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AbstrAct

Microbeam irradiation is spatially fractionated radiation on a micrometer scale. Microbeam irradiation with therapeutic 
intent has become known as microbeam radiation therapy (MRT). The basic concept of MRT was developed in the 1980s, 
but it has not yet been tested in any human clinical trial, even though there is now a large number of animal studies demon-
strating its marked therapeutic potential with an exceptional normal tissue sparing effect. Furthermore, MRT is conceptu-
ally similar to macroscopic grid based radiation therapy which has been used in clinical practice for decades. In this review, 
the potential clinical applications of MRT are analysed for both malignant and non-malignant diseases.
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GriD-bAseD rADiAtion therAPy
Grid-based radiation therapy is spatially fractionated 
radiotherapy. It was developed and first reported by the 
German radiologist Alban Köhler in 1909, to reduce the 
extensive damage of skin and subcutaneous tissue occur-
ring following the irradiation of deep-seated tumours.1 
Although Köhler’s grid therapy was disparaged until the 
1930s, it has since been used successfully in clinical radio-
therapy to shrink large malignancies.2–5

With the advent of megavoltage radiotherapy and the intro-
duction of linear accelerators (Linac) into clinical radio-
therapy in the 1970s, modern radiotherapy was confronted 
with new challenges: while adverse skin reactions were no 
longer a limiting factor, dose limitation is now seen in the 
normal tissues tolerance of other organs such as lung, brain 
and intestine. Also, patients with bulky tumours who, at 
earlier times, would have been deemed incurable and referred 
to palliative therapy, have now become eligible candidates for 
radiotherapy.

Mohiuddin et al6 developed a grid therapy concept that 
could be used with megavoltage radiotherapy, naming it 
appropriately GRID. They used a specially designed Cerro-
bend® grid matrix which can be fitted into the tray holder 
of commercially available Linacs. The matrix had 256 holes 
of 7.5 mm diameter in a 16 × 16 cm matrix; the ratio of open 
to blocked areas was 50:50. The maximum treatable area at 
the isocentre was 20 × 20 cm. The high dose heterogeneity 
created by the Cerrobend® grid matrix is even maintained 
at larger depths in tissue. Thus, the recovery processes char-
acteristic of grid therapy will even occur in the low dose 
regions well below skin level.7 Based on the results from 71  
patients with advanced bulky tumours (≥8 cm diameter), 
where GRID was administered either as single fraction of 
up to 20  Gy or included in a conventionally fractionated 
radiotherapy schedule, better tumour control was achieved 
than with conventional treatment alone.8

In 2006, Ha et al9 published the results of a feasibility study 
using a multileaf collimator (MLC) to shape a grid-like 
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Figure 1. The primary X-ray beam is split by insertion of a col-
limator into an array of quasi-parallel microbeams. As a result, 
peak-dose, valley-dose and transitional zones are generated 
in the tissue (modified after).15

Figure 2. (a) Immunostain (H2AX) of adult mouse cerebral 
cortex, illustrating the characteristic pattern of DNA dou-
ble strand breaks (bright green dots) caused by irradiation 
with an array of quasi-parallel microbeams (≈50 µm wide, 
white arrow), spaced ≈400 µm from centre to centre (red 
arrow), two hours after exposure (C. Fernandez-Palomo and 
E. Schültke, unpublished). (b) DAPI stain to demonstrate the 
presence of nuclei (blue dots) in the same section as in a.

irradiation field. Since the MLC function was already part of the 
clinical treatment planning system, the integration of a grid-like 
MLC function into conventional radiotherapy schedules was 
much easier. The open-to-closed field ratio using the MLC was 
lower than with the Cerrobend® grid matrix and the treatment 
time longer. Nevertheless, if the treatment results were compa-
rable, no additional construction would be needed in future for 
megavoltage grid therapy.

In an attempt to further develop the concept of grid therapy, a 
research group from Stockholm has recently published a proof-
of-concept study investigating the possibility of merging the grid 
treatment approach with proton therapy.10

To date, several clinical trials on grid radiotherapy are listed at the 
website of the U.S. National Institutes of Health. Target groups 
include patients with bulky and/or radioresistant tumours, 
particularly squamous cell carcinomas of the head and neck, and 
paediatric osteosarcomas of the extremities ().

