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Abstract. Ice sheets provide exceptional archives of
past changes in polar climate, regional environment and
global atmospheric composition. The oldest dated deep ice
core drilled in Antarctica has been retrieved at EPICA
Dome C (EDC), reaching ∼ 800 000 years. Obtaining an
older paleoclimatic record from Antarctica is one of the
greatest challenges of the ice core community. Here, we use
internal isochrones, identified from airborne radar coupled to
ice-flow modelling to estimate the age of basal ice along tran-
sects in the Dome C area. Three glaciological properties are
inferred from isochrones: surface accumulation rate, geother-
mal flux and the exponent of the Lliboutry velocity profile.
We find that old ice (> 1.5 Myr, 1.5 million years) likely ex-
ists in two regions: one∼ 40 km south-west of Dome C along
the ice divide to Vostok, close to a secondary dome that we
name “Little Dome C” (LDC), and a second region named
“North Patch” (NP) located 10–30 km north-east of Dome C,
in a region where the geothermal flux is apparently relatively
low. Our work demonstrates the value of combining radar
observations with ice flow modelling to accurately represent
the true nature of ice flow, and understand the formation of
ice-sheet architecture, in the centre of large ice sheets.

1 Introduction

Since around 800 000 years ago, glacial periods have been
dominated by a ∼ 100 000-year cyclicity, as documented in
multiple proxies from marine, terrestrial and ice core records
(Elderfield et al., 2012; Jouzel et al., 2007; Lisiecki and
Raymo, 2005; Loulergue et al., 2008; Lüthi et al., 2008;
Wang et al., 2008; Wolff et al., 2006). These data have pro-
vided evidence of consistent changes in polar and tropical
temperatures, continental aridity, aerosol deposition, atmo-
spheric greenhouse gas concentrations and global mean sea
level over numerous glacial cycles. Conceptual models (Im-
brie et al., 2011) have been proposed to explain these asym-
metric 100 000-year cycles in response to changes in the con-
figuration of the Earth’s orbit and obliquity (Laskar et al.,
2004), and involve threshold behaviour between different cli-
mate states within the Earth system (Parrenin and Paillard,
2012). The asymmetry between glacial inceptions and ter-
minations may, for example, be due to the slow build-up of
ice sheets and their rapid collapse once fully developed due
to glacial isostasy (Abe-Ouchi et al., 2013). Observed se-
quences of events and Earth system modelling studies (Fis-
cher et al., 2010; Lüthi et al., 2008; Parrenin et al., 2013;
Shakun et al., 2012) have shown that climate–carbon feed-
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backs also play a major role in the magnitude of glacial–
interglacial transitions.

Critical to our understanding of these 100 000-year glacial
cycles is the study of their onset, during the Mid-Pleistocene
Transition (MPT; Jouzel and Masson-Delmotte, 2010),
which occurred between 1250 and 700 kyr BP thousands of
years before 1950; Clark et al., 2006), and most likely dur-
ing Marine Isotope Stages (MIS) 22–24, around 900 kyr BP
(Elderfield et al., 2012). Prior to the MPT, marine sediments
(Lisiecki and Raymo, 2005) show glacial–interglacial cy-
cles occurring at obliquity periodicities (40 kyr) and with a
smaller amplitude. The exact cause for this MPT remains
controversial and several mechanisms have been proposed,
including the transition of the Antarctic ice sheet from a
wholly terrestrial to a part-marine configuration (Raymo et
al., 2006), a hypothesis which is, however, unsupported by
long-term simulations (Pollard and DeConto, 2009); a non-
linear response to weak eccentricity changes (Imbrie et al.,
2011); merging of North American ice sheets (Bintanja and
Van de Wal, 2008); changes in sea ice extent (Tziperman
and Gildor, 2003); a time varying insolation energy thresh-
old (Tzedakis et al., 2017); a threshold effect related to the
atmospheric dust load over the Southern Ocean (Martínez-
Garcia et al., 2011); and a long-term decrease in atmospheric
CO2 concentrations (Berger et al., 1999), the latter hypoth-
esis being challenged by indirect estimates of atmospheric
CO2 from marine sediments (Hönisch et al., 2009).

