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Abstract To provide a sound understanding of the sources, pathways, and residence times of groundwater
water in alluvial river-aquifer systems, a combined multitracer and modeling experiment was carried out in an
important alluvial drinking water wellfield in Switzerland. 222Rn, 3H/3He, atmospheric noble gases, and the novel
37Ar-method were used to quantify residence times and mixing ratios of water from different sources. With a
half-life of 35.1 days, 37Ar allowed to successfully close a critical observational time gap between 222Rn and
3H/3He for residence times of weeks to months. Covering the entire range of residence times of groundwater in
alluvial systems revealed that, to quantify the fractions of water from different sources in such systems, atmo-
spheric noble gases and helium isotopes are tracers suited for end-member mixing analysis. A comparison
between the tracer-based mixing ratios and mixing ratios simulated with a fully-integrated, physically-based
flow model showed that models, which are only calibrated against hydraulic heads, cannot reliably reproduce
mixing ratios or residence times of alluvial river-aquifer systems. However, the tracer-based mixing ratios
allowed the identification of an appropriate flow model parametrization. Consequently, for alluvial systems, we
recommend the combination of multitracer studies that cover all relevant residence times with fully-coupled,
physically-based flow modeling to better characterize the complex interactions of river-aquifer systems.

1. Introduction

The interactions between surface water (SW) and groundwater (GW) in alluvial valleys can be extremely
dynamic and complex (Huggenberger et al., 1998; Partington et al., 2017; Sophocleus, 2002; Winter et al.,
1998). Physically-based flow models such as MODFLOW (Harbaugh, 2005), FEFLOW (Dirsch, 2014), HydroGeo-
Sphere (Therrien et al., 2010), and ParFlow (Kollet & Maxwell, 2006) are typically used for the simulation of
such SW-GW systems (Anderson et al., 2015) and as prediction tools for alluvial drinking water stations (e.g.,
Bauser et al., 2010; Hendricks Franssen et al., 2011; Kurtz, et al., 2013). In general practice, only hydraulic heads
and SW discharge are used for the calibration of SW-GW models (e.g., Anderson et al., 2015; Simmons et al.,
2012). However, hydraulic heads alone do not contain sufficient information to simultaneously reproduce GW
levels, exchange fluxes, mixing ratios, and residence times. Hydraulic conductivity (K) and porosity (n) of the
aquifer (Kaq and naq) are strongly correlated toward a transient reproduction of fluxes, and through observa-
tions of hydraulic heads alone only the ratio between the two variables can be identified (e.g., Delottier et al.,
2016; Townley, 2012). Moreover, even though the hydraulic conductivity of the riverbed (Krb) is a first-order
control for exchange fluxes between SW and GW (Boano et al., 2014; Mattle et al., 2001), Krb is often poorly
characterized. Krb is often insensitive to hydraulic heads because alluvial valleys are typically characterized by
large aquifer cross sections but small rivers that flow across these aquifers. Consequently, numerical models of
SW-GW systems are often underinformed and structurally flawed (Bredehoeft, 2005; Simmons et al., 2012).

Key Points:
� An observational gap in intermediate

residence time scales of weeks to
months could be closed through the
novel 37Ar tracer method
� Multitracer studies combined with

numerical flow models are ideal tools
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water-groundwater systems
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tracer data covering all relevant time
scales with a physically based
numerical model
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To improve the structure and calibration of SW-GW models, a variety of additional measurements of SW-
GW systems can be considered (e.g., Brunner et al., 2017): Measurements of fluxes, of GW residence times
and of the sources of pumped GW, for example, provide important information about alluvial SW-GW sys-
tems (Anderson et al., 2015; Simmons et al., 2012). While residence times are not straightforward to use in
the context of flow model calibration (e.g., McCallum et al., 2014a, 2014b), end-member mixing ratios, for
example, between older GW and recently infiltrated SW (e.g., McCallum et al., 2010), could be a promising
alternative to inform complex SW-GW models.

In the last two decades, measurements of environmental tracers have been widely and successfully used to
estimate recharge locations, recharge temperatures, and the residence times of GW on a large range of
temporal and spatial scales. Multitracer studies, where tracers with different properties and with different
measurement time scales are combined, have proven to be highly suited for the characterization of com-
plex GW systems (Åkesson et al., 2015; Althaus et al., 2009; Gardner et al., 2011; Gerber et al., 2017; Mayer
et al., 2014; McCallum et al., 2014a, 2014b) Most importantly, through the application of multiple tracers,
the tracers which are best suited for an end-member mixing analysis of the given system can be identified
(Cook & B€ohlke, 2000; Harvey & Gooseff, 2015; Kipfer et al., 2002; Purtschert, 2008). Multiple studies demon-
strated how information concerning the mixing ratio of water from different sources can be obtained,
including, but not restricted to, the following tracers: electrical conductivity (e.g., Vogt et al., 2010), inorganic
ions (e.g., Herczeg & Edmunds, 2000), stable water isotopes (e.g., Bertrand et al., 2010), atmospheric noble
gases (e.g., Solomon et al., 2010), CFCs (e.g., Bourke et al., 2015), or 3H/3He (e.g., Beyerle et al., 1999). In order
to reliably estimate mixing between different types of end-members (e.g., recently infiltrated SW and old
GW), the physicochemical behavior of the tracer, the local residence time scales, and the composition of
the different end-members that are present in the system, need to be known.

Despite many different environmental tracer methods being available, a critical temporal gap in the cover-
age of residence times can be identified: there is a gap between the short-lived radioactive tracer 222Rn
(half-life 5 3.82 days), which is suited for very short measurement time scales from days to 2 weeks, and the
other available tracer methods, which are suited for time scales of multiple months to millennia. The inter-
mediate time scale from 2 weeks to a few months, however, is often the most relevant for a robust charac-
terization of residence times in alluvial SW-GW systems. The rare radioactive tracer argon-37 (37Ar) has the
potential to bridge this gap: it is measurable at natural levels and has a half-life of 35.1 days, ideal for
informing the intermediate time scales between 222Rn and 3H/3He (Loosli et al., 2000; Riedmann & Purt-
schert, 2011). While the 37Ar concentration in the atmosphere is very low, neutron-induced and muon-
induced nuclear reactions produce 37Ar in soil gas and GW (Riedmann & Purtschert, 2011), where it accumu-
lates and can potentially be used for dating in a similar way as 222Rn. The intermediate time scale of weeks
to months could therefore potentially be covered by 37Ar.

In this paper, we close the temporal observation gap by introducing the novel 37Ar tracer to inform on inter-
mediate residence time scales from 2 weeks to multiple months. We demonstrate the potential of this new
tracer by combining it with other tracers and a physically-based model simulating the sources and resi-
dence times of GW in an alluvial drinking water wellfield. The interpretation of 37Ar requires some basic
information on the flow field, which is also established with the flow model. The novelty of the contribution
lies not only in the introduction of a new tracer but also in the integration of an end-member mixing analy-
sis enabled through 37Ar in a fully-coupled, physically-based numerical model. Except for a few rare cases
such as Carniato et al. (2015), Delsmann et al. (2016) and Hunt et al. (2006), only simple 1-D or lumped
parameter models have been used in combination with multitracer studies. Such simplistic models, how-
ever, are strongly limited for the analysis of complex SW-GW exchange fluxes compared to the complete
analyses facilitated by physically-based flow models (see Turnadge & Smerdon, 2014). Our model simulates
a unique transient pumping experiment where the abstraction through a large wellfield is reduced signifi-
cantly and introduces a known transient forcing to the system. To carry out this experiment, the drinking
water supply of the city of Bern had to be reorganized temporarily. This combination of multiple tracers
with a physically-based model provides a quantitative basis to discuss the potential of 37Ar.

2. Materials and Methods

We first provide the theory for a number of environmental tracers and introduce the field site. For the inte-
gration of the information obtained through the different tracers, a numerical flow model of an alluvial
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drinking water wellfield was then matched against observations of hydraulic heads. Subsequently, multiple
scenarios of Krb and naq, which all fit the hydraulic head observations equally well, were tested and com-
pared to travel times of infiltrated SW and the mixing ratio between SW and GW that is pumped by the
drinking water wells. These simulations were subsequently compared to environmental tracer-based esti-
mates of travel times and mixing ratios. For this purpose, 222Rn, 3H/3He, and atmospheric noble gases were
measured alongside the new 37Ar tracer method to quantify the flow dynamics and mixing ratios in the allu-
vial SW-GW system. The multitracer study was carried out during a controlled transient manipulation to an
important alluvial drinking water wellfield in Switzerland, which provided optimal conditions for analyzing
how the tracer measurements reflect system transience.