MRT: grid therapy at the micrometer scale?
Curtis, Zeman and coworkers reported in the 1960s the first 
surprising results with spatial fractionation of ionizing radia-
tion in the microscopic range following a series of studies on the 
effects of cosmic radiation. While deuteron irradiation at a dose 
of about 140    Gy delivered in a 1 mm wide beam resulted in 
blood vessel damage and tissue necrosis, the same dose delivered 
in a 25 µm (i.e. 0.025 mm) wide beam caused no damage within 
a 240 days observation period. Only at and above doses of 4000     
Gy, nerve and glial cells in the path of a 25 µm wide beam died 
within 24 days after irradiation. However, there was no perma-
nent damage to blood vessels and the overall tissue architecture 
remained intact. In sharp contrast, exposure to a 1-mm wide 
beam caused complete tissue destruction and subsequent cavity 
formation.11

When the NSLS (Brookhaven, Upton, NY) became available as 
a new synchrotron source, Slatkin and his colleagues, driven 
by personal knowledge of the extraordinary results obtained by 
Curtis and his group, decided to investigate the effects of planar, 
synchrotron-generated X-ray microbeams on mouse brains. The 
tissue lesions seen after those experiments resembled the lesions 
induced by deuteron microbeams.11 Surprisingly, no tissue 
necrosis developed in the brains of animals after focal adminis-
tration of hundreds, even thousands of gray delivered along the 
peak dose zones of microbeam arrays.12 The dose heterogeneity 
determined by the collimator inserted into the primary synchro-
tron X-ray beam was maintained at large tissue depths and the 
repair processes characteristic for spatially fractionated fields 
occurred well below skin level, in contrast to the divergence and 
obliteration of the grid pattern of the first grid therapies. As Börje 
Larsson13 had proposed to use synchrotron X-rays for radiosur-
gical applications, the radiotherapeutic potential of microbeam 
arrays was explored by irradiating orthotopic intracerebral 
9L gliosarcomas in rats.14

Microbeam irradiation with therapeutic intent hails both from 
grid therapy and the miniaturization of X-ray beams and has 

become known as microbeam radiation therapy (MRT). It is 
characterized by a spatially and periodically alternating micro-
scopic dose distribution. Contrary to most concepts used in 
clinical radiotherapy, dose deposition in MRT follows an inho-
mogeneous geometric pattern with so-called peak dose zones 
and valley dose zones (Figures 1 and 2). An array of quasi parallel 
microbeams is generated by insertion of a specially designed 
collimator into the primary X-ray beam characterized by a high 
photon flux. One of the main reasons for the “miniaturization” 
of MRT compared to the original grid therapy is geometrical: 
“miniaturization” has increased the contact surface between 
swaths of heavily and lightly irradiated tissue, where wound 
healing occurs, by more than an order of magnitude, enabling 
the instantaneous, short distance access of lightly irradiated cells 
and humoral mediators to the damaged peak regions.

The high photon flux of a synchrotron X-ray beam is required in 
order to generate arrays of quasi-parallel microbeams at a dose 
rate of 100    Gy s–1 or higher to assure overall irradiation times of 
seconds or fractions of seconds. A very short irradiation time is 
a prerequisite to obtain a precise MRT dose distribution in living 
tissue since any movement of the target tissue in the micrometer 

http://birpublications.org/bjr


3 of 11 birpublications.org/bjr Br J Radiol;90:20170073

BJRReview article: MRT clinical perspective

Figure 3. Distribution of publications in the field of MRT 
according to field of specialization, also illustrating the trend 
from exclusively cancer-oriented work to the inclusion of 
non-malignant diseases as therapy targets. Abscissa: number 
of publications.

or even millimeter range, which is the norm rather than the 
exception, will obviously disrupt the required dose distribution. 
With the broad beam irradiation concepts currently used in 
conventional radiotherapy, tissue movements in this range are 
of little consequence. In MRT, with beams at the micrometer 
scale, longer irradiation times would result in dose smearing at 
the edge of each microbeam, preventing the sharp dose fall-off 
between microbeams and the normal tissue sparing resulting 
from this dose distribution would be completely lost.

