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APPROXIMATIONS OF SPECTRA OF SCHRODINGER
OPERATORS WITH COMPLEX POTENTIALS ON R¢

SABINE BOGLI, PETR SIEGL, AND CHRISTIANE TRETTER

ABSTRACT. We study spectral approximations of Schrédinger operators T' =
—A + Q with complex potentials on Q = R%, or exterior domains Q C R%,
by domain truncation. Our weak assumptions cover wide classes of potentials
Q@ for which T has discrete spectrum, of approximating domains €2, and of
boundary conditions on 89, such as mixed Dirichlet/Robin type. In parti-
cular, Re @ need not be bounded from below and @ may be singular. We
prove generalized norm resolvent convergence and spectral exactness, i.e. ap-
proximation of all eigenvalues of T' by those of the truncated operators Th,
without spectral pollution. Moreover, we estimate the eigenvalue convergence
rate and prove convergence of pseudospectra. Numerical computations for sev-
eral examples, such as complex harmonic and cubic oscillators for d = 1,2, 3,
illustrate our results.

1. INTRODUCTION

Although domain truncation is one of the most commonly used techniques for
approximating partial differential operators on unbounded domains, it is a major
challenge to guarantee its reliability, even if the spectrum is purely discrete. Not
only may the approximation produce spurious limits that are no true eigenvalues.
It may also happen that some true eigenvalues are not approximated, in particular
for non-selfadjoint operators. While very recent research and applications show
that there is particular interest in Schrodinger operators on unbounded domains
with complex potentials [3], [, 30 4], there are no general spectral convergence
results for domain truncation for this basic class of operators.

The aim of the present paper is to fill this gap and prove spectral exactness,
i.e. the absence of the two unwanted phenomena described above, for wide classes of
Schrédinger operators T=—A+Q in L2 (2, C) where Q is R? or an exterior domain
in R%. Our assumptions on the potential, the domains €2,, approximating €2, and the
conditions on the artificial boundaries 0f),, are very weak. For the complex-valued
potential @ we only require |Q(z)| — oo as |z| — oo and some mild assumptions
guaranteeing that 7" has discrete spectrum; in particular, Re @ need not be bounded
from below and ) may be singular. For the approximating operators T,, = —A+Q
in L? (Q,,, C) we require no regularity of the bounded domains ,, exhausting Q as
n — oo for Dirichlet conditions on 92, and only low regularity for mixed Dirichlet-
Robin conditions. Moreover, we establish estimates for the convergence rate of the
approximate eigenvalues and convergence of pseudospectra. Our abstract results are
illustrated by numerical computations for several examples of different potentials,
dimensions, domains, and boundary conditions.

The notion of spectral exactness was first introduced in [6] for regular approxi-
mations of singular selfadjoint Sturm-Liouville problems by interval truncation. It
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means that a sequence of approximating operators {1}, has the following two
properties, cf. e.g. [14]:
i) spectral inclusion: for every eigenvalue A € o(T) there exist A\, € o(T,),
n € N, with A\, = X as n — o0;
ii) no spectral pollution: if there exists a sequence of eigenvalues \,, € o(T3,),
n € N, with an accumulation point A € C, then A € o(T).

For partial differential operators, results on spectral exactness in the literature are
fragmented. Even in the case of Schrédinger operators, explicit proofs of spec-
tral exactness are either confined to selfadjoint or elliptic problems, in both cases
restricted to potentials with real part bounded from below, ¢f. [37, 13| 25] and refer-
ences therein, or they cover only the one-dimensional case, cf. [19], or they concern
Galerkin approximations, cf. [30]. Spectral exactness for domain truncation of
non-selfadjoint differential operators was studied e.g. in [I4l 15| 1G], where tests
for spectral exactness in terms of boundary conditions were developed. However,
the verification of the assumptions therein proved to be difficult and sometimes
impossible, ¢f. [16, Ex. 1]. Our new result yields spectral exactness also for this
previously debated example, c¢f. Subsection

In general, spectral exactness is a major challenge for non-selfadjoint problems.
In the selfadjoint case, it is well-known that generalized strong resolvent convergence
implies spectral inclusion, and if the resolvents converge even in norm, then spectral
exactness prevails, ¢f. [5I, Thm. 9.24 a), 9.26 b)] and also [52] for a survey on
related results. Here “generalized” refers to the fact that the resolvents (T, — \)~*
and (T — X\)~! do not act in the same space. In the non-selfadjoint case, norm
resolvent convergence excludes spectral pollution, c¢f. [33] Sec. IV.3.1]; however,
the approximation need not be spectrally inclusive, cf. [33] Ex. IV.3.8]. Moreover,
in general, generalized strong resolvent convergence is not enough to guarantee
spectral exactness even if all operators have compact resolvents, cf. the Galerkin
approximation in [I2] Ex. 5] where a spurious eigenvalue was proved to exist.

In the present paper we establish spectral exactness by proving generalized norm
resolvent convergence of T, to T = —A + @ in R?, or in exterior domains in R¢,
for domain truncation. Striving for minimal assumptions on the potential @, we
exploit the interplay between the different parts of the potential @) if we decompose
it as

Q=Q-U+W
where Qg with Re Qg > 0 is the “regular” part, —U < 0 is the “non-positive” part,
and W is the “singular” part. More precisely, the required regularity of Qo, and
the way how we introduce the operators T and T,,, depend on the sectoriality angle
0 of Qp —U:

I. If 6 < w/2, which requires U = 0, we can allow for potentials with lower
regularity and we use sectorial form techniques to introduce T' and T,
cf. Assumption [T}

IT. If 8 > 7/2, where Re @ need not be bounded from below, we require more
regularity and we use perturbation theory for m-accretive operator to in-
troduce T and T,,, ¢f. Assumption [[I}

The following two one-dimensional examples illustrate the difference between the
two different asumptions:

6 < /2, Assumption[I]: Q(z) = (1 +1)2% +1i6(x),
0 > 7 /2, Assumption [[]: Qz) = ix® — 2? + iz~ 1,

Bl

In both cases, the resulting operators 7" and T,, are quasi-sectorial in the sense
of [29, Sec. 2.8] and they coincide if both Assumptions [[| and [lI| are satisfied. We
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emphasize that the formulation of our results is independent of the assumption that
is satisfied.

The paper is organized as follows. In Section[2] we establish the two different sets
of assumptions on the potential ), introduce the operator T' = —A+Q in L? (Rd, (C)
in two different ways, and provide the necessary results on the operator domain,
graph norm, and resolvent estimates for 7" in both cases. In Section |3 we establish
the assumptions on the truncated domains €2,, and the boundary conditions on
the artificial boundary 0f2,,, introduce the corresponding approximating operators
T,, and study their properties. In particular, we show that the sequence {T)},
is uniformly quasi-sectorial, ¢f. [29, Sec. 2.1], with semi-angle < 7/2 in Case I
and with > 7/2 in Case II; moreover, in the latter case we derive uniform resolvent
estimates in the complementary sector in the left half-plane. In Section[] employing
results on discretely or collectively compact approximations, cf. [46] [ 40], we
prove our main theorem on generalized norm resolvent convergence of T, to T,
¢f. Theorem In Section 5] we use this result to establish spectral exactness and
estimates on the convergence rate of the approximate eigenvalues, c¢f. Theorems[5.1
and as well as convergence of the pseudospectra of T,, to those of T in Attouch-
Wets metric, which is a generalization of Hausdorff metric to unbounded subsets
of C, ¢f. Theorem [5.5] In Section [f] we show that all our theorems generalize
to Schrodinger operators on exterior domains  C R? by sketching the necessary
modifications in the assumptions and proofs. In the final Section [7] we illustrate
the abstract results by numerical computations for several examples of different
potentials @, dimensions d, domains €2, and boundary conditions on 9€2,,, including
complex cubic and harmonic oscillators.

Throughout this paper, we employ the following conventions. The Euclidean
norm in C? is denoted by |- |, the corresponding scalar product by (-, )ca, and the
Euclidean scalar product in R? by a dot. A domain  C R? is an open connected
subset; (2 is called exterior domain if R? \  is compact. For a subset Q C R, we
tacitly view every function f€ L?(Q,C) as an element of L?(R?, C) by extending f
by zero outside Q; conversely, we view every g€ L?(R¢,C) with g [R?\Q = 0 as an
element of L?(£2, C). The norm and scalar product in L? (R, C) and L? (£, C) are
denoted by || - ||, || - [|» and {-,-), (-, )n, respectively. All scalar products are linear
in the first argument. Partial derivatives, always understood in the weak sense,
are denoted by 0; and we systematically abbreviate (Vf,Vg) := Zj:l@j £,059),

VA=V £

2. SCHRODINGER OPERATORS WITH COMPLEX POTENTIALS ON R?

In this section, we establish mild criteria for Schrédinger operators T = —A+4Q in
L? (Rd, (C) with complex-valued potential to have compact resolvent and to qualify
for our main result on spectral exactness, ¢f. Assumption [[]or[[T} Our criteria allow
for potentials @) of the form

Q=Qy—U+W, ReQy>0,U>0,

with real part possibly unbounded from below (U # 0) and with singular part
(W #£ 0). The assumptions and construction of the operator T are different for the
case that Qo — U is sectorial with semi-angle § < 7/2 (U =0) or § > 7/2 (U #0).
The weaker sectoriality assumptions in the latter case necessitate more than the
minimal regularity of Qg needed in the former case.

We remark that if @ satisfies both Assumptions [[| and [T} then the operator T
resulting in both cases is the same.



4 SABINE BOGLI, PETR SIEGL, AND CHRISTIANE TRETTER

2.1. Semi-angle 6 < 7/2. We define the operator T = —A + @ through sectorial
forms, i.e. via the first representation theorem, cf. [33] Thm. VI.2.1]. The potential
Q@ is viewed as a form ¢ that splits into two parts, ¢ = qg + w.

The “regular” part qq is generated by Qg € Li (Rd, (C). The perturbation w is

loc

assumed to be bounded outside a ball Bg(0) and ||V - ||>-bounded in L?(Bg(0),C)
as forms.

Since w need not be closable, also forms representing §-like distributions comply
with our assumptions.

Assumption I. The sesquilinear form ¢ decomposes as ¢ = gg + w where ¢y and
w have the following properties. The form qq is generated by Qo € Li (R4, C), i.e.

loc

Q] = /R Qo| - Pdz, D(qo) = {f € L*(R%,C) : Qo|f> € L'(R%,C)}, (2.1)

such that

[Mi) sectoriality of Qo with semi-angle  <m/2: there exist ¢y >0 and 6 €0, 7/2)
with
Re QQ > Co, | Im Q0| < tan 6 Re Qo; (2.2)

ii) unboundedness of Qg at infinity:
|Qo(x)] = 00 as x| = oc.
For the form w, there exist R > r > 0 and ¢ € Cg§° (Rd, R) with
supp( C Br(0), 0<¢<1, (IB:(0)=1,
and sesquilinear forms wy, wy with Wy *(Bg(0),C) C D(w), D(we) = L*(R%, C) with
VfeDw): VCf €Wy (Br(0),C), wlf] =wi[V/Cf+walV1-(f] (23)
and such that
(Miii) ||V - [|*>-boundedness of wy in L*(Bg(0),C): there exist a, > 0, by, € [0,1)
so that, for every f € W&’z(BR(O),C),
i [f]] < awll fII* + bul VFII%;

iv) boundedness of we outside By(0): there exists M,, > 0 so that, for every
fe L*(R4,C),
|wa[(1 = xo) f]] < M| £1I?,

where x, is the characteristic function of B,(0).