2.1. Theory of Natural Environmental Tracer Methods
2.1.1. The 222Rn Dating Method
The radioactive isotope 222Rn with a half-life (T1/2) of 3.82 days is produced in the soil via the decay-chain of
238U. The gradual accumulation of 222Rn in GW can be used as a tracer for residence times and was first
demonstrated by Hoehn and von Gunten (1989). It is now considered as an established method to estimate
SW-GW exchange fluxes (e.g., Bourke et al., 2014; Cecil & Green, 2000; Cranswick et al., 2014; Harvey &
Gooseff, 2015; Vogt et al., 2010). According to Vogt et al. (2010), the ingrowth of 222Rn in GW can be
described by the following equation:

AC222Rn tð Þ5AC222Rn;eq 12e2k222Rn t
� �

1AC222Rn;SW � e2k222 Rn t (1)

with t representing time. k222Rn is the decay constant (0.182 days21), AC222Rn; eq the activity concentration of
222Rn at secular equilibrium, AC222Rn tð Þ the activity concentration at time t, and AC222Rn;SW the activity concen-
tration of SW at the time of infiltration (typically close to 0). The 222Rn-based residence time (also ‘‘apparent
age’’) of GW can be estimated by solving equation (1) for t:

t222Rn 5 k222Rn
21 � ln

AC222Rn; eq 2 AC222Rn;SW

AC222Rn; eq 2AC222Rn tð Þ

� �
(2)

After approximately three half-lives of 222Rn, residence times cannot be further differentiated based on
222Rn measurements, as the activity concentration becomes indistinguishable from the equilibrium activity
concentration within the measurement uncertainty (e.g., Cecil & Green, 2000).
2.1.2. The 37Ar Dating Method
37Ar with a T1/2 5 35.1 days is a very rare, radioactive isotope of argon (Loosli et al., 2000; Loosli & Purtschert,
2005). Like 222Rn, 37Ar is only produced in the subsurface in significant quantities. At shallow depths of up
to 10 m, activation of Ca by cosmic neutrons is the dominant reaction channel (40Ca(n, a)37Ar; Fabryka-
Martin, 1988). At greater depths, the muon capture reactions 39K(l–,2n)37Ar and 40K(l–,3n)37Ar become
increasingly dominant (Fabryka-Martin, 1988; Johnson et al., 2015; Riedmann & Purtschert, 2011, 2016).
Both pathways lead to an exponentially decreasing production rate of 37Ar with depth, which is character-
ized by the attenuation length ‘ (L). ‘ depends mainly on the bulk density of the sediments (including water
and soil gas; Guillon et al., 2016). In case of predominantly horizontal GW flow and full saturation of the
porous media, advective and diffusive vertical transport is negligible and the exponential production profile
is maintained in the 37Ar activity concentration of GW. 37Ar activity concentrations are measured in mBq/LAr

and converted to mBq/Lwater by using the concentration of dissolved Ar in the GW (Riedmann & Purtschert,
2011).

At secular equilibrium, the 37Ar activity concentration as a function of depth d can be expressed by

AC37Ar;eqðdÞ5AC37Ar;eq 0ð Þ � e2d=‘ (3)

where AC37Ar;eqð0Þ is the hypothetical activity concentration at d 5 0 m.

If this secular equilibrium activity concentration profile is known, 37Ar can be used as a dating tool on time
scales of weeks to months for SW that freshly infiltrated into an aquifer, as the 37Ar activity concentration in
GW is approaching the secular equilibrium activity concentration:
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AC37Ar d; tð Þ5AC37Ar; eq dð Þ � 12e2k37 ArtÞ1AC37Ar;SW � e2k37 Art
�

(4)

AC37Ar;SW is the activity concentration of SW at the time of infiltration (typically close to 0). The decay con-
stant k37Ar is 0.0197 day21. Similarly to 222Rn, the 37Ar residence time is obtained by the ingrowth from the
initial activity AC37Ar;SW to the equilibrium profile. As for 222Rn, after about three half-lives of 37Ar (approxi-
mately 110 days), the activity concentration of 37Ar becomes indistinguishable from the secular equilibrium
activity concentration within the 37Ar measurement uncertainty. This makes 37Ar an ideal tracer for interme-
diate time scales of weeks to months. The 37Ar residence time is given by

t37Ar 5k37Ar
21 � ln

AC37Ar; eq dð Þ2AC37Ar;SW

AC37Ar; eq dð Þ2AC37Ar d; tð Þ

� �
(5)

This calculation of 37Ar residence times is based on two simplifying assumptions: First, it is assumed that the
GW approximately remains at the same depth, i.e., that flow is approximately horizontal. This requires the
elaboration of a flow model. Second, the aquifer is assumed to be homogeneous with respect to porosity and
elemental composition. If the sampling well is screened over several meters, the depth where the equilibrium
concentration is equal to the expected equilibrium concentration for the mixed sample is calculated with

dm5du1‘ � ln dl2duð Þ=‘ð Þ2ln 12e2 dl2duð Þ=‘
� �� �

(6)

where du and dl are upper and lower limits of the screen, respectively.

The 37Ar-dating concept is illustrated in Figure 1 for a hypothetical parcel of SW with a typical near-zero
AC37Ar;SW of 5 3 1025 mBq/Lwater (Riedmann, 2011): the SW parcel infiltrates rapidly into the subsurface,
down to a depth of 10 m. At a depth of 10 m, the water parcel starts to move horizontally, following the
predominant direction of GW flow. The secular equilibrium depth profile of 37Ar can be quantified with
equation (3). For example, with a hypothetical attenuation length ‘ of 15.9 m the secular equilibrium at a
depth of 10 m is 0.00268 mBq/Lwater. If plotted as in Figure 1, equation (4) can be used to draw isolines of

Figure 1. 37Ar-dating concept. The concept is illustrated for a parcel of SW with a near-zero AC37Ar;SW that infiltrated rap-
idly, and which starts moving horizontally in GW at a depth of 10 m. Once in the subsurface, the water parcel starts accu-
mulating 37Ar. After 110 days, the water parcel reaches the secular equilibrium of 37Ar, which, at 10 m depth (AC37Ar; eq

(10 m), would be 0.00268 mBq/Lwater for an attenuation length of 15.9 m. If the water parcel is sampled before 110 days
of residing in the subsurface, for example, after 1 month, the 37Ar activity concentration can be used to identify the resi-
dence time of that water parcel.
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different residence times, e.g., for 1 week, 1 month, and 3 months. After a residence time of 1.9 days, the
accumulated 37Ar exceeds the initial amount 37Ar of atmospheric origin in the water, and after 8.5 days the
initial 37Ar present in the infiltrating water parcel accounts for less than 10% of total 37Ar. If the water parcel
is sampled within less than 110 days after infiltration, AC37Ar d; tð Þ can be used to determine the water par-
cel’s residence time in the subsurface using equation (5). After 110 days of residing in the subsurface, how-
ever, the water parcel approaches the secular equilibrium such that it becomes indistinguishable from
AC37Ar;eq (10 m) with the current detection limits.
2.1.3. The 3H/3He Dating Method
Tritium (3H) is the radioactive isotope of hydrogen that decays to 3He with a half-life of approximately 4,500
days. It is naturally present in the Earth’s atmosphere and primarily produced through cosmic-rays-induced
decay of atmospheric nitrogen (Lucas & Unterweger, 2000; Solomon & Cook, 2000). 3H concentrations are
expressed in tritium units (TU), and the natural background concentration of 3H in the atmosphere is
between 1 and 6 TU (Solomon & Cook, 2000). In the well-established 3H/3He method, the apparent age of
GW is estimated by comparing the measured concentration of 3H in GW to the tritiogenic portion of the
measured 3He (e.g., Beyerle et al., 1999; Kipfer et al., 2002; Schlosser et al., 1988; Solomon & Cook, 2000).
While the tritiogenic portion of 3He (denoted as 3He*) cannot be directly measured, 3He* can be estimated
based on noble gas measurements (e.g., Kipfer et al., 2002; Solomon & Cook, 2000). The apparent 3H/3He
water age, or 3H/3He residence time of GW, is defined as

t3H=3 He5k3H
21 � ln

3He�
3H

11

� �
(7)

k3H is the decay constant of 3H (1.54 3 1024 days21). The 3H/3He method allows identifying residence times
of approximately 2 months to 50 years (Harvey & Gooseff, 2015).
2.1.4. Analysis of Atmospheric Noble Gases
2.1.4.1. End-Member Mixing Analysis Based on Noble Gas Recharge Temperatures
The equilibrium solubility of the stable atmospheric noble gases He, Ne, Ar, Kr, and Xe can be used to esti-
mate the water temperature during the moment of recharge (Aeschbach-Hertig & Solomon, 2013; Kipfer
et al., 2002). This recharge temperature is commonly known as the noble gas recharge temperature (NGRT).
The NGRT in turn allows estimating the time of recharge if the temperature chronicle in the recharge area is
known. To calculate the NGRT from stable atmospheric noble gas concentrations, the Closed Equilibrium
(CE) model was used in this study (Aeschbach-Hertig et al., 1999; Aeschbach-Hertig & Solomon, 2013; Kipfer
et al., 2002).