It is very difficult to define tolerance doses to compare homo-
geneous field radiotherapy with macroscopic and microscopic 
grid therapy. The linear-quadratic (LQ) model and the concept 
of biologically effective dose (BED) were developed for spatially 
homogeneous radiation, to compare biological effects occurring 
with temporal fractionation and the variation of dose per frac-
tion. In radiosurgery it is said that the tumour control observed 
clinically is often underestimated by the LQ model. No consid-
eration has yet been taken of the effects caused by the variations 
in treatment time associated with many forms of radiosurgery, or 
of the very significant dose variation within the target associated 
with many approaches to radiosurgery. Consequently it has been 
proposed that current approaches do not reflect vascular and 
stromal radiation damage and neglect the impact of radioresis-
tant subpopulations of cells.16 However, alternative approaches 
remain unproven. Due to the dose distribution (dose-volume 
effect), typical peak doses in microbeam irradiation are usually 
higher, compared to the macroscopic GRID techniques in clin-
ical radiosurgery, by more than one order of magnitude. Thus 
some factors associated with the LQ model, namely clonogenic 
cell survival, might not have the same importance because acute 
cell death rather than a loss of cell clonogenic potential could be 
the overriding mechanism of damage.

In the last decade, many studies have been directed towards 
obtaining a better understanding of the biological basis of the 
differential effects of microbeam irradiation on tumours and 
normal tissues. Several studies support the hypothesis that 
microbeam irradiation exerts different effects on the vascula-
ture of tumours and of normal tissues.16–26 The importance of 
the stromal radiation response was highlighted by the results of 
studies showing that normal tissue and tumour tissue differ in 
their response to MRT. A proteomic study in rodent brain has 
shown that microbeam irradiation-induced bystander effects 
were potentially antitumourigenic and based on ROS-induced 
apoptosis, where broad beam irradiation with comparable inte-
grated doses induced proteomic changes that have previously 
been associated with tumorigenesis or cancer development.27 
Also, there is evidence for the differential regulation of genetic 
pathways involved in MRT and broad beam irradiation.28,29 
Surprisingly, even the genetic profile of cells and tissues seems to 
change after MRT.30–33

A series of studies reporting bystander and abscopal effects 
was published after collaborative work between the group of 
Elisabeth Schültke and the radiobiology laboratory of Carmel 
Mothersill.34–38 Bystander effects were also reported by another 
research group.39

Beginning in the 1990s, there has been a steady increase in the 
number of publications per year reporting on the advancing 
technical development and the biological effects of MRT.

During the first decade of the development of MRT, publica-
tions described the development of hardware components, since 
commercially available therapy planning systems were not suited 
for work with X-ray beams at the micrometer scale. Also, poten-
tial patient target group selection was discussed, starting with 
the publication by Slatkin in 1992.40 New detector systems were 
developed41 and Monte Carlo calculation was used in mathe-
matical modeling to understand the challenging basics of MRT 
dosimetry.42

In the early days of MRT development, the therapeutic targets 
were exclusively thought of as being in the field of oncology. 
In 1998, Laissue et al14 were the first to report on the thera-
peutic efficacy of MRT in a small animal model of malignant 
brain tumour. Four years later, the first paper on the potential 
suitability of MRT to treat non-malignant vascular disease was 
published.43 Soon after therapeutic efficacy of MRT had been 
established in small animal models, normal tissue tolerance to 
MRT moved into the focus of interest. The first paper addressing 
this subject was by Laissue et al,44 reporting on therapeutic effi-
cacy and high normal tissue tolerance, the latter specifically in 
normal young suckling rats. Thus, three clinically important 
themes were defined: MRT as treatment approach in oncology, in 
the treatment of non-malignant diseases and the need to define 
normal tissue tolerance (Figure 3).

