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Abstract 

Acute liver failure and cirrhosis display sequential and overlapping severe pathogenic processes that 
include inflammation, hepatocyte necrosis, and fibrosis, carrying a high mortality rate. Mesenchymal 
stem cells (MSCs) are a heterogeneous subset of stromal stem cells with immunonodulatory 
characteristics. MSCs are considered to act through multiple mechanisms to coordinate a dynamic, 
integrated response to liver inflammation and fibrosis, which prevents the progressive distortion of 
hepatic architecture. Accordingly, MSCs as well as their products have been investigated as a novel 
therapeutic approach for the treatment of inflammatory and fibrotic liver diseases. 
In this review, we highlight the current findings on the MSC-based modulation of liver inflammation and 
fibrosis, and the possible use of MSCs in the therapy of immune-mediated liver pathology. We briefly 
describe the cellular and molecular mechanisms involved in MSC-dependent modulation of cytokine 
production, phenotype and function of liver infiltrated inflammatory cells and compare effects of 
engrafted MSCs versus MSC-generated conditioned medium (MSC-CM) in the therapy of acute liver 
injury. In order to elucidate therapeutic potential of MSCs and their products in modulation of chronic 
liver inflammation and fibrosis, we present the current findings regarding pathogenic role of immune 
cells in liver fibrosis and describe mechanisms involved in MSC-dependent modulation of chronic liver 
inflammation with the brief overview of on-going and already published clinical trials that used MSCs for 
the treatment of immune mediated chronic liver diseases. The accumulating evidence shows that MSCs 
had a significant beneficial effect in the treatment of immune-mediated liver diseases. 

Key words: mesenchymal stem cells, immune response, acute liver failure, cirrhosis, therapy. 

Introduction 
Abnormal innate and adaptive immune 

responses and unbalanced immune cell infiltration 
can disrupt the immune-privileged state of the liver, 
resulting in inflammation-associated damage of 
hepatocytes. Acute liver failure and cirrhosis display 
sequential and overlapping severe pathogenic 
processes that include inflammation, hepatocyte 
necrosis, fibrosis, and carry a high mortality rate (1).  

Last decades' preclinical and clinical trials have 

led to application of stem cells as a novel therapeutic 
agent for the treatment of degenerative and 
immune-mediated diseases. Mesenchymal stem cells 
(MSCs) are a heterogeneous subset of stromal stem 
cells with immunonodulatory characteristics. Recent 
studies have shown that MSCs-based therapies may 
reduce liver inflammation, and subsequently improve 
regeneration of hepatocytes, which could be a 
promising strategy for patients with immune- 
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mediated liver injuries.  
Although MSCs transdifferentiation into 

hepatocytes has been demonstrated in vitro, the vast 
majority of recently published studies indicated that 
therapeutic effects and use of MSCs in acute and 
chronic liver failure would be primarily based on their 
immunomodulatory properties (2). As a result of 
preclinical studies, MSCs are now considered to 
intuitively respond to the inflammatory environment 
and to modulate function of immune cells through the 
release of soluble factors and/or through cell contact 
signaling (3). 

MSCs alter the secretion profile of dendritic cells 
(DCs) resulting in increased production of 
anti-inflammatory cytokine interleukin (IL)-10 and 
decreased production of tumor necrosis factor alpha 
(TNF-α), interferon-gamma (IFN-γ), and IL-12 (4). 
Immature DCs generated in the presence of MSCs do 
not express major histocompatibility complex class II 
(MHCII) molecule and costimulatory molecules 
cluster of differentiation (CD) 40, CD80 and CD86, 
and are able to render T helper type 1(Th1) cell 
anergic (5).  