If, in a given SW-GW system, there are GW components that have residence times of at least 1 year and, dur-
ing this long residence time, have become relatively well mixed, the NGRT of that GW component
(NGRTGW,old) will reflect the average annual air temperature in the recharge area. The NGRT of freshly infil-
trated SW (NGRTSW), on the other hand, still maintains the signal of the air temperature at the time of infil-
tration. In a system where these two components are present, the NGRT can be used to infer mixing if the
approximate recharge temperature of the freshly infiltrated SW can be determined through a residence
time analysis. While NGRT do not mix linearly (Aeschbach-Hertig & Solomon, 2013; Kipfer et al., 2002), for
the small NGRT variation encountered in this study, NGRT mixing can reasonably be approximated by the
following linear mixing equation:

NGRTGW tð Þ5x � NGRTGW;old 1 12xð Þ � NGRTSW tð Þ (8)

2.1.4.2. End-Member Mixing Analysis Based on the 3He/4He Isotopic Ratio
The isotopic ratio of 3He/4He in GW can also be used as an indicator of two-component mixtures and resi-
dence times (Solomon, 2000). The atmospheric ratio of 3He/4He is 1.384 3 1026, and 1.36 3 1026 in air-
equilibrated water (AEW). Multiple processes significantly alter this 3He/4He ratio in shallow GW: (a) terri-
genic production of mainly 4He and (b) tritiogenic production of 3He. If the estimated amount of tritiogenic
3He (estimated as described in section 2.1.3) is subtracted from the measured 3He, the resulting 3Hecorr/

4He
ratio then only represents the atmospheric and terrigenic components of 3He and 4He. Because neither
3Hecorr nor 4He are produced in significant amounts on the short time scales that are relevant for drinking
water safety (days to months), 3Hecorr/

4He on that time scale can only change due to the mixing of water
with different 3Hecorr/

4He ratios. The 3Hecorr/
4He ratio can therefore be used to analyze mixing between a

freshly infiltrated SW component with a 3Hecorr/
4He ratio corresponding to the AEW ratio (1.36 3 1026)
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3Hecorr
4He SWð Þ

� �
and an older GW component with accumulated 4He resulting in a significantly lower

3Hecorr/
4He ratio

3Hecorr
4He GWð Þ

� �
; Kipfer et al., 2002):

3Hecorr
4He

tð Þ5x �
3Hecorr

4He
GWð Þ1 12xð Þ �

3Hecorr
4He

SWð Þ (9)

2.2. Study Site
2.2.1. Hydrology, Hydrogeology, and Climate
The Upper Emme valley is a typical pre-alpine, alluvial catchment situated on the northern border of the
Swiss Alps (see Figure 2). The valley bottoms in the lower part of the catchment consist of coarse, quater-
nary alluvial sandy gravel (80% gravel and 20% sand), forming a highly conductive unconfined aquifer (Blau
& Muchenberger, 1997). The catchment is spread over an altitude of 673–2221 m asl and covers an area of
194 km2, which is drained by two rivers, the Emme River and the Roethebach tributary, with an average dis-
charge of 4.4 and 0.7 m3/s, respectively. These rivers are extremely dynamic and provide the main source of
recharge to the alluvial aquifer of the Upper Emme valley (Blau & Muchenberger, 1997; K€aser & Hunkeler,
2015). The lowest part of the catchment consists of the main Emme River valley with an average topo-
graphic gradient of 0.9% (K€aser & Hunkeler, 2015). Approximately 8 km upstream of the outlet, the tributary
enters the main valley. The whole aquifer, which extends into the tributary valley, spans an approximate
area of 6 km2 (K€aser & Hunkeler, 2015). In the area of the studied aquifer, the valley has a width of 200–
400 m. The aquifer is limited underneath by impermeable sediments of the freshwater molasses. The aqui-
fer serves as an important drinking water resource and provides 45% of the drinking water consumed in
the region of the Swiss capital Bern (Biaggi et al., 2005). The wellfield is situated on the Ramsei Plain, toward
the outlet of the valley (see close-up in Figure 2). GW is pumped in roughly equal parts from eight (single-
depth) suction wells spaced at approximately 100 m and aligned in parallel to the river. The distance
between the drinking water wells and the Emme River is 300 m toward the river bend marking the
upstream end of the Ramsei Plain, and 125 m parallel to the wells. Water is pumped from a depth of 10 m
in the three upstream wells, and from a depth of 15 m in the five downstream wells. In total, the drinking
water station pumps 0.4 m3/s of GW. This GW abstraction is substantial relative to the total water balance of
the system: it can amount to up to 50% of the total outflow of SW and GW out of the valley (K€aser & Hunk-
eler, 2015; W€ursten, 1991). The aquifer around the Ramsei Plain has an average thickness of 25 m (W€ursten,
1991). The maximum vertical extent of the aquifer at the Ramsei Plain is 46 m. Two pumping tests at the
locations of A24 and A26 (see Figure 2) revealed average aquifer hydraulic conductivities (Kaq) between 200
and 500 m/d, with maximal values of more than 1,350 m/d (W€ursten, 1991). The hydraulic conductivity of
the riverbed (Krb) and the porosity of the aquifer (naq) have not been systematically measured, but based on
their pumping test data, W€ursten (1991) and Blau and Muchenberger (1997) assumed naq values between
0.1 and 0.3.

At the drinking water station, the average annual precipitation is 1,300 mm, the potential evapotranspira-
tion 550 mm, and the average annual air temperature is 88C (Figura et al., 2011, 2013, 2015; K€aser & Hunk-
eler, 2015; W€ursten, 1991). In very dry summers and very cold winters, segments of the Emme River may
run completely dry (W€ursten, 1991). K€aser and Hunkeler (2015) measured the water temperature and elec-
trical conductivity in the SW directly above the riverbed near the drinking water wellfield, and identified
alternating locations of losing and gaining conditions, indicating that there is a complex pattern of interac-
tions between SW and GW.
2.2.2. Measurement Network
A dense measurement network for the observation of a multitude of hydrological and climatic variables
covers the entire alluvial valley (K€aser & Hunkeler, 2015; Kropf et al., 2014; Lapin et al., 2014). SW discharge
is continuously monitored at a 10 min interval at four river gauging stations, with one station located at the
outlet of the catchment 1.5 km downstream of the wellfield, and two stations measuring the inflow from
the Emme River and the tributary into the main valley, 5.5 km upstream of the wellfield. GW levels are con-
tinuously recorded at 10–15 min intervals in more than 30 piezometers. Fourteen of these piezometers are
located in the immediate proximity of the drinking water wellfield (see close-up of Figure 2). These piezom-
eters are screened in the upper 10–15 m of the soil. A strategic multilevel piezometer (A41) located immedi-
ately upstream of the drinking water wellfield, just across the river, was installed to allow sampling of water
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Figure 2. (top) Maps of the Upper Emme catchment and (bottom) a close-up of the GW pumping station on the Ramsei
Plain in the lower part of the catchment. In the top image, bright blue colors in the valley bottoms indicate aquifers. The
different subcatchments are separated by solid black lines. The three gauging stations that measure the discharge of
each subcatchment are indicated by inverted blue triangles.
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also at higher depths than the other piezometers and the drinking water wells. The screened depths are 0–
10, 11.5–13.5, 16–18, and 21.5–23.5 m.

2.3. Controlled Pumping Experiment and Multitracer Sampling
For the multitracer experiment, a large-scale and controlled forcing to the study site was introduced
through a transient pumping experiment that was implemented in collaboration with the water authorities
of Bern (WVRB). The controlled forcing was expected to produce (i) altered SW-GW interactions and (ii) a
change in the sources of the pumped water. During the 12 months prior to the multitracer experiment, the
average abstraction rate at the drinking water station was constant at 360 L/s (herein referred to as the
maximum or max pumping regime). This long period of maximal abstraction resulted in a hydraulic quasi
steady state. A transient manipulation to this hydraulic quasi steady state was achieved through a reduction
of the pumped GW by 40% for the period of 1 week. The aim was to create reduced hydraulic gradients
and approach a new hydraulic quasi steady state. For 7 days, from 26 January 2015 14:00 until 2 February
2015 14:00, the pumping rate was reduced to the smallest technically possible rate of 225 L/s (herein
referred to as the minimum or min pumping regime). The experiment took place during a sustained low
flow period at the end of January 2015. During these winter periods, precipitation mainly falls as snow and
SW discharge is mainly affected by SW-GW interactions, which allows for optimal detection of the SW-GW
dynamics.

The average SW discharge during the 7 days of reduced pumping was 1.4 m3/s at the closest upstream
gauging station and 2.3 m3/s at the downstream gauging station of the Emme River. The average air tem-
perature was 3.38C. Precipitation amounted to a total of 32.9 mm but was retained as snow on the flood-
plain and overland flow or infiltration on the floodplain were negligible. To investigate the changes of SW-
GW exchange rates, the pumping experiment was accompanied by SW dilution gauging tests at two loca-
tions close to the wellfield (upstream: Emme St. 1, downstream: Emme St. 2, see close-up in Figure 2). The
dilution tests were carried out using fluorescein and the GGUN-FL30 flow-through field fluorometers
(Schnegg, 2003).

In addition to continuous hydraulic and meteorological measurements, water samples were taken for analy-
sis of the chemical composition and of different natural environmental tracers (222Rn, 37Ar, 3H/3He, and
atmospheric noble gases) immediately before, during, and after the pumping experiment. The samples
were taken at discrete locations in the river, in piezometers A13, A25, A26, A41, as well as in the pumping
wells 1, 5, and 7. The GW in the multilevel piezometer A41 is assumed to represent the background end-
member, i.e., the oldest possible GW in the studied domain, and was used to obtain depth profiles of 222Rn
and 37Ar. The solid state alpha detector RAD7 (DURRIDGE, 2014) was used in conjunction with the RAD H2O
accessory (DURRIDGE, 2012) to measure the activity concentration of 222Rn in water. 222Rn was sampled in
250 mL glass vials and analyzed in a closed-loop gas analysis for four 5 min counting intervals as described
by Vogt et al. (2010). 37Ar was measured in the Low Level Counting Laboratory of the University of Bern in
Switzerland (Loosli & Purtschert, 2005). To measure the activity of 37Ar, 2–3 t of water per sample were
degassed directly in the field in order to extract sufficient amounts of 37Ar for subsequent laboratory analy-
sis (Purtschert et al., 2013). From the extracted gas, Ar was separated by preparative gas chromatography
(Riedmann & Purtschert, 2016) and then measured by low level counting (Riedmann, 2011). Noble gas con-
centrations, He isotopes and 3H were analyzed at the Noble Gas Mass Spectrometry Laboratory of the Swiss
Federal Institute of Technology in Zurich, Switzerland, using standard measuring protocols (Beyerle et al.,
2000).

