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Abstract

A novel, selective and sensitive single-ion monitoring (SIM) gas chromatography-mass

spectrometry (GCMS) method was developed and validated for the determination of energy

metabolites related to glycolysis, the tricarboxylic acid (TCA) cycle, glutaminolysis, and fatty

acid β-oxidation. This assay used N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide

(MTBSTFA) containing 1% tert-butyldimethylchlorosilane (TBDMCS) as derivatizing

reagent and was highly reproducible, sensitive, specific and robust. The assay was used to

analyze liver tissue and serum from C57BL/6N obese mice fed a high-fat diet (HFD) and

C57BL/6N mice fed normal chow for 8 weeks. HFD-fed mice serum displayed statistically

significantly reduced concentrations of pyruvate, citrate, succinate, fumarate, and 2-oxoglu-

tarate, with an elevated concentration of pantothenic acid. In liver tissue, HFD-fed mice

exhibited depressed levels of glycolysis end-products pyruvate and lactate, glutamate, and

the TCA cycle intermediates citrate, succinate, fumarate, malate, and oxaloacetate. Panto-

thenate levels were 3-fold elevated accompanied by a modest increased gene expression

of Scl5a6 that encodes the pantothenate transporter SLC5A6. Since both glucose and fatty

acids inhibit coenzyme A synthesis from pantothenate, it was concluded that these data

were consistent with downregulated fatty acid β-oxidation, glutaminolysis, glycolysis, and

TCA cycle activity, due to impaired anaplerosis. The novel SIM GCMS assay provided new

insights into metabolic effects of HFD in mice.

Introduction

In recent years, obesity has become a serious worldwide health concern [1]. Chronic diseases

like cancer, cardiovascular disease, steatohepatitis and type 2 diabetes mellitus (insulin resis-

tance) are commonly associated with obesity [2]. Complex interactions of both genetic and

environmental factors with excessive fat accumulation are responsible for obesity development

[3–5]. There is no safe and effective drug therapy as obesity due to a chronic imbalance
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between energy intake and expenditure [6]. Therefore, mechanistic aspects of obesity develop-

ment have become the focus of many investigations, specifically using system biological

approaches.

Omics studies revealed that the development of obesity is accompanied by changes in mul-

tiple metabolic pathways such as the TCA cycle, fatty acid redox metabolism and glycolysis

[4,7–9]. Genomic and transcriptomic studies revealed that a number of genes are associated

with common human obesity development, with their functions involving hormone regula-

tions and insulin signaling, energy homeostasis, lipogenesis [7], nicotinamide phosphorylation

and inflammation and fatty acid β-oxidation in rodents [7]. Proteomic studies revealed that

obesity is associated with significant differential expression of proteins in adipose tissue, mus-

cle and liver [8], and serum [10] and alterations involving mitochondrial, cytoskeletal and

structural proteins together with TCP1 complex proteins [9].

Metabolomic studies have been reported to explore the obesity effects on HFD-induced

obese rodents [11–13] and for human obesity [10,14]. These studies revealed that obese mam-

mals have clearly different phenotypes and metabotypes of the metabolism of fatty acids,

amino acids, acylcholines, as well as for glycolysis and the TCA cycle [10–22]. Moreover, the

gut microbiota have significant roles to play in HFD-induced obesity in terms of energy har-

vest [3,23], insulin resistance [24], and modulations to host metabolisms [25,26]. However,

these previous studies provided limited information on the dynamic metabolic changes associ-

ated with the development of obesity they mostly focused on the consequences while the

dynamic processes of obesity development remain to be revealed.

The HFD-induced mouse obesity model resembles human obesity in phenotype and in its

complications [27]. Therefore, the role of TCA cycle intermediates, fatty acids, amino acids

and other metabolism associated pathways in obesity development may be examined in HFD-

fed mice using targeted metabolomics. Targeted metabolomics detects and quantitates varia-

tions in endogenous and exogenous metabolite composition for an integrated biological sys-

tem. Typically, GCMS, liquid chromatography-tandem mass spectrometry (LCMS/MS), and

nuclear magnetic response (NMR) are employed. These methodologies are useful to explain

the detailed metabolic adaptations associated with obesity development and have been success-

fully applied to reveal the biochemical aspects of metabolic disorders [28,29].

In this study, we sought to understand if the energy metabolites involved in glycolysis, the

TCA cycle, glutaminolysis, and fatty acid β-oxidation were altered in C57BL/6J obese mice

that had been fed a HFD. To accomplish this, a novel, specific and sensitive GCMS assay for

energy metabolites was developed that covered 13 TCA cycle and accessory metabolites.

Materials and methods

Animal studies and sample collection

Mouse experimental procedures, performed according to the National Institutes of Health

guidelines, were reviewed and approved by the National Cancer Institute Animal Care and

Use Committee. Mice were treated humanely and with regard for the alleviation of suffering.

Male 6- to 8-week-old mice on a C57BL/6N background were purchased from Charles River

Laboratories (Wilmington, MA) and individually housed in their home cages in a specific

pathogen-free environment controlled for temperature and light (25˚C, 12h light: 12h dark

cycle), and humidity (45–65%), with ad libitum access to water and pelleted NIH-31 chow. All

mice were randomly assigned to experimental groups. Study group and control group mice

showed no difference in body weight gain before treatment. Obesity was induced in male 6–8

week-old wild-type mice (study group) by feeding a HFD (60% Kcal from fat; Bio-Serv, Fle-

mington, NJ) or NIH-31 diet (control group) for 8 weeks. Mice were weighed at weekly

Metabolic profiling of energy metabolism in high-fat diet-fed mice
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intervals and the HFD-fed mice gained three-times more body weight than the control chow-

fed mice (Fig 1). At the end of the study, all animals were fasted for 12 h prior to being eutha-

nized by CO2 asphyxiation. Blood samples and liver were collected at the end of study from

each group for metabolic analysis. All remaining samples were snap-frozen using liquid nitro-

gen immediately after collection and stored at -80˚C until further analysis.

Chemicals and materials

All metabolite standards (> 98%) and D,L-norleucine (DLN; internal standard) (> 99%) were

purchased from Sigma-Aldrich (St. Louis, MO). The derivatization reagent MTBSTFA + 1%

TBDMCS (N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide with 1% tert-butyldimethyl

chlorosilane) was purchased from Regis Technologies Inc. (Morton Grove, IL). BSTFA (N,O-

bis(trimethylsilyl)trifluoroacetamide) was purchased from Sigma-Aldrich. LCMS grade aceto-

nitrile was purchased from Fisher Scientific (Waltham, MA). Deionized water was obtained

from Milli-Q water purification system from EMD Millipore (Billerica, MA).