Remark 2.1. Assumption [(I}i)[ can be weakened to

i’) quasi-sectoriality of Qo with semi-angle 6 < /2 and rotation angle 5 €
(—7/2,7/2): there exist § € (—7/2,7/2), u € C, and # €0, 7/2) with

|arg(e 7 (Qo — p))| < 6.
Then all main results, ¢f. Theorems and continue to hold if
(i) Assumption [(I[iii)] holds with b,, € [0, cos 3).
Note that |(I}1)} [(I}ii1)| are the special case = 0, u = 0 of [(Ili")} [(Iiii’)|
Proposition 2.2. Let Assumption[l] be satisfied. Then
i) the form t given by
t:=|V- P+ q+w, D(t):=W"(R?C)ND(g),

is densely defined, closed, sectorial, and C§° (Rd,(C) s a core of t;
ii) the m-sectorial operator T uniquely determined by t has compact resolvent.
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Proof. i) We write ¢ in the form ¢ = ¢y + w with
to:=|V-||*+q0, Dl(to):=D(2).

By (2.2)), for every f € D(t),
1 tolf]] = [1m golf]| < tan 6 Retof]. (2.4)

Thus ¢ is sectorial and closed being the sum of two closed sectorial forms, cf. [33]
Thm. VI.1.31]. The space C§° (Rd,(C) is a core of ty since it is a core of Rety,
of. [20, Thm. 8.2.1] and [33] Thm. VI.1.21].

Let ¢ be the function used in Assumption Il Note that ||(|lcc = 1. By Assump-

tion |(ILii1)} (Iliv)} for every f € D(t),
wlf]| < i [V + lwalv/1T = (S|
< au|VCFIP + b VNI + Mol £1?

2
< b (I W2+ IV + (aw + M) 112 (2.5)
1 2
<01+ NI+ (Mot (14 1) [0 12

=: bu(1+)IVFI* + Cu el f1?

where € > 0 may be chosen so small that b,,(1+¢) < 1. Note that ||V f||> < Reto[f]
by . Thus the form w is relatively bounded with respect to Retq, and therefore
also with respect to tg by , with relative bound smaller than 1. Hence the form
t is closed and sectorial with D(t) = D(ty), C5° (R?,C) is a core of ¢, and ¢ uniquely
determines an m-sectorial operator T, ¢f. [33, Thm. VI1.3.4, VI.1.33, VI.2.1 i)].

ii) The embedding (D(to), (Reto[-}H|-[|*)/?) = L*(R% C) is compact by Rellich’s
criterion [41] Thm. XIII.65], Thus, by and the choice of ¢, so is the embedding
(D(t), Ret[] + (Co,e+1)| - [|2)}/?) < L*(R%,C). Then, by [AI, Thm. XIIL.64, part
(iv) = (i)], the selfadjoint operator Re T has compact resolvent and hence so does T
due to [33, Thm. VI.3.3]. O

Remark 2 3 quam—sectorlal case with semi-angle § < m/2). For potentials Qg
satisfying [(I iii’)| instead of |( - m the form ¢ uniquely determines a
quasi-m- sectorlal operator T with compact resolvent. Here quasi-m-sectorial means
that the operator e™"#(T —p) is m-accretive and its numerical range W (e (T —
1)) satisfies
W(e (T = ) € {z € C: |arg(2)] < 0},

cf. [23, Def. II1.6.9]. In fact, one may show, analogously to Proposition that
the shifted and rotated form

Fme BV 2+ / e 8(Qo — )| - |2 dz + e P,
Rd
D@E) == W2 (RY,C) N {f € L*(R%,C) : Qo — )| € L'(R%,C))},

uniquely determines an m-sectorial operator T with compact resolvent and T :=
e?T + . Note that b,, < cos 3 guarantees the relative boundedness of e #w with
respect to Re(e™"#||V - ||?) with relative bound smaller than 1.

2.2. Semi-angle 6 > 7/2. As in the previous case, we split @) into a “regular” part
Qo and perturbations. However, now the essential requirement is only Re Qg > 0,
which prevents us from using sectorial form techniques. Instead, we introduce an
m-accretive operator Tp = —A + Qo using [23] Thm. VII.2.6, Cor. VII.2.7]. Then
we add the qualitatively new, non-positive, part —U (controlled by Im Qp) and
the singular perturbation W (again bounded outside a ball Bg(0), but inside now
A-bounded in L?(Bg(0),C)).
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Assumption II. The function Q € L3 _ (R4, C) decomposes as
Q=Q —-U+W
where Re Qo >0, U >0, UReQo =0, W € LIZOC(Rd, C), and the following hold.
(ULi) regularity of Qo and U: Qo € VVI})SO (R4, C), Ue L (R4, R), and there exist
av, by, ay, by > 0 such that

IVQo|* < av +bv|Qol?, U? <ay + by|Im Qo

ii) unboundedness of Qg at infinity:
|Qo(z)] = 00 as |z| — 0.

There exist R > r > 0 such that
(i) A-boundedness of W in L?(Bg(0), C): there exist aw > 0, by € [0,1) such
that, for every f € W22(Bg(0),C) N Wy (Bg(0),C),

IWFII* < aw lLFI7 + bw | A%
([iv) boundedness of W outside B,(0): there exists My, > 0 such that
11 = xr)Wlloo < My,
where X, is the characteristic function of B,.(0).

Proposition 2.4. Let Assumption[[]] be satisfied. Then
i) the minimal operator
Tuin = ~A+Q,  D(Tuin) = C5° (R%,C), (2.6)
1s closable with closure
T=-A+Q, DT)=W>?(R%,C)n{feLl?(R%C):QufeLl? (R C)};
ii) there exist k, K > 0 such that, for every f € D(T),
k(AL +1QofI” + 11£1%)
<ITAH? + A1 (2.7)
< K (|AFIP+ 1QofI* + 1£117) 5

i) the embedding (D(T), (|T - ||> +1| - [|*)*/?) < L* (R%,C) is compact;
iv) if, in addition, by < 1, then the resolvent of T is compact. Moreover, for
every b’ € (max{by,bw },1), there exists aw—y (V') > 0 such that the sector

— b/) 17\/[7 aW_U(b')
RO)= AeC: Rer< W= 1y < ReA|— =/
) { Ly AT el
(2.8)
is a subset of o(T) and, for all A € R(V),
_ 1
(T =N < (2.9)

(1 = V0| ReA| = VU | Tm \| — aw—_p (b))
Remark 2.5. Apart from the estimate of the spectrum that follows from iv),
there are others which may further narrow down the spectral enclosure, at least
for a certain range of ¥’ € (0,1). For example, an estimate similar to the one in
the proof of Lemma shows that there exists a(b’) > 0 such that the hyperbolic
region

- 21 1-
RV = {)\E(C:Re)\<— b

~ b ~
. a(b),| Im A]? < 5 Jrb/\Re)\|2 - a(b’)}
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is a subset of o(T") and, with some d(b') > 0,
d)
|Re A’
In fact, the semi-angle ¥ =arctan \/ % of the asymptotes of ﬁ(b’ ) is larger than the

(T =N < A€ R(Y).

semi-angle ¥ = arctan 1?/‘247 of the sector R(V') for V' € (by, 1) with some by € (0,1),

i.e. for these b’ the set C\ R(V) gives a tighter spectral enclosure than C \ R(¥);
here by is a zero of a certain cubic polynomial, by ~ 0.46.

Remark 2.6. Proposition can be used to slightly extend the completeness

result in [4]. Define b:=max{by, by} and ¥(b) :=arctan (max { 1}\17@, \/ é—;g}). If

the selfadjoint operator (—A + |Qo| + 1)~ in L? (Rd, (C) belongs to the Schatten
class S, and

p< 2 —00)’ (2.10)

then the system of eigenfunctions and associated functions of T is complete.

This follows from [22] Cor. X1.9.31] combined with the bound and the fact
that the resolvent of T belongs to S, if and only if so does (—A +|Qo| + 1)~!; the
latter is a consequence of and the second resolvent identity.

An example which cannot be cast into the setting of [4] is the one-dimensional

operator
2

Top = —~—3 +izf’ sgnz —ale’, 8>2, aco,1),

’ dz?

in L?(R, C) for the case a # 0. Nonetheless, our results now imply that its system
of eigenfunctions and associated functions is complete if

T
>2(—r—1); 2.11
722 (7 -1) 210
in fact, here by = a2, by = 0, and the eigenvalues {3 }x of —d?/dx? + |z|? satisfy
28
,ukkfﬁjg —c>0as k — oo, see e.g. [48], and hence (2.10) is equivalent to (2.11)).
The proof of Proposition [2.4] uses three technical lemmas which are proved first.

Lemma 2.7. Let Assumption[[]] be satisfied and define
To.min == —A+ Qo,  D(To.min) := D(Tmin) = C5° (R4, C).. (2.12)
Then, for every e1 > 0, there exists C1(e1) > 0 such that, for every f € D(To min),
1 Tomin flI* = (1 —e1) (IAFI* + Qo fI1?) — Cr(en) I fI1*.

Proof. Let &1 > 0. For f € D(To min),
1 Tominf1* = | = Af + QofII* = [AfI* + |QofII* + 2Re(=Af,Qof).  (2.13)
Using Re Q¢ > 0 and Assumption |(IIli)] we obtain
2Re(=Af,Qof) =2Re(Vf, fVQo + QuV f) = 2Re(Vf, fVQo)

1
> 2|Vl FYQoll = —all FYQol* = [V f[*

1
> —aav | f]* - abv Qo f]* ~ EIIVfII2

where a > 0 is arbitrary. Moreover, for every 8 > 0,

IVAI? = A% 5 < IAFIIAL < 2 1ag? + % 1712 (2.14)
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By inserting the above inequalities into (2.13]), we obtain altogether

B

 2a

| Tomin 12 = (1 ) JAFI2 4 (1 — aby) [QofI — <aav " 1) T2

2a3

Now the claim follows if we choose a = €1 /by and 8 = 27 /by. O

Lemma 2.8. Let Assumption be satisfied and let Ty min be as in (2.12)). Then,
for every eo > 0, there exists Ca(e2) > 0 such that, for every f € D(To min),

WA < (bw + e2)IAF]* + Cale2) I FII*.

Proof. With the radii R > r > 0 used in Assumption [[I} we fix n € C5°(Bgr(0),R)
such that 0 < n < 1 and 5 | B-(0) = 1. Since nf € C§°(Br(0),C) for every

feclCy (Rd, (C), it follows from Assumptions n n that
WA < IWnfll + W@ =) fll < IWnfll + Mwl f],
IWafll* < awlnfl” +bw | A@f)]*.