2.4. Surface Water-Groundwater Modeling
2.4.1. Modeling Strategy
To (1) identify the dominant flow directions, which is required for the interpretation of the 37Ar tracer
results, and (2) to correctly predict the mixing ratios between older GW and SW that infiltrated only days to
a few weeks ago, which is required for the management of the drinking water station, both SW and GW
flow were explicitly simulated in a physically-based and fully-integrated way, and the movement of water
was tracked throughout the entire modeling domain. Using a fully-integrated SW-GW flow model allows a
dynamic simulation of SW-GW exchange fluxes without the need to predefine a priori unknown exchange
flux locations and magnitudes. The choice for a fully-coupled model is also motivated by the fact that the
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river is highly dynamic and changes its infiltrating regime from gaining to losing within very short
distances.

The system was simulated using steady state and transient models. Using both approaches allowed analyz-
ing the short-term reactions of the mixing ratios and travel times to a change in pumping as well as the
long-term reaction when the system reaches steady state. Steady state simulations were carried out for the
maximum pumping regime and for the minimum pumping regime. Transient simulations were carried out
for the duration of the pumping experiment, with the steady state results of the maximum regime used as
initial conditions. Specifically, the steady state simulations correspond to (1) the maximum pumping regime
with measured hydraulic forcings from 21 January 2015 00:00 and (2) the minimum pumping regime with
measured forcings from 2 February 2015 00:00. The transient simulations covered the entire duration of the
pumping experiment and consisted of hourly changing boundary conditions. The transient simulations
started off the maximum steady state (i.e., 21 January 2015 00:00), and finished 4 days after the end of
pumping experiment, on 6 February 2015 23:59.

All simulations were analyzed for the sources of the pumped water and for travel times. To quantify the mix-
ing ratio between the different sources, the pumped water was separated into the relative amounts of
water that entered the model through the GW boundary conditions versus water that entered the model
through the SW boundary conditions. The mean travel time of the pumped SW component between the
river and the wells was defined as the time required until the SW component has reached 50% of its steady
state value in the pumped water. Mixing ratio and travel time analyses were carried out for (1) the maximum
steady state, (2) the transient state immediately before the end of the minimum pumping experiment on 2
February 2015 12:30 (from now on denoted as the state trans), and (3) the minimum steady state.

While the Kaq value used in all simulations resulted from a calibration against hydraulic head observations,
to quantify the influence of (the unknown) Krb and naq on the exchange fluxes and mixing ratios, multiple
different scenarios of Krb and naq, which all fit the hydraulic heads equally well, were tested. For all different
scenarios of Krb and naq, the three different simulated states maximum, trans, and minimum were compared
to tracer measurements in order to identify an appropriate model among the different scenarios tested.
2.4.2. Model Setup
2.4.2.1. Numerical Simulator
For the flow simulations, the model HydroGeoSphere (HGS; Aquanty Inc, 2016; Brunner & Simmons, 2011;
Kurtz et al., 2017; Therrien et al., 2010) was used. HGS uses the Richards equation and the van Genuchten
parametrization to simulate unsaturated subsurface flow, and surface water flow is calculated using the
diffusive-wave approximation of the Saint-Venant equations. HGS was chosen as it directly simulates all the
relevant SW-GW processes in a fully-integrated way and has been demonstrated to be an ideal tool for the
simulation of complex alluvial SW-GW systems with dynamic exchange flux patterns (e.g., Ala-Aho et al.,
2017; Banks et al., 2011; Chow et al., 2016; Fleckenstein et al., 2006; Frei et al., 2010; Schilling et al., 2014;
Tang et al., 2017).

As one objective of the flow simulations was to allow the comparison between tracer-based mixing ratios
and simulated mixing ratios, we chose the Hydraulic Mixing-Cell flow tracking tool (HMC; Partington et al.,
2011, 2012, 2013) to track the flow of water from different sources throughout the modeling domain. HMC
utilizes the hydraulic flow solution of the HGS model, tags any inputs to the model domain as specified by
the boundary conditions and then tracks the fraction of these inputs in each of the model cells. In contrast
to particle tracking approaches, modified mixing cell approaches such as HMC allow obtaining transient
mixing ratios of water from all different sources at every cell within the model without much extra computa-
tional cost and postprocessing. However, mixing cell approaches may introduce numerical dispersion if the
mesh and the time step size are not optimally set (e.g., Harrington et al., 1999; Rao & Hathaway, 1989). Rao
and Hathaway (1989) pointed out that if the mesh and time step size are optimal, numerical dispersion is
minimized, and could even be controlled such that it approaches hydrodynamic dispersion. In this study,
numerical dispersion was minimized by using a finely discretized numerical grid and a sub-time-stepping
scheme that automatically calculates the optimal time step size (see Partington et al., 2011).
2.4.2.2. Model Setup
High-resolution topographical maps of the floodplain (swisstopo, 2010), the aquifer confining layer (AWA,
2016), and the riverbed were used to define the 3-D structure of the model. The riverbed topography was
obtained for this study with through-water photogrammetric analysis (e.g., Feurer et al., 2008) of aerial
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images taken with a drone on 20 March 2015 (resolution of 0.25 m). Following the guidelines of K€aser et al.
(2014) for mesh generation of alluvial systems, an approximately equilateral triangular mesh with an aver-
age side length of 17.5 m for the floodplain and 8.5 m for the river, resulting in 10,983 elements per layer,
was generated with GridBuilder (McLaren, 2011). Vertically, the model consisted of 15 layers, covering the
entire vertical aquifer extent: the top 5 layers covered 0.61% each, the next 4 layers 6.1%, and the last 5
layers 12%. At the location of the largest vertical extent (46 m) this resulted in layers of 0.28, 2.8, and 5.5 m
thickness. The steady state solution was obtained by simulating 2,500 days with constant forcings. The New-
ton absolute and Newton residual convergence criteria were set to 1025.
2.4.2.3. Model Parametrization and Initial Calibration
The aquifer was conceptualized as a homogeneous sandy gravel aquifer with a van Genuchten a of
3.48 m21, a van Genuchten b of 1.75 and a Swr of 0.05 (corresponding to values found for sandy gravel out-
wash by Li et al., 2008). Due to the limited number of pumping tests, Kaq was calibrated against observa-
tions of hydraulic heads measured in piezometers A4, A7, A19, A24, A25, A26, A31, A35, and A37 in an
automated calibration of the maximum model using PEST (Doherty, 2015). A value of 550 m/d for Kaq was
found to best reproduce the measurements. As values of the porosity of the aquifer (naq) were not available,
and since naq is strongly correlated to Kaq toward reproducing flow (e.g., Anderson et al., 2015; Delottier
et al., 2016; Townley, 2012), Kaq and naq cannot be simultaneously calibrated against hydraulic heads. There-
fore, three different naq scenarios, which span typical values for sandy gravel aquifers documented in litera-
ture and are in accordance with the values suggested by previous field observations, were tested in
combination with the calibrated Kaq: (i) a value of 0.43 (Li et al., 2008), (ii) a value of 0.2 (Fetter, 2001), and
(iii) a value of 0.1 (Anderson et al., 2015).

The riverbed was conceptualized as a homogeneous sandy gravel layer with the same soil properties as
the aquifer, but a fixed riverbed porosity (nrb) of 0.41. As the water table next to the river is very close to
the surface water level, no hydraulic disconnection between surface water and groundwater occurs
(Lamontagne et al., 2014), and assuming homogeneous riverbed properties does therefore not introduce
any bias in estimating exchange fluxes (Irvine et al., 2012; Schilling et al., 2017). It is also assumed that the
hydraulic properties of the riverbed stay constant during the simulation. This is a reasonable assumption,
as during the relatively short period of simulation no significant flood event occurred (see Gianni et al.,
2016). The automatic calibration of Krb alongside Kaq with the maximum model revealed that Krb, within a
range of approximately 0.24 and 24 m/d, does not significantly alter the simulated hydraulic heads. To
quantify the influence of different Krb on mixing ratios and residence times, multiple Krb-scenarios were
simulated: 0.24, 2.4, and 24 m/d. Due to the very rough surface of the riverbed, with a mix of boulders,
rocks, gravel, sand, and vegetation, a high flow resistance was incorporated by a high value for Manning’s
n (1.7 3 1026 d/m1/3).
2.4.2.4. Boundary Conditions
For all simulations, precipitation was corrected for potential evapotranspiration, which was calculated based
on solar radiation and temperature measurements after Spreafico and Weingartner (2005). This resulted in
0 mm/d for the maximum regime, and 5.7 mm/d for the minimum regime. For the transient simulations,
hourly measurements of a nearby meteorological station were used. The upstream BC for GW was split into
two first-type (specified head) BCs, one underneath the floodplain that corresponded to the values mea-
sured in the background piezometer A41 (max: 690.969 m asl and min: 691.167 m asl), and one underneath
the river with the floodplain BC value 1 1 m, which corresponds to approximately 0.1 m water depth in the
river, ensuring connected and losing conditions in the upstream part of the model (corresponding to the
observations made by K€aser & Hunkeler, 2015).