Chromatographic and mass detection parameters

Silylated derivatives of energy metabolites were separated on a capillary column (30 m × 0.250

mm, 0.25 μm; Agilent Technologies, Foster City, CA). Analyses were performed with an Agi-

lent 6890N gas chromatograph coupled to an Agilent 5973 mass-selective detector (MSD) with

following chromatographic conditions: Initial temperature 50˚C for 2 min, increasing to

150˚C at 20˚C/min over 5 min and finally to 300˚C at 8˚C/min for 20 min. The front inlet tem-

perature was 250˚C operating with a split ratio of 1:25. MSD ion source and interface tempera-

ture was 280˚C. The MSD operated in EI mode at 70 eV. SIM mode of 30–650 m/z was used

for the analyses. Carrier gas was He (1.0 ml/min). GCMS data were acquired and processed

using Agilent MassHunter WorkStation software.

Fig 1. Body weight gain for mice fed HFD diet and control chow over 8 weeks. **** p < 0.0001.

https://doi.org/10.1371/journal.pone.0177953.g001
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Calibration standards and quality control samples

Standard stock solutions of energy metabolites (5.0 mM) were prepared in acetonitrile. Fur-

ther, working solutions were prepared using intermediate solutions of 500.0 μM and 50.0 μM

in acetonitrile:water (50:50 v/v). Calibration curve standards were made at 0.5, 2.0, 5.0, 10, 25,

50 μM, while the quality control samples were prepared at four levels, that is, 40 μM (HQC,

high quality control), 20 μM (MQC, middle quality control), 7.5 μM (LQC, low quality con-

trol), 0.5 μM (LLOQ QC, lower limit of quantitation quality control). A stock solution of the

internal standard (2.0 mM, DLN) was used. Further, working solutions were prepared from

the stock solution in acetonitrile:water (50:50 v/v) at 10.0 μM for DLN.

Preparation of liver samples

C57BL/6N mouse liver tissue 20 ± 0.05 mg (chow and HFD diet-fed) was placed in 0.7 ml 70%

acetonitrile:water (70:30 v/v) and 20 μl of DLN (IS,10μM) added, followed by homogenization

using a Precellys homogenizer (Bertin Instruments, Montigny-le-Bretonneux, France), utilizing

1.0 mm zirconia/silica beads for 30 sec at 6500 rpm. The samples were centrifuged at 20,000g

for 10 min at 4˚C and 600 μl of supernatant was taken and dried in a SpeedVac concentrator at

room temperature. The dried residue was derivatized by adding 50 μl MTBSTFA + 1% TBDMCS,

and sonicated for 30 min at room temperature. The samples were diluted with 50 μμl acetonitrile,

briefly vortexed for 10 s and 1.00 μl was injected into the GCMS using an autosampler. It was

found that neither isocitric acid nor pantothenic acid derivatized well with MTBSTFA + TBDMCS

and therefore these compounds were determined in liver as above, only using BSTFA (50 μl) with

30 min sonication at room temperature. After dilution with 50 μl acetonitrile, samples were briefly

vortexed for 10 s and 1.00 μl analyzed as above by GCMS.

Preparation of serum samples

To an aliquot of 50 μl serum, 20 μl of DLN (10μM) was added, the sample vortexed for 10 s,

and 0.7 ml of acetonitrile added and vortex mixed for a further 1 min. The samples were cen-

trifuged at 20,000g for 10 min at 4˚C and 0.6 ml supernatant transferred to 2 ml vials. The

samples were dried in a SpeedVac concentrator at room temperature and the dried residue

derivatized with using 50 μl MTBSTFA + 1% TBDMCS. The samples were sonicated for 30

min at room temperature and diluted with 50 μl acetonitrile, briefly vortexed for 10 s and

1.00 μl was injected into the GCMS using an autosampler. For the analysis of isocitric acid and

pantothenic acid, dried residues were derivatized as for liver tissue extracts using N,O-bis(tri-

methylsilyl)trifluoroacetamide (BSTFA).

Validation procedures

Three calibration curves were plotted covering the range of 0.05–50μM for TCA intermediates

using least squares regression and 1/x2 as a weighting factor. The area response ratio for ana-

lyte/IS obtained from single ion monitoring was used for regression analysis. The acceptance

criterion for a calibration curve was a correlation coefficient (r2)� 0.99 and the lowest stan-

dard on the calibration curve was accepted as the assay sensitivity expressed as LLOQ. Intra-

batch accuracy and precision was determined by analyzing six replicates of QC samples along

with calibration curve standards on the same day, while the inter-batch accuracy and precision

were assessed by analyzing three precision and accuracy batches on three consecutive days.

The precision (% CV) at each concentration level from the nominal concentration was

expected to be not greater than 15% and the accuracy to be within ±15% as per USFDA

Metabolic profiling of energy metabolism in high-fat diet-fed mice
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guidelines [30], except for the LLOQ where it can be 80–120% of the nominal concentration.

Reinjection reproducibility was also checked by re-injecting one entire validation batch.

Stability tests were conducted for stock solutions of analytes and ISs for short term and long

term stability at 18˚C and 4˚C respectively. All stability results for spiked samples were evalu-

ated by measuring the area response ratio (analyte/IS) of stability samples against freshly pre-

pared comparison standards. QC samples at HQC and LQC levels were prepared to check for

bench top, autosampler (wet extract), processed sample, dry extract, freeze-thaw and long

term (-80˚C) stability. The acceptance criterion was ± 10.0% deviation (from the nominal

value) for stock solutions and ± 15% deviation for all other storage conditions.

RNA extraction and qPCR analysis

mRNA was prepared from frozen mouse liver as described [31]. Gene expression for Slc5a6
and Gapdh was analyzed by qPCR using SYBR1 GreenER™ Reagent System (Invitrogen,

Carlsbad, CA) in a 7900 HT Fast Real-Time PCR system (Applied Biosystems, Carlsbad, CA).

Relative expression calculated by the ΔΔCt method using Gapdh mRNA as the internal control,

and statistical analyses were performed using the ΔCt values. Primer sequences for gene

expression analyses are available on request.

Statistical analysis

Energy metabolites were estimated by non-compartmental analysis using MassHunter Work-

station Software Quantitative Analysis Version B.05.01 (Agilent Technologies). Group differ-

ences were evaluated with a nonparametric two-tailed Mann-Whitney U test using GraphPad

Prism 6 (San Diego, CA). Experimental values are presented as mean ± S.D.

Results

GCMS assay development

Published methods for the simultaneously determination of energy metabolites using GCMS,

LC-MS/MS or NMR suffer from either cumbersome extraction procedures, long retention

times or low sensitivity. The first aim of this study was to develop a rugged GCMS method that

offered the combined advantage of sensitivity, selectively, simplicity of extraction procedure,

and high throughput, adequately controlled for potential errors during extraction and analysis,

thereby ensuring accuracy of the generated data. Mass spectrometry parameters were opti-

mized to maximize the response for the energy metabolites and IS represented in Table 1. The

full scan spectra showed consistent and predominant target and qualifier ions for energy

metabolites with NIST mass spectral library matches (86–99%) as shown in Table 1. The elec-

tron ionization mass spectra under optimized conditions for the TCA metabolites and IS are

presented in Fig 2. The most stable and consistent fragment ions for the TBDMS derivatives of

pyruvic acid, citric acid, cis-aconitic acid, 2-oxoglutaric acid, succinic acid, fumaric acid, malic

acid, oxaloacetic acid, lactic acid, glutamine, glutamic acid, isocitric acid, pantothenic acid,

and DLN (IS) were observed at m/z 139, 459, 459, 431, 289, 287, 419, 417, 147, 73, 73, 273

(TMS derivative), 73 (TMS derivative), and 200, respectively.