Moreover, we have A(nf) = (An) f+2Vn.V f+nAf, and the proof can be completed
by straightforward estimates using ([2.14)). O

Lemma 2.9. Let Assumption be satisfied and let Tin be as in (2.6)). Then there
exist k, K > 0 such that, for every f € D(Twmin),

E(IASIP + Qo fII? + ILA1%)
< | Towin FI1? + ILF1 (2.15)
<K (1A +1Qof 17+ 1£17) -

Proof. The upper bound in (2.15) is immediate from Assumption|[(II[i)]and Lemma[2.§]
as Timin = To,min — U + W. To show the lower bound, we start from

1(To,min = U+ W)FI? = 1 Tomin fII* + 1UFI* + [WFI* — 2Re(U £, W f)

(2.16)
+ 2R8<Af7 (U - W)f> + 2R6<Q0f7 Wf)a

where we used 2Re(U f,Qof) = 0 since URe Qo = 0 by Assumption We set
Xr := 1 — x, where x, is the characteristic function of B,(0). Using Assumptions

and we obtain that, for arbitrary «, 5, v > 0,
UL W) <2V LW )]+ 200 UL W)
< 20w U S + 219 e e 1]
< a(I0SIF+ 1WA+~ (8 + IO A (g7
AL UN| < 2A(%ALUN + 206 ALUS)
< BIRASIE + IS + ol AT + 2 U I,
and, analogously,

1 - 1
(AL, W < Alx-AFI1P + ;HWJ‘II2 +all % AFIP + ~ My £,

2(Qof, W < o (1QufI + [WFI2) + = (M2, + [Qoxr2) £

(67
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Inserting these estimates into (2.16|) and applying Lemmawith arbitrary e; > 0,
we conclude that there exists C3(e1, @) > 0 such that

[ Tin f1? = [1(To,min — U + W) f|?
> (1—c1) (IAFI7 + 1QufI1?) + U FI? + W £

. 1 1

— Bl AFII? = vl AF)? — BIIUfIIQ -

—a (IAfIF+2WFI2+ U £ + Qo fI1?) — Cs(er, )| £
> (1—e1 —max{B,7} — ) [Af]>+ (1 —e1 — @) |Qo f|?

1 1
- (Gra- ISP = (3+20-1) IWSI? - Cafer, )l £

We choose €2 > 0 so small that b}, := by + €2 < 1. Then, for 5 and - such that
by /(bu + 1) < B < 1 and max{b},, 8} <y < 1, we have

b:=1-by (;—1>>0, c::l—max{ﬁ,'y}—bﬁ,v(i—l)>0.

In order to further estimate ||U f]|?, |[W f]|? in (2.18)), we note that, since 3, v < 1,
their coefficients satisfy % 4+ a—1>0 and % 4+ 2a — 1 > 0. Assumption n and
Lemma applied with the chosen €5, imply that there exists Cy(e1, @) > 0 with

o172 (1 =1 = (5.7} = =ty (3 +-20-1) ) g ?

W r|1?
(2.18)

+(1-a-a-t(G+a-1) ) 1QofIP - Cuter 12

= (c—e1—a(1+2by)) |AF[I*+ (b—e1—a(1 + bv)) |Qu I~ Caler, )| £

Finally, choosing €1 and « sufficiently small, we find that there exists C' > 0 with
| Twin fI* = C (IAFI? + 1QufII*) — Caler, )l I,
and hence
(Caler, @) +1) (ITwin fI? + 1F1%) 2 | Tonin f1I* + (Caler, @) + 1) |12
> C(|AFIP + Qo fI1?) + 111

Now the lower bound in (2.15]) follows with k := min{C,1}/(C4(e1, @) + 1). O
Proof of Proposition[2.4] i) Since Re Q)¢ > 0, the operator Tj min is closable and its

closure Ty has the domain

D(Ty) = {f e W' (R4, C) : (-A+Qo)f € L? (R, C)},
cf. 23, Cor. VIL.2.7]. Lemma applied to Tin and 7o min (which is Tp;, with
U = W = 0) yields the existence of k, K, ko, Ko > 0 so that, for every f € D(Tin),

(I Tomin 17+ L11P) < Tt 1P+ U1 S (o2 4 117)

Hence T, is closable as well and its closure T satisfies D(T') = D(Tp). The in-
clusion W22 (R%,C) n{f € L* (R%,C) : Qof € L? (R*,C)} C D(T) is obvious. It
remains to prove the opposite inclusion. Since D(Thin) =Cg° (R?, C) is a core of T,
Lemmaand the equivalence of (||A- |2+ |- [|2)"/2 with || - ||yy2.2(ga ) imply that

D) =CF®,C) T~ CF R

c W (RLC)n{fel? (R%,C): QofeL? (R C)}.
ii) The claim follows from Lemma [2.9| and the fact that D(T yin) is a core of T.

12y2,2 )+ Q011 2
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iii) The embedding (D(T), (|7 |>+1 - [?)"/?) — L*(R?,C) is compact due
to and Rellich’s criterion [41, Thm. XIIL.65].

iv) The compactness of the resolvent follows from claim iii) if we know that
o(T) # (. This will follow from the remaining claims in iv) since R(b") # 0.

To prove that R(V') C o(T) for every b’ € (max{by,bw},1), we first observe
that, for every f € D(Tp min) = C§° (Rd, (C), the first estimate in yields

W =O)fI? < A+ a) (I0F12 +IWFI?) + Cla)lIFI?
where a > 0 is arbitrary and C(a) > 0. Assumption [([I[i)} Lemma[2.§ applied with

g2 = ab/(1+4 ), and Lemma 2.7 applied with £; = /(1 + 3a), imply the existence
of C1(a), Co(a) > 0 such that, for all f € D(Timin) and with b := max{by, bw },

[V = D)1 < b1 +20) (IAFI + QoS IP) + Cro) 7
< b(1 + 30) | To fII? + Cala) || £]1%.

The latter remains valid for all f € D(T}) since D(Th min) is a core of Tp.
If ) € (max{by,bw}, 1) = (b,1) is arbitrary, we choose « such that " = b(1+3«)
and so there exists aw_y (b') > 0 such that, for every f € D(Tp),

I(W =) £l < aw—u )£l + V| To f- (2.19)

Now let A € R(V'). We verify the assumptions of [33, Thm. IV.3.17] with the
unperturbed operator chosen as Tj, the perturbation as W — U, and { = A\. Be-
cause Ty is m-accretive and A € R(b') satisfies ReA < 0, we have Re\ € o(Tp),
(To — N7 < [ReA|™Y, and ||To(Ty — ReN) 7| < 1, ¢f. |33, Sec. V.10, Prob.
V.3.31]. Notice that the first resolvent identity yields

[Tm A

| To (T — )\)—1H = || To(To — Re )\)_1(1 +iIm AT — )\)_1)|| <1+ m-

Hence, for all A € R(V),

_u (v [ Im A
- (To =) VB Ty 3y < o) = VEIImAL

|Re Al
and so the inequality [33, IV.(3.12)] holds. Thus [33, Thm. IV.3.17] implies both
A € o(To — U + W) and the estimate ([2.7]). O

3. APPROXIMATING OPERATORS IN €, C R¢

In this section, we define an approximating sequence {7}, }, of operators T, in
L? (Q,,C) where Q, C R? are bounded domains, i.e. open and connected sub-
sets, that exhaust R? eventually. In order to work with operators with non-empty
resolvent sets, we need to specify boundary conditions.

If the aim is to approximate T with simple operators T;,, then one can choose €2,
for instance as expanding balls and impose Dirichlet boundary conditions. If the aim
is to compare, or optimize, the convergence rate for the approximate eigenvalues,
it may be necessary to consider other, more general, boundary conditions such as
Robin conditions or mixed Dirichlet-Robin conditions.

Our approximation results cover both situations. For Dirichlet conditions only,
we do not require any regularity of the boundary 02,,. For mixed Dirichlet-Robin
conditions on 9Q,, = QL UINE, formally given by

F1090 =0, (D,f +anf) [0} =0

where 0, is the normal derivative on 9QF, we assume 0%, is Lipschitz and the

no

functions a,, : QR — C are suitably bounded, cf. Assumption m
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Assumption III. Let {2,}, C R be a sequence of bounded domains satisfying
o0, = 0P Uk

where 90 is closed and the following hold.

(II1li) exhausting property: with the radius R > 0 used in Assumption [I] or
there exists {r,}, C R, r; > R, such that

B, +1(0) CQp, Tpg1 >rn, T, — 00
If 9N £ () and d > 2, we additionally assume
ii) reqularity of 0, €, is Lipschitz.
If a,, #0, n € N, we further assume
([}iii) control of Robin boundary terms: a,, € L (00X, C), n € N, and

My :=sup ||an||cc Kn < 00 (3.1)
n
where K,, > 0 are the constants in the trace embedding

_1 _1
| 1pde <K (SIS e 0+ H I, ) B2

valid for all fe WP(Q,,C), e€(0,1), and p>1, ¢f. [28, Thm. 1.5.1.10].

Remark 3.1. i) For balls or boxes, it can be shown that the constants K, are
uniformly bounded; then the condition (3.1)) reduces to sup,, ||an|lco < 0.

ii) Sometimes, e.g. in Propositions I below, we indicate the dependence of
the constants on the constant My in (3.1)).

The operators T;, are introduced in several steps, analogously to the definition
of T in the previous section. The main difference is in the first step, cf. Lemma/|3.2
where we first introduce a Dirichlet-Robin Laplacian Sp, := —AP® in L2 (Q,,, C)
via its quadratic form, see e.g. [20] Sec. 7] for more details on this approach.

We remark that if @ satisfies both Assumptions[[] and [[} then also the approxi-
mating operators T, introduced in the two different ways coincide.

Lemma 3.2. Let Assumption[[T] be satisfied. Then, for every n € N, the form

som = [V |2+ / anl - Pdo, D(son) = Dy Iwr2ener (3.3)
ONR

n

with
D, :={feC™(,,C) : IfocC® (R%,C), f=fo | R, supp fNIQR =0} (3.4)

is densely defined, closed and sectorial and it uniquely determines an m-sectorial
operator So.n = —APR which has compact resolvent.

Proof. First observe that
We?(Q,,C) c D, v 2o c w2 (g, ). (3.5)

The symmetric form ||V - ||2 defined on D(sg ) is densely defined and closed since
(D(s0,n), |l - llw12(0,,c)) is complete, cf. [33, Thm. VI.1.11]. The boundary trace
embedding 7 applied with p = 2 and arbitrarily small € > 0, together with
implies that the boundary term in is a relatively bounded perturbation of
[V - |2 defined on D(sg,) with relative bound 0. By [33, Thm. VI.1.33], the
form sg , is densely defined, closed, and sectorial, hence it uniquely determines an
m-sectorial operator Sp ,, ¢f. [33, Thm. VI.2.1].

Moreover, for sufficiently large ¢ > 0, the norm (Re s, [-] + ¢|| - [|2)1/? is equiv-
alent to || - [lw12(q,,c)- Then, by the Rellich-Kondrachov theorem [I, Thm. 6.3],

1/2
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(D(s0.n), (Re s0.n[-]+¢||-[|2)'/?) is compactly embedded in L? (€, C). Thus Re Sp.,,
has compact resolvent and hence so does Sg ,, cf. [33, Thm. VI.3.3]. O

Remark 3.3. i) If Q,, are sufficiently regular, e.g. 99, is of class C?, and either
ONF = 0 or 9QP = ) where, in the latter case, a, € WH>*(9Q,,C), then in
Lemma [3:2] the usual domains of Dirichlet or Robin Laplacian are recovered,

D(-AD) = Ww?2(Q,,C) N W, *(Q,,C),
D(—AR) = {f e W?*(Q,,C) : (0pf + anf) [0, =0},

where 0, denotes the normal derivative on 99, = 9QX.
i) If the splitting 99, = 9QL UOOR satisfies additional, very technical, regular-
ity assumptions, cf. [36, Prop. 3.1], then

D, Iwreno — (1 e w2 (Q,,0): 1000 =0 ae}.

