Z), there is an
e, so that for all y, {e}(((Z¥),y))T iff R(Z). Hence R = {(Z) : Vy{e}({((Z),y))1} =
{(&) : Yy, z[{e}({{(¥),y)) = 2z — 2z € 0)}. The same holds true for ~R(Z). Now
one shows by induction on the build-up of A(%), that {(Z) : A(Z)} is a set. The
claim then follows. If A = t(«) € U, then let e so that VZ, y({e}(((Z),y)) = t(Z)).
Then {(Z) : t(Z) € U} = {(Z) : Yy,z({e}({(Z¥),y)) = 2z — =z € U)}. The case
A = R(t1(¥),...,t,(¥)) is handled similarly. To handle conjunction, bounded and
unbounded universal quantification, use pair and V-CL. Exemplarily, we consider
the case A(U,u) = VzB(U,u,z). By L.LH. we know that Y := {(z,y) : B(U,z,y)}
is a set. Then, for and e so that Vz,y({e}({x,y)) = (x,v)), {{z) : A(U,z)} =
{(z) : Vy,z({e}((z,y)) = 2 — z € Y)}. For disjunction and bounded existential
quantification, use pair and 3°-CL. O

Remark A.2.4. The theory p;((II2-CA)™) is not stronger than 11{-CAy, as M :=
{{z,e) : m(z,e)} is an w-model of TIV-CA; with MEM (m(x,e) is a universal
I10-formula with the property that for each TI{-formula A(u,v) with at most the
displayed variables free, TI9-CA; + VyJeVz[A(y,z) < 7(x,€)]; cf. e.g. Simpson
[26], Definition VIL1.3).

217

Due to the above remark, we have to consider the following variant of the operation
P1-

Definition A.2.5. p1(T) :=VZIX(ZEX AN ZEX ATIX) A pair A trans.

Note that ACAg proves p;((IT1{-CA)7), as for X := {(z,€) : (7, z,¢)}, ZEX and
(I19-CA)~[X. Further, by Lemma A.2.3, p;(II?-CA;) proves arithmetical compre-
hension. Therefore, we could present ACA as p; (I19-CAy), and choose (ACA) to be
the ITi-sentence p;((I19-CA)™).

218

Bibliography

1]

2]

BECKMANN, A. Separating fragments of bounded arithmetic. PhD thesis, Uni-
versitat Miunster, 1996.

BucHHOLZ, W., FEFERMAN, S., POHLERS, W., AND SIEG, W. Iterated In-
ductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Stud-
tes, vol. 897 of Lecture Notes in Mathematics. Springer, Berlin, 1981.

FEFERMAN, S. Reflecting on incompleteness. Journal of Symbolic Logic 56, 1
(1991), 1-49.

GENTZEN, G. Neue Fassung des Widerspruchsfreiheitsbeweises fiir die reine
Zahlentheorie. Forschungen zur Logik und zur Grundlequng der exakten Wis-
senschaften, Neue Folge 4 (1938), 19-44.

GIBBONS, B. The Veblen Hierarchy explained via Mahlo Hierachies in Con-
structive Set Theory. PhD thesis, University of Leeds, 2003.

JAGER, G. Metapredicative and explicit Mahlo: a proof-theoretic perspective.
In Proceedings of Logic Colloguium “00 (2005), R. Cori, A. Razborov, S. Todor-
cevic, and C. Wood, Eds., vol. 19 of Association of Symbolic Logic Lecture Notes
in Logic, AK Peters, AK Peters, pp. 272-293.

JAGER, G., KAHLE, R., SETZER, A., AND STRAHM, T. The proof-theoretic

analysis of transfinitely iterated fixed point theories. Journal of Symbolic Logic
64,1 (1999), 53-67.

JAGER, G., AND STRAHM, T. Fixed point theories and dependent choice.
Archive for Mathematical Logic 39 (2000), 493-508.