In the present study, several trials were carried out on tissue and serum with different

extraction techniques, namely protein precipitation (PP) and liquid-liquid extraction (LLE)

followed by use of different silylation reagents. The serum PP was extracted using methanol

and acetonitrile as protein precipitants; however, with methanol the recovery showed

poor chromatography with high variability of the IS (50–70%) at LLOQ and LQC levels for

malic acid, oxaloacetic acid and 2-oxoglutaric acid. Thus, acetonitrile was used for protein

Metabolic profiling of energy metabolism in high-fat diet-fed mice
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Table 1. Quantitation by GCMS of energy metabolites.

Energy metabolite Target ion (m/z)

Qualifier ions

(m/z)

Retention time (min)

Match %

(NIST Library)

Limit of detection (μM) System suitability

(%CV)

(n = 6)

Pyruvic acid 139 259,189 10.1 86 0.03 1.18

Citric acid 459 357,591 22.7 99 0.20 1.45

Cis-aconitic acid 459 327,501 20.2 97 0.03 2.09

2-Oxoglutaric acid 431 375,473 18.7 98 0.20 3.92

Succinic acid 289 278,331 12.8 99 0.01 2.09

Fumaric acid 287 301,329 13.2 99 0.03 1.76

Malic acid 419 287,461 17.2 99 0.03 2.64

Oxaloacetic acid 417 389,459 17.4 91 0.01 4.42

Lactic acid 261 189,233 9.7 99 0.01 3.69

Glutamine 431 329,357 20.8 98 0.03 4.02

Glutamic acid 432 330,272 19.1 98 0.03 4.56

Isocitric acid 273 363,465 14.6 92 0.20 4.98

Pantothenic acid 291 201,247 15.9 94 0.03 3.84

D,L-Norleucine (IS) 200 274,302 12.7 99 — 3.69

%CV: Percent coefficient of variance.

https://doi.org/10.1371/journal.pone.0177953.t001

Fig 2. Mass spectra showing target and qualifier ions for a) pyruvic acid, b) succinic acid, c) fumaric acid, d) malic acid, e)

oxaloacetic acid, f) 2-oxoglutaric acid, g) citric acid, h) cis-aconitic acid, i) DL-norleucine (IS), j) pantothenic acid, k)

glutamine, l) glutamic acid, m) lactic acid, and n) isocitric acid. The metabolites j) and n) were derivatized with BSTFA, rather

than MTBSTFA + 1% TBDMCS.

https://doi.org/10.1371/journal.pone.0177953.g002
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precipitation before derivatization of the energy metabolites. Further, LLE was tested for liver

tissue samples with different organic diluents using dichloromethane, ethyl acetate, chloro-

form, n-hexane, alone and in combination under neutral and alkaline conditions. The results

showed very poor chromatography with high IS variability (65–80%) in almost all the solvents,

especially for LLOQ and LQC samples as most of the energy metabolites are highly water solu-

ble. Thus, monophasic liquid extraction was carried out on using 70% aqueous acetonitrile to

overcome the problems encountered during LLE.

Previous methods have used N,O-bis-(trimethylsilyl)acetamide (BSA) [32], N-trimethylsi-

lyl-N-methyl trifluoroacetamide (MSTFA) [33], BSTFA and trimethylchlorosilane (TMCS)

[34], tributylamine [35], derivatizing reagents with a longer analysis time [35] and lower sensi-

tivity [34] for selected energy metabolites [33,36] analyzed by GCMS [34,36] and LCMS

[33,35] (S1 Table). A major lacuna in even the most recently published methods is metabolite

coverage. Our method quantitates 13 TCA and accessory metabolites (Table 2), while the most

recent reports using BSTFA + 1% TCMS quantitated only 7/13 metabolites [37], and 6/13

metabolites [38], and using MSTFA quantitated only 3/13 metabolites [39]. This meager

metabolite coverage in recent published reports was a major factor in our assay development.

In addition, many published methods took an overly long time for the separation of analytes

under gradient elution and thus may not be useful for high-throughput analysis. Therefore,

different silylation reagents were evaluated, including, tert-butyldimethylsilyl (TBDMS),

BSTFA, MSTFA, and MTBSTFA + 1% TBDMCS. Among these, good chromatography was

observed and all energy metabolites could be quantitated with MTBSTFA + 1% TBDMCS,

except for isocitric acid and pantothenic acid. However, BSTFA was able to generate a stable

silyl derivative for these two metabolites. The principal limitation of this method was the fail-

ure to separate citric and isocitric acids on the column used. Nevertheless, MTBSTFA + 1%

TBDMCS was chosen as the derivatization reagent for the determination of energy metabolites

in serum and liver tissues because it gave better separation of analytes, with more stable deriva-

tives, which yielded characteristic [M-57]+ fragment ions [40,41] with a superior performance

than BSTFA for non-sterically-hindered substrates [41]. Table 2 shows the response ratios for

each of the energy metabolites determined in mouse serum and liver tissues after feeding HFD

and normal chow diet.

Table 2. The results of targeted TCA intermediates in serum and liver.

Energy metabolite Derivatization reagent Area response ratio

± S.D. (Liver, n = 5)

Area response ration ± S.D

(Serum, n = 5)

HFD CHOW HFD CHOW

Pyruvic acid MTBSTFA + 1%TBDMCS 0.013 ± 0.010 0.049 ± 0.019 1.22 x 10−4± 5.68 x 10−5 2.39 x 10−4 ± 3.24 x 10−5

Citric acid MTBSTFA + 1%TBDMCS 0.095 ± 0.100 0.293 ± 0.117 1.96 x 10−3± 4.30 x 10−4 2.92 x 10−3± 4.58 x 10−4

Cis-aconitic acid MTBSTFA + 1%TBDMCS 0.027 ± 0.014 0.043 ± 0.014 1.91 x 10−4± 1.42 x 10−4 4.47 x 10−4± 2.63 x 10−4

2-Oxoglutaric acid MTBSTFA + 1%TBDMCS 0.105 ± 0.031 0.221 ± 0.144 4.61 x 10−4± 1.36 x 10−4 1.20 x 10−3± 4.00 x 10−4

Succinic acid MTBSTFA + 1%TBDMCS 5.473 ± 2.041 17.981 ± 9.505 0.012 ± 0.002 0.024 ± 0.10

Fumaric acid MTBSTFA + 1%TBDMCS 0.364 ± 0.489 2.543 ± 0.554 4.92 x 10−3± 2.31 x 10−3 7.84 x 10−3± 2.85 x 10−3

Malic acid MTBSTFA + 1%TBDMCS 0.012 ± 0.005 0.946 ± 0.435 1.84 x 10−3± 2.97 x 10−4 2.82 x 10−3± 9.01 x 10−4