3.1. Semi-angle 0 < 7/2. In this case, the operator T,, is introduced in one step
by perturbation arguments using quadratic forms.

Proposition 3.4. Let Assumptions[l, [[II| be satisfied and let so.r, qo be the forms
defined in (3.3)), (2.1), respectively. Then

i) for every n € N, the form
tp = So,n + qo + W, D(tn) = D(So,n) N D(QO)v

1s densely defined, closed, and sectorial, and it uniquely determines an m-
sectorial operator T,, which has compact resolvent.

ii) the sequence {T,}, is uniformly quasi-sectorial with semi-angle < m/2,
i.e. there exist po(Mry) € C and 0y(Mry) € [0,7/2) such that the numerical
ranges and spectra of all T, are contained in the uniform sector

o(T,) CW(T,) C S(M1y) :={z € C: |arg(z — po(M1y))| < 0o(M1y)}.  (3.6)
Proof. i) The form
to,n 1= So,n + 9o, D(to,n) = D(SO,n) N D(QO)v

is the sum of two closed sectorial forms, hence it is closed and sectorial as well,
cf B3, Thm. VI.1.31]. So it uniquely determines an m-sectorial operator Tj .
Notice that Re sgn[f] < Reto[f] for all f € D(ty,) and, with sufficiently large
¢ >0, (Reso,[] +c| -[|2)"/? is compactly embedded in L?(Q,,C), cf. the proof
of Lemma for details. Hence (D(ton), (Reton[] + c| - [|2)'/?) is compactly
embedded in L? (€2,,,C) and consequently the resolvent of Re Ty, is compact.

By the trace embedding and Assumption [([IIliii)} the boundary term
in is relatively bounded with respect to |V - ||? with relative bound 0.

For the form w we first note that, by assumption in Assumption [I, for
every f € D(t,) € W2 (Q,,C) we have \/{f € W, *(Br(0),C) C D(w;) and
thus w(f] = wi[v/(f] + wa[v/1 — (f] is well-defined. Using analogous arguments
as in the proof of Proposition 2.2 one can verify that the form w is relatively
bounded with respect to Retg,, + ¢ with relative bound smaller than 1. Hence ¢,
uniquely determines an m-sectorial operator T, ¢f. [33, Thm. VI.3.4]. The latter
has compact resolvent since the resolvent of Re T, is compact, ¢f. [33, Thm. VI.3.3].



APPROXIMATIONS OF SPECTRA OF SCHRODINGER OPERATORS 13

ii) Using the trace embedding (3.2)), Assumptions |[[IIliii)] [(Ili)| and the esti-
mate (2.5 on |w|, we obtain

(11 <[ [ aulfP o + malf] + uls)

< lanloo /aQR |f? do + tan O Re qo[f] + bw (1 + &)V FII7 + Cu [l £

< (VEMy + by(1+€))|[Vf|2 + tan § Re go[f] + (AjT» + Cwﬁe) 1711

< Ci(e, M) (IV£117 + Reqolf]) + Cale, M) lIf 17
Similarly,

Roty[f] > (1= VEM by (14 DIV AR+ Reanlf]— (S 2+Cuc ) 112

> Cs(e, M) (|IV /117 +Reqolf]) — Cale, M) | £1]7

Since éi(s,MTrL 1 =1,...,4, are independent of n and positive for ¢ > 0 suffi-
ciently small because b, € [0,1), it follows that, for all f € D(¢,),

< 51(57 MTr)
B 03 (67 MTr)

Now the inclusion (3.6)) for the numerical range follows easily. The inclusion for the
spectrum follows e.g. since T}, has compact resolvent and so o(T,,)N(C\S(Mry)) #0,
¢f. 33, Thm. V.3.2]. O

(3.7)

[Tt [f] (Retalf]+ Cale, Mro)IF112) + Cale, M) 1113

3.2. Semi-angle 6 > 7/2. Since @) is assumed to be locally bounded, ¢f. Assump-
tion |(li)} Qof is well-defined for all functions f € L*(Q,,C). We define Tj , as
the operator sum

TO,n = SO,n + QOa D(TO,H) = D(SO,n)y n € N. (38)

The operator T, is introduced in the following proposition by further adding the
locally bounded non-positive part —U and the “singular” part W which turns out
to be APR_bounded with relative bound smaller than 1, cf. Lemma

Proposition 3.5. Let Assumptions be satisfied and let Ty, be as in (3.8)).
Then, for every n € N,

i) the operator
T :=Ton—U+W, D(T,):=D(Ton),
is closed and has compact resolvent;
ii) there exist k(Mr), K(Mr.) > 0, independent of n, such that, for every
feD(Tn),
k(M) (AR FI% + Qo f Il + 11F117)
<|\TufI% + 1712 (3.9)
< K (M) (JARRFI2 + Qo f Il + 11£13) 5

iii) if by <1, then the sequence {T,},, is uniformly quasi-sectorial, more pre-
cisely, for every b’ € (max{by,bw},1), there is aw_y (b, M1,) > 0, inde-
pendent of n, such that the sector

/
R(Y, M) := {AGC:Re A<z, - Qv M)
1/ (3.10)
-V aw—u (V' MTF)} :
Im Af < Re At M2 | aw=vl% M)
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is a subset of o(Ty,) for allm € N and, for all X € R(V, M),
1
(1—VV)| Re A+ M2 | — Vb | Tm | — aw—y (¥, Mry)

We mention that, formally, for M, = 0 the set R(¥, Mr,) and the resolvent
estimate in Proposition [3.5]iii) coincide with the set R(b’) and the resolvent estimate
in Proposition iv).

Before we prove Proposition [3.5] we establish analogues of Lemmas [2.7] [2.8] for
the approximating operators T,, where we need to account for the boundary terms;
here we omit the dependence of the constants on M.

Lemma 3.6. Let Assumptions be satisfied and let Ty ., be as in (3.8). Then,
for every es > 0, there exists C3(e3) > 0, independent of n, such that, for every
f€D(Ton),

[Tonfll2 = (1 —e3) (JADRFIZ + Qo flI2) — Ca(es)ll fII2-

(TN < - (3.11)

Proof. We adapt the proof of Lemma Let €3 > 0. For f € D(To.,),
ITonflI7 = IARTFIR + 1QofII% + 2Re(=ARR £, Qo f)n- (3.12)

Before we estimate the individual terms, we prove two estimates that are used later

on. First, for arbitrary «, 8 > 0, by the trace embedding (3.2) with \/e = % and
Assumption |(I11}iii), we obtain

IVFI2 = (—~ADRF, ), — / anlfI? do
QR

DR 2 1 2 2 M%r 2

hence, for §:=1/2,
1
IV A1 < 20 APR FI2 4 (

2 2
s+ AMR) IF12. (3.13)

Secondly, Assumption [(1}i)| implies
1/VQoll7 < avllflI7 + bwlQofl7- (3.14)

Now we estimate the last term on the right-hand side of .

First we verify that Qof € D(son). Since Qo € W (R, C), cf. Assump-
tion and f € D(Ty ) C D(son) C WH2(Q,,C), cf. and , we have
Qof € W2 (Q,,C). Moreover, using the definition of D(s¢ ), cf. (3.3), we find

{fe}r € C5° (R?,C) such that

dist (supp fr, 90P) = _inf ; lz1 — 2 >0, k €N, (3.15)
/12;5;5]31@
£ 1920 = fllwrz@,c) = 0, Kk — oo (3.16)

Since Qg € Wl’oo(Rd,(C), we have {Qofix}x C W12 (Rd,C). Let J., € > 0, be the

loc

standard mollifier, ¢f. [Il, Par. 2.28], and let & € N. Due to (3.15) and properties of
mollifiers, ¢f. [II Par. 2.28, Lem. 3.16], there exists €5 > 0 such that

(Je ¥ Qofr) [ €Dy, 0<e<ey,
1(Je * Qofr) [ — Qo fr TQnHWM(QmC) — 0, &\,0.

Thus {Qo fi [ }x € D(s0,n), hence Qof € D(so,.n) by (3.16) and Qp € W,°(R%,C).
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Now we continue the estimates. For every f € D(Tp.,,),

9Re(—APRf, Quf)n = 2Re(VS, FYQo+QoV f)n + 2Re /8 _aQulfdo

> 2Re(Vf, fVQo)n + 2Re/
99

2 / an@m2 do
HOR

_anQolf*do (3.17)

1
> —7||fVQ0H72L - ;HVfH?L -

for arbitrary v > 0. We have Qo f? € Wh1(Q,,, C), hence the trace embedding (3.2))
with p =1, ¢ = 1, and Assumption |(II1}iii)| yield

’2/ anQolf|? do §2||an||m/ |Qof?| do
AOR IOR

< el [ (196 + |Q0f?) o .

< 203, (179 Qoll 71l + Q0 1 2119l + [171))

2M3,

<O fVQoll7 + 2011Quf 1% + =5 IV + I £117)

where § > 0 is arbitrary. Using (3.18)) and (3.13)), (3.14) to estimate (3.17)), and by
choosing v, § and then « sufficiently small, we arrive at

2Re(=ARf, Qofhn = €3 (1A + 1QufI17) — Cales)lIFII7

for some Cs(e3) > 0, so the claim follows from ([3.12)). O

Lemma 3.7. Let Assumptz'ons be satisfied and let Ty, be as in . Then,
for every g4 > 0, there exists Cy(e4) > 0, independent of n, such that, for every
feD(TO,n)z

Wl < (bw +e)|ARRFI7 + Calea)ll £

Proof. Let n € C§°(Bg(0),R) be as in the proof of Lemma 2.8 For f € D(Ty,n) C
D(s.,) C W2 (Q,,C), we have nf € W&’Q(BR(O),(C) C D(so,n) since Br(0) C S,
cf. (3.5). Let ¢ € Dy, cf (3.4). Then nyp € C§°(Br(0),C) and, integrating by

parts, we can verify that

so,n(Nf, ) = (—=2Vn.Vf — fAn —nARRf, 4),.

Since D, is a core of sg ,, the first representation theorem [33, Thm. VI.2.1] implies
that nf € D(—APR) and APR(nf) = fAn +2Vn.Vf +nAPRf. With the help of
(13.13) instead of , the proof can be finished in the same way as the proof of
Lemma 2.8 O

Proof of Proposition[3.5 i) Since Qq, U € L (R4, C) by Assumption and
W is Sy n-bounded with relative bound smaller than 1 by Lemma@ the operator
T, is closed, cf. [33, Thm. IV.1.1]. Moreover, by [33], Thm. IV.1.16], it has compact
resolvent since Sy 5, is m-sectorial with compact resolvent, cf. Lemma

ii) The equivalence of the norms can be proved by a straightforward adaptation
of the arguments in the proof of Lemma [2.9} note that Lemma is used instead
of Lemma

iii) By the trace embedding (3.2) and Assumption |(II1}iii)} we have

M Tr

NG 1115 = =ML |17,

Re(Tonf, flu > (1= MuVE)IV L7 —
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where we have chosen /¢ = 1/Mr, in the last step. Hence the numerical range
of Ty, lies in the half-plane {A € C : ReA > —M?2 } and so does the spectrum
since Tp,, has compact resolvent, cf. [33, Thm. V.3.2]; moreover, ||(To., — A) 7! <
|[Re X+ M2 |71 if Re X < —M23,.