While more and more biological data were being collected to 
support the transfer of MRT from the laboratory into a clinical 
trial, work on hardware and software components to fit the safety 
criteria of a clinical trial was intensified, including the develop-
ment of the image-guidance system.45–51 New detector systems 
were developed to satisfy the specific requirements of microdo-
simetry.52–54 New simulation approaches included mathemat-
ical modeling and the testing and adaptation of medical physics 
models into the synchrotron environment.55–58
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Figure 4. Rabbit, maxilla, 411 days post irradiation. H&E stain 
of cartilage traversed by a quasi-parallel array of microbe-
ams; valley dose ≈10   Gy; the general tissue structure appears 
unchanged (Laissue et al unpublished).

In order to intensify efficacy at the target, the likely influence of 
new irradiation geometries was tested, including beam arrays 
generated by two or more ports crossing at the target location 
in different planes.59 The generation of pencil beams was tested 
successfully in the hope that this might result in even higher 
normal tissue tolerance doses.60 Dose enhancement  was looked 
at in relation to MRT, especially with nanoparticles.61,62 Advice 
was produced for the optimal energy spectrum to be used in any 
clinical trials of MRT.26,63

Oncological targets: MRT as boost after  
conventional RT
The prognosis of some patient groups with highly aggressive and 
radioresistant tumours is still very poor. Work in animal models 
of malignant disease has shown that the development of highly 
aggressive tumours can be delayed or even ablated by MRT.14 In 
most clinical radiotherapy schedules, single fraction doses are 
between 1.5  Gy and 3  Gy. The typical peak doses in MRT are 
several hundred Gy. It is assumed that such high doses can be 
tolerated by normal tissue due to the relatively small volume of 
tissue directly in the path of microbeams (Figure 4).

Three oncological targets which could profit from MRT are 
discussed: malignant brain tumours, lung cancer and malignant 
tumours of the musculoskeletal system.

Although brain tumours account for only 1% of the annual inci-
dence of malignant tumours, they account for as much as 25% of 
all cancer deaths.64 Meta-analyses have shown that radiotherapy 
is the only one independent predictive prognostic factor in treat-
ment.65 However, little gain in survival time can be obtained for 
many patients with malignant brain tumours. For patients with 
high grade gliomas like anaplastic astrocytoma or glioblastoma 
multiforme, the average survival time from diagnosis is between 
1.5 and 3 years.66,67 However, in long-term survivors, significant 
cognitive deficits have been reported.68 Thus, primary tumours 
of the central nervous system were the first focus for pre-clinical 
MRT research. Increased survival times were reported as well as 
little to no decrease of cognitive function in long-term survivors 
after MRT.69

Because the rat spinal cord has a high tolerance to exposure 
to parallel microbeams,70 MRT might also prove useful in the 

treatment of malignant lesions in or near the spinal canal of chil-
dren and/or adults.

Pre-clinical MRT studies have been designed to replace an entire 
conventional radiotherapy schedule with one single treatment 
session of MRT, similar to the approach already established for 
clinical radiosurgery. However, an equally or even more effec-
tive approach might be the integration of MRT as boost into 
a conventional radiotherapy schedule, where the valley dose 
used could match the daily fraction of the conventional therapy 
schedule, and the peak dose act as boost.71 The aim of such an 
approach would be to improve tumour control as well as to 
shorten the overall treatment time.

Advanced lung cancer is the number one cause of cancer death 
in adults in Europe and North America. About 25% of all tumour 
patients are those with lung cancer and with an incidence of 60 in 
100,000 in the population, they belong by far to the largest patient 
group currently with unsatisfactory treatment concepts.72 The 
overall outcome is poor and average survival time after diagnosis 
is 2.5 years, as stated in a review by the U.S. National Institutes 
of Health.73 Surgical removal of the tumour is often not possible 
and resistance to chemotherapeutic agents frequently develops 
within the first year after the commencement of chemotherapy. 
Thus, radiotherapy is then the only therapeutic option left to 
extend the life of these patients. However, conventional radio-
therapy of the lung carries a high risk of the development of 
pneumonitis, an inflammatory condition of the lung caused by 
irradiation that frequently results in lung fibrosis, either resulting 
in death or severely reduced quality of life.74 Because of indi-
vidual institutional approaches regarding contouring and target 
definition on the one hand and the observational skills of the 
treating physician on the other hand, the reported incidence of 
radiation-induced pneumonitis varies widely. Keeping in mind 
that the risk of radiation-induced pneumonitis also increases 
with the irradiated volume, a recommendation is that the mean 
lung dose be limited to less than 20–23   Gy outside the treated 
area75; in fact, less than 13  Gy are applied in several centres.The 
fairly recent concept of stereotactic body radiotherapy, applicable 
to one or two lesions, it is not feasible for large volumes. Thus, 
a new radiotherapy concept characterized by both the applica-
tion of a very high single fraction dose and a high normal tissue 
tolerance would be highly desirable. The pre-clinical experience 
with brain tissue has inspired the hope that similarly minimal 
morphological damage and functional deficits will be seen after 
MRT in lung tissue.