Oxaloacetic acid MTBSTFA + 1%TBDMCS 0.022 ± 0.016 0.119 ± 0.048 ND ND

Lactic acid MTBSTFA + 1%TBDMCS 3.149 ± 1.114 7.833 ± 2.376 0.894 ± 0.457 1.194 ± 0.276

Glutamine MTBSTFA + 1%TBDMCS 0.004 ± 0.004 0.004 ± 0.001 0.060 ± 0.011 0.027 ± 0.008

Glutamic acid MTBSTFA + 1%TBDMCS 0.257 ± 0.054 0.425 ± 0.090 ND ND

Isocitric acid BSTFA 0.399 ± 0.084 0.616 ± 0.125 3.138 ± 0.643 3.732 ± 0.435

Pantothenic acid BSTFA 0.145 ± 0.058 0.052 ± 0.012 0.602 ± 0.051 0.462 ± 0.035

https://doi.org/10.1371/journal.pone.0177953.t002
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For the optimum separation of analytes, several chromatographic parameters were investi-

gated, including the He gas flow and injection volume. Based upon the findings, 1 ml/min He

gas flow with 1.00 μl injection volume was chosen for further optimization based on peak

shape and response. The efficiency of sample cleanup and chromatography can be demon-

strated by flat baseline, with negligible influence of other endogenous components at the reten-

tion time of metabolites and IS (Fig 3).

The precision (%CV) system suitability test was with six consecutive injections of energy

metabolite standards (20 μM) with IS (10μM). The reinjection reproducibility in the measure-

ment of retention times for the analytes, expressed as % CV was� 3.5 for 150 injections on the

same column. The limit of detection (LOD) and LLOQ of the method were 0.01–0.03 and

0.05 μM for energy metabolites (Table 1).

The three calibration curves were linear over the concentration range 0.5–50 μM for TCA

intermediates, with a correlation coefficient r2� 0.99 for all analytes. The accuracy and preci-

sion (%CV) for the calibration curve standard ranged from 87–108% and 2.1–8.9%, respec-

tively. The intra-batch and inter-batch precision (%CV) varied 2.76–8.82 and the accuracy was

within 91.5–111% (Table 3).

Stock solutions kept for short periods (18 h) at room temperature and long-term storage

for 20 days at 4˚C, as well as freshly prepared solutions showed no evidence of degradation

under all studied conditions. No significant degradation was observed for energy metabolites

during sample storage and any of the processing steps during extraction. The detailed results

for stability studies are presented in Table 4. The precision values for method ruggedness were

4.1–9.1%. The ability to dilute samples which could be above the upper limit of the calibration

range was validated by analyzing six replicate samples containing 100 μM after five- to ten-fold

dilution. The precision (% CV) values for dilution reliability were 4.6–9.3.

Effect of high-fat diet on serum energy metabolites

Fig 4 shows analyte/IS ratios for 12 energy metabolites in mouse serum after HFD and control

chow diet feeding for 8 weeks to 8-week-old C56BL/6N mice. HFD fed mice clearly had statis-

tically significantly attenuated energy metabolites in serum, with pyruvate (Fig 4A; -49%), cit-

rate (Fig 4B; -37%), succinate (Fig 4D; -50%), fumarate (Fig 4E; -50%), and 2-oxoglutarate (Fig

4G; -60%) serum concentrations all reduced. Serum glutamine (Fig 4H) and pantothenic acid

(Fig 4L) were statistically significantly increased by 115% and 32%, respectively.

Effect of high-fat diet on hepatic energy metabolites

Fig 5 represents a schematic of the TCA cycle, with the liver levels of each intermediate shown

after HFD and control chow feeding for 8 weeks to 8-week-old C56BL/6N mice. In addition,

levels for pyruvate and lactate are also shown, since pyruvate is generated from glucose by

cytosolic glycolysis and enters the TCA cycle after conversion to acetyl-CoA. Glutamine is the

second major energy source after glucose, entering the TCA cycle after conversion to gluta-

mate by glutaminase and glutamate dehydrogenase to 2-oxoglutarate, As Fig 5 shows, hepatic

glutamine concentration was not affected by HFD, but the concentration of resulting gluta-

mate was impaired with HFD feeding. The findings shown in Fig 5 establish that HFD impairs

hepatic cytosolic glycolysis with a 64% and 62% reduction in hepatic pyruvate and lactate con-

centrations, respectively. Interestingly, hepatic pantothenic acid concentration was elevated

175% with HFD. Pantothenic acid is a vitamin and an obligatory precursor foe Coenzyme A

synthesis [42]. Pantothenic acid is imported to the cell by the sodium-dependent multivitamin

transporter SLC5A6 [43]. After HFD feeding, hepatic Slc5a6 gene expression was increased

+27% (Fig 5).
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Fig 3. Representative single ion monitoring chromatograms of the energy metabolites. a) pyruvic acid, b) succinic acid, c) fumaric acid, d) malic acid,

e) oxaloacetic acid, f) 2-oxoglutaric acid, g) cis-aconitic acid, h) citric acid, i) DL-norleucine (IS), j) lactic acid, k) glutamine, l) glutamic acid, m) isocitrate, and

n) pantothenic acid at MQC (20.0 μM).

https://doi.org/10.1371/journal.pone.0177953.g003
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The results show that the newly developed analytical method has the required sensitivity to

characterize the altered levels of energy metabolites in liver and serum after feeding HFD and

chow diet to mice for 8 weeks.

Discussion

The ability to measure serum and hepatic levels of TCA and accessory metabolites using the

newly developed assay demonstrates that HFD feeding to mice suppresses glycolysis,

Table 3. Intra- and inter-day precision and accuracy of quality control samples for targeted TCA metabolites.

TCA metabolite

(Nominal concentration)

Intra Quality Control Levels (Nominal Conc. (μM))

LLOQ QC (0.5 μM) LQC (7.5 μM) MQC (20.0 μM) HQC (40.0 μM)

A %CV % Accuracy A %CV % Accuracy A %CV % Accuracy A %CV % Accuracy

Pyruvic acid 0.52 5.54 105 7.91 4.85 106 21.6 8.23 108 44.4 8.54 111

Citric acid 0.48 7.71 95.7 7.57 6.35 101 19.8 2.68 99.2 42.0 7.04 105

Cis-aconitic acid 0.51 10.6 103 6.96 6.06 92.8 19.1 7.52 95.6 40.4 8.50 101

2-Oxoglutaric acid 0.52 8.59 104 7.07 8.03 94.3 19.7 9.46 98.7 39.4 6.10 98.5

Succinic acid 0.52 10.2 105 6.64 6.57 88.6 18.5 2.00 92.5 42.1 2.76 105

Fumaric acid 0.48 8.46 98.8 6.70 3.91 89.3 19.0 2.75 94.9 36.6 2.58 91.5

Malic acid 0.54 5.02 107 7.09 9.41 94.5 18.3 2.22 91.6 41.5 2.77 104

Oxaloacetic acid 0.52 8.79 104 7.23 7.19 96.5 19.4 5.24 97.2 38.1 3.22 95.2

TCA metabolite

(Nominal concentration)

Inter Quality Control Levels (Nominal Conc. (μM))

LLOQ QC (0.5 μM) LQC (7.5 μM) MQC (20.0 μM) HQC (40.0 μM)

