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We develop a new class of mathematical ranking models for the purpose of quantifying the social structure
in animal populations. Our approach is based on taking into account both the interaction between single
individuals as well as their role within their community as a whole. From a mathematical point of view,
these models are (possibly nonlinear) eigenvalue problems for column stochastic matrices. In order to
provide a procedure for their computational treatment, we derive a suitable Newton iteration method on
simplexes.

Keywords: animal population biology; animal social networks; social structure models; ranking; New-
ton method on a simplex; numerical solution of fixed point equations; nonlinear matrix eigenvalue
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1. Introduction

Ranking of (finitely many) interacting individuals or objects by means of mathematical models is tra-
ditionally based on identifying the underlying network structure with a directed graph. Information is
passed from one individual or object to another by means of some random walk process along the graph’s
edges. In the simplest case, for each node, the transition to neighbouring nodes is chosen with the same
probability, and the system (or transition) matrix of the associated Markov process is called the network
(or hyperlink) matrix H. The ranking vector r for the individual nodes is (if H is irreducible) given as the
Perron vector of H, i.e. the unique positive eigenvector of H (scaled such that the components add to 1)
corresponding to the eigenvalue 1: Hr = r; see, e.g. (Meyer, 2000, Section 8). In the famous PageRank
model by Brin & Page (1998) for electronic networks this basic approach has been extended by taking
into account a (uniformly distributed) stochastic component between all the nodes of the graph. Over
the last years, this idea has been applied in many different areas, and numerous modifications have
been proposed; see the overview paper by Gleich (2015) (cf. also Krause et al. (2014) for animal social
networks). We note that, whilst the PageRank model and its variants are based on tracing the flow along
paths of a network, other approaches (including eigenvector centrality) directly employ the underlying
adjacency matrix of the graph.

The focus of this work is on providing a methodology by which hierarchies within animal populations
can be quantified. This can be of particular interest, for instance, to behavioural biologists who study
different ways of interaction in (smaller) animal groups. Whilst the models to be presented in this
article are based on the network idea as well, they specifically take into account the social role of each
individual. The key idea in deriving our ranking models consists in the introduction of an additional
individual whose role is to represent the community of all individuals as a whole. This virtual individual
can be interpreted, for instance, as a joint effort put forth by everybody for the well-being, protection, or
conservation of the entire population. On a closely related note, Allesina & Pascual (2009) propose the
application of a ‘root node’ in the context of food webs. From the view point of Markov processes, such

© The authors 2017. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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approaches can be seen as censored node constructions (see, e.g. Eiron et al., 2004; Lee et al., 2007,
or Gleich, 2015, Section 5.5).

In this article, we will study different ways of interaction between the community and single indi-
viduals, and thereby, obtain linear as well as nonlinear ranking models. They are expressed in terms
of eigenvalue problems for the associated social structure matrices, which, depending on the type of
interaction, may be linear or even nonlinear (Section 2). In the latter case, we propose a Newton iteration
for the numerical approximation of the ranking vector (Section 3). In order to provide some specific
computations, we consider an example of a real-life (small) animal group, and use linear and nonlinear
ranking to test the proposed ideas (Section 4).

2. Social structure models

Let us consider a network of m individuals, I1, . . . , Im, which may or may not share their resources
(such as, for instance, natural goods, time, etc.) with each other. To design a mathematical model for
the purpose of describing a ranking structure amongst individuals, we proceed in a standard way and
identify the network with a directed graph, whereby the individuals take the role of the nodes of the
graph; furthermore, the graph has a directed edge from node i to node j whenever individual Ii shares
its resources with individual Ij. We let

σj =
{

1 if individual Ij shares some of its resources with other individuals,

0 if individual Ij does not share any of its resources,

and, more specifically, if σj = 1, denote by lj the number of outgoing edges from node j, i.e. the number
of individuals being supplied with the resources of individual Ij. The matrix H of such a network is
an m × m-matrix whose entries are defined by

Hij =
{

1/lj if individual Ij shares some of its resources with individual Ii,

0 otherwise,
(2.1)

for 1 ≤ i, j ≤ m. Here, for later purposes, we do not consider self-links in H (i.e. the diagonal entries
of H are assumed to be zero). We quantify the resource of each individual Ii by a number 0 ≤ ri ≤ 1,
and suppose that this resource is shared equally amongst the li individuals it points to. The resource ri,
in turn, is obtained as the sum of all the resources received by individual Ii from other individuals. To
strive towards uniqueness, the resource vector r = (r1, . . . , rm)� is normalized so that r ∈ Sm