Several research groups emphasized an 
important role of transforming growth factor (TGF-β), 
hepatocyte growth factor (HGF), prostaglandin E2 
(PGE2) and heme-oxygenase-1 (HO-1), as well as the 
engagement of the inhibitory molecule programmed 
death 1 (PD-1) with its ligands PD-L1 and PD-L2 for 
MSC-dependent suppression of CD4+ and CD8+ T-cell 
proliferation (4, 5). Additionally, through secretion of 
PGE2, MSCs reduce production of IFN-γ and IL-4 in 
Th1 and T helper type 2 (Th2) cells and stimulate 
generation and proliferation of immunosuppressive 
CD4+CD25+forhead box P3 (FoxP3)+ (Tregs) (2, 5). 
Through cell to cell contact and through paracrine 
mechanisms mediated by indoleamine 
2,3-dioxygenase (IDO), PGE2 and TGF-β, MSCs are 
able to inhibit cytotoxic CD8+ T lymphocytes (CTLs) 
and natural killer (NK) cells (2).  

Classically activated (M1) macrophages 
(stimulated by Toll-like receptor (TLR) ligands and 
IFN-γ) produce high levels of proinflammatory 
cytokines, reactive nitrogen and oxygen species, and 
are implicated in initiating and sustaining 
inflammation (6). In contrast, alternatively activated 
(M2) macrophages (stimulated by IL-4/IL-13) are less 
toxic to microbes and have anti-inflammatory and 
reparative functions (6). As a result, a switch from M1 
to M2 phenotype is crucial for resolution of 
inflammation and tissue remodeling. MSC-mediated 
polarization of resident macrophages from classic M1 
pro-inflammatory phenotype, toward 
anti-inflammatory M2 phenotype is dependent on 
both cellular contact and secretion of soluble factors, 

including PGE2, TNFα stimulated gene/protein 6 
(TSG-6), IL-6, and IDO (3). Also, MSCs exert their 
suppressive effect on antibody production as well as 
proliferation of activated B lymphocytes in an 
IDO-dependent manner (5).  

Due to their immunomodulatory characteristics 
MSCs have been extensively investigated as a novel 
therapeutic approach for the treatment of 
inflammatory and fibrotic liver diseases. Huge 
number of animal models of acute and chronic liver 
failure, that resemble the pathology of 
immune-mediated liver damage in humans, have 
demonstrated not only therapeutic efficacy of 
culture-expanded MSCs, but also the mechanism of 
interactions between MSCs and immune cells that 
may be of relevance to future widespread clinical use 
of MSCs in therapy of liver diseases.  

In this review, we highlight the current findings 
on the MSC-based modulation of acute liver injury 
and fibrosis, and the possible use of MSCs in the 
therapy of liver pathology.  

MSC-mediated attenuation of acute liver 
failure 

In order to emphasize cellular and molecular 
mechanisms involved in MSC-mediated attenuation 
of acute liver failure, we briefly described the current 
findings regarding pathogenic role of immune cells in 
this process, present information related to 
MSC-dependent modulation of cytokine production, 
phenotype and function of liver infiltrated 
inflammatory cells and compare effects of engrafted 
MSCs versus MSC-generated conditioned medium 
(MSC-CM).  

Cellular and molecular mechanisms involved 
in acute liver failure 

The mechanisms that cause acute liver failure are 
divided into two phases. Firstly, pathogen and toxin 
disturb intracellular homeostasis and directly damage 
liver cells (7). Secondly, to control liver injury 
progression, the immune system must distinguish 
between evasion and tissue damage, both of which 
elicit similar inflammatory immune responses (7). All 
of these mechanisms, contribute to hepatocyte 
apoptosis, autophagy, necrosis and necroptosis, and 
lead to immune-mediated liver injury (7). 

A variety of animal models have been used to 
study the mechanisms of acute liver injury, such as 
those induced by chemical substances, metabolic 
substances, infectious pathogens and surgery models. 
Concanavalin A (Con A)-induced liver injury is a 
well-established murine model of immune- mediated 
hepatitis (8, 9). Our previous studies showed that 
Con A-induced hepatitis is an ideal model for the 
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analysis of initial and fundamental events in the 
development of T-cell dependent liver disorders (8, 9, 
10, 11). CD4+ T lymphocytes infiltrate the liver tissue 
and secrete large amounts of cytokines, such as 
TNF-α, IFN-γ, IL-2, and granulocyte macrophage 
colony stimulating factor (GM-CSF) (9). Apart from 
CD4+ T cells, CD8+ T cells, NK, natural killer T (NKT) 
cells and macrophages could induce hepatocyte cell 
death by either cell-to-cell contact, through the 
secretion of pro-inflammatory cytokines, or reactive 
oxygen species (8, 9, 11).  

