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ABSTRACT

We consider non-self-adjoint electromagnetic Schrödinger operators on ar-

bitrary open sets with complex scalar potentials whose real part is not

necessarily bounded from below. Under a suitable sufficient condition on

the electromagnetic potential, we introduce a Dirichlet realisation as a

closed densely defined operator with non-empty resolvent set and show

that the eigenfunctions corresponding to discrete eigenvalues satisfy an

Agmon-type exponential decay.

1. Introduction

1.1. Context and motivation. We consider the electromagnetic Schrödinger

operator

(1.1) (−i∇+A)2 + V in L2(Ω) ,

subject to Dirichlet boundary conditions on ∂Ω, where Ω is an arbitrary open

subset of Rd. The functions V : Ω → C and A : Ω → Rd are the scalar (electric)

and vector (magnetic) potentials, respectively.

If d = 3 and V is real-valued, the self-adjoint Dirichlet realisation of (1.1)

is the Hamiltonian of a quantum particle constrained to a nanostructure Ω

and subjected to an external electromagnetic field (− gradV,− rotA). The

literature on the subject is enormous and we restrict ourselves to referring to

the recent book [24] with an extensive bibliography.

Although complex-valued potentials V have appeared in quantum theory

from its early years, too, notably in the context of effective Hamiltonians for

open systems (see, e.g., [16]) and resonances (see [1] for a more recent study),

the corresponding spectral theory is much less developed. The interest in non-

self-adjoint Schrödinger operators has been renewed at the turn of the millenium

with the advent of the so-called quasi-Hermitian quantum mechanics (see [22]

for a mathematically oriented review). There are also motivations in other
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areas of physics, for instance, superconductivity (see [3] for a mathematical

treatement) and optics with a number of recent experiments (see, e.g., [25]).

Finally, Schrödinger operators with potentials having a complex coupling con-

stant (in fact spectral parameter) appear naturally in the study of the damped

wave equation (see, e.g., [28, 7]).

1.2. About the main results. Our main result is the Agmon-type expo-

nential decay of eigenfunctions corresponding to discrete eigenvalues of (1.1),

cf. Theorem 2.9, which can be viewed as a non-self-adjoint version of the

Agmon–Persson estimates, see [23, 2]. We emphasise that the decay is not

an effect of the positive part of ReV since it may be absent, or even worse,

ReV is allowed to be negative and unbounded at infinity.

1.2.1. A sufficient condition to define the operator. The first problem that we

tackle in our analysis is finding of a Dirichlet realisation of (1.1) with non-empty

resolvent set. This is not a trivial task as we do not restrict the signs of ReV

and ImV and so the standard sectorial form techniques of [21, Sec. VI.2.1] are

not available.

A simple example one should have in mind is

(1.2) − d2

dx2
− x2 + ix3 in L2(R) ,

for which the numerical range covers the whole complex plane. Due to the

latter, even Kato’s theorem for accretive Schrödinger operators, based on Kato’s

distributional inequality [13, Sec. VII.2], is not applicable immediately.1 Here

we can even go beyond operators like (1.2) for which the suitable Dirichlet

realisation can be actually found by available methods in [4, 5]. We allow

much wilder behaviour of V in terms of the possible growth at infinity and

oscillations. In more detail, we essentially require that (cf. Assumption 2.1 and

Proposition 2.3)

|∇V (x)| + |∇B(x)| = o
(
(|V (x)|+ |B(x)|) 3

2 + 1
)
,(1.3)

(ReV (x))− = o
(
|V (x)|+ |B(x)| + 1

)
,(1.4)

1 Note that, in special self-adjoint settings, however, interesting alternative approaches can

be found in the literature. For instance, in [19], representation theorems for indefinite

quadratic forms are established and can be used to define certain self-adjoint operators

possibly unbounded from below.
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as |x| → ∞, where (ReV )− is the negative part of ReV and B := dA is the

magnetic matrix.

The condition (1.4) puts restrictions on the size of (ReV )− which in fact

represents a “small” perturbation of an m-accretive operator (1.1) with V re-

placed by (ReV )++i ImV . Notice, however, that (ReV )− can be compensated

not only by ImV , but also by the magnetic field. In a different context (ab-

sence of eigenvalues), a certain analogy between the magnetic field and ImV

was observed in [17].

1.2.2. About the power 3
2 . The power 3

2 in the condition (1.3) is an improvement

comparing to [4, 5] where the power 1 is assumed; in these references (where

(1.2) fits already), a big-O instead of the little-o is used. In the present paper,

we can therefore treat examples like

(1.5) − d2

dx2
− ex

2

+ iex
4

in L2(R) .

Moreover, we show in Theorem 2.5 that the operator domain of the found

realisation of (1.1) possesses a very convenient separation property, namely

(1.6) Dom((−i∇+A)2 + V ) = Dom((−i∇+A)2) ∩ Dom(V ) .

The power 3
2 in (1.3) is not a coincidence as it is known to be optimal (with

little-o replaced by a sufficiently small constant in (1.3)) with respect to the

separation property in the self-adjoint case [14, 15, 8] (see also [11], [20] in the

magnetic case).

1.2.3. Weighted coercivity. Our approach for proving all the results of this paper

is based on the generalised Lax–Milgram-type theorem of Almog and Helffer [4]

involving a new idea of weighted coercivity, which can be viewed as a gene-

ralisation of the T-coercivity (see for instance [6, Def. 2.1]). While from the

point of view of abstract Lax–Milgram or representation theorems, an optimal

“if and only if” condition for m-accretivity was found in the recent work [29,

Thm. 4.2], the weighted coercivity of Theorem 3.3 makes such abstract results

directly applicable for (1.1). Moreover, the present paper reveals a connection

between weighted coercivity and exponential decay of eigenfunctions stated in

Theorem 2.9.
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1.3. Examples of applications. Besides the independent interest of our re-

sults, we indicate below two connections to other recent works, both when |V |
is confining so that the resolvent of (1.1) is compact (see Proposition 2.6). The

first one concerns the completeness of the eigensystem of (1.1), the second one

the rates of eigenvalue convergence of domain truncations.