JAGER, G., AND STRAHM, T. Upper bounds for metapredicative Mahlo in
explicit mathematics and admissible set theory. The Journal of Symbolic Logic

66, 2 (2001), 935-958.

219

[10]

[17]

[18]

JAGER, G., AND STRAHM, T. Reflections on reflections in explicit mathemat-
ics. Annals of Pure and Applied Logic 136, 1-2 (2005), 116-133. Festschrift on
the occasion of Wolfram Pohlers’ 60th birthday:.

PoHLERS, W. Proof Theory: An Introduction, vol. 1407 of Lecture Notes in
Mathematics. Springer, Berlin, 1989.

ProBstT, D. Pseudo-Hierarchies in Admissible Set Theories without Founda-
tion and Fxplicit Mathematics. PhD thesis, Universitat Bern, 2005.

RanNzi, F. From a Flexible Type System to Metapredicative Wellordering
Proofs. PhD thesis, Institut fiir Informatik, Universitat Bern, 2015.

Ranzi, F., AND STRAHM, T. A flexible type system for the small Veblen
ordinal. Submitted.

RATHJEN, M. The realm of ordinal analysis. In Sets and Proofs, S. B. Cooper
and J. Truss, Eds. Cambridge University Press, 1999, pp. 219-279.

RATHJEN, M. The strength of Martin-Lof type theory with a superuniverse.
Part I. Archive for Mathematical Logic 39, 1 (2000), 1-39.

RATHJEN, M. The strength of Martin-Lof type theory with a superuniverse.
Part II. Archive for Mathematical Logic 40, 3 (2001), 207-233.

RATHJEN, M., AND VizcaiNo, P. F. V. Well ordering principles and bar
induction. In Gentzen’s Centenary: The Quest for Consistency, R. Kahle and
M. Rathjen, Eds. Springer, 2015, pp. 533-561.

RUEDE, C. The proof-theoretic analysis of i transfinite dependent choice.
Annals of Pure and Applied Logic 121, 1 (2003), 195-234.

RUEDE, C. Universes in metapredicative analysis. Archive for Mathematical
Logic 42 (2003), 129-151.

SCHUTTE, K. Beweistheorie. Springer, 1960.
SCHUTTE, K. Proof Theory. Springer, Berlin, 1977.
SCHWICHTENBERG, H. Proof theory: Some applications of cut-elimination. In

Handbook of Mathematical Logic, J. Barwise, Ed. North Holland, Amsterdam,
1977, pp. 867-895.

220

[24]

[25]

[26]

[27]

28]

SETZER, A. An introduction to well-ordering proofs in Martin-Lof’s type the-
ory. In Twenty-five years of constructive type theory, G. Sambin and J. Smith,
Eds., vol. 36 of Oxford Logic Guides. Clarendon Press, Oxford, 1998, pp. 245—
263.

SETZER, A. Ordinal systems. In Sets and Proofs (Cambridge, 1999), C. B.
and J. Truss, Eds., Cambridge University Press, pp. 301 — 331.

SIMPSON, S. G. Subsystems of Second Order Arithmetic. Perspectives in
Mathematical Logic. Springer-Verlag, 1998.

STRAHM, T. First steps into metapredicativity in explicit mathematics. In
Sets and Proofs, S. B. Cooper and J. Truss, Eds. Cambridge University Press,
1999, pp. 383-402.

STRAHM, T. Autonomous fixed point progressions and fixed point transfinite
recursion. In Logic Colloguium 98, S. Buss, P. Hajek, and P. Pudlak, Eds.,
vol. 13 of Lecture Notes in Logic. Association for Symbolic Logic, 2000, pp. 449—
464.

STRAHM, T. Wellordering proofs for metapredicative Mahlo. The Journal of
Symbolic Logic 67, 1 (2002), 260-278.

Tarr, W. Normal derivability in classical logic. In The Syntax and Semantics
of Infinitary Languages, J. Barwise, Ed. Springer, Berlin, 1968, pp. 204-236.