1 , where,
for the vector q := (1, . . . , 1)� ∈ R

m, we define the simplex

Sm
1 :=

{
x = (x1, . . . , xm) ∈ R

m
≥0 : q�x =

m∑
i=1

xi = 1

}
;

here, R≥0 signifies the set of all nonnegative real numbers. This model corresponds to a linear eigenvalue
problem,

r ∈ Sm
1 : Hr = r, (2.2)

where the solution r is the Perron vector of H (if it exists); cf. (Meyer, 2000, Section 8).
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In our models, the status of each individual is determined by the resource it owns, i.e. the resource
vector r can be seen as ranking vector. It is well known that, in general, the solution vector r of the above
equation (2.2) may contain meaningless zeros due to the possible appearance of dangling nodes in the
graph of H; specifically, this may happen if the network graph is not strongly connected, or, equivalently,
if the network matrix is reducible (see, e.g. Austin, 2008; Meyer, 2000). In the PageRank model by Brin
& Page (1998), this problem is circumvented by perturbing the network matrix by a strictly positive
stochastic part, which mimics a random switch between network nodes.

2.1. A linear social structure model

Following the basic principle of natura non facit saltus, the concept of using random jumps between
individuals, as proposed in the PageRank model, seems rather unrealistic in real-life animal pop-
ulations (e.g. if the exchange of resources always happens according to the same rules, or, if
individuals demonstrate predominantly deterministic behavioural patterns). Nevertheless, a mathe-
matically equivalent idea, by which a small linking probability between individuals with infrequent
(i.e. practically unobservable) interactions is taken into account, could still be applied. In this arti-
cle, we focus on yet another aspect of interaction: community. Here, our aim is to quantify (in an
averaged sense) all efforts (going beyond individual interests and connections between group mem-
bers) undertaken to maintain the common weal of a population. To this end, the key idea is to
introduce a virtual individual C = Im+1, which represents the community and its activities as a
whole, and that everybody contributes to and benefits from. The model is built upon the following
rules:

(a) Every individual (including the community node C ) owns a resource ri ≥ 0; the resource (or
ranking) vector

r̂ =
(

r
rC

)
= (r1, . . . , rm, rC)�

is normalized so that r̂ ∈ Sm+1
1 ;

(b) Every individual Ii, i = 1, . . . , m, keeps a certain fixed proportion αsri of its resource ri, where 0 ≤
αs < 1 is a fixed parameter, to itself, and transfers another fixed portion αCri, with 0 < αC ≤ 1−αs

(taking the role of a flat rate), to the community C ; the latter contribution can be thought of as
a common purpose rate required to sustain the entire community (e.g. joint hunting or defence
activities, etc.). The remaining proportion, (1 − αs − αC)ri, of the resource of Ii is shared equally
amongst the li individuals it points to as described earlier.

(c) The community splits its resource rC equally amongst all individuals in the network (excluding
itself).

This leads to a linear eigenvalue problem

r̂ ∈ Sm+1
1 : Ŝr = r̂, (2.3)
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where

S =

⎛⎜⎜⎜⎝
1/m

P
...

1/m

αC · · · αC 0

⎞⎟⎟⎟⎠ (2.4)

is the social structure matrix. Here, we let

P = αsIm×m + (1 − αs − αC)(H + Σ),

where Im×m denotes the m × m-identity matrix, H is the network matrix from (2.1), and Σ is an
m × m-matrix defined by

Σij = (1 − σj)δij, (2.5)

where δij is Kronecker’s delta; the purpose of the matrix Σ is to guarantee that the columns of S all add
to 1 even if there are individuals without any outgoing links. Evidently, since the graph of S is strongly
connected through the virtual node C , it follows that S is irreducible. By the Perron–Frobenius theorem,
this implies that the resource vector r̂ from (2.3) is uniquely determined in Sm+1

1 , and contains only
positive entries (i.e. r̂ is the Perron vector of S); see Meyer (2000, Section 8) for details. Upon defining
the normalized resource (or ranking) vector

ρ = (ρ1, . . . , ρm), ρ = (
q�r

)−1
r ∈ Sm

1 , (2.6)

we proceed as in Gleich (2015, Section 5.5), and note that

Pr + rC

m
q = r, αCq�r = rC .