Since by < 1, the claims in 7 are now obtained by an argument based
on [33] Thm. IV.3.17], similarly as in the proof of Proposition here Lemmas
are used, and aw_y (b, M1y) is the constant in the relative boundedness
inequality of W — U with respect to Tp 5, in analogy to (2.19). O

4. CONVERGENCE OF T,, TO T

In this section, we prove that the operators T;, converge to T in generalized norm
resolvent sense, cf. Theorem The proof relies on two ingredients.

First, in Lemma we show generalized strong resolvent convergence of T,
to T. Here, for semi-angle 8 > 7/2, we employ the so-called common core property
of approximations, cf. [50, Thm. 1]. For semi-angle § < 7/2, where it is not
even guaranteed that C§° (R?,C) C D(T), we use form techniques inspired by the
approach in [35], Prop. 5.4] for a selfadjoint Laplacian in twisted tubes.

Secondly, in Lemma we establish discrete compactness, cf. [46, Def. 3.1.(k)],
of the sequence of embeddings

(DT, (1T I +11- 12)*) = 12(20,©), meN. (41)

Theorem 4.1. Let Assumption[[I] be satisfied and assume that
L. in the case of semi-angle 6 < w/2, Assumption holds and T, T,,, n € N,
are the operators defined in Propositions[2.2] [B.4], respectively;
II. in the case of semi-angle 0 > /2, Assumption holds with by <1 and
T, T,, n€N, are the operators defined in Propositions[2.4} respectively.

Then, for every A€ o(T), there exists ny €N such that, for alln > nx, A€ o(T,,) and
|(Tw = X)"'xq, = (T =X =0, n— oo (4.2)

Remark 4.2. The generalized norm resolvent convergence in is even locally
uniform, i.e. for all A € o(T'), there exist ry > 0 and ny € N such that B,, (A\) C
Nysn, 0(T5) No(T) and the convergence is uniform in By, (A).

To see the latter, let ny € N be so large that ||[(T), — )7 1xq, — (T — A7} <
2|(T — X)~1|| for all n > ny. If we choose 7y := ||(T — A)~!||~! /4, then a Neumann
series argument yields that, for every u € B, ()\), the resolvents (T — p)~t, (T;, —
w)~t, n > ny, exist and are uniformly bounded (in n and p). Then the uniform
convergence of the resolvents follows from below with Mg, A replaced by A, u.

To prove Theorem we first show the two lemmas described above.

Lemma 4.3. Let the assumptions of Theorem [4.1] be satisfied. Then there exists
v > 0 such that (—oo,—v) C (), o(T) N o(T) # O and for all Ay € (—o0, —7) and
for every f € L? (Rd, (C),

(T = 2o) "x, = (T =X)7Y) f]| =0, n— o
Proof. 1. Semi-angle § < 7/2: Since T, T,, are m-sectorial and the numerical ranges

of T), satisty (3.6]), the set S(M1,)UW(T) contains all spectra and is itself contained
in some right half-plane. In particular, (—oo,d1) C (,, o(T5)No(T) for some 6; € R.

Now let A\g &€ S(M1,) UW(T) be arbitrary; without loss of generality, we assume

that A\g = 0, é.e. 0 ¢ S(Mr,) UW(T); otherwise we replace T, T,, by T — Ao,

T,, — Ao, respectively. Then there exists dy > 0 such that dist(0, W(T,,)) > do and

dist(0, W(T)) > do.
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We prove the claim by contradiction. Suppose that T, lxq,f — T-'f in
L?(R4,C) does not hold. Then there exist § > 0 and an infinite subset I C N
such that || T, xq, f — T 1f|| > 6 for all n € I. We will show that {T);'xq, flner
contains a subsequence converging to T~1 f, a contradiction.

To simplify the notation, we set f, := xq, f, ®n := T); ' f». Note that

_ _ £
fnll = 1T, full < NTHIAIN < e
and rewrite T),¢, = f, in terms of forms,

Vo eD(tn): tu(dn, @) = (faP)n- (4.3)
If we insert ¢ =¢,, and take real parts in the equation in (4.3)), we obtain

IV6ul +Re [ anl6, 2 do + Reqolgu] + Rew(én] = Relfy.é0)..

Taking absolute values on both sides and using the relative ||V - ||>-bounds of
the boundary term and of w, cf. the trace embedding (3.2, Assumption |(I11}iii);
and (2.5)), we arrive at

(1 = VeMr: — by (1 +€)) [Vl + Regolgn]

M
< 1Ml + (222 + e ) P

1 My 1 9
< |- Cuel = =: Ki(e),
(5 + (VE+cud) @) 1P = Ko
where K;(g) > 0 is independent of n. If we choose ¢ > 0 sufficiently small, we find
that there exists Ko > 0, independent of n, such that

[Vénln < K2, Regolgn] < Ka. (4.4)
Let ¢, € C§°(B,,+1(0),R) C C§° (2, R) be such that
0<G <1 G TBrn(O) =1, HCn”oo + ”VCTLHOO < M, (4~5>

where 7, are the radii used in Assumption [[T]and M; > 0 is independent of n. We
define 1, := (,¢,. Note that v, coincides with ¢, on B, (0) and its support is
contained in Q,. It is easy to see that ¢, € W'? (R?,C) and that, by and
, there exists K > 0 such that

fonll < lall < YL, 19, < B, Reaolial < .
Hence {1, }ner is a bounded sequence in Hy := Wh2 (R4, C) N D(qy) equipped
with the norm (|V - ||2 + Reqo[-] + || - ||*)'/2. Therefore there exists a subsequence
{nr}r C I such that {¢, } converges weakly in H; to some 1 € H;. Since H; is
compactly embedded in L? (Rd,(C), cf. Rellich’s criterion [41, Thm. XIII.65], the
sequence {1, } converges to ¢ in L2 (Rd, (C).
Now we prove that {¢,, }r converges to 1. The properties of (,, cf. , imply

lfn — Pull® < / || . (4.6)

\z|2rn
Using Re Qo > 0 and Re Qp(z) — o0 as |z| — oo, we obtain
K5 > Reqolpn] > / Re Qq|py,|* dz > (ess inf Re Qo) / |pn|? da; (4.7)
|| =7 ]2 B

hence, since r,, — 00,
[¢n — ¥nll = 0, n— oo, (4.8)

and thus {¢,, }i converges to .
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Finally, to obtain the contradiction, we prove that ¢y = T f, i.e.

v eDT), [f=T. (4.9)
To this end, we show that
VQPE Cgo (Rd?C) : tnk(¢nk7w) _>t(¢7§0)7 k—)OO,

then (f, ) = limy o0 (fars @)ne = £(t,) by [@3), and hence [@I) follows from
the representation theorem [33, Thm. VI.2.1] and the fact that C5° (R%,C) is a

core of t, ¢f. Proposition [2.2]
Let € Cg° (R?,C). There exists n(¢) € N such that, for all n > n(y), we have
supp ¢ C B, (0) C ©,, and therefore (,p = ¢, (, Vo = Vo by (4.5) and

<v¢na v@)n = <v'(/1na V(P>a /Q QO (bn@ dr = /R'i QO Tbn@ dl‘,

/ o 62 do = 0, s @)n = (Fr ).
9OR

Since w is relatively bounded with respect to ||V - |2, it is a bounded form on H;.
Therefore, w(tn,,g) — w(y,g) for any g € H;. Recall that the function ¢ in
Assumption [I| satisfies supp( C Bgr(0). Hence, since 9,, and ¢,, coincide on

B,.,(0) D Bgr(0), we have (¢n, — %n,)v/¢ = 0. Thus the splitting property ([2.3)
of w in Assumption [[|and the polarization identity [33, Eq. VI.(1.1)] imply

w(qsnk?sp)_w(wnk?@):wQ(\/1_<(¢Tbk_w’ﬂk)7 1_C )

Because the form ws is bounded, ¢f. Assumption|(Iliv)} by (4.8, we have w(¢n, , ©)—
W(Yn,, ) — 0. Altogether, we obtain

Jim by (P @) = Jim (Vs @) + (W(Dny,, ) — W( Yy, @) = Jim (Vs ),

and the latter equals t(1), ¢) since v is the weak limit of {4, }x in H;.

II. Semi-angle @ > 7 /2: The intersection of the resolvent sets is non-empty since
there exists > € R such that (—oo,d2) C R(V') NR(VY, Mny) # 0, of. [2.8), (3.10).

Let Ag € R(V)NR(Y, M1y) D (—00,d2) be arbitrary. We can follow [50, Thm. 1]
which can be straightforwardly generalized to the non-selfadjoint case if a uniform
bound on [|(T,, — A\g) || is available; such a bound is given by (3.11). In order to
check the assumptions of [50, Thm. 1], recall that D(Tin) = C’(‘f%, C) is a core
of T, cf. Proposition For every f € D(Tiin) there exists ng(f) € N such that
supp f C Q, for all n > ng(f). Then, for n > ng(f), we have f,, := xq,f € D(Ty)
and T'f = T, f,. Notice that, since D(T},) is not described explicitly, we use the
first representation theorem [33] Thm. VI.2.1] to verify the latter. t

Lemma 4.4. Let the assumptions of Theorem[A1] be satisfied and let I C N be an
arbitrary infinite subset. Then every sequence of elements ¢, € D(Ty,), n € I, such
that {|Tonllz + |6nllZ}, is bounded has a convergent subsequence in L? (R?,C).

Proof. Let ¢,, € D(T},), n € I, and M > 0 be such that
|1 Tnlls + llonll? < M. (4.10)

I. Semi-angle § < 7/2: The bound (4.10) implies that |t,[¢n]] < M/2. Define
fn = Tno, and note that || f,||> < M. Now we proceed analogously as in ([4.3))—
(4.8) to find a convergent subsequence of {¢y, },.

II. Semi-angle @ > mw/2: Let {(,}, be the family of functions defined in (|4.5]).
We set 9, := (0. Using the inequality (3.13)) and the equivalence of norms in

(3-9), we obtain the existence of M > 0 such that || Vb, || + [|Qotn|| < M. Hence,
it follows from Rellich’s criterion [41, Thm. XII1.65] that {t,}, is contained in a
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compact subset of L2(R%, C), thus it has a convergent subsequence {t,,, }1. Finally,
using an analogous argument as (4.6)—(4.7) with (4.7) replaced by

Wz [ Qi asx (st Qo)) [ e Pas @
Iw\ZTn TIZTn |I‘Zrn

one may show that {¢,, }; has the same limit as {¢,,, }x. O

Proof of Theorem[4.1] By Lemma there exists v > 0 such that we have gen-
eralized strong resolvent convergence at all A\g € (—oo, —y). One may verify that
Assumptions [[} [T} [[T]] remain valid under complex conjugation of ¢, Q, a,, W, and
with w replaced by the adjoint form w*. Hence Propositions 2.2 2.4 - - [3.5] define
closed operators T Tn7 and the latter coincide with the adjoints T* T, cf. [33,
Thm. VI.2.5] (for semi-angle § < 7/2) and [23] Thm. VIL.2.5, 2.6, Cor. 2.7], [32
Cor. 1] (for semi-angle § >7/2). Moreover, Lemma [4.3implies that (7} — o) ' xa,
converges strongly to (T — Ag)~!. Then [5, Thm. 3.4] yields that the resolvents
converge even in norm provided we verify that {(T,, — X\g) " 'xq, : n € N} and
{(T — Xo)"txq, : n € N} are collectively compact sets. The claim for the former
set follows from [5 Prop. 2.1] since every (T,, — X\o) ! is compact and the sequence
of embeddings (4.1)) is discretely compact, cf. Lemmaﬂ; 4.4t the reasoning for the set
of adjoint operators is analogous.