A continuous Antarctic ice core record extending back at
least to 1.5 Myr BP would shed new light on the MPT re-
organisation (Jouzel and Masson-Delmotte, 2010), by pro-
viding records of Antarctic temperature, atmospheric green-
house gas concentrations and aerosol fluxes prior to and af-
ter the MPT. The opportunity to measure cosmogenic iso-
topes (10Be) would also provide information on changes in
the intensity of the Earth’s magnetic field, especially during
the Jaramillo transition (Singer and Brown, 2002). Retrieving
Antarctica’s “oldest ice” is therefore a major challenge of the
ice core science community (Brook et al., 2006). A necessary
first step towards this goal is to identify potential drilling sites
based on available information on ice-sheet structure and ac-
companying age modelling (Fischer et al., 2013; Van Lief-
feringe and Pattyn, 2013).

The maximum age of a continuous ice core depends on
several parameters (Fischer et al., 2013). Mathematically, the
age χ of the ice at a level z above bedrock can be written as
follows:

χ(z)=

∫
D(z′)

a(z′)τ (z′)
dz′, (1)

whereD(z) is the relative density of the material (< 1 for the
firn and = 1 for the ice), a(z) is the accumulation rate (initial
vertical thickness of a layer, in metres of ice yr−1), τ(z) is the
vertical thinning function, i.e. the ratio of the vertical thick-
ness of a layer in the ice core to its initial vertical thickness
at the surface, and H is the total ice thickness. Increasing

the maximum age χmax can be obtained by increasing H or
by decreasing a or τ . At first glance, one might select a site
whereH is maximum and a is minimum, but this neglects the
importance of τ , notably through basal melting. In general,
τ decreases toward the bed and, in steady state, reaches the
valueµ=m/a, wherem is the basal melting.m is therefore a
crucial parameter of the problem, as it destroys the bottom of
the ice record. As ice is a good insulator, H either increases
the ice temperature towards melting for frozen basal ice con-
ditions, or, when melting is present, m increases with H and
with the geothermal flux underneath the ice sheet (Fischer
et al., 2013). Consequently, “oldest-ice” sites have a better
chance to exist where ice is not overly thick as to lead to basal
melting (Seddik et al., 2011), yet thick enough to contain a
continuous ancient accumulation. The distance of a site to the
ice divide is also an important parameter. This distance influ-
ences the profile of τ , which is increasingly non-linear right
at a dome. Therefore, χmax can be up to 10 times larger at a
dome than a few kilometres downstream (Martín and Gud-
mundsson, 2012). Moreover, assuming a largely constant ice
sheet configuration across glacial cycles, an ice record close
to the divide has travelled a shorter horizontal distance and
therefore has a better chance of being stratigraphically undis-
turbed (Fischer et al., 2013).

The depth–age profile in an ice sheet can be obtained using
radar observations at VHF ranges to identify englacial reflec-
tions (e.g. Fujita et al., 1999) and trace them as isochrones
across the ice sheet (Cavitte et al., 2016; Siegert et al., 1998).
Until now, such analysis has been restricted to the top ∼
three-fourths of the ice thickness in East Antarctica. How-
ever, depth–age information from internal layers can be used
in conjunction with ice flow models and age information
from ice cores to extrapolate down to the bed. Radar observa-
tions allow estimates of poorly known ice-sheet parameters,
such as the geothermal flux (Shapiro and Ritzwoller, 2004)
and past changes in the position of ice domes and divides.

The Dome C sector is one of the target areas for the
“oldest-ice” challenge and has a number of distinct bene-
fits over other regions: it has already been heavily surveyed
by geophysical techniques (Cavitte et al., 2016; Siegert et
al., 1998; Tabacco et al., 1998), a reference age scale has
been developed through the existing ice core work (Bazin et
al., 2013; Veres et al., 2013) and it is logistically accessi-
ble from nearby Concordia Station. In this study, we concen-
trate on airborne radar transects (Fig. 1), which are all related
to the EDC ice core. These data resolve the bed (Young et
al., 2017) and internal isochrones (Cavitte et al., 2017) and
are suitable for the oldest-ice search (Winter et al., 2017).
The isochrones are dated up to about 366 kyr BP using the
most recent AICC2012 chronology established for the EDC
ice core (Bazin et al., 2013; Veres et al., 2013). We extrap-
olate the age of the isochrones toward the bed using an ice
flow model in order to identify potential oldest-ice sites along
these transects. We also build maps of surface accumulation
rate, geothermal flux and of a linearity parameter of the ver-
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Figure 1. Radar transects used in this study (dotted blue and
red lines). The light colour scale represents the bedrock elevation
(Fretwell et al., 2013) while the thin grey transparent lines represent
the surface elevation (Fretwell et al., 2013). The red square in the in-
set show the location of the zoomed map around EDC. The red star
is the location of the EDC drilling site. The orange squared areas
are oldest-ice candidates from Van Liefferinge and Pattyn (2013).
The red dotted line is the OIA/JKB2n/X45 radar line displayed in
Fig. 3.

tical velocity profile. The spatial and temporal variations of
surface accumulation rates are discussed in detail in a com-
panion paper (Cavitte et al., 2017).