1.3.1. Eigensystem completeness. The crucial ingredient in a natural proof of

the eigensystem completeness is the fundamental result of operator theory (see,

e.g., [12, Cor. XI.9.31]) combining the p-Schatten class property of the resol-

vent and a control of the resolvent norm on a sufficient number of rays in C;

for operators like (1.1), this approach was followed in [27, 4]. We indicate how

the completeness results can be extended to operators satisfying weaker conditi-

ons (1.3) only. Our domain separation and the graph norm estimate (cf. Theo-

rem 2.5), the second resolvent identity and the ideal property of Schatten classes

show that the resolvent of (1.1) is in the p-Schatten class (0 < p < ∞) if and

only if the resolvent of the self-adjoint (1.1) with V replaced by |V | is in the

p-Schatten class; to obtain the value of p depending on V and A, criteria of

the type [4, Thm. 1.3] can be applied. To have the control of the resolvent

norm on rays in C, we can use the standard bound (1 over the distance to the

numerical range) if (1.1) is at least accretive and, in the non-accretive case,

the perturbation result [21, Thm. IV.3.17] with viewing (ReV )− as a relati-

vely bounded perturbation of an m-accretive operator (1.1) with V replaced by

(ReV )+ + i ImV (see [5, Prop. 2.4 (iv)] for details on such an approach).

1.3.2. Domain truncation. It was proved in [5] that eigenvalues of (1.1) on Rd

with A = 0 and V satisfying (stronger) conditions of the type (1.3)–(1.4),

see [5, Asm. II], can be approximated without pollution by the eigenvalues

of (1.1) truncated to a sequence of expanding domains, e.g. balls, and subject

to Dirichlet boundary conditions. The rate of convergence for a given eigen-

value of (1.1) on Rd was estimated by the decay rate of the corresponding

eigenfunctions (and generalised eigenfunctions in the case of Jordan blocks) at

infinity (see [5, Thm. 5.2]). Our Agmon-type estimate (cf. Theorem 2.9 and Re-

mark 2.10) shows that this convergence is exponential which vastly generalises

known facts for complex polynomial potentials (see, e.g., [26, 9]).

1.4. Organisation of the paper. In Section 2, we summarise our main re-

sults. The definition of (1.1) as a closed densely defined operator together with
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a convenient characterisation of the operator domain is performed in Section 3.

The spectral properties are established in Section 4. At the end of the paper,

we attach Appendix A with elements of spectral theory related to the present

study.

2. Main results

2.1. Assumptions. Let Ω be a non-empty open (possibly unbounded) subset

of Rd, d � 1. Another standing assumption of this paper is that the electro-

magnetic potentials satisfy

(V,A) ∈ C1(Ω;C)× C2(Ω;Rd) .

This smoothness hypothesis is technically convenient, but it is definitely far

from being optimal for the applicability of our techniques and the validity of the

obtained results. We write V = V1+ iV2 where V1 and V2 are real-valued. Asso-

ciated with the vector potential A, we consider the magnetic (skew-symmetric)

matrix

(2.1) B = (Bjk)j,k∈{1,...,d} , Bjk := ∂jAk − ∂kAj = i[Pj , Pk] ,

where P� := −i∂� +A�.

As in [4], let us introduce functions

(2.2) Φ :=
V2

mB,V
and Ψ :=

B

mB,V
,

where

mB,V :=

√
1 + |B|2 + |V |2 .

Here |V (x)| denotes the usual norm of a complex number, while we use

|B(x)| :=
√√√√ d∑

j,k=1

Bjk(x)2 , |∇B(x)| :=
√√√√ d∑

j,k=1

|∇Bjk(x)|2 ,

where |∇Bjk(x)| is now the usual Euclidean norm of a vector in Rd. Finally, gi-

ven a real-valued function a, we adopt the standard notation a± := max(±a, 0).
With these notations, the main hypothesis of this paper reads:

Assumption 2.1: There exist constants γ1 > 0 and γ2 ∈ R such that

(2.3)
V 2
2 + 1

12d |B|2
mB,V

+ V1 − 9
(
|∇Φ|2 + |∇Ψ|2

)
� γ1mB,V − γ2 .
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Remark 2.2: On the left-hand side in (2.3), the first term is non-negative, the

last bracket gives a non-positive contribution and V1 has no sign a priori. If V1

is bounded from below, then we only have to control the last term to obtain the

required inequality. The point is that V2 or B can be used to control the non-

positive contribution of V1. Note also that we can replace the assumption (2.3)

by the weaker one:

(2.4)
V 2
2 + 1

12d |B|2
mB,V

+ V1 − 9
(
|∇Φ|2 + |∇Ψ|2

)
� γ1|V | − γ2 ,

up to slight modifications of our variational framework.

Assumption 2.1 is easily checked to hold for (1.2). A sufficient condition for

the validity of Assumption 2.1 is contained in the following proposition.

Proposition 2.3: Suppose

|∇V (x)| + |∇B(x)| = o
(
m

3
2

B,V (x)
)
,(2.5)

(V1)− (x) = o
(
mB,V (x)

)
,(2.6)

as |x| → +∞. Then Assumption 2.1 is satisfied.

2.2. Definition of the operator. First we introduce the usual magnetic

Sobolev space

H1
A(Ω) := {u ∈ L2(Ω) : (−i∇+A)u ∈ L2(Ω)} ,

equipped with the norm

‖u‖H1
A(Ω) :=

√
‖u‖2 + ‖(−i∇+A)u‖2 .