MSC-mediated modulation of cytokine 
network in acute liver failure 

MSCs may attenuate acute liver inflammation 
and consequent hepatocyte damage by modulating 
production of inflammatory cytokines and other 
inflammation-related molecules in liver-infiltrating 

immune cells creating hepato-protective environment 
in the liver (Figure 1).  

In Con A-induced liver injury, mice were 
successfully treated with MSC infusion which 
resulted with attenuated liver injury as determined by 
decreased levels of transaminases in serum, reduced 
necrosis of hepatocytes as well as attenuated 
production of pro-inflammatory and pro-apoptotic 
cytokines (TNF-α and IFN-γ) in liver infiltrated 
immune cells (12, 13). TNF-α is directly capable of 
inducing hepatocyte apoptosis via TNF-receptor 
signaling induced activation of caspase-8, leading to 
mitochondrial cytochrome c release and caspase-3 
activation (14). On the other hand, IFN-γ plays a 
central role in Con A-hepatitis by activating apoptosis 
stimulating fragment (Fas)-induced apoptosis of liver 
cells (15). 

 

 
Figure 1. Therapeutic effects of MSCs in acute liver failure. MSCs isolated from different sources ameliorate acute liver injury by reducing the number of 
major effector cells in hepatic inflammation (CD4+ T lymphocytes, Gr-1+ neutrophils and CD11b+ F4/80+ macrophages). MSCs restrained acute liver injury through 
increasing production of protective IL-10 and by decreasing expression of TNF-α, IFN-γ, IL-4 and FasL in the CD4+lymphocytes and kupffer cells.  
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Since apoptosis is responsible for Con A-induced 
liver injury (11), the suppressive effects of MSCs on 
production of TNF-α and IFN-γ, might explain the 
reduced apoptotic cell death in liver sinusoidal 
endothelial cells and hepatocytes, resulting in the 
amelioration of acute hepatitis. Moreover, it seems 
that MSC-mediated suppression of inflammatory 
cytokine production in immune cells is systemic and 
not limited to the liver area (13). MSCs significantly 
reduced number of activated lymphocytes 
throughout the body, attenuated the production of 
inflammatory cytokines (TNF-α, IFN-γ, IL-4) and 
increased secretion of immunosuppressive and 
hepatoprotective IL-10 in the liver and spleen 
infiltrating lymphocytes, DCs and resident liver 
macrophages (Kupffer cells) as well as in the serum of 
MSC-treated mice with acute liver injury (13, 16) 
(Figure 1).  

MSCs produce galectin-1 and galectin-3 which 
are known as an important immunomodulatory 
molecules (3). Tonsil-derived mesenchymal stem cells 
(T-MSCs) through the production of galectin-1, 
significantly attenuated Con A-induced hepatic 
toxicity and suppressed inflammatory cytokine 
secretion in T cells (17) (Figure 1). In line with these 
findings, we recently demonstrated the importance of 
pharmacological inhibition of galectin-3 for 
MSC-dependent macrophage polarization towards 
M2 phenotype and subsequently suppression of 
aggressive Th1 immune response (18) indicating that 
MSC-mediated modulation of immune response may 
be based on production of galectins, as well. 

Main cellular targets of MSC-mediated 
modulation of acute liver injury 

NKT cells accumulate in the liver, and are 
considered as the major effector cells in the 
pathogenesis of acute liver failure (19). Along with 
NKT cells, professional antigen presenting cells 
(macrophages and DCs) and T lymphocytes play an 
important role in liver-associated immune and 
inflammatory responses and are also subject to 
MSCs-mediated modulation of acute liver failure. 
Therefore, inhibition of T cell mediated immune 
responses evoked by antigen presenting cells is 
beneficial for treatment of liver diseases.  