2 Method

We use a 1-D pseudo-steady (Parrenin et al., 2006) ice flow
model, which assumes that the geometry, the shape of the
vertical velocity profile, the ratio µ=m/a and the relative
density profile are constant in time. Only a temporal fac-
tor R(t) is applied to both the accumulation rate a and basal
melting m:

a(x, t)= a(x)R(t),

m(x, t)=m(x)R(t), (2)

where a(x) andm(x) are the temporally averaged accumula-
tion and melting rates at a certain point x. Under the pseudo-
steady assumption, the vertical thinning function is given by

τ = (1−µ)ω+µ, (3)

where ω is the horizontal flux shape function (Parrenin et
al., 2006). While there is no physical reason to assume co-

Figure 2. R(t) proportionality factor applied to accumulation and
melting rates (see Eq. 2). The plot is cut at 1 Myr for better read-
ability. R(t) is based on the accumulation record at EDC for the last
800 kyr (Bazin et al., 2013; Veres et al., 2013).

variance of basal melting and surface accumulation, com-
parison with a transient dating model (Parrenin et al., 2007)
shows errors of only 6 % maximum in the evaluation of the
thinning function. Moreover, the fact that there is an analyti-
cal expression for the thinning function allows one to drasti-
cally reduce the computation time, an important factor since
the 1-D model needs to be applied on many locations and
with many different sets of parameters. A steady age χsteady
is first calculated assuming a steady accumulation a and a
steady meltingm. Then the real age χ is calculated using the
following equation (Parrenin et al., 2006):

dχsteady = R(t)dχ. (4)

R(t) (Fig. 2) is directly inferred from the accumulation
record of the EDC ice core (Bazin et al., 2013; Veres et al.,
2013). Beyond 800 kyr BP, it is assumed to be equal to 1; that
is to say that the accumulation before 800 kyr BP is assumed
equal to the average accumulation over the last 800 kyr. The
horizontal flux shape function is determined using an analyt-
ical expression (Lliboutry, 1979; Parrenin et al., 2007):

ω(ζ )= 1−
p+ 2
p+ 1

(1− ζ )+
1

p+ 1
(1− ζ )p+2, (5)

where ζ = z/H is the normalised vertical coordinate (0 at
bedrock and 1 at surface) expressed in ice equivalent, and p a
parameter modifying the non-linearity of ω (the smaller p,
the more non-linear ω). This formulation assumes that there
is a negligible basal sliding ratio, as is the case at EDC (Par-
renin et al., 2007). This might not be the case elsewhere, but
adding a basal sliding term has a similar effect as increasing
the p parameter for the top ∼ three-fourths of the ice sheet.
The age of the ice at any depth is deduced from Eq. (1) using
the relative density profile at EDC (Bazin et al., 2013).

To compute the basal melting, we use a simple steady-state
1-D thermal model. We solve the heat equation (neglecting
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the heat production by deformation since there is minimal
horizontal shear) as follows:

d
dz

(
kT

dT
dz

)
− cρiDuz

dT
dz
= 0, (6)

where T is the temperature, uz is the vertical velocity,
ρi= 917 kg m−3 is the ice density (Cuffey and Paterson,
2010) and kT (W m−1 K−1) is the thermal conductivity (Cuf-
fey and Paterson, 2010), is given by

kT =
2kiTD
3−D

, (7)

kiT = 9.828exp
(
−5.7× 10−3T

)
, (8)

and c (J kg−1 K−1), the specific heat capacity (Cuffey and
Paterson, 2010) is given by

c = 152.5+ 7.122T . (9)

The boundary conditions are

T |z=H = TS, (10)
T |z=0 = Tf (temperate base), (11)

or − kT
dT
dz
|z=0 =G0 (cold base), (12)

where TS= 212.74 K is the average temperature at the sur-
face assumed to be equal to the one at Dome C (Parrenin et
al., 2013), G0 is the geothermal flux and Tf, the fusion tem-
perature is given by Ritz (1992):