Here ‖ · ‖ denotes the norm of L2(Ω) and the associated inner product will be

denoted by 〈·, ·〉. We also introduce the subspace H1
A,0(Ω) defined as the closure

of C∞
0 (Ω) for the norm ‖ · ‖H1

A(Ω). Then we can introduce our variational space

as

V :=
{
u ∈ H1

A,0(Ω) : m
1
2

B,V u ∈ L2(Ω)
}
,

equipped with the norm

‖u‖V :=

√
‖u‖2H1

A(Ω) +

∫
Ω

mB,V |u|2 dx ,

with respect to which V is complete.
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We introduce a sesquilinear form

Q(u, v) := 〈(−i∇+A)u, (−i∇+A)v〉+
∫
Ω

V uv dx , Dom(Q) := V .

For u, v ∈ C∞
0 (Ω), a dense subspace of V , we have

Q(u, v) =
〈
(−i∇+A)2u+ V u, v

〉
,

so Q is the form naturally associated with (1.1). If V were such that Q was

sectorial, then Q would be closed and it would give rise to an m-sectorial opera-

tor by Kato’s representation theorem [21, Thm. VI.2.1]. In our general setting

(where the numerical range of Q is allowed to be the whole complex plane),

however, there is no general representation theorem and even the notion of clo-

sedness for forms is not standard. Anyway, we are still allowed to introduce an

operator L by the Riesz theorem

(2.7) ∀u ∈ Dom(L ), ∀v ∈ V , Q(u, v) =: 〈L u, v〉 ,
where

(2.8) Dom(L ) :=
{
v ∈ V :

u �→ Q(u, v) is continuous on V for the norm of L2(Ω)
}
.

The following theorem shows that such a defined operator L shares all the

nice properties of operators introduced by the standard representation theorem.

The proof is based on the new abstract representation theorem of Almog and

Helffer (see [4, Thm. 2.2], reproduced below as Theorem 3.2).

Theorem 2.4: Suppose Assumption 2.1. The following properties hold:

(i) Dom(L ) is dense in L2(Ω),

(ii) L is closed,

(iii) the resolvent set of L is not empty.

Furthermore, we have the following description of the domain of L .

Theorem 2.5: Let (2.5) and (2.6) hold. Then we have

Dom(L ) =
{
u ∈ V : (−i∇+A)2u ∈ L2(Ω) ∧ V u ∈ L2(Ω)

}
.

Moreover, for every δ > 0, there exists Cδ > 0 such that, for all u ∈ Dom(L ),

(2.9) ‖L u‖2 � (1− δ)
(‖(−i∇+A)2u‖2 + ‖V u‖2)− Cδ‖u‖2.
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2.3. Spectral properties. The reader may wish to consult Appendix A,

where we recall basic definitions related to the spectrum and Fredholm proper-

ties.

First of all, we give a sufficient condition for L to have a purely discrete

spectrum.

Proposition 2.6: Suppose Assumption 2.1. If

(2.10) lim
|x|→+∞

mB,V (x) = +∞ ,

then L is an operator with compact resolvent.

In general, we give an estimate on the location of the essential spectrum. To

this purpose, let us introduce the quantity (which is either a finite non-negative

number or infinity)

m∞ := lim inf
|x|→+∞

mB,V (x) ,

and the following family of subsets of the complex plane:

ρc := {μ ∈ C : −c− Reμ− |Imμ| > 0} ,
where c is any real number.

Theorem 2.7: Suppose Assumption 2.1. We have

(2.11) ργ2 ⊂ ρ(L ) .

Moreover, assuming that m∞ is positive, we have

(2.12) ργ2 ⊂ ργ2−γ1m̌∞ ⊂ Fred0(L )

for all m̌∞ ∈ (0,m∞). The spectrum of L contained in ργ2−γ1m̌∞ , if it exists,

is formed by isolated eigenvalues with finite algebraic multiplicity.

Remark 2.8: When m∞ = +∞, we recover from Theorem 2.7 the result of

Proposition 2.6.

Finally, we state our main result. It shows in particular that the discrete

spectrum in the region ργ2−γ1m̌∞ is associated with exponentially decaying ei-

genfunctions and that this decay may be estimated in terms of an Agmon-type

distance.

Theorem 2.9: Suppose Assumption 2.1. Let us assume that

sp(L ) ∩ ργ2−γ1m̌∞ �= ∅
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and consider λ in this set. Let us define the metric

g(x) := (γ1mB,V (x) − Re (λ)− |Im (λ)| − γ2)+ dx2 ,

and the corresponding Agmon distance (to any fixed point of Ω) dAg(x) that

satisfies

(2.13) |∇dAg|2 = (γ1mB,V − Re (λ)− |Im (λ)| − γ2)+ .

Pick any ε ∈ (0, 1). If ψ is an eigenfunction associated with λ, we have

(2.14) e
1−ε
3 dAg ψ ∈ L2(Ω) .

The same conclusion holds for all ψ in the algebraic eigenspace associated

with λ.

Remark 2.10: If there exist R > 0 and γ > 0 such that,

∀|x| � R , γ1mB,V − Re (λ) − |Im (λ)| − γ2 � γ ,

then there exists M � 0 such that, in this region, dAg(x) � γ |x| −M .

Remark 2.11: In relation to Remark 2.2, if one replaced (2.3) by (2.4), the

metric g(x) would be changed into

(γ1|V (x)| − Re (λ) − |Im (λ)| − γ2)+ dx2 ,

and thus the weaker assumption would lead to a weaker decay of eigenfunctions.

3. Weighted coercivity and representation theorems

The main objective of this section is to prove Theorems 2.4 and 2.5.

3.1. Two abstract representation theorems. We first recall the follo-

wing generalised representation theorems from [4].

Theorem 3.1 ([4, Thm. 2.1]): Let V be a Hilbert space. Let Q be a continuous

sesquilinear form on V × V . Assume that there exist Φ1,Φ2 ∈ L(V) and α > 0

such that for all u ∈ V we have

|Q(u, u)|+ |Q(Φ1(u), u)| � α ‖u‖2V ,

|Q(u, u)|+ |Q(u,Φ2(u))| � α ‖u‖2V .