The multiple alveolar interfaces between air and tissue make the 
dose calculation for MRT very challenging.76,77 An initial in vivo 
experiment has been conducted but the results have not yet been 
published (personal communication).

Patients with malignant tumours of the musculoskeletal appa-
ratus like sarcomas or chondrosarcomas also belong to one of 
the patient groups currently without satisfactory treatment 
approaches.78,79 For these patients, the ‘best’ solution, i.e. the 
solution offering the longest progression-free interval, is the 
amputation of the affected extremity.80 The final prognosis 
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in his disease is most likely determined by the development 
of metastatic disease. However, if the primary tumour can be 
controlled, this might also delay the development of metastatic 
disease. Removing the present necessity for amputation would 
be an extremely significant improvement in the quality of life of 
afflicted patients.

The potential of MRT in the treatment of epilepsy
An increase in the interest in the potential of MRT for the treat-
ment of non-malignant diseases was noted in the last few years. 
Epilepsy is the most widely explored field to date. Temporal 
lobe epilepsy, the most common form of pharmaco-refractive 
epilepsy, is associated with and probably caused by hippocampal 
sclerosis in about 65% of the patients.81 The standard treatment 
is surgical amygdalo-hippocampectomy.82,83 The hippocampus 
is the morphological equivalent of new memory formation for 
which at least one hippocampal formation needs to be present 
and functionally intact. Thus, in patients with multiple bilateral 
epileptogenic foci in the hippocampal formation, a seizure-free 
status often cannot be achieved surgically.

The concept to use MRT in a similar way to the already clin-
ically established approach of radiosurgery but with a much 
higher precision to treat otherwise therapy-resistant epilepsy 
was proposed by the research group of Romanelli.84,85 Pouyatos 
et al86 published the results of an experimental proof of concept 
study about interlaced MRT. This involved a new microbeam 
irradiation geometry that delivers a homogeneous dose to 
mm3-sized epileptogenic foci of rat brain and thus abolishes or 
reduces the measured epileptogenic potential. Romanelli et al87 
described seizure control in a small animal model by transec-
tion of the sensorimotor cortex by microbeams without signif-
icant neurological deficit. The initial work on interlaced MRT 
was followed up later, correlating the reduction of seizures after 
applying MRT with electrophysiological and histological data.88 
A third paper contributed by this group reported successful ther-
apeutically efficient image-guided interlaced microtransections 
in mm3-sized eloquent cortical areas in a small animal model of 
generalized epilepsy.89

Carbon nanotube X-ray and proton microbeams
While this review focuses mainly on microbeams generated on 
the base of X-rays, the last decade has also seen successful efforts 
to generate microbeams based on sources such as protons and 
carbon nanotube X-rays.

While X-ray-based microbeam studies have almost exclusively 
been conducted with arrays of quasi-parallel microbeams, 
proton microbeam studies have been conducted both with single 
microbeams and microbeam arrays. For proton microbeam 
arrays, a thorough study of the interdependence of beam energy, 
the centre-to-centre distance of the microbeams and the target 
depth was published by Klodowska et al.90 In a comparative 
study, increased normal tissue tolerance for both acute and 
long-term damage, compared to broad beam irradiation, was 
shown for both X-ray-based and proton-generated microbeam 
arrays.91For single proton microbeams, Buonanno published 
the results of a study showing therapeutic efficiency in a small 

animal model of melanoma92 and chromosomal rearrange-
ment was described as a consequence of proton microbeam 
irradiation.93