Tf = 273.16− 7.4× 10−8P − 2.4× 10−8P ′, (13)

where P ′= 106 Pa is the partial pressure of air and P , the
pressure, is approximated by the hydrostatic pressure:

P = ρig

∫
D(z′)dz′, (14)

where g= 9.81 m s−2 is the gravitational acceleration. We
used this formula since it gives the best agreement to the
measured temperature profile at EDC (Passalacqua et al.,
2017). The basal melting is given by

m=
G0−G

ρiLf
(temperate base),

or m= 0 (cold base), (15)

where G is the vertical heat flux at the base of the ice sheet
and Lf= 333.5 kJ kg−1 is the latent heat of fusion (Cuffey
and Paterson, 2010).

To prevent p from being <−1 (Eq. 5 has a singularity for
p=−1), we write

p =−1+ exp(p′). (16)

The values of a, G0 and p′ are reconstructed using a vari-
ational inverse method and using the radar isochrone con-
straints. The cost function to minimise is formulated using a
least-squares expression:

Table 1. Age and total age uncertainty of the 18 isochrones used in
this study.

Age (yr BP) Uncertainty (yr)

9989 258
38 106 597
46 410 790
73 367 2071
82 014 1548
96 487 1745

106 247 1822
121 088 1702
127 779 1771
160 372 3581
166 355 3230
200 116 2177
220 062 3019
254 460 4025
277 896 3636
327 339 3053
341 476 4409
366 492 5838

S =
∑(

χ iso
i −χ

mod (d iso
i

))2(
σ iso
i

)2 +

(
p′prior−p

′

)2

(
σp
′
)2

+

(
G0,prior−G0

)2(
σG0

)2 , (17)

where N is the number of isochrones (3≤N ≤ 18, see Ta-
ble 1 and Fig. 3), d iso

i and χ iso
i are the depths and ages of

the isochrones respectively, σ iso
i is the confidence interval on

their age and χmod is the modelled age. p′prior= ln(1+ 1.97)
is the a priori estimates of p′, inferred from the age-scale
model of the EDC ice core (Parrenin et al., 2007) and σp

′

= 2
is its standard deviation, chosen to be sufficiently large to
allow for a large range of p′ values. G0,prior= 51 mW m−2

is the a priori estimate of the geothermal flux calculated
from satellite magnetic data (Fox Maule et al., 2005; Pu-
rucker, 2013), and from analysis of the heat required to main-
tain melting above subglacial lakes (Siegert and Dowdeswell,
1996). σG0 = 25 mW m−2 is the uncertainty in the geother-
mal flux (Fox Maule et al., 2005; Purucker, 2013); the to-
tal uncertainty of the age of isochrones σ iso is composed
of (1) the uncertainty in the depth of the traced isochrones
(Cavitte et al., 2016), transferred in age, and (2) the uncer-
tainty of the AICC2012 age of the isochrone at the EDC site.

To solve the least-squares problem formulated in Eq. (16),
we used a standard Metropolis–Hastings algorithm (Hast-
ings, 1970; Metropolis et al., 1953) with 1000 iterations. This
allows one not only to obtain a most probable modelling sce-
nario, but also to quantify the posterior probability distribu-
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Figure 3. One-dimensional ice flow simulation along the OIA/JKB2n/X45 radar transect (see red dotted line in Fig. 1 for location). (a) Var-
ious inferred parameters (plain lines) as well as their 15th and 85th percentiles (dashed lines). From top to bottom panels: average surface
accumulation rate, geothermal heat flux, p+ 1 parameter of the velocity profile, average basal melting, bottom age 60 m above bedrock,
height above bed of the 1.5 Myr isochrone and resolution of the 1.5 Myr isochrone. (b) Modelled age (in colour scale; white is for ages older
than 1.5 Myr), together with observed isochrones (in white) and bed (in thick black). Note the two main oldest-ice candidates at distance
25 km (North Patch, NP) and at distance 75 km (Little Dome C Patch, LDCP).

www.the-cryosphere.net/11/2427/2017/ The Cryosphere, 11, 2427–2437, 2017
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tion, in particular the confidence intervals or the modelled
quantities.