The operator A defined by

∀u, v ∈ V , Q(u, v) = 〈A u, v〉V
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is a continuous isomorphism of V onto V with bounded inverse.

Theorem 3.2 ([4, Thm. 2.2]): In addition to the hypotheses of Theorem 3.1,

assume that H is a Hilbert space such that V is continuously embedded and

dense in H and that Φ1 and Φ2 extend to bounded operators on H. Then the

operator L defined by

∀u ∈ Dom(L ), ∀v ∈ V , Q(u, v) =: 〈L u, v〉H
where

Dom(L ) :=
{
u ∈ V :

the map v �→ Q(u, v) is continuous on V for the norm of H
}
,

satisfies the following properties:

(i) L is bijective from Dom(L ) onto H,

(ii) Dom(L ) is dense in V and in H,

(iii) L is closed.

3.2. Weighted coercivity estimates. For any complex number μ, consider

the shifted form Qμ(u, v) := Q(u, v)− μ 〈u, v〉. The aim of this subsection is to

prove the following estimate and deduce Theorem 2.4 from it (with the help of

Theorem 3.2).

Theorem 3.3 (Weighted coercivity): For every μ ∈ C, W ∈ W 1,∞(Ω;R) and

all u ∈ C∞
0 (Ω), we have

Re
[
Qμ(u, e

2Wu)
]
+ Im

[
Qμ(u,Φe

2Wu)
]
� 1

2

∥∥(−i∇+A)eWu
∥∥2

+

∫
Ω

∣∣eWu
∣∣2 [V 2

2 + 1
12d |B|2

mB,V
+ V1 − Reμ− |Imμ|

− 9
(
|∇Φ|2 + |∇Ψ|2 + |∇W |2

)]
dx .

In order to prove Theorem 3.3, we need two lemmata.

Lemma 3.4: For every u ∈ C∞
0 (Ω), we have∫

Ω

|B|2
mB,V

|u|2 dx � 3d ‖(−i∇+A)u‖2 + ‖(∇Ψ)u‖2 .
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Proof. Let u ∈ C∞
0 (Ω) and j, k ∈ �1, d� := [1, d] ∩ Z. Using (2.1) and (2.2), we

have∫
Ω

B2
jk

mB,V
|u|2 dx =

〈
i[Pj , Pk]u,Ψjku

〉
=
〈
iPku, PjΨjku

〉− 〈iPju, PkΨjku
〉

=
〈
iPku,ΨjkPju

〉− 〈iPju,ΨjkPku
〉− 〈Pku, (∂jΨjk)u

〉
+
〈
Pju, (∂kΨjk)u

〉
� 3

2
‖Pju‖2 + 3

2
‖Pku‖2 + 1

2
‖(∂jΨjk)u‖2 + 1

2
‖(∂kΨjk)u‖2 .

We conclude by summing over j, k ∈ �1, d�.

The second lemma follows elementarily by a commutator computation.

Lemma 3.5: For every u ∈ C∞
0 (Ω) and χ ∈W 1,∞(Ω;R), we have

Re
〈
(−i∇+A)u, (−i∇+A)χ2u

〉
= ‖(−i∇+A)χu‖2 − ‖(∇χ)u‖2 .

Now we are in a position to prove Theorem 3.3.

Proof of Theorem 3.3. Let us consider u ∈ C∞
0 (Ω) and W ∈ W 1,∞(Ω;R).

Choosing χ := eW in Lemma 3.5, we get the identity

(3.1)

Re
[
Q(u, e2Wu)

]
=

∫
Ω

V1
∣∣eWu

∣∣2 dx+
∥∥(−i∇+A)eWu

∥∥2 − ∥∥(∇W )eWu
∥∥2 .

Moreover, we have

Im
[
Q(u,Φe2Wu)

]
= Im

〈
(−i∇+A)u, (−i∇+A)(Φe2Wu)

〉
+

∫
Ω

V 2
2

mB,V

∣∣eWu
∣∣2 dx .

The first term of the right-hand side equals

Im
〈
(−i∇+A)u,−i(∇Φ+ 2Φ∇W )e2Wu)

〉
= Im

〈
eW (−i∇+A)u,−i(∇Φ+ 2Φ∇W )eWu)

〉
= Im

〈
(−i∇+A)eWu,−i(∇Φ+ 2Φ∇W )eWu)

〉
.

Consequently, for all α ∈ (0, 1), we have∣∣Im 〈(−i∇+A)u, (−i∇+A)(Φe2Wu)
〉∣∣

� α
∥∥(−i∇+A)eWu

∥∥2 + 1

4α

∥∥(∇Φ + 2(∇W )Φ
)
eWu

∥∥2
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and therefore

(3.2) Im
[
Q(u,Φe2Wu)

]
�
∫
Ω

V 2
2

mB,V

∣∣eWu
∣∣2 dx

− α
∥∥(−i∇+A)eWu

∥∥2 − 1

4α

∥∥(∇Φ+ 2(∇W )Φ
)
eWu

∥∥2 .
Summing up (3.1) and (3.2), we deduce

Re
[
Q(u, e2Wu)

]
+ Im

[
Q(u,Φe2Wu)

]
� (1− α)

∥∥(−i∇+A)eWu
∥∥2

+

∫
Ω

∣∣eWu
∣∣2( V 2

2

mB,V
+ V1 − |∇W |2 − 1

2α
|∇Φ|2 − 2

α
|∇W |2

)
dx .

It remains to add the term involving |B|2. By Lemma 3.4, we have∥∥(−i∇+A)eWu
∥∥2 � 1

3d

(∫
Ω

|B|2
mB,V

∣∣eWu
∣∣2 dx− ∥∥(∇Ψ)eWu

∥∥2) .