Hence,

r = Pr + αC

m

(
q�r

)
q =

(
P + αC

m
qq�

)
r,

and therefore,

ρ =
(

P + αC

m
qq�

)
ρ. (2.7)

We observe that the matrix

S = P + αC

m
qq�

is column stochastic, and, in addition, has only positive entries. Therefore, S is primitive, and a power
iteration method for the numerical approximation of the resource vector ρ may be applied (see Meyer,
2000, Eq. 8.3.10). Moreover, from a mathematical point of view, we observe that the term αC/mqq� can
be interpreted as a stochastic jump part as proposed in the PageRank model.
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2.2. A nonlinear approach

In the model assumption (b) above each individual transfers the same proportion αC of its resource to
the community. It is interesting to generalize this approach, for instance, by introducing a ‘tax rate’ for
each individual Ij, j = 1, . . . , m, that depends on the resource ρj it owns. In analogy with (2.4), this
results in a social structure matrix S = S(ρ) ∈ R

(m+1)×(m+1), with the normalized resource vector ρ

given as in (2.6), which is defined by

S(ρ) =

⎛⎜⎜⎜⎝
1/m

P(ρ)
...

1/m

αC(ρ1) · · · αC(ρm) 0

⎞⎟⎟⎟⎠.

The entries of the matrix P(ρ) are given by

Pij(ρ) = αsδij + (1 − αs − αC(ρj))(Hij + Σij), 1 ≤ i, j ≤ m,

where Hij are the entries of the network matrix from (2.1), and Σij is defined in (2.5). Furthermore,

αC : [0, 1] → [0, 1], ρ �→ αC(ρ) (2.8)

is a ‘tax rate’ function. The corresponding eigenvalue problem,

r̂ =
(

r
rC

)
∈ Sm+1

1 , ρ = (
q�r

)−1
r ∈ Sm

1 : S(ρ )̂r = r̂

is nonlinear. Introducing the vector function

αC(ρ) = (αC(ρ1), . . . , αC(ρm))�

and proceeding as before in Section 2.1 (see, in particular, Gleich, 2015, Section 5.5), yields

P(ρ)r + rC

m
q = r, αC(ρ)�r = rC .

Therefore,

r =
(

P(ρ) + 1

m
qαC(ρ)�

)
r,

and, thus,

ρ = S(ρ)ρ (2.9)

with

S(ρ) = P(ρ) + 1

m
qαC(ρ)�. (2.10)
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In Section 3, we will discuss how this problem can be dealt with by means of a suitable Newton iteration
scheme, and some examples will be provided in Section 4.

2.3. More general models

Evidently, depending on a specific application, the nonlinear model in Section 2.2 can be modified
and extended in various ways. For instance, a nonlinear distribution of the resources leaving from the
community node (paying more attention, e.g. to individuals with special needs), or a weighted transfer
of an individual’s resources (being more or less generous to individuals with higher ranks) could be
taken into account. Moreover, more than one community node could be introduced if, for instance,
several behavioural aspects (such as playing, sharing, grooming, etc.) of the community are modelled
separately.

3. A Newton approach on simplexes

The nonlinear eigenvalue problem (2.9) can be cast into a general framework. Indeed, introducing the
function f (ρ) := S(ρ)ρ, and noticing that S(ρ) is column stochastic, it is straightforward to verify
that f : Sm

1 → Sm
1 is a self-mapping, and that (2.9) is equivalent to solving f (ρ) = ρ on Sm

1 .

3.1. Fixed point formulation

More generally, let us consider a differentiable self-mapping

f : Sm
1 → Sm

1 (3.1)

on the simplex Sm
1 . Then, the fixed point equation,

x ∈ Sm
1 : f (x) = x (3.2)

has at least one solution by Brouwer’s fixed point theorem (see, e.g. Kellogg et al., 1976). In the sequel,
we will define a Newton-type approximation procedure on Sm

1 for the numerical solution of (3.2). We
emphasize that the development of numerical procedures for fixed point problems of the form (3.2), in
particular, in the context of Brouwer’s fixed point theorem, dates back quite a few decades. For example,
several works have pursued a geometric approach, whereby appropriate space partition strategies are
employed; we mention the seminal paper by Scarf (1967) (see also Kuhn, 1969), where a numerical
scheme for the solution of fixed point equations for continuous functions on Sm

1 in low dimensions, based
on a variant of Sperner’s lemma, has been presented. A completely different idea is the development of
dynamical system formulations that allow to transport suitable initial guesses iteratively along discrete
trajectories to a fixed point; see, e.g. the article Kellogg et al. (1976), which includes a constructive
proof of Brouwer’s fixed point theorem (based on the retraction principle) and enables the derivation
of an iterative Newton-type path-following formulation. In addition, we mention the homotopy-based
methods by Chow et al. (1978) and Eaves (1972). Moreover, let us refer to Allgower & Georg (2003,
Section 11) for further references and details on numerical considerations on Brouwer’s fixed point
theorem.