The nanotube-based electron microbeam irradiator was intro-
duced in 2008.94 This was followed by Monte Carlo calcula-
tions for a compact nanotube microbeam system.95 The first 
biological paper showing the effects of such beamlets was for 
brain tissue.96 Compared to centre–to-centre distances (ctc) 
typical for X-ray-based microbeams (≤100 µm), the separa-
tion distances in this experiment were 1.4 mm. One year later, 
a paper was published exploring the results of theoretical work 
with beamlets as narrow as 290 µm,97 followed by a study that 
proved therapeutic efficacy of the method.98 The latter worked 
with a beamlet width of 280 µm and a  centre-to-centre of 900 
µm. Thus, the irradiation geometry is more comparable to the 
wider X-ray-based minibeams than to the microbeams which 
are the focus of this review. For X-ray-based beam arrays it has 
been shown that, given the same peak dose, normal tissue toler-
ance decreases with increasing beam width.99 Even more inter-
estingly, the differential effect between mature and immature 
tissue, on which part of the typical action of MRT is based, was 
not observed for minibeams. The results published by Uyama 
support the idea that tumour control is improved by the use of 
narrow microbeams.100

Discussion
Grid-based radiotherapy concepts have been developed and clin-
ically used at several stages in the history of radiotherapy to push 
the limits of what radiotherapy can achieve for cancer patients. 
MRT as grid-type therapy but at the microscopic level offers a 
new route to dose escalation without compromising surrounding 
normal tissues. Just like the first grid therapy invented by Köhler1 
at the beginning of the 20th century, MRT allows the increase of 
dose in regularly spaced areas of the irradiation field and protects 
normal tissue morphology and function.

Grid therapy at the macroscopic level, with a beam width in 
the millimeter range, has been used successfully in the clinical 
radiotherapy environment. The high dose heterogeneity created 
by the Cerrobend® grid matrix is maintained even at larger tissue 
depths.

Microbeam radiotherapy, on the other hand, is still an experi-
mental concept at the pre-clinical stage. The sharp dose fall off 
is even more pronounced with the kilovoltage radiotherapy, as 
compared to the macroscopic grids used in megavoltage radio-
therapy by Mohiuddin’s group. Due to a lower dose scattering 
effect in this energy range, MRT dose simulations show a sharper 
in depth dose fall off.23

The results contributed by a number of research groups over 
the last decades suggest that tissue responses to broad beam 
and microbeams are dramatically different with regard to both 
genetic and physiologic factors. We expect that the efficacy of 
MRT, quite likely integrated in a conventional therapy schedule, 
will by far surpass that seen in macroscopic grid therapy.
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The antineoplastic efficacy of MRT for tumour volumes around 
10 to 15 cm3, at tissue depths of several centimeters is presently 
being tested tested pre-clinically.

The most important aspects of any clinical trial for the treatment 
of cancer in patients are feasibility and safety. It is expected that 
with MRT survival time can be increased and the quality of life 
can be improved substantially for the remaining life span  by 
improving local tumour control. The latter might be done by the 
shortening of overall treatment times or / and the preservation of 
limbs affected by cancer.

One of the most common risk factors for developing a cancer is 
increasing age. Considering the steadily increasing life expectancy 
in all industrialized nations, within the coming decades it can be 
expected to see a significant increase in the number of elderly 
patients developing one or more cancers late in their lives. More 
than ever, increasing the quality of life for these patients will be 
equally if not more important than a mere extension of life span.

For glioblastoma multiforme, a highly malignant brain tumour 
with a strong age peak in the patient group above 60 years of 
age, the average survival time is less than two years after diag-
nosis. In the younger age group, diffuse infiltrating glioma affects 
most frequently children in the first decade of their lives. While 
there is only limited survival time to be gained with any thera-
peutic approach, radiotherapy can result in a significant tempo-
rary improvement of neurological symptoms. For very young 
children, radiotherapy requires a general anaesthesia. A radio-
therapy schedule running over six weeks with five weekly frac-
tions means a heavy logistic as well as emotional burden on the 
patient, the family and the medical staff. Paediatric patients with 
diffuse intrinsic pontine glioma (DIPG), for instance, might be 
an excellent target group for MRT.101

A shortened hospital stay and the opportunity to be at home can 
be an important contribution to a better quality of life, regardless 
of the age. MRT used as single fraction or as integrated boost in 
combination with a conventional radiotherapy schedule, where 
the MRT valley dose is equal to a single fraction dose of the 
conventional radiotherapy schedule, could shorten the overall 
treatment time significantly.