Thus, for all β ∈ [0, 1− α], we get

Re
[
Q(u, e2Wu)

]
+ Im

[
Q(u,Φe2Wu)

]
� (1− α− β)

∥∥(−i∇+A)eWu
∥∥2

+

∫
Ω

∣∣eWu
∣∣2[V 2

2 + β
3d |B|2

mB,V
+ V1 − 2 + α

α
|∇W |2 − 1

2α
|∇Φ|2 − β

3d
|∇Ψ|2

]
dx .

The proof is concluded by taking α = β = 1
4 and adding the contribution related

to the shift by μ.

With Theorems 3.2 and 3.3 we easily deduce Theorem 2.4.

Proof of Theorem 2.4. Under Assumption 2.1, the inequality of Theorem 3.3

extends to all u ∈ V . Applied with W = 0, Theorem 3.3 then gives, for all

u ∈ V ,

(3.3) |Qμ(u, u)|+ |Qμ(u,Φu)| � 1

2
‖(−i∇+A)u‖2

+

∫
Ω

|u|2
(
V 2
2 + 1

12d |B|2
mB,V

+ V1 − Reμ− |Imμ| − 9(|∇Φ|2 + |∇Ψ|2)
)

dx .

Using Assumption 2.1, it implies

(3.4)

|Qμ(u, u)|+ |Qμ(u,Φu)| � 1

2
‖(−i∇+A)u‖2

+

∫
Ω

(γ1mB,V − Reμ− |Imμ| − γ2) |u|2 dx .
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Taking μ ∈ R such that μ < −γ2, the inequality establishes the coercivity of Qμ

on V , so it is enough to apply Theorem 3.2 to Qμ.

3.3. Description of the operator domain. At this moment, we only know

that the operator domain of L is given by (2.8). This subsection is devoted to a

proof of Theorem 2.5, which gives a more explicit characterisation of Dom(L ).

Let us first state a density result.

Lemma 3.6: The set

(3.5) D :=
{
u ∈ Dom(L ) : suppu is compact in Ω

}
is a core of L .

Proof. From the definition of Dom(L ) given by (2.8), we get that

(3.6) Dom(L ) ⊂ {u ∈ V : (−i∇+A)2u+ V u ∈ L2(Ω)} .

Take u ∈ Dom(L ) and notice that V u ∈ L2
loc(Ω) from our regularity assumption

about V , thus (−i∇+A)2u ∈ L2
loc(Ω) as well. We define a suitable cut-off, see

[10, proof of Thm. 8.2.1]. Consider a non-negative function ϕ ∈ C∞
0 (Rd) such

that ϕ(x) = 1 if |x| < 1 and ϕ(x) = 0 if |x| > 2 and, for u ∈ Dom(L ), define,

for all x ∈ Ω and n ∈ N,

(3.7) un(x) := u(x)ϕn(x) , ϕn(x) := ϕ
(x
n

)
.

Since

(3.8) (−i∇+A)2un = ϕn(−i∇+A)2u− 2i∇ϕn · (−i∇+A)u − (Δϕn)u ,

we have from the derived regularity of u and the compactness of suppϕn that

{un}n∈N ⊂ D. Moreover, by the dominated convergence theorem, ‖un−u‖ → 0

as n→ ∞ and

‖[(−i∇+A)2 + V ]u− [(−i∇+A)2 + V ]un‖
� ‖(1−ϕn)[(−i∇+A)2+V ]u‖+2‖∇ϕn ·(−i∇+A)u‖+‖(Δϕn)u‖ −−−−→

n→∞ 0 ,

since ‖∇ϕn‖L∞(Rd) = n−1‖∇ϕ‖L∞(Rd), ‖Δϕn‖L∞(Rd) = n−2‖Δϕ‖L∞(Rd) and

u ∈ V .

By integrating by parts, we get the following lemma.
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Lemma 3.7: For all u ∈ D and δ > 0, we have

2 ‖(−i∇+A)u‖2 � δ‖(−i∇+A)2u‖2 + δ−1‖u‖2 .
Proof. For every u ∈ D, we have

‖(−i∇+A)u‖2 = 〈(−i∇+A)u, (−i∇+A)u〉 = 〈(−i∇+A)2u, u
〉

where the second equality employs an integration by parts using our regularity

assumptions about V and A, namely V u ∈ L2(Ω) with (3.6). The proof is

concluded by applying the Cauchy–Schwarz and Young inequalities.

In the following Lemma 3.8 and Proposition 3.9, we establish estimates on

|B|u; the proofs are adaptations of [4, Lem. 3.4].

Lemma 3.8: Suppose (2.5). There exists C > 0 such that, for all u ∈ D,

(3.9)∥∥|B|u∥∥2 � C
(
‖m 1

2

B,V (−i∇+A)u‖2 + ‖V u‖2 + ‖(−i∇+A)2u‖2 + ‖u‖2
)
.

Proof. Let u ∈ D. Then Bjku ∈ V and similarly as in Lemma 3.4, we have

(3.10) ‖Bjku‖2 = Im 〈[Pj , Pk]u,Bjku〉 � |〈Pku, PjBjku〉|+ |〈Pju, PkBjku〉|
for every j, k ∈ �1, d�. Further, using the assumption (2.5), we get that, for all

ε1 > 0, there exist Cε1 , C̃ε1 > 0 such that

(3.11)
|〈Pku, PjBjku〉| � |〈BjkPku, Pju〉|+ |〈Pku, u∂jBjk〉|

� ‖|Bjk| 12Pku‖ ‖|Bjk| 12Pju‖+ ε1‖m
1
2

B,V Pku‖ ‖mB,V u‖
+ Cε1‖Pku‖ ‖u‖

� ‖|Bjk| 12Pku‖ ‖|Bjk| 12Pju‖+
+ ε1

(
‖m 1

2

B,V Pku‖2 + ‖mB,V u‖2 + ‖Pku‖2
)
+ C̃ε1‖u‖2 .