It was recently demonstrated that the 
immunosuppressive effect of adipose tissue–derived 
mesenchymal stem cells (AT-MSCs) in an acute 
hepatitis model was dependent primarily on the 
suppression of myeloid lineage and CD4+T cells (20). 
AT-MSCs-treatment reduced the number of CD11b+, 
granulocyte receptor-1 antigen (Gr-1)+, and F4/80+ 
macrophages in the liver of Con A-treated mice which 
was accompanied with the down-regulated 

expression of inflammatory cytokines (IFN-γ and 
TNF-α) in liver infiltrating CD4+ T cells (20) (Figure 1).  

In line with results obtained in Con A model, 
MSCs effectively attenuated the Probionibacterium- 
primed, lipopolysaccharide (LPS)-induced fulminant 
hepatic failure in mice by promoting generation of 
CD11c+MHCIIhiCD80loCD86lo liver regulatory DCs 
from CD11c+B220- DC precursors in PGE2-dependent 
manner (21). These regulatory DCs inhibited 
differentiation of naïve CD4+ T cells in IFN-γ 
producing CD4+ Th1 cells and promoted expansion of 
immunosupressive CD4+CD25+FoxP3+ Tregs, in 
TGF-β- and IL-10-dependent manner (21). 

MSC-mediated attenuation of acute liver 
inflammation: cell-to cell contact and/or 
continued delivery of soluble molecules 

MSCs have emerged as an important therapeutic 
tool in regenerative hepatology due to their ability to 
differentiate into hepatocytes, thereby providing huge 
potential to treat liver injuries (2). However, beneficial 
effects of MSCs may not be restricted to hepatocyte 
restoration alone, but also may be a consequence of 
their paracrine effects involved in suppression of 
detrimental immune response in the liver.  

Several preclinical studies suggested that MSCs 
may attenuate liver injury in paracrine manner and 
that MSC-CM or MSC-derived molecules, might 
function as an alternative tool versus direct 
transplantation of MSCs in the treatment of 
immune-mediated acute liver failure (22-25).  

In several murine models of acute liver failure, 
administration of MSC-CM significantly reduce liver 
infiltration of inflammatory cells, attenuated 
apoptosis and increased proliferation of hepatocytes 
enabling better liver regeneration and improving 
survival rate (22-25). Computed tomography of 
adoptively transferred leukocytes demonstrated that 
MSC-CM functionally diverts immune cells from the 
injured livers indicating that altered leukocyte 
migration by MSC-CM may account for the reduced 
liver infiltration of immune cells (22). In addition, 
MSC-CM therapy, mainly mediated by IL-6 and 
fibrinogen-like protein 1, had profound inhibitory 
effects on hepatocellular death, resulting in a 90% 
reduction of hepatocyte apoptosis, and enhanced the 
liver regeneration, increasing the proliferation of 
hepatocytes (23, 24).  

Opposite to these findings, it was recently 
showed that successful engraftment of MSCs and not 
their secretomes are crucial for beneficial effects of 
MSC-based therapy in acute liver injury (26). 
Transplanted MSCs managed to significantly 
ameliorate thioacetamide (TAA)-induced liver injury 
by promoting proliferation of hepatocytes and by 
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inhibiting their apoptosis. These effects were followed 
by suppressed infiltration of inflammatory CD4+ T 
cells and F4/80+ macrophages in the damaged livers 
(26). On contrary, injection of MSC-CM only partially 
ameliorated fulminant liver failure and did not 
decrease mortality rates of TAA-treated mice (26).  

These data support the theory that beneficent 
effects of MSC-based therapy of acute liver failure is a 
consequence of their successful engraftment in the 
liver where they, in cell-to cell contact and through 
continued delivery of soluble molecules, reduce 
apoptosis, promote differentiation of hepatocytes and 
create immunosuppressive environment which 
enable liver regeneration and recovery (26). 

