Balogh, Zoltan; Tyson, Jeremy; Wildrick, Kevin Michael (2017). Frequency of Sobolev dimension distortion of horizontal subgroups in Heisenberg groups. Annali della Scuola normale superiore di Pisa - classe di scienze, 17(2), pp. 655-683. Scuola normale superiore di Pisa 10.2422/2036-2145.201409_08
Text
download;jsessionid=BDCBE10E94F7A75F49F11DDFBFB5E70F.pdf - Published Version Restricted to registered users only Available under License Publisher holds Copyright. Download (381kB) |
We study the behavior of Sobolev mappings defined on the sub-Riemannian Heisenberg groups with respect to foliations by left cosets of a horizontal homogeneous subgroup. Our main result provides a quantitative estimate, in terms of Hausdorff dimension, of the size of the set of cosets whose dimension is raised under such mappings. Our approach unifies ideas of Gehring and Mostow about the absolute continuity of quasiconformal mappings withMattila’s projection and slicing machinery.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
08 Faculty of Science > Department of Mathematics and Statistics > Institute of Mathematics |
UniBE Contributor: |
Balogh, Zoltan, Tyson, Jeremy, Wildrick, Kevin Michael |
Subjects: |
500 Science > 510 Mathematics |
ISSN: |
0391-173X |
Publisher: |
Scuola normale superiore di Pisa |
Language: |
English |
Submitter: |
Olivier Bernard Mila |
Date Deposited: |
17 Apr 2018 09:57 |
Last Modified: |
05 Dec 2022 15:09 |
Publisher DOI: |
10.2422/2036-2145.201409_08 |
BORIS DOI: |
10.7892/boris.109135 |
URI: |
https://boris.unibe.ch/id/eprint/109135 |