Summing up over j and k, we get from (3.10) and (3.11) that there exists C1 > 0

such that, for all ε1 ∈ (0, 1), there exists Ĉε1 > 0 such that

‖|B|u‖2 � C1

(
‖m 1

2

B,V (−i∇+A)u‖2 + ε1
(‖mB,V u‖2 + ‖(−i∇+A)u‖2))

+ Ĉε1‖u‖2 .
We now use Lemma 3.7 to get the desired estimate.
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Proposition 3.9: Suppose (2.5). There exists C > 0, such that, for all u ∈ D,

we have

(3.12)

‖|B|u‖2 + ‖m 1
2

B,V (−i∇+A)u‖2 � C
(‖(−i∇+A)2u‖2 + ‖V u‖2 + ‖u‖2) .

Proof. Let us first show that, for all ε > 0, there exists Cε > 0 such that, for

all u ∈ D,

(3.13) ‖m 1
2

B,V (−i∇+A)u‖2 � Cε(‖(−i∇+A)2u‖2 + ‖u‖2) + ε‖mB,V u‖2 .
We write

‖m 1
2

B,V (−i∇+A)u‖2 = 〈mB,V (−i∇+A)u, (−i∇+A)u〉 ,
so that, by an integration by parts,

(3.14)

‖m 1
2

B,V (−i∇+A)u‖2 = 〈(−i∇mB,V )(−i∇+A)u, u〉+ 〈mB,V (−i∇+A)2u, u〉 .
We have, for all ε1 ∈ (0, 1),

(3.15) |〈mB,V (−i∇+A)2u, u〉| � ε1
2
‖mB,V u‖2 + 1

2ε1
‖(−i∇+A)2u‖2 .

Moreover, by using (2.5) and Lemma 3.7, for all ε1 ∈ (0, 1), there exists Cε1 > 0

such that

(3.16)

|〈(−i∇mB,V )(−i∇+A)u, u〉| � ε1
2

(
‖m 1

2

B,V (−i∇+A)u‖2 + ‖mB,V u‖2
)

+ Cε1

(‖u‖2 + ‖(−i∇+A)2u‖2) .
Using (3.14), (3.15) and (3.16), we deduce (3.13). Having established (3.13), it

remains to combine it with Lemma 3.8 and choose ε sufficiently small.

Now we are in a position to establish Theorem 2.5.

Proof of Theorem 2.5. For all u ∈ D, we have

(3.17)
‖L u‖2 = ‖(−i∇+A)2u‖2 + ‖V u‖2 + 2Re 〈(−i∇+A)2u, V u〉

= ‖(−i∇+A)2u‖2 + ‖V u‖2 + 2Re 〈(−i∇+A)u, (−i∇+A)(V u)〉

� ‖(−i∇+A)2u‖2 + ‖V u‖2 + 2

∫
Ω

V1|(−i∇+A)u|2 dx

− 2〈|(−i∇+A)u|, |∇V ||u|〉 .
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Note that the second step is justified since V u ∈ V . We proceed by estimating

the last term of (3.17). Let ε ∈ (0, 1). There exist Cε, C̃ε > 0 such that

2〈|(−i∇+A)u|, |∇V ||u|〉(3.18)

� 2ε〈|(−i∇+A)u|,m 3
2

B,V |u|〉+ 2Cε〈|(−i∇+A)u|, |u|〉
� 2ε(‖m 1

2

B,V (−i∇+A)u‖2 + ‖mB,V u‖2) + C̃ε‖u‖2 .
From (3.17), (3.18), (2.6) and Lemma 3.7, we deduce that, for some Ĉε > 0,

(3.19)
‖L u‖2 � (1 − 2ε)

(‖(−i∇+A)2u‖2 + ‖V u‖2)− 2ε‖|B|u‖2

− 3ε‖m 1
2

B,V (−i∇+A)u‖2 − Ĉε‖u‖2 .
Finally, using Proposition 3.9, we get

(3.20) ‖L u‖2 � (1−2ε−3Cε)
(‖(−i∇+A)2u‖2 + ‖V u‖2)−(Ĉε+3Cε)‖u‖2 .

The claim follows by the density of D in Dom(L ), see Lemma 3.6.

3.4. On Assumption 2.1. We conclude this section by establishing the suf-

ficient condition of Proposition 2.3. Note that Theorem 2.4 is proved under

Assumption 2.1, while our proof of Theorem 2.5 requires the stronger hypothe-

ses (2.5) and (2.6).

Proof of Proposition 2.3. The proof follows from the fact that, by (2.5),

|∇Φ(x)|2 + |∇Ψ(x)|2 =
|x|→+∞

o(mB,V (x)) .

Indeed, using in addition (2.6), we may write

V 2
2 + 1

12d |B|2
mB,V

+ V1 − 9
(
|∇Φ|2 + |∇Ψ|2

)
� 1

12d

|V |2 + |B|2
mB,V

+ V1 − V 2
1

mB,V
− 9
(
|∇Φ|2 + |∇Ψ|2

)
� 1

12d
mB,V − 1

12d
+ o(mB,V ) ,

which provides (2.3).

4. Discrete spectrum and exponential estimates of eigenfunctions

The main objective of this section is to establish Proposition 2.6 and Theo-

rems 2.7 and 2.9.
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4.1. Confining potentials. In addition to Assumption 2.1, let us assume

that V is confining in the sense of (2.10).

Proof of Proposition 2.6. By Theorem 2.4, we already know that the resolvent

of L exists at a point of the complex plane. Hence, it is enough to show that

Dom(L ) is compactly embedded in L2(Ω). Consider (3.4) with μ = 0. By the

definition of L given in (2.7) and the Cauchy-Schwarz inequality, we get∫
Ω

(γ1mB,V − γ2)|u|2 dx � 2‖L u‖‖u‖ � ‖L u‖2 + ‖u‖2 =: ‖u‖2L
for all u ∈ Dom(L ). Moreover, we have Dom(L ) ⊂ H2

loc(Ω). Thus, by the

Riesz-Fréchet-Kolmogorov criterion, the unit ball for the graph norm of L is

precompact in L2(Ω) and thus L is an operator with compact resolvent.