3 Results and discussions

In our forward modelling, we used the 1-D pseudo-steady
assumption. This assumption is very convenient numerically
because in this case, there is an analytical expression for the
thinning function (Eq. 3). Therefore, there is no need to use a
costly Lagrangian scheme, following the trajectories of ice
particles. Of course, the reality is more complex than the
pseudo-steady assumption because the temporal variations in
melting and accumulation rates are not related and are not
the same for each point in space. In Parrenin et al. (2007),
we used a more complex age model with a ratio µ and with
an ice thickness allowed to vary in time. The results are very
similar with the pseudo-steady model. This is because melt-
ing is small compared to the accumulation, and the variations
in ice thickness are small compared to the total ice thickness.
Regarding the spatial pattern of accumulation, we assumed
that it is stable in time, which is roughly confirmed by the
inversion of internal layers (Cavitte et al., 2017). Moreover,
the 1-D assumption dominates the uncertainty since we do
not take into account horizontal advection and dome move-
ment. Therefore, we suggest the pseudo-steady assumption
is good enough for a 1-D model.

An example age profile along the OIA/JKB2n/X45 radar
transect (see Fig. 1 for its position) is displayed in Fig. 3.
From these profiles, maps of the modelled age at 60 m above
the bed, minimum age at 60 m above the bed (at 85 % confi-
dence level), the height above the bed of the 1.5 Ma isochrone
and temporal resolution at 1.5 Myr are displayed in Fig. 4.
We use 60 m above the bed as this is the height at EDC below
which the ice becomes disturbed such that it cannot be in-
terpreted stratigraphically (Tison et al., 2015). The modelled
basal melting m and inferred steady accumulation rate a,
geothermal flux G0 and p′ parameter of the vertical veloc-
ity profile are displayed in Fig. 5.

The bottom age inferred at EDC at 3200 m is 785 kyr,
which is remarkably close to the age of ∼ 820 kyr inferred
from the analysis of the ice core (Bazin et al., 2013; Veres et
al., 2013). This 35 kyr difference represent a depth mismatch
of 24 m. This is a confirmation of the method used, despite
its assumptions (i.e. 1-D, pseudo-steady, Lliboutry velocity
profile).

There are two main regions where the basal age is mod-
elled to be older than 1.5 Myr. The first one is situated close
to Little Dome C (LDC), ∼ 40 km south-west of EDC. In
this region that we call LDC Patch (LDCP), the ice thick-
ness is several hundred metres lower than at EDC, thus re-
ducing the likelihood of basal melting. The second region is
10–30 km north-east of EDC in the direction of the coast,
at a place where the ice thickness is comparable to the one
at EDC but with a lower geothermal flux. We call this re-

gion “North Patch” (NP). In those two oldest-ice spots, the
height above the bed of the 1.5 Myr isochrone is modelled to
be greater than 150 m. The temporal resolution at 1.5 Myr is
∼ 10 kyr m−1, which is sufficient to resolve the main climatic
periods (Fischer et al., 2013).

Our LDCP area is generally consistent with Candidate A
of Van Liefferinge and Pattyn (Van Liefferinge and Pattyn,
2013) although our area is smaller and constrained to the
subglacial highlands under LDC. Van Liefferinge and Pattyn
(2013) did not find a candidate at NP. However, the geother-
mal heat flux maps they relied on have a lower spatial reso-
lution than the details we examine here. Our model does not
predict very old ages for Candidates B–E of Van Liefferinge
and Pattyn (2013), although the 1-D assumption is problem-
atic in those areas since ice particles experienced very differ-
ent ice thickness conditions along their path.

One possible limitation of our simple ice sheet model is
that it does not allow for a layer of accreted ice. We argue
that there are no discernable accretion features in the UTIG
radargrams, although it is possible that the accretion features
do not show up in the basal layer which is difficult to inter-
pret.