MSC-based therapy of chronic liver 
inflammation and fibrosis 

In order to elucidate therapeutic potential of 
MSCs and their products in modulation of chronic 
liver inflammation and fibrosis, we present the 
current findings regarding pathogenic role of immune 
cells in liver fibrosis and describe molecular 
mechanisms involved in MSC-dependent modulation 
of chronic liver inflammation with the brief overview 
of on-going and already published clinical trials that 
used MSCs for the treatment of immune mediated 
chronic liver diseases.  

Molecular and cellular mechanisms involved in 
chronic liver inflammation and fibrosis 

After many rounds of injury and repair, 
hepatocytes reach replicative senescence. Liver 
fibrosis, which is the precursor to cirrhosis, is the 
result of the chronic inflammatory reactions and 
increased deposition of extracellular matrix (ECM) 
proteins, primarily mediated by activated hepatic 
stellate cells (HSCs).  

HSCs are the major source of fibrillar collagens 
and other ECM proteins that characterize liver 
fibrosis. Following chronic liver injury, HSCs undergo 
a phenotypic switch from quiescent, vitamin 
A-storing cells to proliferative, α-smooth muscle actin 
(SMA)-positive, myofibroblast-like cells capable for 
increased collagen synthesis (27).  

Excess production of collagen and other ECM 
proteins as well as the failure to degrade them are the 
hallmark of fibrosis. The imbalance of matrix 
metalloproteinases (MMPs), responsible for the 
degradation of ECM, and specific endogenous tissue 
inhibitors of metalloproteinases (TIMPs), results in 
improper ECM remodeling and fibrosis. Thus, the 
ultimate goal in case of liver fibrosis is to restore a 
non-pathological healing process, by inhibiting ECM 
production and enabling the degradation of its 
various components. 

Among cytokines, TGF-β has been described as 
the most important for the development of liver 
fibrosis. After binding to its receptor, it induces the 
activation of a signaling cascade leading to the 
proliferation of pro-fibrotic cells, myofibroblasts. 
Accordingly, the TGF-β signaling pathway is one of 
the prime targets for anti-fibrotic therapies and its 
regulation has been abundantly studied in various 
pre-clinical and clinical trials. 

MSC-mediated modulation of chronic liver 
inflammation and fibrosis 

Transplantation of MSCs was able to promote 
partial recovery of liver function and suppression of 
liver inflammation in several animal models of liver 
fibrosis (28). Due to their immunomodulatory 
characteristic, MSCs may suppress chronic 
inflammation and attenuate fibrosis in the liver by 
modulating proliferation and apoptosis of HSCs, 
secretion of pro-fibrotic TGF-β and by regulating 
deposition of collagen.  

The immunosuppressive effects of MSCs on 
continuous inflammation accompanying hepatic 
fibrosis are mainly attributed to MSC-derived 
secretomes. MSC-derived soluble factors promote 
expansion of anti-inflammatory Tregs, and reduce 
influx of inflammatory Th17 cells in the inflamed liver 
(26). Moreover, MSC as well as MSC-CM treatment 
may create anti-inflammatory microenvironment in 
the liver indirectly through the activation of 
alternatively activated M2 macrophages, which 
produce anti-inflammatory cytokines such as C-C 
motif chemokine ligand 1 (CCL-1) and IL-10 and 
suppress inflammation (26). 

MSCs are able to suppress the proliferation and 
α-smooth muscle actin (α-SMA) expression in HSCs 
through cell-cell contact, particularly in Notch 
dependent manner (2, 29). Additionally, several 
studies have underlined the importance of nerve 
growth factor (NGF) secreted by MSCs for promoting 
the apoptosis of HSCs (25, 30, 31, 32). Activated HSCs 
express the receptor P75, which triggers apoptosis in 
response to NGF probably by induction of the C-Jun 
N-terminal kinase (JNK) and nuclear factor 
kappa-light-chain-enhancer of activated B cells 
(NF-kB) pathways (32).  