4.2. General potentials. Now let us assume only Assumption 2.1.

Proof of Theorem 2.7. The inclusion (2.11) is again a consequence of (3.4) and

Theorem 3.2. It is sufficient to prove (2.12). Let μ ∈ ργ2−γ1m̌∞ . Of course, if

μ ∈ ργ2 there is nothing to prove. Let us define R > 0 such that,

(4.1) ∀|x| � R , mB,V (x) � m̌∞ .

Then, we have

(4.2) γ1mB,V (x)− Reμ− |Imμ| − γ2 � γ1m̌∞ − Reμ− |Imμ| − γ2 =: γ > 0

for all |x| � R. Let us introduce a real-valued smooth function with compact

support 0 � χ � 1 such that χ(x) = 0 for all |x| � 2R and χ(x) = 1 for all

|x| � R. We define

M := |γ2 +Reμ+ |Imμ||+ 1 ∈ [1,+∞) .

Let us write

L − μ = L +Mχ− μ−Mχ .

We introduce the (closed) operator L̃ := L +Mχ and, for μ ∈ C, the corre-

sponding shifted form Q̃μ := Qμ +Mχ.

Let us explain why L̃ − μ is invertible. For that purpose, we recall that by

Theorem 3.3 (with W = 0) and Assumption 2.1, we have, for all u ∈ V ,

Re
[
Q̃μ(u, u)

]
+ Im

[
Q̃μ(u,Φu)

]
� 1

2
‖(−i∇+A)u‖2 +

∫
Ω

(
Mχ+ γ1mB,V − γ2 − Reμ− |Imμ|)|u|2 dx .



Vol. 221, 2017 NON-ACCRETIVE SCHRÖDINGER OPERATORS 797

By the definitions of M and γ, we deduce that

Re
[
Q̃μ(u, u)

]
+ Im

[
Q̃μ(u,Φu)

]
� 1

2
‖(−i∇+A)u‖2 +min(1, γ) ‖u‖2 .

This proves the coercivity of Q̃μ on V and thus, by Theorem 3.2, L̃ − μ is

invertible.

Now, the multiplication operator Mχ is a relatively compact perturbation

of L̃ −μ. Therefore, by Lemma A.2, L −μ is a Fredholm operator with index 0.

From Lemma A.3, we deduce that the spectrum in ργ2−γ1m̌∞ is discrete (that

is, made of isolated eigenvalues of finite algebraic multiplicity, see Appendix A).

This concludes the proof of the theorem.

4.3. Agmon-type estimates. Theorem 2.9 is essentially a consequence of the

following proposition about properties of solutions of an inhomogeneous equa-

tion in a weighted space.

Proposition 4.1: Let λ ∈ sp(L )∩ργ2−γ1m̌∞ �= ∅. Let us consider ψ0 ∈ L2(Ω)

such that

(4.3) e
1−ε
3 dAg(x)ψ0 ∈ L2(Ω)

for some ε ∈ (0, 1) and assume that ψ ∈ Dom(L ) satisfies

(4.4) Lψ = λψ + ψ0 .

Then

(4.5) e
1−ε
3 dAg(x)ψ ∈ L2(Ω) .

Proof. By Theorem 2.7, λ is an eigenvalue of finite algebraic multiplicity. Given

W ∈ W 1,∞(Ω;R), we have

ReQ(ψ, e2Wψ) = Re (λ)‖eWψ‖2 +Re
〈
eWψ0, e

Wψ
〉
,

ImQ(ψ,Φe2Wψ) = Im (λ)

∫
Ω

Φe2W |ψ|2 dx + Im
〈
eWψ0,Φe

Wψ
〉
.

By Theorem 3.3 (with μ = 0) and Assumption 2.1,(
Re (λ) + |Im (λ)| ) ∥∥eWψ

∥∥2
�
∫
Ω

(
γ1mB,V − γ2 − 9 |∇W |2

) ∣∣eWψ
∣∣2 dx− ∥∥eWψ0

∥∥ ∥∥eWψ
∥∥ .
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Thus, we get∫
Ω

(
γ1mB,V − Re (λ) − |Im (λ)| − γ2 − 9 |∇W |2

) ∣∣eWψ
∣∣2 dx

�
∥∥eWψ0

∥∥ ∥∥eWψ
∥∥ .

Let R be as in (4.1). Splitting the integral into two parts, we get∫
{|x|>R}

(
γ1mB,V − Re (λ) − |Im (λ)| − γ2 − 9 |∇W |2

) ∣∣eWψ
∣∣2 dx

�
∫
{|x|<R}

(
−γ1mB,V + Re (λ) + |Im (λ)|+ γ2 + 9 |∇W |2

) ∣∣eWψ
∣∣2 dx

+
∥∥eWψ0

∥∥ ∥∥eWψ
∥∥ ,

so that, for some C > 0, we have by (2.13),

(4.6)

∫
{|x|>R}

(
|∇dAg(x)|2 − 9 |∇W |2

) ∣∣eWψ
∣∣2 dx

�
∫
{|x|<R}

(
C + 9 |∇W |2

) ∣∣eWψ
∣∣2 dx+

∥∥eWψ0

∥∥ ∥∥eWψ
∥∥ .

We set η :=
√
1−ε
3 and we consider the functions (χn)n�1 defined as follows

χn(s) :=

⎧⎪⎪⎨⎪⎪⎩
s for 0 � s � n ,

2n− s for n � s � 2n ,

0 for s � 2n .

Note that |χ′
n(s)| = 1 a.e. on [0, 2n] and |χ′

n(s)| = 0 for s > 2n.

Then for n � 1 and x ∈ Ω we set

Wn(x) := η χn(dAg(x)) .