A specified head BC with the measured value of piezometer A3 (max: 671.715 m asl and min: 671.728 m asl)
was fixed on the downstream end of the model domain. The SW inflow on the upstream side of the model
was conceptualized as a second-type (specified flux) BC that corresponds to the sum of the inflows of the
Emme River and the tributary measured at the closest upstream gauging stations (max: 1.702 m3/s and min:
1.425 m3/s). A small creek entering the Emme River approximately 200 m downstream of the upstream BC
was implemented as a specified flux BC on the river bank (the tributary discharge is max: 0.086 m3/s and
min: 0.0075 m3/s). The SW outflow was implemented as a critical depth BC. The eight pumping wells were
implemented as specified nodal flux BCs, each located at the corresponding abstraction depth of the
respective well. The pumping rate of the abstraction station is controlled separately for wells 1–4 (4,230 m3/d
per well during maximum flow and 2,250 m3/d per well during minimum flow) and wells 5–8 (3,430 m3/d
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per well during maximum flow and 2,630 m3/d per well during minimum flow) and was adjusted accord-
ingly. The values that were used for the BCs of the transient simulations are provided in Figure 3. All other
boundaries of the model were conceptualized as impermeable boundaries.

3. Results

3.1. Controlled Forcing of the System Through the Pumping Experiment
The measured pumping rates, water temperatures, GW levels, and SW discharge at the different measure-
ment locations are illustrated in Figure 3. The SW inflow of the Emme River and the tributary were relatively
stable during the pumping experiment (26 January 2015 14:00 to 2 February 2015 14:00) and varied slightly
around an average of 1.4 m3/s. The SW outflow of the catchment averaged at 2.29 m3/s during that period,
indicating gaining conditions overall. More specifically, the dilution tests (not shown in the figure) carried
out during the maximum pumping regime indicated strongly gaining conditions with an average increase
in SW discharge between Emme St. 1 and Emme St. 2 of 30%. During the minimum pumping regime, the
average increase of SW discharge between the two stations rose to 50%, indicating more exfiltration of GW
into the river in reaction to reduced pumping.

The rise in SW discharge between Emme St.1 and Emme St. 2 is in agreement with the strongly altered
hydraulic gradients: the GW levels changed dramatically and rapidly in response to a change of the pump-
ing rate. The change in GW levels relative to the levels of 17 January 2015 00:00 is shown in Figure 3: GW
levels rose by 1 m and more in the pumping wells, and up to 0.5 m in the sampled piezometers. The GW
levels stabilized within a few days, and got lower as quickly as they rose after the end of the minimum
pumping experiment. Even the GW levels in the background piezometer A41, approximately 350 m
upstream of well 1 and on the far side of the Emme River reacted with a rise of approximately 0.4 m in
response to a reduction in the pumping rates. Piezometers as far as 1,250 m downstream (A2–A4) reacted
with a rise of 0.1 m.

Water temperature measurements suggest that the water in piezometer A37 throughout the whole experi-
ment, as well as the water in piezometer A26 during the maximum pumping regime, was governed by infil-
trating SW (Figure 3). The temperatures at all other GW measurement locations correspond to the average
annual air temperature of the catchment (88C), which is typical for shallow GW.

3.2. Results of the SW-GW Simulations
The dominant steady state flow directions of the naq 5 0.1, Krb 5 2.4 m/d scenario simulated for the maxi-
mum (Figure 4a) and the minimum (Figure 4b) pumping regime are illustrated based on stream traces that
follow the Darcy velocity field. The distribution of exchange fluxes within the channel and the SW fraction
within the aquifer are shown in Figure 5 for all three Krb scenarios (i.e., 0.24 m/d, Krb 5 2.4 m/d, and
Krb 5 24 m/d; naq 5 0.1). Overall, the stream traces in Figure 4 show that the predominant flow direction in
the aquifer is horizontal, except where river water infiltrates into the aquifer. While the initial movement of
infiltrating SW is vertical, once that water arrives at the depth of the pumps, the subsequent movement is
horizontal. The SW-GW exchange fluxes illustrated in Figure 5 reveal alternating sections of gaining and los-
ing conditions. In the upstream part of the model, until the Emme River reaches Y 5 195,900, the exchange
fluxes are dominated by two weirs (indicated by the strong black lines crossing the river): directly upstream
of the weirs losing conditions dominate, while directly downstream of the weirs gaining conditions prevail.
This is in full agreement with the observations of K€aser and Hunkeler (2015). The simulated increase in SW
discharge matches the observed gaining conditions between Emme St. 1 and Emme St. 2 (see Figure 2).
The exchange fluxes vary much stronger as a function of Krb than in response to a change of the pumping
regime; and while the pattern of exchange fluxes changes only slightly, the magnitude of exchange is sub-
stantially different as a function of Krb. The flow paths in the subsurface, on the other hand, are controlled
by the pumping regime: while during maximum pumping the subsurface water flow direction tends to
strongly bend toward the pumping wells (Figure 4a), under minimum pumping the flow direction is more
parallel to the valley (Figure 4b).

The different simulations indicate a strong dependency of the pumped water mix on Krb, and to a lesser
extent on naq and on the pumping rates. For the three different simulated states maximum, trans, and mini-
mum, the contribution of recently infiltrated SW to the pumped water mix in wells 1, 5, and 7 are shown in
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Figure 3. Measured classical observations during the period of the pumping experiment: the pumping rate, the SW discharge at three different measurement sta-
tions, the hydraulic heads throughout the study area, and water temperature. GW level changes are given relative to the levels of 17 January 2015 00:00.
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Table 1. Recall that the recently infiltrated SW water component in the pumped water mix represents water
that entered the model domain from the upstream (specified flux) SW boundary condition, and which sub-
sequently infiltrated from the river through the riverbed into the aquifer within the model domain. The
remaining part of the pumped water mix is made up by older GW, that is, water that entered the model
domain from the upstream (specified head) GW boundary condition.

Although the differences in root-mean-square-error of hydraulic heads (RMSEGW) between the different sce-
narios are very small, Table 1 and Figure 5 clearly show that the mix of pumped water is different between
all three Krb scenarios: In terms of the RMSEGW, the two scenarios with higher riverbed permeability
(Krb 5 2.4 m/d and Krb 5 24 m/d) perform similarly and slightly better than the low permeability scenarios
(Krb 5 0.24 m/d). However, the pumped water in the Krb 5 0.24 m/d scenario is completely dominated by
GW, in the Krb 5 24 m/d scenario by SW, and in the Krb 5 2.4 m/d scenario the pumped water is made up of
approximately equal amounts of GW and SW. The results show that the more is pumped and the further
downstream the well is located, the less water from the GW inflow BC is available, and the more freshly infil-
trated SW from the SW inflow BC is drawn toward the pumps to satisfy the demand. Simulations of the max-
imum regime showed a substantially larger SW component in the pumped water mix compared to
simulations of the minimum regime. The largest change in the pumped water mix in response to a reduc-
tion of pumping could be observed between the maximum to the minimum state of Krb 5 2.4 m/d scenario,

Figure 4. Steady state flow fields of the naq 5 0.1, Krb 5 2.4 m/d scenario. Illustrated are the GW flow directions based on
stream traces (blue lines) that follow the Darcy velocity field: (a) maximum pumping regime and (b) minimum pumping
regime.
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Figure 5. SW-GW exchange fluxes in the river (surface domain) and SW fraction in the aquifer (subsurface domain). (a) Low permeability scenario (Krb 5 0.24 m/d),
(b) intermediate permeability scenario (Krb 5 2.4 m/d), and (c) high permeability scenario (Krb 5 24 m/d). Steady state solution for the maximum pumping condi-
tion is shown. Exchange fluxes represent linearly interpolated nodal values (flux per nodal polygon in m3/d). Positive exchange fluxes represent gaining conditions
(blue), negative exchange fluxes represent losing conditions (red). Weirs are indicated by the solid black lines. Wells are indicated in green; the well numbering
was provided in Figure 2. The predominant flow direction for both SW and GW is North-West. North is indicated by the positive y direction.
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where shifts of 12%, 19%, and 4% were simulated in wells 1, 5, and 7, respectively (Table 1). For the transient
scenarios, the smallest porosity models (naq 5 0.1) approach the observed differences in the pumped water
mix after 1 week of reduced pumping the most. The two higher porosity scenarios result in significantly
smaller changes after 7 days of reduced pumping compared to the min state simulated with the steady
state models. In general, smaller naq result in a faster reaction of the % of SW in the pumped water to a
change of the pumping regime.

In terms of the mean travel time of the SW component, the different simulated scenarios show that if more
water is pumped the hydraulic gradients are higher and the mean travel times are smaller (max versus min).
Overall, the simulations also indicate that there is a significant spread of travel times between the different
pumping, Krb and naq scenarios, despite the assumption of homogeneous conditions in the aquifer and the
comparably limited extent of the model domain. The mean travel time of the SW component varied
between 15 and 45 days in well 1, between 40 and 95 days in well 5, and between 50 and 140 days in well
7 (Table 1). In general, smaller naq result in smaller travel times.