Additionally, in several models of fibrosis, 
transplantation of MSCs resulted with significant 
decrease in expression and concentration of collagen 
in the liver, associated with attenuated fibrosis 
(33-38). Transplantation of MSCs enhanced the 
activity of MMP-9 and MMP-13 and attenuated 
activation of TIMP-1 resulting with increased 
degradation of collagen and other ECM proteins in 
the fibrotic liver (13, 29, 35) (Figure 2). 
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Modulation of TGF-β signaling is one of 
important mechanisms of MSC-based modulation of 
liver fibrosis. The decreased production of pro-fibrotic 
TGF-β in liver immune cells, accompanied with 
attenuated inflammation and reduced fibrosis were 
noticed in the livers of animals that received either 
MSCs or MSC-CM (28, 39, 40, 41). In carbon 
tetrachloride (CCl4) -stimulated chronic liver fibrosis, 
MSC-CM suppressed fibrosis by attenuating 
infiltration of pro-fibrogenic TGF-β-producing 
F4/80+ macrophages and by promoting apoptosis of 
HSCs (26) (Figure 2). Additionally, reduced 
deposition of collagen, decreased expression and 
production of TGF-β in the liver as well as 
down-regulated serum levels of TGF-β were seen in 
animals that received exosomes previously isolated 
from MSC-CM (30), suggesting that MSC-mediated 
attenuation of liver fibrosis may be a consequence of 
their paracrine actions. In line with these findings, 
immunomodulatory factors such as IL-10, HGF and 
TGF-β, secreted by MSCs, may inhibit the 
proliferation of HSCs and decrease collagen synthesis 
(25, 42) (Figure 2). MSCs produce IL-10 as a response 
to IL-6, secreted by activated HSCs, suggesting a 
dynamic response of MSCs to HSCs in the fibrotic 
microenvironment of the liver. These results indicated 

that MSC-secreted soluble factors were mainly 
responsible for the beneficent effects of MSCs in the 
therapy of liver fibrosis.  

MSCs as novel therapeutic agents in the 
treatment of chronic liver inflammation and 
fibrosis  

Over the past few years, MSCs were used in 
several clinical trials exploring the therapeutic effects 
of MSCs in the treatment of end-stage liver 
inflammatory diseases, fibrosis and cirrhosis (Table 
1).  

In patients with liver failure caused by hepatitis 
B virus (HBV) infection, autologous transplantation of 
BM-MSCs through hepatic artery provided short-term 
efficacy in respect to several clinical and biochemical 
parameters, but long-term outcomes were not 
markedly improved (43). The improvement of liver 
function was also observed in patients with hepatitis 
C virus (HCV)-related cirrhosis after transplantation 
of both undifferentiated BM-MSCs and differentiated 
hepatocyte-like cells, as evaluated by an increased 
serum levels of prothrombin and albumin and 
decreased bilirubin and Model for End-Stage Liver 
Disease (MELD) score (44). 

 

 
Figure 2. Potential protective mechanisms of MSCs in liver fibrosis. Immunomodulatory factors such as IL-10, HGF, NGF, TGF-β, and TNF-α secreted by 
MSCs inhibit proliferation and promote apoptosis of HSCs, leading to reduction in collagen and α-SMA synthesis. MSCs produce MMP-9 and MMP-13 resulting with 
increased degradation of ECM proteins. MSCs suppress liver fibrosis by attenuating infiltration of pro-fibrotic F4/80+ macrophages in the liver.  
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Table 1. Clinical trials using MSCs to treat immune-mediated liver disease 

Investigators Liver disease Source of MSCs Administration 
route 

Dose Number of 
patients 
treated 

Number 
of control 
patients 

Follow-up 
period 

Outcomes 

 
Peng et al. (43) 