A %CV % Accuracy A %CV % Accuracy A %CV % Accuracy A %CV % Accuracy

Pyruvic acid 0.52 8.36 105 7.46 6.13 99.5 20.1 8.22 100 40.1 8.82 100

Citric acid 0.49 7.56 99.0 7.24 7.79 97.4 19.0 6.06 95.0 38.5 5.71 96.2

Cis-aconitic acid 0.53 8.48 106 7.03 7.52 93.7 18.9 8.38 94.6 38.1 6.25 95.2

2-Oxoglutaric acid 0.49 7.45 98.8 7.11 9.32 94.9 20.6 5.25 103 41.3 5.52 103

Succinic acid 0.48 8.75 96.4 6.83 8.12 91.1 19.7 8.27 98.7 39.7 5.06 99.3

Fumaric acid 0.54 6.51 107 6.80 7.17 90.7 19.1 6.29 95.5 37.7 3.85 94.2

Malic acid 0.53 7.94 106 7.45 5.70 99.4 18.3 3.72 91.5 38.3 4.15 95.3

Oxaloacetic acid 0.52 6.42 103 7.75 6.09 103 19.8 6.11 98.8 38.8 3.17 97.0

A: Mean concentration (μM), %CV: Percent co-efficient of variance, LLOQ QC: Lower limit of quantitation quality control

LQC: Low quality control, MQC: Middle quality control, HQC: High quality control.

https://doi.org/10.1371/journal.pone.0177953.t003

Table 4. Stability values for targeted TCA intermediates under different conditions.

Storage conditions % Change (n = 6)

Level

(μM)

Pyruvic

acid

Citric

acid

Cis-aconitic

acid

2-Oxoglutaric

acid

Succinic

acid

Fumaric

acid

Malic

acid

Oxaloacetic

acid

Process Sample

Stability; 16h at

25˚C

LQC 5.75 8.24 7.25 -4.61 6.94 9.73 6.82 4.36

HQC -3.06 3.61 8.92 0.23 12.90 8.02 -5.97 -6.79

Auto sampler Stability;

75h at 25˚C

LQC 0.23 3.96 4.12 -3.24 0.68 6.15 4.48 3.06

HQC -0.41 2.65 6.71 5.35 9.76 8.20 0.61 -3.22

Dry Extract Stability;

32h at -70˚C

LQC -4.56 -4.84 -1.08 1.57 -4.90 9.32 -3.70 5.02

HQC -5.19 -0.88 7.81 6.07 10.32 8.73 5.77 3.68

Wet Extract Stability;

22h at 4˚C

LQC 0.02 9.78 6.61 -6.33 0.71 -0.03 11.50 -0.06

HQC 7.98 5.42 3.55 10.25 6.27 1.99 2.79 -5.88

% Change = (Mean stability samples–Mean comparison samples × 100)/ (Mean comparison samples).

n = Number of replicates for each level.

https://doi.org/10.1371/journal.pone.0177953.t004
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glutaminolysis and the TCA cycle. It is particularly notable that hepatic malate concentrations

were suppressed 100-fold by HFD feeding for 8 weeks. This will affect the production of

NADH by mitochondrial malate dehydrogenase. The malate-oxaloacetate shuttle serves to

transport reducing equivalents produced by cytosolic glycolysis into the mitochondrion, since

the mitochondrial inner membrane is impermeable to NADH. Malate produced from oxaloac-

etate + NADH in cytosol crosses into mitochondria where its reconversion to oxaloacetate

generates NADH, which can be used for ATP generation by oxidative phosphorylation [44].

The results shown here suggest that the malate-oxaloacetate shuttle is also impaired under

HFD feeding in mice. Hepatocytes would appear to have impaired energy production from

glucose and glutamine under HFD feeding. It is possible that the liver generates energy from

fatty acid β-oxidation (FAO), but this is an anaplerotic pathway that feeds the TCA cycle with

acetyl-CoA. This process requires coenzyme A (CoA), which is synthesized from the vitamin

pantothenic acid, and also cysteine and ATP [42]. As Fig 4 shows, hepatic pantothenic acid

Fig 4. Changes for the serum energy metabolite/IS ratios for HFD (H)- and control chow diet (C)-fed mice (n = 5). A,

pyruvic acid; B, citric acid; C, cis-aconitic acid; D, succinic acid; E, fumaric acid; F, malic acid; G, 2-oxoglutaric acid; H,

glutamine; I, glutamic acid; J, lactic acid; K, isocitric acid; L, pantothenic acid. *p<0.05; **p<0.01.

https://doi.org/10.1371/journal.pone.0177953.g004
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concentration was approx. three-fold enhanced after HFD feeding. Increases in both plasma

and urinary pantothenic acid have been reported for rats fed a HFD [45]. The increase

observed in this study may in part have been due to +27% increased expression of the Slc5a6
gene encoding the pantothenic acid transporter SLC5A6. However, this was a meager increase

compared to the much larger increase in hepatic pantothenic acid. It should be noted that the

rate-limiting step in CoA synthesis is the initial 4’-phosphorylation of pantothenic acid by pan-

tothenate kinase [42,46]. In isolated perfused rat hearts, pantothenate kinase was inhibited

both by glucose and palmitic acid [46], both of which are expected to be elevated in the liver

after HFD feeding. This perhaps better explains the +175% increase in hepatic pantothenic

acid, rather than the smaller +27% increase in Slc5a6 expression. Additionally, it should be

noted that serum pantothenic acid was statistically significantly increased by +32%. If HFD

induced hepatic Slc5a6 expression, it should similarly have induced intestinal Slc5a6 expres-

sion and therefore enhanced absorption of pantothenic acid from the diet. This is the most

likely scenario given that the manufacturers’ descriptions place pantothenic acid at 25 mg/kg

for the NIH-31 pelleted chow but only 5.5 mg/kg for the HFD soft pellets. Thus, elevated

serum pantothenic acid must have occurred secondary to massively increased absorption of

this dietary vitamin.

Overall, HFD feeding impaired TCA cycle intermediates, glycolytic end-products, and

glutamate, suggesting that anaplerosis was significantly decreased. In particular, the -68%

decrease in hepatic citrate indicates that there was no increased anaplerotic flux of acetyl-CoA

Fig 5. Representation of the TCA cycle and anaplerotic energy metabolites, showing metabolite levels after HFD

(H) and control chow (C) feeding to 8 week-old mice for 8 weeks. Ordinate axes represent metabolite peak area/IS

peak area, except for SLC5A6 expression (top right), where the ordinate represents mRNA expression.

https://doi.org/10.1371/journal.pone.0177953.g005
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into the TCA cycle due to enhanced FAO. Nor was the liver of these animals using protein as

an energy source because amino acids enter the TCA cycle after conversion to pyruvate (ala-

nine, serine, glycine, threonine, cysteine, tryptophan), oxaloacetate (aspartate, asparagine),

2-oxoglutarate (glutamate, glutamine, proline, histidine, arginine), fumarate (phenylalanine,

tyrosine), succinyl-CoA (methionine, isoleucine, valine), and acetyl-CoA (leucine, isoleucine,

lysine, phenylalanine, tyrosine, tryptophan, threonine) [47]. None of these gateways would

appear to be active after HFD feeding.