These modeling results reveal that the water mix, travel times and the dynamic reaction to reduced pump-
ing differ considerably between the different Krb and naq scenarios. Krb strongly influences the mean travel
times and the amount of SW in the pumped water mix, and naq strongly controls the time it takes for the

Table 1
Overview of the Contribution of Recently Infiltrated SW to the Pumped Water Mix, the RMSE Between Simulated and Observed Hydraulic Heads (RMSEGW for Wells A3,
A4, A7, A19, A24, A25, A26, A31, A35, and A37), and the Travel Times of the Pumped, Recently Infiltrated SW Component for the Three Sampled Wells 1, 5, and 7

RMSEGW

Mean travel time of the SW compo-
nent in the pumped water

SW fraction in the pumped
water mix

Krb scenario Regime naq 5 0.1 naq 5 0.2 naq 5 0.43 Well naq 5 0.1 naq 5 0.2 naq 5 0.43 naq 5 0.1 naq 5 0.2 naq 5 0.43

Krb 5 0.24 m/d Max 0.5 Well 1 15 30 40 0.02
Well 5 50 65 80 0.10
Well 7 60 75 100 0.21

Trans 0.44 0.46 0.49 Well 1 0.01 0.01 0.02
Well 5 0.07 0.08 0.09
Well 7 0.19 0.20 0.22

Min 0.42 Well 1 30 35 45 0.01
Well 5 65 75 95 0.06
Well 7 80 95 140 0.14

Krb 5 2.4 m/d Max 0.30 Well 1 15 20 35 0.38
Well 5 40 50 75 0.70
Well 7 55 70 95 0.77

Trans 0.33 0.33 0.33 Well 1 0.29 0.31 0.34
Well 5 0.58 0.64 0.67
Well 7 0.80 0.79 0.78

Min 0.32 Well 1 20 30 40 0.26
Well 5 50 65 85 0.51
Well 7 65 85 110 0.73

Krb 5 24 m/d Max 0.26 Well 1 15 20 30 0.97
Well 5 40 50 70 0.98
Well 7 50 70 90 1.00

Trans 0.31 0.31 0.31 Well 1 0.92 0.94 0.96
Well 5 0.95 0.96 0.97
Well 7 1.00 1.00 1.00

Min 0.31 Well 1 15 25 35 0.89
Well 5 45 60 80 0.90
Well 7 60 80 100 0.96

Note. Results are given for the two steady state models (max and min) and the transient model outputs from the end of the minimum pumping regime (trans), and
separated into the three Krb and three naq scenarios. The mean travel time of the SW component in the pumped water represents the time at which the SW compo-
nent has reached 50% of its final contribution to pumped water. Travel time analysis was only carried out for steady state models. Since the RMSEGW is independent
of the value of naq in steady state, it is therefore represented by one single value. The same is also the case for the SW fraction to the pumped water mix.
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pumped mix to react to a changed pumping rate. Most strikingly, this significant difference in model behav-
ior is nearly nonexistent in the RMSEGW. Both the values of Krb and of naq therefore appear to be largely
insensitive to a calibration against hydraulic heads. Purely relying on the RMSEGW as the model evaluation
criterion would favor the Krb 5 24 m/d model over the other models.

3.3. Environmental Tracer Results
3.3.1. 222Rn
Activities of 222Rn measured in the background piezometer (A41) exhibited a high average activity concentra-
tion of 16 Bq/Lwater, but varied considerably with a 1r-standard deviation of 2.3 Bq/Lwater. Except for one sam-
ple, all GW samples were within the uncertainty limits of the background activity. This means that, except for
one sample, all sampled GW had a 222Rn residence time of more than 12 days. The one GW sample that dif-
fered from this general observation was taken in well 1 one day after the beginning of the minimum pumping
regime (8.0 6 1.4 Bq/Lwater). This sample appears to represent a pocket of younger water. With an average
activity of 3.7 6 1.3 Bq/Lwater the SW samples taken at Emme St. 2 show a significant influence of GW, indicat-
ing gaining conditions. A slightly elevated 222Rn activity (1.2 6 1.1 Bq/Lwater) could also be observed in the
drain of the pumping field (see Figure 2), which drains parts of the uppermost GW away from the wellfield.
The SW samples further upstream correspond to the atmospheric zero activity of 222Rn, which either indicates
losing conditions or no SW-GW exchange. In summary, 222Rn indicates GW residence times, or an apparent
groundwater age, of at least 12 days at the sampled locations. At the SW measurement stations, 222Rn indi-
cates losing conditions upstream and gaining conditions downstream of the wellfield.
3.3.2. Analysis of Noble Gases and 3H/3He
The results of the 3H and noble gas measurements are presented in Table 2. The measured quantities were
used to derive noble gas recharge temperatures, the different helium components, as well as the 3H/3He
age according to the methods described in section 2.1. The derived quantities are summarized in Table 3.
Due to technical problems during sampling or the gas extraction phase, the samples taken in A19 and in
A41, 0–10 m, could not be properly analyzed.

NGRT varies between 3.8 and 7.48C. The apparent 3H/3He age varies between 0 and 7 years. Excess air is
below 100% except for the samples taken in A13. Low 3H/3He age during maximum abstraction (�60 days)
and during minimum abstraction (1.5 years), low NGRT and very high excess air indicate that piezometer
A13 is dominated by very recently infiltrated SW. Its proximity to the Emme River leads to a very rapid
exchange with the SW. When less is pumped, less SW appears to infiltrate from the river, and A13 seems to
mix with older GW, increasing the apparent 3H/3He age from 0 to 1.5 years. A25 with an apparent 3H/3He
age of 7.1 years appears to contain the oldest water. However, A25 exhibits a very low NGRT despite the
high apparent 3H/3He age, which makes the interpretation difficult.

The background well A41 has a NGRT of 7.48C, which is close to the average annual air temperature in the
catchment (88C) and indicates that the old GW component is well mixed. Well 1 has a significantly lower NGRT
of 5.78C, indicating an influence of recently infiltrated SW. Wells 5 and 7 more closely correspond to the NGRT
of the background well, revealing a stronger influence of older GW. In reaction to a change of the pumping
rate, the NGRT remain relatively constant in wells 1 and 5. The change in NGRT is stronger in well 7, with higher
recharge temperatures when less is pumped. The results of the 3H/3He analysis furthermore reveal that the
sampled pumping wells are generally controlled by older GW during the maximum, and younger GW during
the minimum pumping regime. Moreover, during the maximum pumping regime, the apparent 3H/3He age of
GW in the pumping wells is even higher than the water of the background piezometer (A41, 22.5–23.5 m),
potentially due to the inflow of deeper GW than the sampling depth of the background piezometer.

The measured isotopic ratios of Ne/4He are plotted against 3He/4He in Figure 6, and the reactions to pump-
ing are indicated by arrows. The GW in the background piezometer (A41, 21.5–23.5 m) appears to have
accumulated a significant amount of 4He relative to its initial concentration, thus indicating that this water
has resided in the subsurface for the largest amount of time of all sampled GW. The apparent 3H/3He age of
the background piezometer suggests that the GW at this location consist of a mix of a very old component
with a high amount of 4He and a slightly younger component that pushes the 3H/3He age toward a younger
average age compared to the water being pumped in the wells during the maximum regime. The pumping
wells generally show lower Ne/4He ratios than the piezometers. Compared to 3He/4He, Ne/4He appears to
be largely insensitive to a reduction in pumping: while the Ne/4He ratios remain stable, the wells react
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strongly to the pumping regime in terms of their 3He/4He ratio,
changing from higher ratios during maximum to lower ratios during
minimum. The changes in 3He/4He to pumping can therefore mainly
be attributed to a change in the tritiogenic 3He (3He*) content.

While for the maximum regime, the wells seem to have a ratio of
3He/4He that is significantly higher than that of air-equilibrated water,
therefore consisting of water that has resided in the subsurface for a
longer amount of time, in the minimum regime the ratios become
smaller and approach the ratio of AEW. The source of the pumped
water thus appears to be shifting toward more freshly infiltrated SW
during minimum compared to during the maximum pumping regime.
This agrees with the 3H/3He residence time estimates. The GW in A25
appears to be most enriched in 3He relative to 4He, but has not accu-
mulated significant amounts of 4He. While this agrees with the 3H/3He
age, the reason for this is unclear. A13 during maximum pumping
shows the lowest enrichment of 3He relative to 4He and AEW, as well
as the lowest ratio of Ne/4He. This again reveals a strong influence of
recently infiltrated SW at this location. In accordance with the 3H/3He
and NGRT results, during maximum pumping A13 is more controlled
by recently infiltrated SW compared to during minimum pumping.
3.3.3. 37Ar
The measured activity concentrations of 37Ar are summarized in
Table 4 and illustrated in Figure 7 as a function of their sampling
depth. The samples from the depth profile of the background pie-
zometer A41 show an exponentially decreasing activity with

increasing depth, which agrees with the theory of 37Ar production. This allows the following assump-
tions to be formulated:

1. Water in the background piezometer has reached the secular equilibrium of 37Ar (which is supported by
the noble gas analyses).