Now let A € o(T') with A # Ag be arbitrary. By the spectral mapping theorem we
have p1 := (A= Xg) ™ € o((T,, — Ao)™'). By [33, Thm. IV.2.25], together with
for A = Ag, there exists n) € N such that, for all n > ny, we have p € Q((T —Xo) 7! )
and so A€ o(T},). A straightforward apphcatlon of the first resolvent identity yields

(T =N "xa, — (T =271 S,

=T+ X=2)T =21 ((Th =) "xa, — (T =) ")
with S,, = I — (A — Xo)(T, — Xo) 'xq,. Since S := lim, .o S, has a bounded
inverse, the operator S, is boundedly invertible for all sufficiently large n and

IS, 1| is uniformly bounded, cf. [33, Thm. IV.1.16]. Now the convergence ([4.2)
follows from the convergence at Ao and (4.12]). O

(4.12)

5. CONVERGENCE OF SPECTRA AND PSEUDOSPECTRA

In the following theorem, we prove that {T;, }, is a spectrally exact approximation
of T, i.e. all eigenvalues of T' are approximated and no spectral pollution occurs.
In addition, we prove norm convergence of the spectral projections.

Theorem 5.1. Let Assumption|[[T]] be satisfied and assume that

L. in the case of semi-angle 0 < w/2, Assumption holds and T, T,,, n € N,
are the operators defined in Propositions [2.2] [B-4], respectively;

II. in the case of semi-angle § > /2, Assumption holds with by < 1 and
T, T,, n€N, are the operators defined in Propositions[2.4} respectively.

Then the following hold:

i) Spectral inclusion with preservation of algebraic multiplicity: If A € C is an
eigenvalue of T of algebraic multiplicity m, then, for n large enough, T, has
exactly m eigenvalues (repeated according to their algebraic multiplicities) in
a neighbourhood of A which converge to A as n — oo and the corresponding
spectral projections converge in morm.

i) No spectral pollution: If {A\,}, C C is a sequence of eigenvalues X, €
o(T,), n € N, such that there exists A\ € C and a subsequence {An, }x C
{An}n with Ap, — X as k — oo, then X is an eigenvalue of T.
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Proof. 1) Since T has compact resolvent, every eigenvalue A € o(T) is isolated,
i.e. there exists & > 0 such that B.(A\)\{\} C o(T). By Theorem we have
(T —2)~t = (T, — 2)"txaq, || = 0 for every z € dB-(\) and the convergence is
uniform in dB.(\) since OB (A) is compact, cf. Remark Hence the spectral
projections

1 1
E:=—-—— (T — 2)"tdz, E,=—— (T, — 2)"'dz
2mi OB (\) 2mi OB (\)
satisfy ||E— E,Xxq, || — 0 and therefore there exists ng € N such that, for all n > ny,
rank E,, = rank (F,,xq, ) = rank £ = m.

ii) Spectral pollution cannot occur since it would contradict the locally uniform
convergence of the resolvents, cf. Remark O

Based on [40l Thm. 2], we prove an estimate on the convergence rate of the
arithmetic mean of the eigenvalues in terms of the decay rate of the functions in the
corresponding algebraic eigenspace. An analogous result can be obtained, using [40,
Thm. 6], for the individual eigenvalues instead of their arithmetic mean; if, however,
A is not semi-simple, i.e. A\ has ascent greater than one, then the convergence of
the individual eigenvalues is slower than the one of their arithmetic mean.

Theorem 5.2. Let Assumption[[I]] be satisfied and assume that
L. in the case of semi-angle 6 < /2, Assumption holds and for every p €
cge (R”ﬂ(C) and f,g € D(w),
w(ef,g) = w(f,29), (5.1)

and T, T,,, n€N, are the operators defined in Propositions[2.2] respec-
tively;
II. in the case of semi-angle § > /2, Assumption holds with by < 1 and
T, T, n€N, are the operators defined in Propositions[2.4] 35| respectively.
Let A € o(T) be an eigenvalue of algebraic multiplicity m, let L(T) be the corre-
sponding algebraic eigenspace and let {An, ..., Amin} C 0(Ty) be the eigenvalues
of T,, converging to X\ as n — oo, cf. Theorem [5.1] Then there exists C > 0,
independent of n, such that
PELA(T)

1 m
RSN
- [[oll=1

where r,, are the radii used in Assumption |(LLL1)}
Remark 5.3. The decay rate of ¢ € L5(T') can be further estimated as

<C max ||6IRNB,, 0 (5.2)

D
IRNB,., (0)]| € ——5—
S |6 TRNB,., (0)]| < essinf |Qo()|*
lgli=1 =

where D > 0 is independent of n and ¢ = 1/2if 6 < 7/2 and ¢+ = 1 if § > 7/2,
respectively, cf. and . However, the decay rate of ¢ € £,(T) may be
much faster than the growth of |Qo|, e.g. exponential, cf. [2, 45l 18] or cf. [43] for
complex polynomial potentials.

Proof of Theorem[5.2] Let pn € o(T). Theorem implies that p € o(T,) for all
sufficiently large n and ||(T,, — u) "*xq, — (T — 1)~ — 0. The spectral mapping
theorem yields v:=(A—p) "t €0 ((T—p)~1) and the eigenvalues vj.,, := (\j., —p) "1 €
o((T, — )Y C o((T, — 1)~ xq,) satisfy v, — v as n — oco. Now the identity
IN=Njin| = [vvjn| v — vj,| implies that it suffices to study the convergence rate
for vj,p.
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By [40, Thm. 2], there exists C; > 0, independent of n, such that,
1 m

vV — E Z l/j;n
Jj=1

Below we show that there exists C > 0, independent of n, such that, for every

pe LA(T),
(T = )" = (T = )" xa,) 6| < C(|6IRN\B,., (0)]
+ (T = )~ 9) IRN\B,., (0)])-

Since £ (T) is an invariant subspace of T', we have

<CL||((T = p)™" = (T — )" "xa,) 1LA(T)||-

(5.3)

“1¢) IRN\B,, (0)||

mace [((T—)~6) IRAB,,, ]| /(T — 19 mave 1

$ELA(T) $ELA(T) ||( —p)~1o|
l¢li=1 l[¢li=1
<|(T—=p)~ ! RN B,
(T —p)~ IIwEnzng)llw \B., (0],
l[lI=1

hence the estimate (5.2]) in the claim follows.
To prove (5.3), let {¢,}n C C§° (Rd R) be such that, with ¢, := 1 — (,,
0<G <1, Cul rn< ) =1, supp¢, C Brn+1(0)7
1V6nlloo + 1AGnlloe = Venlloo + 1A lloe < Ca

where Cy > 0 is independent of n. Let ¢ € L£x(T) and set ¢ := (T — pu)~'¢. First
we adapt the approach of [24] or [34] Prop. 5.3] based on

9. N
I£1l
Let f € L2(R?,C), f # 0. Then, with Yq, := 1 — xq,, we write
(T =)™ = (T = ) xa,) &, f)
= <(T - M)71¢7 Xan> + <(T - M)il(bv %an> - <(Tn - /1’)71X9n¢7Xan>v
and the second term satisfies
(T = )" ¢, X0, )| = (X, ¥, O < IfIl[[¢ TRNB,,, (0)]]. (5.5)

Since u € o(T},), we have i € o(T}"). Define g, := (T} — 1) ‘xq, f € D(T}). Note
that the functions g, are uniformly bounded, ||g,| < sup,, [|(T, — p) 2| || f||. Now
the remaining terms on the right-hand side of (5.4) can be written as

(T — )", xa, ) — (Tn — 1) "X, ¢ X, f)
= (U, (T, = 1)gn) — (X, (T = 1), gn)

= (Gt (T} — Ti)gn) + (G, (Tyy — TH)gn) (5.6)
— (X0, (T = 1), G} — (x02, (T = 1), Cugn)
= (Gt Tign) = (T, Cugn) + (ot X2 ) — (X020, Cagn).
The last two terms can be estimated easily,
‘(Enw,m"f) — (X0 @ Cagn) | < GBI+ 1Sad g
< ANl TRABr, (O)]] + sup [ (T = )7 [ [[0TRAB, O)])-
Below we show, separately for the cases § < w/2 and 6 > 7/2, that the first two
terms of satisfy
(nth, Tpgn) = (T, Cugn) = (WA, gn) + 2(VCn, Vign) (5.7)

llg[l = sup
F#0

(5.4)
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and there exists C3 > 0 such that
IVanlls < Cs £11%. (5.8)

Then, since V¢, | B, (0) =0, A¢, [ B, (0) = 0, it follows that there is Cy > 0 with

< (IgnllnllAéalloo + 20V gnllnl| Vénlloo) | TRN\B, (0)]] (5.9)
< C4Hf||||¢ IRN\B,., (0)]|.

Thus summarizing )—(5.9) we obtam 1 3)).

It remains to prove mj and ( . First We study the case 6 < 7/2. Since ) €
D(T) ¢ Wh2 (R4, C)ND(qo) and ¢, € C5° (R4, R) with supp (,, C By, 4+1(0) C Qy,
we conclude that an € D(t,) =D(¢) and

<Cn'(/}7 T;:gn> = <Tﬁkgn7 an> = t;:,(gn7 an) = tn((nwa gn)-

Moreover, it follows from g, € D(T¥) € W2 (Q,,,C) N D(qo) and the properties of
Cn that ¢ngn € D(¢). Hence, using supp ¢, C 2, assumption (5.1]), and integration
by parts, we obtain

(G0, T gn) — (TY, Cugn) = tn(Cnth, gn) — (Y, Cngn)
= (V). V) + [ 0G5 do + oG gn) + (G 00)

—(VY, V(Cagn)) — 90(¥, Cugn) — w(¥, Cngn)
= (V(G¥), Vgn) = (Vh, V(Cugn))
= (YV(n, Van) = (V, 9,V ()
<'(/JACna gn) + 2<wcn, Vgn),
which proves . The estimate (3.7 implies that there exist Cs, Cg > 0 with

|3 [9n]| = [tnlgn]l > Retnlgn] > Cs ([ Vanlls + Regolgn]) — Csllgnlly-
Since Re qolgn] > 0 and T}* g, = Tign + xq,, f, there exists C3 > 0 such that

1 *
o (T gn: gndul + Collgnlln) < Csll £

For § > 7/2, we first note that T* = —(APR)* 4+ (Q—U+W)* where the adjoint
of the potential is simply its complex conjugate, cf. the proof of Theorem [£.1] for
details. Hence, with ¢, € D(s0,n) = D(s5,,) and integrating by parts in the last
step, we get

<Cn¢7T;:gn> - <T¢’ Cngn> = <Cn'¢a _(ABR)*gn> + <(Q0 -U + W)anagn>
= <wACna gn> + 2<7/}v<na in)
Finally, adapting (3.13) and . for T;7, we see that there are C7,C3 > 0 with

HVgnII2 < Cr(IT3gnll? + llgnl®) < CsllfIIP. U

1 *
Vg7 < c (It7[gn]l + Csllgnll3) =

To conclude this section, we study the convergence properties of the pseudospec-
tra of the operators T;,; here we use the following definition, cf. [49] for an overview.