We have

∇Wn(x) = η χ′
n(dAg(x))∇dAg(x)

and

|∇Wn(x)|2 � η2|∇dAg(x)|2 =
1− ε

9
|∇dAg(x)|2 .

By (4.6) we obtain that there exists C > 0 such that, for all n � 1,∫
{|x|>R}

ε |∇dAg(x)|2
∣∣eWnψ

∣∣2 dx � C‖ψ‖2 + ∥∥eWnψ
∥∥ ∥∥eWnψ0

∥∥ ,
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and therefore, by (4.2),∫
{|x|>R}

εγ
∣∣eWnψ

∣∣2 dx � C‖ψ‖2 + εγ

2

∥∥eWnψ
∥∥2 + 1

2εγ

∥∥eWnψ0

∥∥2 .
For another constant C > 0 independent of n, we get∫

Ω

∣∣eWnψ
∣∣2 dx � C‖ψ‖2 + C

∥∥eWnψ0

∥∥2 .
It remains to take the limit n→ +∞ and use the Fatou lemma to conclude.

Now we are in a position to prove the main result of this paper.

Proof of Theorem 2.9. If ψ ∈ Ker(L −λ), we apply Proposition 4.1 with ψ0 = 0

to deduce that ψ satisfies (2.14).

Let us now explain why this conclusion holds also for the algebraic eigenspace

(see Appendix A). Let us consider ψ in this space.

We have

(L − λ)rψ = 0 with r := dimRan(Pλ) � 1 .

Now, we proceed by induction. Consider k ∈ �1, r� and assume that

(L − λ)kψ ∈ L2
(
Ω, e

1−ε
3 dAg(x) dx

)
.

Then, we write

(L − λ)
{
(L − λ)k−1ψ

}
= (L − λ)kψ .

We are in the situation (4.4) and we deduce that

(L − λ)k−1ψ ∈ L2
(
Ω, e

1−ε
3 dAg(x) dx

)
.

This concludes the proof.

Appendix A. Reminders of spectral theory

Since spectral theory of non-self-adjoint operators is less unified than its self-

adjoint sister, in this appendix we collect some notions used throughout the

paper. We refer to standard monographs [21], [13, Chap. I.3, IX] and [18,

Chap. XVII] or a recent summary [22] for a more comprehensive exposition.

Let H be a Hilbert space. An operator M : Dom(M ) → H is said to be

Fredholm when Ker(M ) is finite-dimensional and Ran(M ) is closed with finite

codimension. Then the index of M is defined by ind(M ) := dimKer(M ) −
codimRan(M ). When Dom(M ) is dense in H, we may classically define the
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adjoint M ∗ of M and then we have dimKer(M ∗) = codimRan(M ). We denote

by Fred0(M ) the set of all complex numbers λ such that M − λ is a Fredholm

operator with index 0.

Let M be an arbitrary closed operator in H. The spectrum sp(M ) is defined as

the set of all complex numbers λ such that M −λ is not bijective as an operator

from Dom(M ) to H. The resolvent set ρ(M ) is the complement of the spectrum

in the complex plane. We call the intersection spfre(M ) := sp(M ) ∩ Fred0(M )

the Fredholm spectrum and define the essential spectrum by the complement

spess(M ) := sp(M ) \ spfre(M ) (it is the essential spectrum due to Schechter

denoted by spe4(M ) in [13]). Finally, we define the discrete spectrum spdis(M )

to be the set of all isolated eigenvalues λ for which the algebraic (or root)

eigenspace
⋃∞

k=1 Ker([M − λ]k) is finite-dimensional and such that M − λ has

a closed range. The elements of spdis(M ) are called the discrete eigenvalues

of M .

Let λ be an isolated eigenvalue of M . Another characterisation of λ to belong

to the discrete spectrum is through the eigenprojection

(A.1) Pλ :=
1

2iπ

∫
Γλ

(z − M )−1 dz ,

where Γλ is a contour that enlaces only λ as an element of the spectrum. Pλ :

H → Dom(M ) ⊂ H is a bounded operator which commutes with M and does

not depend on the choice of the contour Γλ. We say that λ has finite algebraic

multiplicity when the range of Pλ is finite-dimensional. In this case, λ is a

discrete eigenvalue of M . Moreover, the range of Pλ coincides with the algebraic

eigenspace of λ. It is an invariant subspace of M of finite dimension and such

that the spectrum of M|Ran(Pλ) equals {λ}.
Finally, we recall three standard results. For the proofs see [13, Chap. I.3],

[13, Thm. IX.2.1] and [18, Thm. XVII.2.1], respectively.

Lemma A.1: Let (M ,Dom(M )) be a closed operator in a Hilbert space H. Let

us equip Dom(M ) with the graph norm ‖ · ‖M , which makes (Dom(M ), ‖ · ‖M )

a new Hilbert space. Let M be the operator M reconsidered as an operator

from (Dom(M ), ‖ · ‖M ) to H. The following properties hold:

(i) M is bounded,

(ii) M is Fredholm if and only if M is Fredholm.

In this case, ind(M) = ind(M ).
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Lemma A.2: Let (M ,Dom(M )) be a closed invertible operator and consi-

der another operator (P,Dom(M )) in a common Hilbert space H. Assume

that (M + P,Dom(M )) is closed and PM−1 is compact. Then the operator

(M + P,Dom(M )) is Fredholm and ind(M + P) = ind(M ) = 0.

Lemma A.3: Let (M ,Dom(M )) be a closed operator in a Hilbert space H with

a non-empty resolvent set and let � be an open connected subset of

{z ∈ C : M − z is Fredholm}.
If � ∩ ρ(M ) �= ∅, then sp(M ) ∩ � is a countable set, with no accumulation

point in �, consisting of eigenvalues of M with finite algebraic multiplicities.
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Schrödinger avec un champ magnétique, Université de Grenoble. Annales de l’Institut
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