2. Flow at A41 is mainly horizontal (which is confirmed by the numerical model results provided in section 3.2).

Based on these two assumptions, the equilibrium profile and the corresponding attenuation length could
be identified (i.e., 15.9 m) and residence times isolines of 1 week, 1 month, and 3 months could be

Figure 6. Measured 3He/4He versus the measured Ne/4He ratios. For simplifica-
tion, only the maximum and the measurements immediately before the end of
the minimum regime (i.e., 7 days after the beginning of the min pumping
experiment) are indicated. The background sample is marked in blue, the maxi-
mum samples are marked in orange, and the minimum samples are marked in
green. Reactions to a change in the pumping regime are indicated by red
arrows. Error bars represent 1r-standard deviations. The reader is referred to
Tables 2 and 3 for the complete list of measurements.

Table 4
Summary of the 37Ar Measurement Results

Location Sampling
Pumping

regime

37Areq

(mBq/Lwater)
Err. 37Areq

(mBq/Lwater)

37Ar
(mBq/Lwater)

Err.
37Ar (%)

37Ar/
37Areq

Err. 37Ar/
37Areq

A41, 0–10 m 17.03.15 Max 3.19E-03 5.8E-4 2.95E-03 11 0.92 0.19
A41, 11.5–13.5 m 17.03.15 Max 2.25E-03 3.5E-4 2.23E-03 11 0.99 0.19
A41, 16–18 m 17.03.15 Max 1.69E-03 2.7E-4 1.45E-03 11 0.85 0.16
A41, 21.5–23.5 m 17.03.15 Max 1.20E-03 2.2E-4 1.28E-03 11 1.07 0.22
Emme Aeschau 09.04.14 Max n/a n/a 1.36E-04 0 n/a n/a
A13 09.04.14 Max 3.57E-03 6.9E-4 2.36E-03 12 0.66 0.15
A25 09.12.14 Max 3.23E-03 5.9E-4 8.70E-04 28 0.27 0.09
A26 09.12.14 Max 2.26E-03 4.1E-4 1.90E-03 11 0.75 0.15
A41, 21.5–23.5 m 13.10.15 Max 1.20E-03 2.2E-4 1.49E-03 11 1.24 0.27
Well 1 23.01.15 10:45 Max 2.26E-03 3.6E-4 1.11E-03 12 0.49 0.10

02.02.15 15:15 Min 2.26E-03 3.6E-4 1.36E-03 11 0.60 0.12
Well 5 23.01.15 12:30 Max 1.83E-03 2.8E-4 1.04E-03 12 0.57 0.11

02.02.15 14:00 Min
Well 7 23.01.15 14:15 Max 1.84E-03 2.9E-4 1.89E-03 11 1.03 0.19

02.02.15 14:45 Min 1.84E-03 2.9E-4 1.98E-03 12 1.08 0.21

Note. The corresponding secular equilibrium activity concentrations at the depth of each well are also given. Errors
are 1r-standard deviations, and for 37Areq correspond to the 1r-confidence interval.
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generated for Figure 7. The small portion of vertical flow of freshly infiltrating SW until it arrives at the depth
at which horizontal flow becomes predominant can be considered negligible for the ingrowth of 37Ar. The
two pumping wells 1 and 7, which were sampled before and immediately at the end of the minimum
pumping experiment, show only a very small, and according to the uncertainty limits not significant,
increase in 37Ar activity concentration in reaction to the pumping. The 37Ar activity concentration of the
Emme River SW in the downstream direction of A13 is considerably smaller compared to the GW samples,
but not zero. This agrees with the findings of the 222Rn measurements and confirms that at this location
GW is exfiltrating into the river. The fact that the activity concentration for the samples in wells 1 and 5, as
well as in piezometers A13 and A25, is between the secular equilibrium and zero activity leads to the con-
clusion that there is a substantial component of freshly infiltrated SW with a residence time between multi-
ple days to 3.5 months (i.e., 110 days) in the sampled GW mix.

If translated into residence times, the 37Ar activities suggest that the sampled water has average apparent
37Ar residence times of approximately 1.5 month in wells 1 and 5, and more than 3.5 months in well 7. If
the pumped water were entirely composed of freshly infiltrated SW, the average age of the freshly infil-
trated SW and the average age of the water in the respective wells would be identical. However, based on
the results from the other tracers, it seems more likely that the pumped water represents a mix between
freshly infiltrated SW and older GW. In this case, the residence time of the freshly infiltrated SW must be
smaller than the apparent average 37Ar residence time of the samples: the range of possible average resi-
dence times for the freshly infiltrated SW in the two pumping wells 1 and 5 lies between the apparent
222Rn residence time (12 days) and the apparent 37Ar residence time (1.5 months). In well 7, 37Ar has
reached the secular equilibrium and the minimum residence time in well 7 is therefore equal to or larger
than 3 times the half-life of 37Ar (i.e., �110 days).
3.3.4. Tracer-Based Analysis of the Mixing Ratios
Both NGRT and 3Hecorr/

4He can be assumed stable during the travel times encountered within the drinking
water wellfield, i.e., there is no production or decay during a time scale from a few days to 3–4 months.
They are therefore suited for end-member mixing analysis between different water components within the
studied SW-GW system:

1. NGRT. The two end-members for NGRT are given by (1) freshly infiltrated SW with a NGRT corresponding
to the SW water temperature during the residence time range of the SW component in the correspond-
ing well and (2) the GW in the background piezometer A41 (7.48C, see Table 3). The end-member for SW
were chosen according to the residence time range found in the 37Ar analysis, which suggests that the

Figure 7. 37Ar activity concentrations as a function of depth. 37Ar age isolines of 1 week, 1 month, and 3 months were
derived from the 37Ar background profile in well A41. The green markers represent samples taken immediately before
the end of the minimum pumping regime and orange markers represent samples taken during the maximum pumping
regime. The vertical bars indicate the screened depths at each location. Horizontal bars indicate measurement errors.
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SW components in well 1 and 5 have a residence time between 12
days and 1.5 months. The average SW temperature during the 2
months prior to the pumping experiment was 3.78C. For A13 the
same recharge temperature as for wells 1 and 5 was used, whereas
for A25 the average SW temperature during the pumping experi-
ment (i.e., 2.88C). The NGRT mix was quantified with equation (8).

2. 3Hecorr/
4He. The two end-member ratios are given by (1) freshly

infiltrated SW with a ratio corresponding to AEW (1.36 3 1026) and
(2) the GW in the background piezometer A41 with a 3Hecorr/

4He
ratio of 1.288 3 1026 (see Table 3). The 3Hecorr/

4He mix between
the two end-members was calculated with equation (9).

The tracer-based mixing fractions between recently infiltrated SW and
older GW are summarized in Table 5. The two tracer-based mixes are
comparable: both tracers show that the water mix pumped by the
three wells consists of approximately equal parts of freshly infiltrated
SW and GW, rather than consisting purely of older GW or purely of
freshly infiltrated SW. The water in well 1 appears to be made up of
more SW than the water in well 5, whereas well 7 is again more SW

influenced than well 5. 3Hecorr/
4He suggests a strong reaction to a reduction of the pumping rate in both

well 1 and well 7: 228% and 216% SW, respectively. NGRT only suggests a strong reaction in A13 (–19%),
but not in well 1 or well 5. Overall, 3Hecorr/

4He suggests slightly more SW influence compared to NGRT.

3.4. Improving the Model Using Measured and Simulated Residence Times and Mixing Ratios
A comparison of the simulated mean travel times of the SW component in the pumped water (Table 1) to the
tracer-based residence times (Table 6) shows that all models are in accordance with the 222Rn-based measure-
ments: the mean travel times exceed the 12 days required for 222Rn to reach equilibrium. Moreover, as the
model does not simulate the complete catchment but only the vicinity of the wellfield, the simulated travel
times cannot be compared directly to the 3H/3He residence times. Consequently, based on 222Rn and 3H/3He,
a clear identification of the best model parametrization would be impossible. Residence times estimates
based on the novel 37Ar tracer method, on the other hand, allow overcoming this problem by covering the
relevant time scale of the investigated SW-GW system: In general, the naq 5 0.1 models are best for the repro-
duction of the mean travel times in well 5, whereas the naq 5 0.2 models reproduce the travel times for well 1
better, and the naq 5 0.43 models the travel times for well 7. While the best overall reproduction of the tracer-
based mean travel times estimates can tentatively be attributed to the Krb 5 2.4 m/d scenario, even with 37Ar-
based residence times a clear distinction of the most appropriate model parametrization is still difficult.

The most appropriate model parametrization becomes evident only when tracer-based and simulated mix-
ing ratios between freshly infiltrated SW and older GW are compared: a comparison of the measured SW

fraction (Table 5) to the simulated SW fraction (Table 1) in A13, A25
and wells 1, 5, and 7 clearly reveals that out of the three tested Krb

scenarios, only the Krb 5 2.4 m/d model is appropriate for the simula-
tion of the drinking water wellfield. This is illustrated in Figure 8,
where both the 3Hecorr/

4He-based and the simulated SW fraction are
plotted. Both the Krb 5 0.24 m/d and Krb 5 24 m/d model do not allow
the reproduction of the tracer-based mixing ratios between freshly
infiltrated SW and GW, and result in a severe underestimation (<10%
SW) or a severe overestimation (>90% SW) in the pumping wells,
respectively. The comparison of the mixing ratios furthermore allows
the identification of the most appropriate naq value: in terms of the
changes in the pumped water mix in reaction to 7 days of reduced
pumping, the Krb 5 2.4 m/d, naq 5 0.1, trans model best approaches
the magnitude of changes observed in the tracer measurements.