Definition 5.4. Let € > 0. The e-pseudospectrum o.(A) of a closed operator A is

o(A) == o(A)U {)\ € o(A): (A— N1 > i} .
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To study convergence of the sequence of 0.(T;,), n € N, we need a suitable metric
for closed unbounded subsets of C. We use convergence in Attouch- Wets metric
daw which is a generalization of convergence in Hausdorff metric for unbounded
sets, c¢f. [8, Chap. 3] for details and further discussions. We refrain from giving the
definition of daw here since we only use the following, equivalent, characterization,
cf. [8, Cor. 3.1.8].

Let A, A, C C be closed non-empty subsets. Then the sequence {A,,}, converges
to A in Attouch-Wets metric, daw (An, A) — 0, n — oo, if and only if for all closed
balls B,(0), ¢ > 0,

max{ sup  dist(w,A), sup dist(z,A”)} —0, n— oco. (5.10)
weENA,NB,(0) z€ANB,(0)

Theorem 5.5. Let Assumption[[I]] be satisfied and assume that

I. in the case of semi-angle § < /2, Assumption holds and T, T, n € N,
are the operators defined in Propositions [2.2] respectively;

II. in the case of semi-angle 6 > /2, Assumption holds with by < 1 and
T, T,, n € N, are the operators defined in Propositions[2.4}[3.5], respectively.

Then, for any e > 0,
dAW(UE(Tn)70€(T)) - 07 n — o0.

Proof. Since T has compact resolvent, cf. Proposition (for semi-angle § < 7/2)
and Proposition (for semi-angle § > 7/2), its resolvent norm is not constant
on any open subset of o(T), ¢f. [2Il Thm. 2.2]. Then the claim follows from the
generalized norm resolvent convergence of T,, to T, similarly as in [10, Thm. 2.1].
In fact, without assuming that condition (ii) in [I0, Thm. 2.1] holds, the claim of
[10, Lem. 4.3] can be modified as follows. For every 6 > 0 and K C C compact,
there exists ng € N such that

0:(Tn) NK C Bs(0.(T)), o0(T)NK C Bs(o-(Ty)), n > nyg, (5.11)

where Bs(A) denotes the open d-neighbourhood of the set A (called ws(A) in [10]).
Now (5.11)) yields the convergence (5.10) which, in turn, implies convergence in
Attouch-Wets metric. O

6. REMARKS ON EXTERIOR DOMAINS

In this section, we extend our results to the situation of a Schrédinger operator
Tq acting in L2(2, C) where Q C R? is an exterior domain, i.e. R?\ Q is compact.
We focus on dimension d > 2 since in d = 1 an exterior domain is not connected,
although we can also treat the case when Q2 C R is a half-line. The generalization
is almost straightforward and the proofs are analogous. Therefore we only mention
major differences and additional ingredients.

For an exterior domain 2 we define the corresponding operator Tq in an analo-
gous way as in Section [2| Since 0f) is non-empty, we now have to impose boundary
conditions ensuring that T has non-empty resolvent set. While for the m-sectorial
case § < w/2 we can allow a combination of Dirichlet and Robin conditions, de-
termined by a function ay, : OQF — C, for the case of semi-angle § > 7/2 only
Dirichlet conditions are allowed; this restriction is due to Kato’s Theorem [23, Thm.
VII1.2.5] which we use to define Ty, as a perturbation of an m-accretive operator.

Assumption IV. Let d > 2 and let Q C R? be an exterior domain, i.e. R4\Q # 0
is compact,

o9 = 00P Uk

with O0P closed and with 9QF = () if > /2. If § < /2 and IQF # (), we assume
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(TVIi) regularity of 0Q: Q is Lipschitz;
[IVlii) control of Robin boundary term: ay, € L= (9QR,C).
The main results in Sections [f] and [§] generalize in a straightforward way to the
situation of an exterior domain if analogues of the claims in Sections [2] and [3] are
available. In Subsections below, we provide proof ideas of the latter and

indicate additional modifications in order to prove the following theorem. Here, by
|- [l we denote the norm of L?(2,C).

Assumption L. The sesquilinear form g decomposes as g = go +w where g and
w have the following properties. The form ¢ is generated by Qo € LL (2, C), i.e.

loc
Qo[ = /QQol [*dz, Dlg) == {f € L, C) : Qolf]* € L'(2,O)},

such that
i.Q) sectoriality of Qo with semi-angle 8 < 7/2: there exist ¢ > 0 and 6 €
[0,7/2) with
RGQQ ZCQ, |IH1Q0| Stan& RGQQ;

ii.Q) unboundedness of Qo at infinity:
|Qo(x)] = 00 as x| — oc.
For the form w, there exist R > r > 0 and ¢ € C§° (Rd, R) with
RN\QC B,(0), supp¢ C Br(0), 0<(¢<1, (I1B,(0)=1,
sesquilinear forms wj, wg with ml"nwl’g(”’@CD(wl), D(wq) = L?(Q,C) where
@D}Q,gtf {f€C>(Br(0)NQ,C) : 3fy € CF°(Br(0),C), f= fo [, supp f N 9Q° =
wi

VieDw): VCf€Dar M@ wlf] = wi[\/Cf] +waly/I— (S,

such that
[@Miii.Q)  [|V-||3-boundedness of wy in L*(Br(0)NQ,C): there are a,, >0, by, €[0,1)

H'”W1,2(sz,c)

so that, for every f € Dq r ,

i [f1] < awll £l + 0wl V£l
[Miv.Q) boundedness of wy outside B,(0): there exists M,, > 0 so that, for every
feL*,0),

wa[(1 = xr0) 1] < Mull 1[5,

where x, o is the characteristic function of B,.(0) N .

Assumption IL.Q. The function Q € L2 (€, C) decomposes as

loc
Q=Q -U+W
where Re Qo > 0, U >0, UReQo =0, W € L2 _(Q,C), and the following hold.
i.Q) reqularity of Qo and U: Qg € Wli’coo (Q,C), Ue LE (2, R), and there exist
av, by, ay, by > 0 such that

IVQo|* < ay +by|Qo?, U? <ay +by|ImQol*

ii.Q) unboundedness of Qg at infinity:
|Qo(z)] = 00 as |x| = oo.
There exist R > 7 > 0 such that R?\ Q C B,.(0) and
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(Miii.Q)  A-boundedness of W in L*(Br(0)N$, C): there exist ay > 0, by € [0,1)
such that, for every f € {fe Wy *(Br(0)NQ,C) : Af € L2(Br(0)N€, C)},
W Flig < aw [l I8 + bw | AfIIE;
iV.Q) boundedness of W outside B,.(0): there exists My > 0 such that

(11— Xr0)Wlloo < Mw,

where x, o is the characteristic function of B,(0) N Q.

Theorem 6.1. Let Assumptions and hold with R replaced by Q and, if
applicable, the regularity assumption |(LLIi1)| with O, replaced by the smaller set
o, \ OQ. Further assume that

L. for semi-angle 0 <7 /2, Assumption |L.Q)f holds;
II. for semi-angle 0 > /2, Assumption[I1.Qf holds with by < 1.

Then the statements of Theorems [L.1] b2, and .5 continue to hold with T, T,
replaced by Tq, (Tq)n, respectively .

Proof of Theorem[6.1]: Sketch of modifications of the proofs.

6.1. Semi-angle § < 7/2. The analogue of Proposition holds for the m-
sectorial operator T which is uniquely determined by the closed sectorial form

talf] == [V FI3 + / aml fI2 do + qolf] + wlf].
oa® (6.1)

[V

(2 el
D(tQ) = DQ(H HW1=2(Q,c)+R %[ 7

where
Dq = {f€C™(Q,C) : 3fy € C5° (RY,C) , f=fo[Q, supp f NP =0}.  (6.2)
To show that T, has compact resolvent, first observe that

D(ta) € WH*(€,C) N'D(qo)

and that, by Assumptions |(}iii.Q2)} |(liv.Q)l and a trace embedding analogous
to (3.2), there is a constant ¢ > 0 so that (Retq[] + ¢| - [|3)*/? is equivalent
to (|| - [Ify1.2(0,c) HRe qo[])/2. Next, similarly as in (£.7)), there is C' > 0 such that,
for all sufficiently large n € N and all f € D(tq),

Retolf] + | f||?
2dz < O
/weﬂ,ac|2n|f| <0 essinf ReQq (6.3)

zeQ,|z|>n

Therefore [I, Thm. 2.33] and Assumption [(I}i1.©2)|imply that the embedding (D(tq),
(Retql] + ¢l - [|3)Y/?) = L?(Q,C) is compact.

The approximating operators (Tq), are introduced analogously as in Section
In fact, under Assumption with R? replaced by €, Lemma and Propo-
sition [3.4] are generalized in a straightforward way; there appears an additional
boundary term as in which is a harmless relatively bounded perturbation
with relative bound 0.

In order to prove an analogue of the generalized strong resolvent convergence
in Lemma we use that Dq in is a core of to and rely on the estimate
; the latter is also used to prove the analogue of Lemma i.e. the discrete
compactness of the embeddings.

Norm resolvent convergence and convergence of spectra and pseudospectra then
follow in a straightforward way from these analogues of Lemmas 44
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6.2. Semi-angle 6 > 7/2. In order to prove an analogue of Proposition take
Rq > 0 sufficiently large and £ € C§° (Rd,R) such that
R\ Q C Bro-2(0), &1Bgo(0) =1, suppé C Brot1(0).

Then the closure of

(TQ)min = —A+Q,
D((Ta)min) = {/ € Wo*(2,C) : (~A+Qo)f € LAQ,0), (1 -§)f € CF(2,0)},
is given by

To=-A+Q, D(To)={feW;?*(Q,C): (-A+Qo)f € L*(Q,C)}. (64)
In fact, we may proceed similarly as in the proof of Proposition [2.4] starting with

(To)omin == —A+Qo, D(T0)o,min) := D((T0)min)-

Then Lemmas may be generalized for (7q)o min and (7q)min, with similar
arguments as for the generalizations for the operators Ty ,,, cf. Lemmas and
To this end, we use that every function f € D((Tq)o min) has compact support and
belongs to the domain of the Laplacian defined in L?(£2, C) (because £ f and (1—&) f
both belong to the latter domain); note that the quadratic form has no boundary
term because 92 = NP by the assumptions. We thus arrive at the analogue of
the estimate and at a norm equivalence similar to , i.e. there exist
Ba, ka, Kq > 0 such that, for all f € D((Ta)omin) = P((TQ)min);

BQ

1
IVFIE < 52 IALIG + 555 11 (6.5)

and
ko (A£G + Qo f11G + [1£11%)
< HTQ)min flIE + 1 £113 (6.6)
< Ko (|AFIE + 1Quf1IE + I £11%) -

The latter continues to hold for the closure of (Tq)min. Below we prove that the
closure of (Tq)o,min is (Ta)o where

(To)o == —A+Qo, D((Ta)) :={f € Wy*(2,C) : (~A+Qo)f € L*(2,C)};
then follows from .