Where longer survival times can be achieved by using improved 
treatment schedules, radiogenic encephalopathy with its cogni-
tive defects becomes an issue. It is known that the clinical symp-
toms of encephalopathy increase with increasing irradiated 
volume.102 Experimental data have shown that MRT causes rela-
tively few functional deficits.69,103

Like radiosurgery approaches already used clinically, MRT is 
administered in one single treatment session or, possibly, in two 
or three fractions at most. Contrary to the homogeneous dose 
distribution at the target, clinical radiosurgery is administered as 
spatially variable total dose, doses being prescribed to well under 
the 100% isodose. Since not specifically stimulated tumours are 
non-synchronous with regard to cell cycle, tumours with a high 
proliferative index (number of proliferating cell per field of view, 

represented by the Ki-76 / MIB-1 index) should respond better 
than tumours with a lower proliferation index. Since the prolifer-
ation index is not specific for a tumour entity but varies individ-
ually between patients, rather than identifying a tumour entity 
best suited to MRT, the index should be assessed for each patient’s 
tumour individually before a treatment recommendation is given.

However, tumour cell kill depends not only on direct hits but 
includes parameters with delayed action, staggered on a time 
scale.16 Multiple events such as bystander and abscopal effects, 
changes on proteomic and genomic levels and vascular responses 
in tumour and normal tissue contribute to the final therapeutic 
efficacy. Thus, it remains to be proven how important a factor a 
high proliferation index is for therapeutic efficacy.

In patients with cancers of the musculoskeletal system such as 
sarcomas and chondrosarcomas, the prognosis is often deter-
mined by the development of metastatic disease. The quality of 
life during the remaining life span can be significantly increased 
by obviating the need for the amputation of an arm or leg when 
the primary tumour can be controlled. A new therapeutic 
approach which can control the primary tumour might not be 
able to prevent the development of metastatic disease, but could 
delay its development. Remarkable tumour responses have 
been seen after macroscopic grid therapy, even if the damage 
to normal tissue was significant.104 Since it has been shown that 
normal tissue tolerance increases when the width of the beams 
is reduced to microscopic dimensions,105 we expect significantly 
fewer adverse effects both morphologically and functionally after 
MRT, without markedly reducing tumour control.

MRT has shown to have considerable therapeutic potential in 
small animal models.14,71 Irradiation with monoplanar beam 
arrays as well as in pencilbeam technique has caused only 
minimal functional deficits in the brain at peak doses signifi-
cantly higher than those currently used in conventional radio-
therapy.60,69,103 It is hoped to see similar function-preserving 
effects when using MRT in the lung while maintaining an effec-
tive antitumour effect.

In clinical radiotherapy, the overall X-ray dose administered to 
lung tissue is limited due to the risk of debilitating lung fibrosis. 
The integration of an MRT boost in a conventional irradiation 
schedule might allow a reduction in the number of conventional 
radiotherapy fractions at equal dose and thus reduce the risk of 
fibrosis while high peak doses could contribute to an improved 
local tumour control. However, this remains still speculative and 
is not yet proven by experimental data.

To advance pre-clinical work towards clinical trials in a timely 
manner, all European and most overseas research groups working 
on different aspects of MRT have collaborated in a COST action 
supported by the European Union from 2013 to 2017. This has 
accelerated the development of MRT towards clinical trials at a 
speed otherwise impossible. In order to validate the results of the 
mathematical modeling for larger and more deep-seated tumours 
than those in small animal models and to correlate pathophysio-
logic and histological consequences in larger animals subjected to 
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conclusion
Based on these results of pre-clinical work it appears reason-
able to plan an MRT Phase I clinical trial to validate its feasi-
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