In conclusion, a highly reproducible SIM GCMS method was developed and for the simul-

taneous determination of energy metabolites after derivatization with MTBSTFA + 1%

TBDMCS, both for serum and tissue samples. The method offers several advantages over

reported procedures, in terms of sensitivity, lower sample requirements, a simple extraction

procedure and overall analysis time. The efficiency of monophasic liquid extraction for liver

tissue, protein precipitation for serum and a short chromatographic run time are highly favor-

able for high-throughput bioanalysis. Using this assay, analysis of serum and liver tissue from

mice fed HFD and a control chow diet permitted insights into hepatic energy metabolism.

Supporting information

S1 Fig. Typical total ion chromatograms for serum extracts. a) high-fat diet fed mouse

serum derivatized with MTBSTFA + 1% TBDMCS (see text), b) control chow fed mouse

serum derivatized with MTBSTFA + 1% TBDMCS, c) high-fat diet fed mouse serum deriva-

tized with BSTFA (see text), d) control chow fed mouse serum derivatized with BSTFA.

(TIF)

S2 Fig. Typical total ion chromatograms for liver extracts. a) high-fat diet fed mouse liver

derivatized with MTBSTFA + 1% TBDMCS, b) control chow fed mouse liver derivatized with

MTBSTFA + 1% TBDMCS, c) high-fat diet fed mouse liver derivatized with BSTFA, d) control

chow fed mouse liver derivatized with BSTFA.

(TIF)

S1 Table. Published methods for the derivatization and quantitation of intermediary

metabolites.

(PDF)

Acknowledgments

The authors are thankful to Linda G. Byrd and John Buckley for technical assistance with the

mouse studies.

Author Contributions

Conceptualization: DPP KWK FJG.

Data curation: DPP KWK.

Formal analysis: DPP KWK.

Funding acquisition: FJG.

Investigation: DPP KWK CX.

Methodology: DPP KWK.

Project administration: KWK FJG.

Metabolic profiling of energy metabolism in high-fat diet-fed mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0177953 May 16, 2017 13 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177953.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177953.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177953.s003
https://doi.org/10.1371/journal.pone.0177953


Resources: FJG.

Supervision: FJG.

Validation: DPP KWK.

Visualization: DPP JRI DB.

Writing – original draft: DPP JRI DB.

Writing – review & editing: DPP JRI DB FJG.

References
1. Ogden CL, Carroll MD, Kit BK, Flegal KM (2012) Prevalence of obesity in the United States, 2009–

2010. NCHS Data Brief: 1–8.

2. Scully T (2014) Obesity. Nature 508: S49. https://doi.org/10.1038/508S49a PMID: 24740124

3. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. (2004) The gut microbiota as an envi-

ronmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101: 15718–15723. https://doi.

org/10.1073/pnas.0407076101 PMID: 15505215

4. Walley AJ, Asher JE, Froguel P (2009) The genetic contribution to non-syndromic human obesity. Nat

Rev Genet 10: 431–442. https://doi.org/10.1038/nrg2594 PMID: 19506576

5. Yang W, Kelly T, He J (2007) Genetic epidemiology of obesity. Epidemiol Rev 29: 49–61. https://doi.

org/10.1093/epirev/mxm004 PMID: 17566051

6. Yanovski SZ, Yanovski JA (2014) Long-term drug treatment for obesity: a systematic and clinical

review. JAMA 311: 74–86. https://doi.org/10.1001/jama.2013.281361 PMID: 24231879

7. Vial G, Dubouchaud H, Couturier K, Cottet-Rousselle C, Taleux N, Athias A, et al. (2011) Effects of a

high-fat diet on energy metabolism and ROS production in rat liver. J Hepatol 54: 348–356. https://doi.

org/10.1016/j.jhep.2010.06.044 PMID: 21109325

8. Schmid GM, Converset V, Walter N, Sennitt MV, Leung KY, Byers H, et al. (2004) Effect of high-fat diet

on the expression of proteins in muscle, adipose tissues, and liver of C57BL/6 mice. Proteomics 4:

2270–2282. https://doi.org/10.1002/pmic.200300810 PMID: 15274121

9. Hwang H, Bowen BP, Lefort N, Flynn CR, De Filippis EA, Roberts C, et al. (2010) Proteomics analysis

of human skeletal muscle reveals novel abnormalities in obesity and type 2 diabetes. Diabetes 59: 33–

42. https://doi.org/10.2337/db09-0214 PMID: 19833877

10. Oberbach A, Bluher M, Wirth H, Till H, Kovacs P, Kullnick Y, et al. (2011) Combined proteomic and

metabolomic profiling of serum reveals association of the complement system with obesity and identi-

fies novel markers of body fat mass changes. J Proteome Res 10: 4769–4788. https://doi.org/10.1021/

pr2005555 PMID: 21823675

11. Kim SH, Yang SO, Kim HS, Kim Y, Park T, Choi HK (2009) 1H-nuclear magnetic resonance spectros-

copy-based metabolic assessment in a rat model of obesity induced by a high-fat diet. Anal Bioanal

Chem 395: 1117–1124. https://doi.org/10.1007/s00216-009-3054-8 PMID: 19711056

12. Li H, Xie Z, Lin J, Song H, Wang Q, Wang K, et al. (2008) Transcriptomic and metabonomic profiling of

obesity-prone and obesity-resistant rats under high fat diet. J Proteome Res 7: 4775–4783. https://doi.

org/10.1021/pr800352k PMID: 18828625

13. Toye AA, Dumas ME, Blancher C, Rothwell AR, Fearnside JF, Wilder SP, et al. (2007) Subtle metabolic

and liver gene transcriptional changes underlie diet-induced fatty liver susceptibility in insulin-resistant

mice. Diabetologia 50: 1867–1879. https://doi.org/10.1007/s00125-007-0738-5 PMID: 17618414

14. Kim JY, Park JY, Kim OY, Ham BM, Kim HJ, Kwon DY, et al. (2010) Metabolic profiling of plasma in

overweight/obese and lean men using ultra performance liquid chromatography and Q-TOF mass spec-

trometry (UPLC-Q-TOF MS). J Proteome Res 9: 4368–4375. https://doi.org/10.1021/pr100101p PMID:

20560578

15. Boulange CL, Claus SP, Chou CJ, Collino S, Montoliu I, Kochhar S, et al. (2013) Early metabolic adap-

tation in C57BL/6 mice resistant to high fat diet induced weight gain involves an activation of mitochon-

drial oxidative pathways. J Proteome Res 12: 1956–1968. https://doi.org/10.1021/pr400051s PMID:

23473242

16. Fearnside JF, Dumas ME, Rothwell AR, Wilder SP, Cloarec O, Toye A, et al. (2008) Phylometabonomic

patterns of adaptation to high fat diet feeding in inbred mice. PLoS One 3: e1668. https://doi.org/10.