TAKEUTI, G. Proof Theory. North-Holland, Amsterdam, 1975.
TAKEUTI, G. Proof Theory, 2nd ed. North-Holland, Amsterdam, 1987.

TuieL, K. Metapredicative Set Theories and Provable Ordinals. PhD thesis,
University of Leeds, 2003.

221

Index

L-instances
relevant instances, 172, 174

“about equal”, 99

Ackermann ordinal, 72
additively principal ordinals, 118
atom, 13

big Veblen number, 72, 115

bound, 184, 191
g+ is a bound of T, 191
HX"™ bound of OpF ™), 191
H,#r is a bound of Op,, 191
sharp bound, 184
weak bound, 184

Boundedness Lemma, 184

class term, 14

Eq(a), 131
e-numbers, 118

Feferman-Schiitte ordinal, I'y, 72

formula, 13
Lo(P)-formula, 23
Il 14
»lo14
arithmetical, 14
cut-formula, 156
essentially II%, 152
essentially ! 152
false literal, 158
L*-formula, 158
Ly,-formula, 178

main-formula, 156

open sentence, 14

proper subformula sufo(A), 162

rank rk(A), 162

restriction, A[C, 14

sentence, 14

subformula, 162

true literal, 158

universal IT}-formulas, 20
functionals, 28

next(g, 3), 33

(Fo, Fiy ..., Fuyq), 28

FylFy, ..., Foial, 28

fr=fix(f), 29

fixed point free companion, f_, 29

he, 28

It, It,.1, 30

it, 30

iteration, 28

names, 41

Q=Y Fy, ..

Q) 29

sh, 30

strictly inclusive, 29

type-n, 28

F,) € Q=M 29

good, 119

induction
formula induction, 18
set induction, 18
transfinite induction, 17

L-instances, 156

223

L*-instances, 159
literal, 13

meta-theory, 195

names, 41, 77
~*. 49, 94
approximations x[a|, x(«), 47, 92
components k(x), 98, 118
composite names, 154
corr(z), 51, 95
degree, deg(x), 45, 88
for functionals (Q¥, <), 81
for operations, (Q, <), @, 84
norm |z|, 98
normal form, 46, 89
ordinal, o(z), 45, 88
prenames, 43, 84
ro,y, 18
27 51,95
natural sum a#s, 162
numerically equivalent, 158

OFG
Op, 126
Oy, 129
Oy, 142
OFG, ordinal function generator, 124
operation
basic operations, 20
operations, 19
Op,;™, 101
Op?, 25
Op, proves H,u, 62
o represents Op, 25
Poni1y 23
Op, (T), 26
Representation Theorem, 27
names, 41
Op,™, 55
representation, 25

224

transfinite iterations, Op%, 28
ordinal expression, 123

provable function, 108

sequence numbers, 14
sequents I', A, 155
small Veblen number, 72

standard model, 158
structure, 16

J-function, 143
Tait-style system, 155

theories
S, 152
S, 152
ACA, 18, 72
ACAy, 17, 72

alternative axiomatization, 170
ATR, 72

ATRy, 17, 72
composition, 153
plpg(ACAQ), 72, 115
P1Pn+1(ACA0)a 115
pg(ACAo), 72, 115
»1-DC, 72