The approach taken in this article is based on formulating a Newton method as applied to (3.2) which
operates within the simplex Sm

1 . This is accomplished by formulating the Newton iteration with respect
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to a suitable coordinate system on the linear subspace

V0 := {
x ∈ R

m : q�x = 0
}

, q = (1, . . . , 1)� ∈ R
m,

which contains the translated simplex

W0 := Sm
1 − 1

m
q ⊂ V0,

and, for this purpose, by deriving a corresponding representation of the Fréchet derivative of f . We
remark that this approach is related to the work (Deuflhard, 2004, Section 6.4) on pseudo-transient
continuation in the context of dynamical invariants. Pursuing the standard idea of writing a fixed point
equation as a root problem, we notice that x ∈ Sm

1 is a fixed point of f in (3.1) if and only if the function
F(z) := f (z + 1/mq) − z − 1/mq has a zero at z = x − 1/mq ∈ W0, that is,

z ∈ W0 : F(z) = 0. (3.3)

In the following, we will aim to formulate a Newton method for the iterative solution of (3.3) in the
subspace V0. To this end, we will introduce a suitable basis in V0, and derive a matrix expression of the
Jacobian F′(z), with z ∈ W0, as acting on V0.

3.2. Matrix representation of F(z)|′V0

We consider a set of linearly independent vectors {d1, . . . , dm−1} ⊂ V0 given as follows:

dk ∈ R
m : (dk)l =

⎧⎪⎨⎪⎩
1/

√
k(k+1) 1 ≤ l ≤ k

−k/
√

k(k+1) l = k + 1

0 k + 1 < l ≤ m

, k = 1, . . . , m − 1.

It is elementary to verify that these vectors form an orthonormal basis of V0 (with respect to the Euclidean
product in R

m). Therefore, defining

M = (d1|d2| · · · |dm−1) ∈ R
m×(m−1)

as the matrix whose columns are the above basis vectors, there holds M�M = I(m−1)×(m−1), where we
write I(m−1)×(m−1) to signify the (m − 1)× (m − 1)-identity matrix. In the sequel, we write [v] ∈ R

m−1 to
denote the coordinate vector of a vector v ∈ V0 with respect to the basis d1, . . . , dm−1. Then, for v ∈ V0,
we notice that v = M[v], and [v] = M�v.

Given z ∈ W0, and using the coordinate representation in V0, the Fréchet derivative of F(z)|V0 is
given by

F(z)|′V0
= M�F′(z)M (3.4)

with respect to the coordinates in V0.
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3.3. Newton iteration on V0

Starting from an initial guess x(0) ∈ Sm
1 , and defining z(0) := x(0) − 1/mq ∈ W0, a Newton iteration scheme

for the numerical solution of (3.3) can be formulated by

[z(n+1)] = [z(n)] − μn(F(z(n))|′V0
)−1[F(z(n))] = [z(n)] − μn(F(z(n))|′V0

)−1M�F(z(n))

for n ≥ 0, where F(z(n))|′V0
is defined in (3.4) and assumed invertible, and μn ≥ 0 will be specified

below. Equivalently, for any n ≥ 0, we can solve the linear system

F(z(n))|′V0
[δ(n)] = −M�F(z(n)) (3.5)

for [δ(n)], with the update formula z(n+1) = z(n) + μnM[δ(n)]. In order to ensure that

x(n+1) = z(n) + 1

m
q + μnM[δ(n)] ∈ Sm

1 ,

or, equivalently z(n+1) ∈ W0, we maximize μn ∈ [0, tmax], for a prescribed parameter tmax > 0, so that
z(n) + 1/mq + μnM[δ(n)] ≥ 0, where ‘≥’ is understood componentwise, i.e.

μn = max

{
0 ≤ t ≤ tmax : z(n) + 1

m
q + tM[δ(n)] ≥ 0

}
. (3.6)

Provided that the linear system (3.5) is uniquely solvable, and that μn > 0, for all n ≥ 0 up
to a required number of iterations, the above procedure is repeated until the residual F(z(n+1)) (or,
alternatively, the relative difference of two consecutive iterates) is sufficiently small with respect to
some appropriate norm. Incidentally, the solution vector r for a linear fixed-point problem, as in (2.3),
is obtained exactly (up to rounding errors) after one step of the Newton method.