1371/journal.pone.0001668 PMID: 18301746

Metabolic profiling of energy metabolism in high-fat diet-fed mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0177953 May 16, 2017 14 / 16

https://doi.org/10.1038/508S49a
http://www.ncbi.nlm.nih.gov/pubmed/24740124
https://doi.org/10.1073/pnas.0407076101
https://doi.org/10.1073/pnas.0407076101
http://www.ncbi.nlm.nih.gov/pubmed/15505215
https://doi.org/10.1038/nrg2594
http://www.ncbi.nlm.nih.gov/pubmed/19506576
https://doi.org/10.1093/epirev/mxm004
https://doi.org/10.1093/epirev/mxm004
http://www.ncbi.nlm.nih.gov/pubmed/17566051
https://doi.org/10.1001/jama.2013.281361
http://www.ncbi.nlm.nih.gov/pubmed/24231879
https://doi.org/10.1016/j.jhep.2010.06.044
https://doi.org/10.1016/j.jhep.2010.06.044
http://www.ncbi.nlm.nih.gov/pubmed/21109325
https://doi.org/10.1002/pmic.200300810
http://www.ncbi.nlm.nih.gov/pubmed/15274121
https://doi.org/10.2337/db09-0214
http://www.ncbi.nlm.nih.gov/pubmed/19833877
https://doi.org/10.1021/pr2005555
https://doi.org/10.1021/pr2005555
http://www.ncbi.nlm.nih.gov/pubmed/21823675
https://doi.org/10.1007/s00216-009-3054-8
http://www.ncbi.nlm.nih.gov/pubmed/19711056
https://doi.org/10.1021/pr800352k
https://doi.org/10.1021/pr800352k
http://www.ncbi.nlm.nih.gov/pubmed/18828625
https://doi.org/10.1007/s00125-007-0738-5
http://www.ncbi.nlm.nih.gov/pubmed/17618414
https://doi.org/10.1021/pr100101p
http://www.ncbi.nlm.nih.gov/pubmed/20560578
https://doi.org/10.1021/pr400051s
http://www.ncbi.nlm.nih.gov/pubmed/23473242
https://doi.org/10.1371/journal.pone.0001668
https://doi.org/10.1371/journal.pone.0001668
http://www.ncbi.nlm.nih.gov/pubmed/18301746
https://doi.org/10.1371/journal.pone.0177953


17. He Q, Ren P, Kong X, Wu Y, Wu G, Li P, et al. (2012) Comparison of serum metabolite compositions

between obese and lean growing pigs using an NMR-based metabonomic approach. J Nutr Biochem

23: 133–139. https://doi.org/10.1016/j.jnutbio.2010.11.007 PMID: 21429726

18. Kim HJ, Kim JH, Noh S, Hur HJ, Sung MJ, Hwang JT, et al. (2011) Metabolomic analysis of livers and

serum from high-fat diet induced obese mice. J Proteome Res 10: 722–731. https://doi.org/10.1021/

pr100892r PMID: 21047143

19. Serkova NJ, Jackman M, Brown JL, Liu T, Hirose R, Roberts JP, et al. (2006) Metabolic profiling of liv-

ers and blood from obese Zucker rats. J Hepatol 44: 956–962. https://doi.org/10.1016/j.jhep.2005.07.

009 PMID: 16223541

20. Shurubor YI, Cooper AJ, Isakova EP, Deryabina YI, Beal MF, Krasnikov BF (2016) Simultaneous deter-

mination of tricarboxylic acid cycle metabolites by high-performance liquid chromatography with ultravi-

olet detection. Anal Biochem 503: 8–10. https://doi.org/10.1016/j.ab.2016.03.004 PMID: 27001310

21. Waldram A, Holmes E, Wang Y, Rantalainen M, Wilson ID, Tuohy KM, et al. (2009) Top-down systems

biology modeling of host metabotype-microbiome associations in obese rodents. J Proteome Res 8:

2361–2375. https://doi.org/10.1021/pr8009885 PMID: 19275195

22. Gooda Sahib Jambocus N, Saari N, Ismail A, Khatib A, Mahomoodally MF, Abdul Hamid A (2016) An

Investigation into the Antiobesity Effects of Morinda citrifolia L. Leaf Extract in High Fat Diet Induced

Obese Rats Using a (1)H NMR Metabolomics Approach. J Diabetes Res 2016: 2391592. https://doi.

org/10.1155/2016/2391592 PMID: 26798649

23. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated

gut microbiome with increased capacity for energy harvest. Nature 444: 1027–1031. https://doi.org/10.

1038/nature05414 PMID: 17183312

24. Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, et al. (2006) Metabolic profiling

reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad

Sci U S A 103: 12511–12516. https://doi.org/10.1073/pnas.0601056103 PMID: 16895997

25. Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, et al. (2008) Symbiotic gut microbes modu-

late human metabolic phenotypes. Proc Natl Acad Sci U S A 105: 2117–2122. https://doi.org/10.1073/

pnas.0712038105 PMID: 18252821

26. Martin FP, Dumas ME, Wang Y, Legido-Quigley C, Yap IK, Tang H, et al. (2007) A top-down systems

biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol 3: 112.

https://doi.org/10.1038/msb4100153 PMID: 17515922

27. Li S, Zhang HY, Hu CC, Lawrence F, Gallagher KE, Surapaneni A, et al. (2008) Assessment of diet-

induced obese rats as an obesity model by comparative functional genomics. Obesity (Silver Spring)

16: 811–818.

28. Xu W, Wu J, An Y, Xiao C, Hao F, Liu H, et al. (2012) Streptozotocin-induced dynamic metabonomic

changes in rat biofluids. J Proteome Res 11: 3423–3435. https://doi.org/10.1021/pr300280t PMID:

22563680

29. Zhang X, Wang Y, Hao F, Zhou X, Han X, Tang H, et al. (2009) Human serum metabonomic analysis

reveals progression axes for glucose intolerance and insulin resistance statuses. J Proteome Res 8:

5188–5195. https://doi.org/10.1021/pr900524z PMID: 19697961

30. FDA (2013) Guidance for Industry. Bioanalytical Method Validation

31. Ciappio ED, Krausz KW, Rochman M, Furusawa T, Bonzo JA, Tessarollo L, et al. (2014) Metabolomics

reveals a role for the chromatin-binding protein HMGN5 in glutathione metabolism. PLoS One 9:

e84583. https://doi.org/10.1371/journal.pone.0084583 PMID: 24392144

32. Womersley C, Platzer EG (1984) Quantitative analysis of tricarboxylic acid cycle acids from microsam-

ples of insect haemolymph. Insect Biochem 14: 395–399.