¥1-DCy, 17, 72

T over T, 153
ToT, 153

Te, 14

T, proves g,, 62

T, proves g,», 108
T,, T+, 55

Te, T¢, 154

x-variable, 178
Veblen functions, 146

Notations and abbreviations

*0, 1, - -
</, 118
<lex; 41
€, 14
(s,%), 178

~», 27,49, 94

~*, 49, 94

@r, 129

1:=0+#0,13

—; negation, 13

~, negation of literals, 13
T:=0=0,13

., 178

A(U,u)[X, z/U,u]; substitution, 14
A€ L(S), 152

Ae L* 158

A € ell(C), 153

A|[C; formula restriction, 14
A*, 158

A® 178

A°, 164

AT 179

At on(Z,a,8,1), 174
Aplm(Z), 172

a#5, 162

at, 161

(ACA), 21

(ACA), 18

Arg, 124

Arg[Cl], 124

(ATR), 21

BVy, BVy; bound variables, 13

225

Bd;(x), 191

(C)¢ :={x: (x,t) €C}, 14
(), 155

cc,, 62

C, D; class terms, 14
CET, 155
C., 154

C,, 108

C, 152
c:=(xq,...
Cl, 124
corr(x), 51, 95
cut(C,S), 159

,xy), 154

deg(z), 45, 88
deg(c), 154

E; 118
ell(C), 152
e (C), 152
eval, 124

(Fo, Fr, ..., Fosr), RO[F, ...
[Fo, ..., Fy], 29

FVo, FVy; free variables, 13
fe, 122

f', 29

f-, 29

fix(f), 29

FV.(T), 178

7Fn+1]7 28

G:A—Q 123
T, A, 155

I'[C, 155

G, 122

g<", 154
good(~, <), 27
good(z, o), 122

H*, HF 42
He, 154
HZ, 118

(In); formula induction, 18
IND(U); set induction, 18

inst(A), 156

idx = {(z,z) : 2 € X}, 28
inst*(A), 159

It, I, 1, 30

it, 30

k(z), 98, 118
k(z,), 118

L(--+), 79

L, 152

L(S), 152
£H(1)(S), 152
L4(S), 152

L., language, 13
L2(P), 23

L, 178

I[(x), 120
lim(€2), 28

M,, 153

M = (N, S,U); structure, 16

= CE A 15

name(X), 77

next(g, 3), 33
NF, 124

a=np B+ ... +51, 118

z=np L(xgo01...01) © Y1, 89

z=Nr 2z 0y, 46

Q) Q= 29

o(z), 45, 88

Oy, 126

Op-, 131

O, 129]
OP(T)> Op(T)> Opﬁ(T)a 19
Op < 0Op/, 20

Op = 0Op/, 20

Opo Op/, 20

Op,™, 101

Op?, 28

Op?, 25

Op,, proves H,u, 62
Op,, Op;, 55

—~19 o
Op,(T), 26

Prvo(z), 154

Prvo(z), prvy(z), 62
Prv,(x), prv,(x), 108
Prog_(U), 1
p{v(U)}, 24

Poni1s 23

Pruwy 24

Pn, 20

pair, 19

d, 178

O[x; = s|(x;) = s, 178
I1(C), 152

7} (U, u, e); universal formula, 20

(@, <), @y, 84

(", <M), 81

(QF x Q,<), 118

QI names for functionals, 41

(2, 43
Q; quantifier, 13

Q, 122
R(--+), 79
r,s,t,..., number terms, 13

rk(A), 162

rk(C) < n, 162 |z], 98
z(a), 48, 92
s €L 158 cxy A1
s", 158 xlal, 47, 92
sh, 30 xo,y, 78
5(C), 152 27, 51, 95
Zase, 123 2", 62, 108
(X1-DQ), 21
sufo(A), sufo™ (A), 162

T, 170
T:SE-T, 160
T:S=T, 160
T:SKE T, 160
T:T, 153
ToT, 153
Te, Te, 154
Te, 14
T, proves g,, 62
T, proves g n, 108
T, 14
T,, T+, 55
—i_SC7

SE-T184
T (U,u), 17
Yo, 143
trans, 19

U, unary relation symbol, 13

k+2

' Oky1, -, Ao, 146

WF(U), 17
WF_(u), 17
Wo(U), 17
Wo_ (u), 17

(X))o, 17

X7, 43

X< 41

X+Y, 19

<[L’0, Ceey le'n_1>, ((ZL’Q, ce ,[L’n_1>)i, 14

227

	1