Based on these findings, the most appropriate model parametrization
can only be evaluated if the mixing ratios are considered. This allows

Table 5
Estimations of the Contribution of Recently Infiltrated SW in the Water Mix
Based on the Analysis of Two Different Environmental Tracer-Based Indicators
(NGRT and 3Hecorr/

4He)

Sampling
location

Pumping
regime

SW component in the sampled water mix

NGRT based (%) 3Hecorr/
4He based (%)

A13 Max 61 71
Min 78 100

A25 Max
Min 75 100

Well 1 Max 46 60
Min 45 32

Well 5 Max 10 26
Min 8 26

Well 7 Max 83
Min 67

Note. The end-members for this analysis were chosen according to end-
members relevant in the drinking water wellfield and in the SW-GW model.

Table 6
Comparison of Tracer-Based Apparent Residence Times at Key Sampling
Locations According to the Three Tracers Employed

Location
Pumping

regime

Apparent residence times
222Rn (days) 37Ar (days) 3H/3He

A41, 21.5–23.5 m Max �12 �110 4.4 years
A13 Max �12 54 �60 days

Min �12 1.5 years
A25 Max �12 16

Min �12 7.1 years
Well 1 Max �12 34 6.3 years

Min �12 46 1.4. years
Well 5 Max �12 42 5.0 years

Min �12 2.6 years
Well 7 Max �12 �110 6.5 years

Min �12 �110 4.4 years
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identifying the Krb 5 2.4 m/d, naq 5 0.1 model as the most appropriate parametrization. The tracer-based
mixes furthermore hint at a potential structural problem of the model: while the influence of SW in the
pumped water increases with increasing distance of the pumping well to the river (i.e., the SW component
is highest in well 7), the measured mix suggests that this only holds true for wells 1 and 7. In well 5, on the
other hand, much less SW is pumped compared to well 1 (shown by both NGRT and 3Hecorr/

4He) and com-
pared to well 7 (shown by 3Hecorr/

4He). This structural problem is most likely due to the simplifying assump-
tion of a homogeneous Kaq.

4. Discussion

We integrated a multitracer study of an important alluvial drinking water station with physically-based flow
modeling. The multitracer investigation consisted of measurements of 222Rn, 3H/3He, atmospheric noble
gases, and 37Ar measurements. 37Ar has never been used as a tracer for residence times in SW-GW systems
before. While the classic tracers 222Rn and 3H/3He could have been explained by the presence of only one
type of water, the fact that the 37Ar and 3H/3He dating methods resulted in different residence times
revealed that the sampled water consisted of a mix of two different water types: (a) one type constitutes
freshly infiltrated SW that has resided in the subsurface on time scales to which only 37Ar is sensitive (i.e.,
between 2 weeks and 3.5 months). (b) Another type constitutes older GW that has resided in the subsurface
on larger time scales to which 37Ar is not sensitive anymore, but that is detectable by 3H/3He (i.e., 3.5
months to multiple years). Thus, through the combined application of the 222Rn, 37Ar and 3H/3He dating
methods, for the first time residence times of water types (a) and (b) could be constrained. The combined
application of these three tracers furthermore allowed identifying suitable tracers for the analysis of end-
member mixing: NGRT and 3Hecorr/

4He.

With the addition of 37Ar, an important observational gap in the analysis of residence times could be
closed—a residence time scale which is of particular importance in alluvial SW-GW systems. Including 37Ar
allowed constraining the travel time of freshly infiltrated SW between the Emme River and the GW wells,
and helped identifying the end-members for the mixing analysis; as outlined above, this would not have
been possible with other tracers for residence times such as 222Rn or 3H/3He, which are insensitive to the
relevant residence times. One complication for the application of 37Ar as a dating tool in SW-GW systems is
the depth-dependency of the production of 37Ar. As opposed to dating using 222Rn, a correct interpretation
of 37Ar measurements therefore requires the predominant flow directions in the subsurface to be identified.
For this purpose, we used a physically-based numerical flow model, with the ability to simulate SW-GW
interactions in a fully-integrated way. The flow simulations clearly showed that horizontal subsurface fluxes
dominate, except for the moment at which SW infiltrated into the subsurface. The ingrowth of 37Ar during
this vertical movement of the water parcel is, however, negligible for the overall ingrowth of 37Ar. The com-
bined application of 37Ar measurements together with fully-integrated flow modeling allowed us to inter-
pret the 37Ar measurements under the assumption of horizontal subsurface flow, and substantially

Figure 8. Comparison between the 3Hecorr/
4He-based SW fraction and the simulated SW fraction. The max measurements

are compared to the steady state max simulations, and the min measurements are compared to the trans simulations.
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facilitated the analysis. Even though sampling for 37Ar requires a relatively large volume of water to be
degassed directly in the field and the depth dependency of the production of 37Ar to be determined locally,
the insights gained from 37Ar are extremely useful.

Neither the classic measurements of GW levels and SW discharge, nor the residence time analysis based on
the three different dating methods, allowed a clear identification of an appropriate flow model parametriza-
tion. However, for a comprehensive simulation and prediction of flow paths and mixing ratios, identifying
an appropriate model parametrization is imperative. To overcome this gap, we used the residence time trac-
ers to identify ideal tracers for an end-member mixing analysis. We then compared these tracer-based mix-
ing ratios to simulated mixing ratios of multiple different model parametrizations that were all well-
calibrated against hydraulic heads by means of RMSEGW, but that strongly differed in the hydraulic conduc-
tivity of the riverbed (Krb) and the porosity of the aquifer (naq). While all models performed similarly well in
reproducing the hydraulic heads, the models strongly differed in the simulation of the pumped water mix
(see Table 1). The tracer-based mixing ratios allowed identifying that out of the three different Krb scenarios,
only the intermediate permeability scenario allowed reproducing the tracer-based mixing ratios (see Figure
8). Moreover, out of the three different naq scenarios, only the lower porosity scenarios resulted in similarly
rapid changes of mixing ratios in response to a change in the pumping regime as observed with the tracer-
based measurements. Identifying the shortcomings of the inappropriately parametrized models would, in
this case, not have been possible by analyzing hydraulic heads or residence times alone. The analyses of
the environmental tracers also allowed detecting potential structural issues in the model: instead of simulat-
ing a stronger influence of SW in the wells closer to the river, the models suggested the opposite, i.e., that
the wells further away from the river are more strongly influenced by SW. This difference between the tracer
measurements and the simulations might suggest that the assumption of homogeneity for Kaq is not justi-
fied, and that mild heterogeneity exists.

Our study highlights that (1) tracer-based estimates of mixing ratios and residence times provide valuable
information concerning alluvial SW-GW systems and help to identify appropriate flow model parametriza-
tions for these systems, (2) that it is necessary to choose tracers with a sensitivity to the expected time
scales of the investigated system (which is in accordance with the interpretation of Larocque et al. (2009),
among others), (3) that 37Ar can close the gap in residence times characterizations required for alluvial SW-
GW systems, and (4) that multiple tracers need to be applied in order to estimate both mixing ratios and
residence times simultaneously.

5. Conclusions

We successfully closed an existing observational gap in the characterization of residence times of SW-GW
systems by combining the existing tracer methods of 222Rn, 3H/3He and noble gases with 37Ar. By using the
novel 37Ar-method, we could detect recently infiltrated SW in the wellfield of an important drinking water
station situated in an alluvial SW-GW system. This SW component would have been missed by the existing
tracer methods. As a result of this, we could identify suitable tracers for end-member mixing analysis in
such SW-GW systems (i.e., NGRT and He isotope ratios). The end-member mixing analysis served as the basis
for the quantification of the fraction of recently infiltrated SW in the subsurface.

Moreover, we coupled the tracer-based analyses with complex physically-based SW-GW modeling. We used
the fully-coupled SW-GW flow simulator HydroGeoSphere and coupled it to the Hydraulic Mixing-Cell flow
tracker, which allowed tracking water from all sources throughout the entire modeling domain without
much additional computational costs. These simulations not only provided the basis for the interpretation
of the tracer measurements, the unconventional tracer observations also allowed to identify a more appro-
priate flow model parametrization by comparing the measured, tracer-based end-member mixing ratios to
simulated mixing ratios. We could demonstrate that identifying appropriate values for the hydraulic con-
ductivity of the riverbed and porosity of the aquifer—key parameters for residence times and mixing
ratios—would not have been possible based on classic observations of hydraulic heads alone. While the
combination of end-member mixing ratios and hydraulic head data suggests that a homogeneous parame-
trization of the flow model with low, transport effective porosity values could be appropriate, a heteroge-
neous system with preferential flow paths and higher total porosity could exist in reality. To conclude
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whether such a system does exist yet more complex modeling approaches including heterogeneous struc-
tures should be evaluated against the combination of isotopic and hydraulic observations.

So far, the combination of all these tracers in a multitracer study and the combination of complex flow
models with such multitracer studies are an exception, but indicate the direction for future applications, as
also pointed out by Turnadge and Smerdon (2014). Our study provides a closure of the long existing resi-
dence times gap in SW-GW systems, and is a demonstration of the largely unexplored potential of end-
member mixing ratios in informing SW-GW model construction and calibration.
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