To justify that (Tq)o is the closure of (T )o,min, We employ two cut-off functions
¢ € C*(,R), 1 =0,1, that satisfy

0<C <1, (lQ\Bgr,-1(0)=
0<¢G <1, €192\ Bpy(0) =

; CO {BRQ*Q(O) NnQ= 07

Note that these properties yield
GG =0, G1-¢=1-¢ i=0,1 (6.7)
The potential @0 = (pQo satisfies Assumption Thus Proposition and its
proof imply that
Ty := -A+Qo, D(Ty):={f e W' (R%C): (-A+Qo)f € L? (R, C) },

has the separation property, i.e. D(Ty) = W22(R4,C) N {f € L? (Rd, (C) : éof €
L2 (Rd,(C)}, and C§° (Rd, C) is a core of Ty. Let _AgRQH(O)ﬂQ be the Dirichlet
Laplacian in L?(Bgr,,+1(0)N, C) defined via its quadratic form. Observe that if f €
D((Ta)o), then £f € D(—AgRQH(Om) and (1 —¢)f € D(Tp). Since Cg° (R4, C)

is a core of Ty, there exists a sequence {fn}, C C§° (R?,C) that converges to the
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function (1 — &)f € D(Tp) in the graph norm of Ty. Using (6.7) and (6.5)), ,
one may verify that the same holds for the sequence {1 fr}n C C§°(Q2,C). Then

(Ta)o(1 = &) f =To(1 = &)f, (Ta)oCifn =ToC1fn

implies that {£f + Gifntn € D((Tq)o,min) approximates f in the graph norm
of (Tq)o, and so the claim follows.

The operator (Tq)g is m-accretive, cf. Kato’s theorem [23, Thm. VII.2.5]. Using
Assumption |(IT}ii.02)] we obtain that the resolvent of (Tq)g is compact. The same
holds for Ty, by a perturbation argument as in the proof of Proposition 2:4] In the
same way, we prove a resolvent estimate similar to .

The approximating operators are introduced similarly as in Section [3.2

Generalized strong resolvent convergence, cf. Lemma and discrete compact-
ness of the embeddings, c¢f. Lemma [£.4] can be verified by straightforward gener-
alizations of the given proofs; here we make use of the analogue of which
follows from .

As in the case 0 < 7/2, the claims in Theorem then follow from these

analogues of Lemmas

7. EXAMPLES

In this section, we present numerical examples for dimensions d = 1,2,3. All
numerical computations arising in this section were performed on a standard dual-
core Linux machine with the use of the software Wolfram Mathematica 9. The
differential equations on finite intervals were solved numerically by implementing a
shooting method in Mathematica.

7.1. Potentials Q(x) = iz and Q(z) = iz® in R. The sets Q,, are intervals
(—$n, Sn) with s, /* 00 as n — 0o and we impose various boundary conditions at
the endpoints +s,,.

Potential Q(z) = ixz. Here the resolvent of T is compact and the spectrum of T is
empty, cf. for example [43] 3], whereas the spectrum of T}, in L2((—s,,, s,), C) is not,

o(T) =0, o(T,)#0, neN, (7.1)

since T}, is a bounded perturbation of —d?/da? with separated boundary conditions;
moreover, the system of eigenfunctions and associated functions of the operator T,
forms a Riesz basis, cf. [39]. The pseudospectra of T are also well-studied, cf. [I1].
For T,, with Dirichlet conditions, a detailed analysis of the bottom of the spectrum
can be found in [7]: it was proved that

lim (inf Reo(T,)) = lp] (7.2)

n—oo 2
where 0 > py &~ —2.338 is the first zero of the Airy function, ¢f. [7, Thm. 3.1].

We illustrate the behaviour of the eigenvalues of T, with Dirichlet conditions
in Figure for Robin conditions, the plots look similar. The parameter s, is
chosen as s, := 0.05n for n = 1,...,200, hence s, € [0,10]. We see that, as
n increases, every eigenvalue A, of T, meets another, and they form a complex
conjugate pair. The real parts of this pair seem to converge, whereas the imaginary
parts diverge to oo in almost straight lines. Hence in the limit n — oo there
are no eigenvalues left, which is in agreement with and our result on spectral
exactness, cf. Theorem The behaviour of the eigenvalue with the lowest real
part is in agreement with the result .
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FIGURE 1. Q(z) = iz: Real (left) and imaginary (right) part of the
eigenvalues of T;, on (—sn, sn) and Dirichlet conditions.

Potential Q(z) = iz®. The imaginary cubic oscillator and related operators have
been studied extensively, ¢f. [I7,9, 42 [44] 27,31, 26]. It is known that all eigenvalues
M) of T are real and simple, behave asymptotically as %/, and the system of
eigenfunctions of 7' is complete in L?(R,C) but does not form a basis, cf. [44}, [31]
for the two latter. As in the previous example, the system of eigenfunctions of T,
forms a Riesz basis.

The plot in Figure [2] shows the behaviour of the eigenvalues of T, for increasing
Q,, = (—$n, Sp) with Dirichlet and Neumann boundary conditions at +s,,, marked
by red balls and blue squares, respectively; for Robin conditions the eigenvalue
behaviour is similar.

Re(A Im()
ZS( ) - 8un 10y
. '. '. o .
15 P 5 .
. “a " N
. . . ) L o K .
o - Lw N = - S
ey, Lo, 20 w3,
-.. l.=. L) -... . ..
5 S W -5 ’
.""-,._. -.::-..::__._ - .
-------------- 2t ermee oo K .
s, —-10

0 1 2 3 4

FIGURE 2. Q(z) =iz®: Real (left) and imaginary (right) part of the
eigenvalues of T5, on (—sn, $n) with Dirichlet (red balls) / Neumann (blue
squares) conditions, and lowest 6 (real) eigenvalues of T' (dashed hori-
zontal lines).

For small n, the eigenvalues are all real. If n is increased, some eigenvalues form
complex conjugate pairs and their imaginary parts diverge, so they do not have a
limit in C, while other eigenvalues do converge to a finite limit A which must be an
eigenvalue of T due to our spectral exactness Theorem and all eigenvalues of
T are approximated in this way. This also confirms that the numerically computed
eigenvalues in [9 Tab. 1] or the following ones computed by M. Tater, cf. [47],

AV = 11562671, AP =4.1002288, AP = 7.5622739,
AL = 11314422, AD = 15201554, A9 = 19.451529,

indeed approximate true eigenvalues.

Figure |2 also shows that, for s, > 4, at the bottom of the spectrum of T the
difference between our numerical approximations and their limits, i.e. the true
eigenvalues, marked by dashed horizontal lines, is already very small. For Dirichlet
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conditions at the endpoints +s,,, the convergence rate of [A(1) — /\,(11)| is illustrated
in Figure [3] where

AD = ming(T) ~ Ap . AD = mino(T,).

The left plot in Figure [3] is a zoom of Figure [2] near the relevant values which
reveals that )\511) seems to converge to A1) in an oscillatory manner; the right plot,
where the values of log |A\(1) — )\511)| are shown to make the oscillations better visible,
suggests an exponential convergence rate of the eigenvalues as s, /* co.

Re(d) logiA®V -2,
1.5 O
14 &
.u.‘..o
13 . -5 "
12 — .
11 Y 10 T,
10 ... .: .".
0.9 - —15
0 1 2 3 4 1 2 3 PR
FIGURE 3. Q(z) = iz*: Approximation of lowest eigenvalue AW

(dashed horizontal line on the left) of T' by lowest eigenvalue AP of
T, with Dirichlet conditions.

7.2. Harmonic oscillator in R3. In several dimensions, the simplest choice of
Q,, are cubes and balls. While the former are natural for potentials allowing for
separation in Cartesian coordinates, the latter are suitable for radial potentials,
i.e. Q(xr) = Q(|z|). The harmonic oscillator, i.e. Q(z) := |z|?, allows for both
separations. In the following, we compare the approximations for cubes and balls.

For Q,, = (—8y, $,) with s,, 0o, the eigenvalue problem for T}, is reduced to
the one-dimensional problem

—f"(@) + 2?f(2) = pf(z), @€ (=sn,sn), (7.3)

subject to Robin conditions at the artificial endpoints +s,,. Any eigenvalue A of T,
can be expressed as A = u( + p0) 4 40 where {M(k)}k are the eigenvalues of the
one-dimensional problem (7.3)).

For €2, = B,, (0) with s, * 0o, the operator can be written in spherical coordi-
nates. The eigenfunctions of T, can be factorized as f(r,0, ¢) = g(r)Y;" (8, ). Here
the spherical harmonics Y;"(6, ), m = —1,...,1, | € Ny, satisfy AY;" = l(l;gl)Ylm,
while ¢ is an eigenfunction of the radial problem

—q"(r) — %g'(r) + <l(lr—gl) + r2> g(r) =Xxg(r), re(0,s,),

with some Robin condition at s,,.

In Figure[4 we compare the eigenvalues of T}, for cubes and balls with Dirichlet
conditions; for Robin conditions the plots are similar. The behaviour of the eigen-
value approximations does not differ much for cubes and balls, both converge to true
eigenvalues and all true eigenvalues are approximated in this way, c¢f. Theorem [5.1

The degeneracy of the k-th eigenvalue \(¥) (ordered increasingly) is @; note
that, in Figure [d] some curves represent eigenvalues of higher multiplicity so that

the sum of the multiplicities of all curves converging to A*) equals its degeneracy.
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FIGURE 4. Eigenvalues of harmonic oscillator in R® approximated on
cubes Q, = (—sn,5,)° (left) and balls Q,, = Bs,,(0) (right) for Dirichlet

conditions.

7.3. Rotated oscillator on exterior domain in R?. In [I6, Ex. 1], the problem
—Af(zy) + (1430 (2% +y°) f(,y) = Mf(2,9),  2®+y*>1,
f($,y):(), 1724‘242:17

was studied, but it could not be decided whether domain truncation is spectrally
exact. Our new result, ¢f. Theorem yields a definite and positive result.

If we truncate the exterior domain R?\B;(0) to Q, := B, (0)\B1(0) for some
sequence s, /0o as n— oo and impose Dirichlet conditions on the outer boundary,
we obtain a spectrally exact approximation, ¢f. Theorem[6.1] In polar coordinates,
the truncated problem decouples into an infinite system of problems that depend
on | € Ny (representing the angular part),

2
—f"(r) - %f’(r) + ((1 +3i)r? + ;) f(r)y=Xf(r), re (1,8n),

fir)y=0, re{l,sp}

We performed numerical computations to find and approximate the eigenvalues
in the box [0,20] + [0,15]i for different | € Ny and increasing s,. For [ > 7,
no eigenvalue was found in this box. For [ = 0,1,...,6, the eigenvalues in the box
change very little (less than 10~7) for s,, € [5,10]. So the numerical approximations
for s, = 10 shown in Table Eﬂ are already near true eigenvalues.

(7.4)

Value of [ Approximate eigenvalues \,, up to 7 digits
=0 An & 8.1962583 + 9.8951098 i

=1 An & 8.5747825 + 9.9950630 i

=2 An &~ 9.6945118 + 10.30615851

=3 An & 11.5061205 + 10.8625746 1

=4 An A~ 13.9201983 + 11.72119381

=5 An & 16.7923324 + 12.9529682 1

=6 An & 19.9029928 + 14.60189781

TABLE 1. Eigenvalues A, € [0,20] + [0, 15]1 of (7.4) for s, = 10.

1We mention that the numerical values in [16] should be modified correspondingly, cf. [38].
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