Remark 3.1 We notice that the choice tmax = 1 in (3.6) is most natural for the case of a root of F of
algebraic multiplicity 1. Indeed, if μn = tmax = 1 is admissible, then quadratic convergence is generally
expected close to the corresponding fixed point of f . A more global convergence analysis of the proposed
Newton method will require additional assumptions on F (including, for instance, some affine co-variant
or contra-variant Lipschitz condition on the Jacobian F′); see, e.g. the monograph (Deuflhard, 2004,
Section 2) for details.

4. Example of a real-life animal population

Some animal groups are known to have quite a clear hierarchy structure. This becomes apparent in
various types of interactions including, for instance, aggression or proximity. For the purpose of testing
the proposed models, we study an example of a real group of m = 10 white-faced capuchins on Barro
Colorado Island located in the Panama Canal. We shall focus on proximity, i.e. time spent (spatially)
close to or interactively with another individual in the group. Our data is taken from (Crofoot et al., 2011,
Fig. 1, BLT group, proximity). The adjacency matrix A (which contains an entry 1 in row i and column j
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Fig. 1. Graph of a proximity interaction in a population of white-faced capuchins.

whenever individual j spends time with individual i, and an entry 0 otherwise) for this particular group
is given by

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0
1 0 0 0 1 0 1 1 0 1
1 0 0 0 0 0 0 1 1 1
1 1 1 0 0 1 1 1 1 1
0 0 0 0 1 0 1 1 1 0
0 0 1 0 1 1 0 1 1 1
0 0 1 1 1 1 1 0 1 1
1 0 0 1 1 1 1 1 0 1
0 0 1 1 1 0 1 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since proximity is considered a mutual interaction in Crofoot et al. (2011), the matrix A is symmetric
in this case. Evidently, the network matrix H from (2.1) can be derived immediately from A. Moreover,
the associated network graph is displayed in Fig. 1. Throughout our experiments, we will use αs = 0.2.

For the nonlinear models, we apply the Newton method from Section 3 with tmax = 1 in (3.6) for all
computations (cf. Remark 3.1). We note that the Jacobian of the mapping F(ρ) = S(ρ)ρ, with S(ρ)

from (2.10), is given componentwise by

F ′
ij(ρ) = Sij(ρ) +

(
1

m
− (Hij + Σij)

)
ρjα

′
C(ρj), 1 ≤ i, j ≤ m,

where α′
C signifies the derivative of the taxation function αC . The starting vector for the Newton

iteration (3.5) is chosen to be (1/10, . . . , 1/10) ∈ S10
1 in all examples, and the iteration is stopped once the

residual ‖S(ρ)ρ − ρ‖∞ is reasonably small (alternatively, the relative difference of two consecutive
iterates could be monitored); in the context of ranking models, we emphasize that convergence to machine
precision is typically not required.

We begin by investigating the linear model from Section 2.1, and focus on low taxation (αC = 0.05)
as well as on high taxation (αC = 0.7). The respective unique solutions of (2.7) together with the
corresponding ranks are presented in Table 1. In the low-tax case, the rank of an individual is mainly
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Table 1 Performance data for different linear ranking models

Linear model for αC = 0.05 Linear model for αC = 0.7

Individual ρ Rank ρ Rank

1 0.0783 7 0.0966 7
2 0.0244 10 0.0893 10
3 0.0959 6 0.0984 6
4 0.0778 8 0.0963 8
5 0.1545 1 0.1150 1
6 0.0775 9 0.0951 9
7 0.1137 4/5 0.1005 5
8 0.1320 3 0.1038 3
9 0.1323 2 0.1043 2
10 0.1137 4/5 0.1006 4

Fig. 2. Tax rate functions for m = 10.

determined by the network matrix, i.e. by the linking structure of the group. In contrast, when a high
tax rate is imposed, then a high resource amount is less worthwhile, and although the overall ranking
remains essentially the same in both examples, the individual resources in the network become notably
more equidistributed in the latter case.