33. Tan B, Lu Z, Dong S, Zhao G, Kuo MS (2014) Derivatization of the tricarboxylic acid intermediates with

O-benzylhydroxylamine for liquid chromatography-tandem mass spectrometry detection. Anal Biochem

465: 134–147. https://doi.org/10.1016/j.ab.2014.07.027 PMID: 25102203

34. Calderon-Santiago M, Priego-Capote F, Galache-Osuna JG, Luque de Castro MD (2013) Method based

on GC-MS to study the influence of tricarboxylic acid cycle metabolites on cardiovascular risk factors. J

Pharm Biomed Anal 74: 178–185. https://doi.org/10.1016/j.jpba.2012.10.029 PMID: 23245249

35. Luo B, Groenke K, Takors R, Wandrey C, Oldiges M (2007) Simultaneous determination of multiple

intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid

chromatography-mass spectrometry. J Chromatogr A 1147: 153–164. https://doi.org/10.1016/j.

chroma.2007.02.034 PMID: 17376459

36. Womersley C, Platzer EG (1982) The effect of parasitism by the mermithid Romanomermis culicivorax

on the dry weight and hemolymph soluble protein content of three species of mosquitoes. J Invertebr

Pathol 40: 406–412. PMID: 6130116

Metabolic profiling of energy metabolism in high-fat diet-fed mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0177953 May 16, 2017 15 / 16

https://doi.org/10.1016/j.jnutbio.2010.11.007
http://www.ncbi.nlm.nih.gov/pubmed/21429726
https://doi.org/10.1021/pr100892r
https://doi.org/10.1021/pr100892r
http://www.ncbi.nlm.nih.gov/pubmed/21047143
https://doi.org/10.1016/j.jhep.2005.07.009
https://doi.org/10.1016/j.jhep.2005.07.009
http://www.ncbi.nlm.nih.gov/pubmed/16223541
https://doi.org/10.1016/j.ab.2016.03.004
http://www.ncbi.nlm.nih.gov/pubmed/27001310
https://doi.org/10.1021/pr8009885
http://www.ncbi.nlm.nih.gov/pubmed/19275195
https://doi.org/10.1155/2016/2391592
https://doi.org/10.1155/2016/2391592
http://www.ncbi.nlm.nih.gov/pubmed/26798649
https://doi.org/10.1038/nature05414
https://doi.org/10.1038/nature05414
http://www.ncbi.nlm.nih.gov/pubmed/17183312
https://doi.org/10.1073/pnas.0601056103
http://www.ncbi.nlm.nih.gov/pubmed/16895997
https://doi.org/10.1073/pnas.0712038105
https://doi.org/10.1073/pnas.0712038105
http://www.ncbi.nlm.nih.gov/pubmed/18252821
https://doi.org/10.1038/msb4100153
http://www.ncbi.nlm.nih.gov/pubmed/17515922
https://doi.org/10.1021/pr300280t
http://www.ncbi.nlm.nih.gov/pubmed/22563680
https://doi.org/10.1021/pr900524z
http://www.ncbi.nlm.nih.gov/pubmed/19697961
https://doi.org/10.1371/journal.pone.0084583
http://www.ncbi.nlm.nih.gov/pubmed/24392144
https://doi.org/10.1016/j.ab.2014.07.027
http://www.ncbi.nlm.nih.gov/pubmed/25102203
https://doi.org/10.1016/j.jpba.2012.10.029
http://www.ncbi.nlm.nih.gov/pubmed/23245249
https://doi.org/10.1016/j.chroma.2007.02.034
https://doi.org/10.1016/j.chroma.2007.02.034
http://www.ncbi.nlm.nih.gov/pubmed/17376459
http://www.ncbi.nlm.nih.gov/pubmed/6130116
https://doi.org/10.1371/journal.pone.0177953


37. Qian L, Zhao A, Zhang Y, Chen T, Zeisel SH, Jia W, et al. (2016) Metabolomic Approaches to Explore

Chemical Diversity of Human Breast-Milk, Formula Milk and Bovine Milk. Int J Mol Sci 17: 1–16.

38. Yang L, Yu QT, Ge YZ, Zhang WS, Fan Y, Ma CW, et al. (2016) Distinct urine metabolome after Asian

ginseng and American ginseng intervention based on GC-MS metabolomics approach. Sci Rep 6: 1–

11.

39. Falegan OS, Ball MW, Shaykhutdinov RA, Pieroraio PM, Farshidfar F, Vogel HJ, et al. (2017) Urine and

Serum Metabolomics Analyses May Distinguish between Stages of Renal Cell Carcinoma. Metabolites

7: 1–17.

40. Mawhinney TP, Robinett RS, Atalay A, Madson MA (1986) Gas-liquid chromatography and mass spec-

tral analysis of mono-, di- and tricarboxylates as their tert.-butyldimethylsilyl derivatives. J Chromatogr

361: 117–130. PMID: 3733951

41. Schummer C, Delhomme O, Appenzeller BM, Wennig R, Millet M (2009) Comparison of MTBSTFA and

BSTFA in derivatization reactions of polar compounds prior to GC/MS analysis. Talanta 77: 1473–

1482. https://doi.org/10.1016/j.talanta.2008.09.043 PMID: 19084667

42. Martinez DL, Tsuchiya Y, Gout I (2014) Coenzyme A biosynthetic machinery in mammalian cells. Bio-

chem Soc Trans 42: 1112–1117. https://doi.org/10.1042/BST20140124 PMID: 25110011

43. Vadlapudi AD, Vadlapatla RK, Mitra AK (2012) Sodium dependent multivitamin transporter (SMVT): a

potential target for drug delivery. Curr Drug Targets 13: 994–1003. PMID: 22420308

44. Abbrescia DI, La Piana G, Lofrumento NE (2012) Malate-aspartate shuttle and exogenous NADH/cyto-

chrome c electron transport pathway as two independent cytosolic reducing equivalent transfer sys-

tems. Arch Biochem Biophys 518: 157–163. https://doi.org/10.1016/j.abb.2011.12.021 PMID:

22239987

45. Takahashi K, Fukuwatari T, Shibata K (2015) Exercise and a High Fat Diet Synergistically Increase the

Pantothenic Acid Requirement in Rats. J Nutr Sci Vitaminol (Tokyo) 61: 215–221.

46. Robishaw JD, Berkich D, Neely JR (1982) Rate-limiting step and control of coenzyme A synthesis in

cardiac muscle. J Biol Chem 257: 10967–10972. PMID: 7107640

47. Owen OE, Kalhan SC, Hanson RW (2002) The key role of anaplerosis and cataplerosis for citric acid

cycle function. J Biol Chem 277: 30409–30412. https://doi.org/10.1074/jbc.R200006200 PMID:

12087111

Metabolic profiling of energy metabolism in high-fat diet-fed mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0177953 May 16, 2017 16 / 16

http://www.ncbi.nlm.nih.gov/pubmed/3733951
https://doi.org/10.1016/j.talanta.2008.09.043
http://www.ncbi.nlm.nih.gov/pubmed/19084667
https://doi.org/10.1042/BST20140124
http://www.ncbi.nlm.nih.gov/pubmed/25110011
http://www.ncbi.nlm.nih.gov/pubmed/22420308
https://doi.org/10.1016/j.abb.2011.12.021
http://www.ncbi.nlm.nih.gov/pubmed/22239987
http://www.ncbi.nlm.nih.gov/pubmed/7107640
https://doi.org/10.1074/jbc.R200006200
http://www.ncbi.nlm.nih.gov/pubmed/12087111
https://doi.org/10.1371/journal.pone.0177953

	1