Liver failure due 
to chronic HBV 
infection 

Autologous, 
bone marrow 

Proper hepatic 
artery 

3,4 x 
108/patient 

53 105 192 weeks Improvement of serum albumin 
(Alb), total bilirubin (TBIL), 
prothrombin time (PT) and 
Model for End-Stage Liver 
Disease (MELD) score 

El-Ansary et al. 
(44) 

Hepatitis C virus 
(HCV)-related 
liver cirrhosis 

Autologous, iliac 
crest 

Peripheral vein 1 × 106/kg 15 10 6 months Improvement of liver function 
and MELD score 

Jang et al. (46) Alcoholic 
cirrhosis 

Autologous, 
bone marrow 

Hepatic artery 5 × 107/ 
patient, 
twice 

12 0 12 weeks Histological improvements 
Improvement of Child-Pugh 
score 
Decrease of transforming growth 
factor β1 (TGF-β1), collagen type 
1 and α-smooth muscle actin 
(α-SMA) 

Mohamadnejad 
et al. (47) 

Liver cirrhosis Autologous, 
bone marrow 

Cubital vein of 
the arm 

30 x106/ 
patient 

4 0 1 year Improvement of MELD score 

Kharaziha et al. 
(48) 

Liver cirrhosis Autologous, 
bone marrow 

Peripheral or 
portal vein 

30 x106 -50 
x106/ 
patient 

8 0 24 weeks Improvement of liver function 
and MELD score 

Amer et al. (49) End-stage liver 
failure due to 
chronic HCV 
infection 

Autologous, 
bone marrow 

Intrasplenic 
(n = 10) 
or Intrahepatic 
(portal) 
(n = 10) 

2 x106/ 
patient 

20 20 6 months Improvement of Child-Pugh 
score, MELD score, fatigue scale, 
performance status 

Zhang et al. (50) Chronic hepatitis 
B virus (HBV) 
infection 

Allogeneic, 
umbilical cord 
(UC)-derived 

Peripheral vein 5 × 105/kg 31 15 1 year Improvement of liver function 
and MELD score 

 
Shi et al. (51) 

Chronic HBV 
infection 

UC-derived Intravenous 5 × 105/kg, 3 
times 

24 19 48 or 72 
weeks 

Improvement of liver function 
and MELD score 

 
 
Significantly improved liver function of 

post-HCV cirrhotic patients was also noticed after 
intrasplenic administration of BM-MSCs (45). 

Eleven patients with alcoholic cirrhosis safely 
received autologous BM-MSCs through the hepatic 
artery. Histological and clinical improvement was 
observed and the levels of TGF-β1, type 1 collagen, 
and α-SMA were significantly decreased (46).  

In two pilot, phase I and I-II clinical trials, 
autologous bone marrow-derived MSCs (BM-MSCs) 
were injected into peripheral or portal vein of patients 
with decompensated liver cirrhosis. Liver function 
and clinical features were improved and the 
procedure was safe and well tolerated (47, 48). 
Additionally, the safety and short-term therapeutic 
effect of autologous transplantation with 
BM-MSCs-derived hepatocyte-like cells were 
demonstrated in patients with end-stage liver failure 
(49). Clinical improvement was verified by MELD 
score, fatigue scale, performance status and serum 
albumin level (49). Similarly, umbilical cord-derived 
MSCs (UC-MSCs) infusion was well tolerated by 
patients with decompensated cirrhosis and by 
patients with acute on chronic liver failure, resulting 
with significant improvement of liver function and 
increased survival rates (50, 51). 

Conclusions 
The accumulating evidence showed that MSCs 

had immunosuppressive and reparative capacities, as 
well as a significant beneficial effect in 
immune-mediated liver injury. MSCs are considered 
to act through multiple mechanisms to coordinate a 
dynamic, integrated response to liver inflammation 
and fibrosis, which prevents the progressive 
distortion of hepatic architecture. The use of MSCs 
and their products could avoid the serious side effects 
associated with immunosuppressive drugs and can 
significantly reduce the need for liver transplantation.  
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