We now examine the other variables inferred from the in-
version. Basal melting is of course negligible at these two
oldest-ice spots. Melting is, however, significant around EDC
(which is consistent with known basal melting at this place),
on the other side of LDC and on the bed ridge adjacent to
the Concordia Subglacial Trench (called here the Concordia
Ridge), consistent with the observation of subglacial lakes
(Wright and Siegert, 2012; Young et al., 2017). While it is
surprising that basal melting is so large across the ridge of the
bed, where the ice thickness is smaller, the 1-D assumption is
probably invalid in this region, since the ice has been signif-
icantly advected horizontally over regions with very differ-
ent basal conditions (i.e. over the wet-based Concordia Sub-
glacial Trench and then over the adjacent Concordia Ridge
which likely has a frozen base). The average surface accumu-
lation rate shows a large-scale north-east–south-west gradi-
ent probably linked to a precipitation gradient. It also shows
small-scale variations linked to surface features and probably
due to snow redistribution by wind. The spatial and tempo-
ral variations of accumulation are the subject of a companion
paper to this study (Cavitte et al., 2017). For the geothermal
flux, it should be noted that its reconstruction is only rele-
vant when there is some basal melting (i.e. a temperate base).
When the base is cold, its evaluation mainly relies on the
prior used for the least-squares cost function. Indeed, below
the threshold of zero melting, further decreasing the geother-
mal flux has no effect on the basal melting, and therefore no
effect on the modelled age. In the EDC region, the geother-
mal flux is estimated around 60 mW m−2. A high geother-
mal flux of ∼ 80 mW m−2 is also estimated on the ridge ad-
jacent to the Concordia Subglacial Trench. Again, these re-
sults should be taken with caution since they could be an
artifact due to the 1-D assumption used. The p value inferred
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Figure 4. Various bottom-age-related variables along the radar transects, in vivid colours. The bedrock and surface elevations (greyscale and
isolines respectively) are shown as in Fig. 1. LDCP and NP are the two old ice patches that we discuss in this study. (a) Modelled bottom
age at 60 m above bedrock. (b) Minimum bottom age at 60 m above bedrock with 85 % confidence. (c) Height above bed of the 1.5 Myr
isochrone. (d) Temporal resolution for the 1.5 Myr modelled isochrone.

at EDC is 2.63, compatible with the value of 1.97± 0.93 in-
ferred from the inversion of the EDC age/depth profile (Par-
renin et al., 2007). Over the LDC relief, our method infers
low p′ values, in agreement with the absence of basal melt-
ing and therefore basal sliding. This value increases over the
Concordia Subglacial Trench and on the south-west side of
the LDC bedrock relief, which is probably a sign of increased

basal sliding due to the presence of melt water at the ice/bed
interface. The very low p′ values on the Concordia Ridge ad-
jacent to the Concordia Subglacial Trench are again probably
an artifact of the 1-D assumption.

www.the-cryosphere.net/11/2427/2017/ The Cryosphere, 11, 2427–2437, 2017



2434 F. Parrenin et al.: Is there 1.5-million-year-old ice near Dome C, Antarctica?

Figure 5. Various variables reconstructed by the inverse method along the radar transects, in vivid colour scale. The bedrock and surface ele-
vations (greyscale and isolines respectively) are shown as in Fig. 1. (a) Modelled temporally averaged basal melting. (b) Inferred temporally
averaged surface accumulation rate. (c) Inferred geothermal flux. (d) Inferred p′ vertical velocity parameter.

4 Conclusions

We developed a simple 1-D thermo-mechanical model con-
strained by radar observations to infer the age in an ice sheet.
We identified two areas where the age of basal ice should
exceed 1.5 Myr. They are located only a few tens of kilome-
tres away from the French–Italian Concordia station, which
could provide excellent logistical support for deep drilling.

The first area, LDCP, is close to a secondary dome and on
a bedrock massif where ice thickness is only ∼ 2700 m. It
is located only ∼ 40 km away from the Concordia station in
south-westerly direction. The second area, NP, is 10–30 km
north-east of Concordia in the direction of the coast. These
“oldest-ice” candidates will be subject to further field studies
to verify their suitability. A 3-D model approach would be
necessary to study the effect of horizontal advection. Using
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the shape of the isochrones, which is better constrained than
their absolute age, would shed more light on this problem.
The possibility of a layer of stagnant ice should also be in-
vestigated. Ultimately, in situ study of the age of the bottom-
most ice at these sites will soon be feasible at minimal op-
erational costs using new rapid access drilling technologies
(Chappellaz et al., 2012; Schwander et al., 2014), which will
provide in situ measurements to further assess the age of the
basal ice and the integrity of the ice core stratigraphy. If suc-
cessful, this next step will open an exciting opportunity for
expanding the EDC records ∼ 700 kyr further back in time,
which could help reveal the mechanisms controlling the last
major climate reorganisation across the MPT.

Data availability. The code used for this inference, called IsoInv, is
hosted on the github platform. The inferred parameters are hosted
by the PANGAEA facility.
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