In addition, we study three different nonlinear models of the form (2.9), with a nonlinear tax rate
function as in (2.8). The first two models are based on the assumption that more prominent individuals
provide a larger contribution to the community than others. This is realized, for instance, by defining
the linear tax rate function

αC(r) = αC(1 − r) + αCr (N1)

with 0 ≤ r ≤ 1; see Fig. 2, model (N1). Here, αC and αC are upper and lower tax rate bounds, which, in
our experiments, are chosen to be αC = 0.05 and αC = 0.7. The resulting resource vectors are displayed
in Table 2. Since the individual resources are close to 1/m, i.e. αC(1/m) ≈ 0.1, it is not surprising to see
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Table 2 Performance data for different nonlinear ranking models

Model (N1) Model (N2) Model (N3)

Individual ρ Rank ρ Rank ρ Rank

1 0.0802 7 0.0863 8 0.0912 8
2 0.0311 10 0.0555 10 0.0697 10
3 0.0953 6 0.0937 6 0.0985 6
4 0.0792 8 0.0866 7 0.0911 9
5 0.1566 1 0.1577 1 0.1214 1
6 0.0775 9 0.0798 9 0.0913 7
7 0.1109 5 0.1025 5 0.1057 4
8 0.1285 3 0.1164 3 0.1128 2/3
9 0.1295 2 0.1186 2 0.1128 2/3
10 0.1112 4 0.1029 4 0.1056 5

that the computed numbers are fairly similar to the ones resulting from the linear model with αC = 0.05
shown in Table 1.

We remark that the effective range of the tax rate function αC defined in (N1) depends strongly
on the number m of individuals in the network. Indeed, suppose for a moment that all individuals have
approximately the same rank 1/m (which is in fact the case for the given population); then, for large m � 1,
the ranks will be situated in an interval Iε = [0, ε], for small 0 < ε � 1, and the tax rate function will
only be evaluated on Iε . In order to incorporate the scaling with respect to the size of the network, and
thereby to exploit the entire domain [0, 1] of αC , let us consider, for instance, the alternative function

αC(r) = αC(1 − min(rm/2, 1)) + αC min(rm/2, 1); (N2)

see Fig. 2, model (N2). Here, in comparison to the previous model, the results show that some resources
are transferred from the medium ranking individuals to group members with lower ranks. This is due to
the fact that, in the present model, taxation grows much faster as r increases. Moreover, we observe a
switch of ranks of individuals 7 and 8.

Finally, we study a nonlinear model that is based on a constant tax rate α̂C for low-rank individuals,
and, for all others, on transferring a fixed resource amount β̂C to the community node. To this end, we
define the taxation function

αC(r) = min
(̂
αC , β̂C/r

)
. (N3)

We choose α̂C = 0.7, and β̂C = 0.5/m = 0.05; see Fig. 2. We note that fixed tax deduction occurs for
any r ∈ [r	, 1], where r	 = β̂C/̂αC ≈ 0.0714. In comparison with the linear model based on αC = 0.7
(cf. Table 1), taxation becomes more favourable within this range. As a consequence, the resources
of individuals with higher ranks are slightly increased at the cost of less resourceful group members,
thereby leading to a change of ranks in the nonlinear model (N3); see Table 2.

Remark 4.1 We note that the nonlinear tax rate functions (N2) and (N3) are not differentiable at some
isolated points. Remarkably, the Newton method still worked without any problems for the examples
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presented above. Nevertheless, for differentiability purposes, it might be sensible to use suitable smooth
approximations of the given taxation models.

Remark 4.2 Whilst the resource vectors in all of the above experiments were found to be unique
eigenvectors in Sm

1 of the respective social hierarchy matrices, this is not true in general. Indeed, it is
possible to find (academic) examples, where multiple ranking vectors for (2.9) exist.

5. Conclusions

In this article, we have introduced and discussed a class of linear and nonlinear matrix eigenvalue models
for the purpose of quantifying hierarchies in animal populations. Our approach is based on adding a
virtual individual (representing the community and its activities as a whole) to the underlying group of
animals, and on identifying interactions between members of the population with a directed network
graph. In case that the models are nonlinear, we have derived an iterative solution procedure which is
based on a Newton scheme on simplexes. Whilst we have tested the proposed ideas in the specific context
of a small white-faced capuchins population, more general scenarios could be considered as well:

• interactions between several animal populations (each of which taking the role of one ‘individual’)
sharing a common habitat (representing the ‘community’);

• use of more than one virtual node in order to model different aspects of community;

• variable pay back rates from the community node to individual members of the group;

• nonlinear distribution of an individual’s resources to other individuals.

Future work may include the development of especially tailored nonlinear models for particular types of
animal groups and species, and the application and testing of our models in real-life situations (including
the collection and evaluation of data).
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