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Abstract Nitrous oxide (N2O) is a potent greenhouse gas (GHG) and ozone destructing agent; yet global
estimates of N2O emissions are uncertain. Marine N2O stems from nitrification and denitrification processes
which depend on organic matter cycling and dissolved oxygen (O2). We introduce N2O as an obligate
intermediate product of denitrification and as an O2-dependent by-product from nitrification in the Bern3D
ocean model. A large model ensemble is used to probabilistically constrain modern and to project marine
N2O production for a low (Representative Concentration Pathway (RCP)2.6) and high GHG (RCP8.5)
scenario extended to A.D. 10,000. Water column N2O and surface ocean partial pressure N2O data serve
as constraints in this Bayesian framework. The constrained median for modern N2O production is 4.5
(±1𝜎 range: 3.0 to 6.1) Tg N yr−1, where 4.5% stems from denitrification. Modeled denitrification is 65.1
(40.9 to 91.6) Tg N yr−1, well within current estimates. For high GHG forcing, N2O production decreases by
7.7% over this century due to decreasing organic matter export and remineralization. Thereafter, production
increases slowly by 21% due to widespread deoxygenation and high remineralization. Deoxygenation
peaks in two millennia, and the global O2 inventory is reduced by a factor of 2 compared to today. Net
denitrification is responsible for 7.8% of the long-term increase in N2O production. On millennial timescales,
marine N2O emissions constitute a small, positive feedback to climate change. Our simulations reveal tight
coupling between the marine carbon cycle, O2, N2O, and climate.

1. Introduction

Nitrous oxide (N2O) is an atmospheric trace gas that plays important roles in the stratospheric ozone cycle
and as a greenhouse gas (GHG) that is more than 200 times more potent than carbon dioxide (CO2) (Gruber,
2008). Natural N2O emissions to the atmosphere result from microbial metabolic pathways on land and in
the oceans. N2O is inert within the troposphere and is photochemically decomposed after mixing into the
stratosphere. Prather et al. (2015) suggest that the preindustrial atmospheric lifetime of N2O was 123 years,
which constrains natural N2O sources to 10.5 ± 1 Tg N yr−1. Measurements of N2O concentration ([N2O]) and
N2O production and reduction rates in natural settings are difficult and sparse which makes the attribution
of N2O sources and sinks to processes and systems uncertain. Estimates of global terrestrial and oceanic N2O
emissions from natural sources vary by up to a factor of 5. They range between 3.3 and 9.0 Tg N yr−1 and
between 1.8 and 9.45 Tg N yr−1 for terrestrial and oceanic emissions, respectively (Ciais et al., 2013). During the
last 100 years, atmospheric N2O concentrations have increased from ∼270 ppb currently reaching ∼325 ppb
as result of additional, anthropogenic sources (2.7–11.1 Tg N yr−1, Ciais et al., 2013).

Hot spot regions for marine N2O production are the low oxygenated waters of the eastern boundary upwelling
systems, such as the Arabian Sea (Law & Owens, 1990; Naqvi et al., 2000; Nicholls et al., 2007), the southern
African coast (Frame et al., 2014), and the eastern equatorial Pacific (Arévalo-Martínez et al., 2016, 2015; Babbin
et al., 2015; Ji et al., 2015; Kock et al., 2016; Zamora et al., 2012). N2O production also occurs in well-oxygenated
waters. Most studies associate N2O production with processes in the open ocean water column. In coastal
environments, however, N2O might also be produced from interactions with sediments (Frame et al., 2014).

In the ocean, N2O primarily forms (i) as a by-product from nitrification and (ii) as an intermediate product
from respiratory denitrification. Process-oriented studies measure water column concentrations of involved
species, incubate water samples with isotopes, determine the N2O isotopomer configuration or probe
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relevant genomes or enzymes. The exact metabolic pathways and their relative importance for global N2O
production remain unclear as is the future evolution of marine N2O emissions (Bange, 2008; Freing et al., 2012).
Both nitrification and denitrification processes and the related N2O production are tightly linked to the cycling
of organic matter and oxygen concentrations ([O2]).

Nitrification by autotrophs occurs nearly everywhere in the global ocean where organic matter is remineral-
ized aerobically releasing ammonia (NH3). Nitrification is a two-step process, whereby NH3 is first oxidized to
nitrite (NO−

2 ) by ammonia-oxidizing archaea (AOA) or ammonia-oxidizing bacteria (AOB), and subsequently,
NO−

2 is oxidized to nitrate (NO−
3 ) by nitrite-oxidizing bacteria. Both reactions are linked to the reduction of

O2. N2O has been reported as secondary product from ammonia oxidation (Goreau et al., 1980; Ji et al., 2015;
Loescher et al., 2012; Nevison, 2003; Ward, 2008), though the relevance of different biogeochemical pathways
remains somewhat controversial. N2O can form from NH3 oxidation to NO−

2 by AOA and AOB. In addition, AOA
(Santoro et al., 2011) and AOB (Frame & Casciotti, 2010) have been shown to also be able to reduce NO−

2 to
N2O in laboratory cultures through pathways similar to those involved in heterotrophic denitrifiers, a process
also referred to as nitrifier denitrification. Microenvironments within sinking particles may provide favorable
conditions, that is, low [O2] and availability of organic carbon (Breider et al., 2015; Charpentier et al., 2007;
Frame et al., 2014; Popp et al., 2002; Wilson et al., 2014). Isotopic constraints suggest that AOA might well
dominate local and global nitrification and N2O production (Beman et al., 2012; Francis et al., 2005; Loescher
et al., 2012; Peng et al., 2015; Santoro et al., 2011; Trimmer et al., 2016) and also be active in the euphotic zone,
where AOB are thought to be light inhibited (Ward, 2008). Several studies inferred surface production of N2O
(Charpentier et al., 2010; Dore & Karl, 1996; Law & Ling, 2001; Morell et al., 2001), but the global relevance of
N2O production in the euphotic zone is debated (Freing et al., 2012; Zamora & Oschlies, 2014).

Respiratory denitrification occurs under anoxic conditions, and N2O is formed as an intermediary product.
A series of nitrogen oxide compounds are used as terminal electron acceptors for the oxidation of organic
matter in the absence of O2 which ultimately produces N2 (NO−

3 → NO−
2 → NO → N2O → N2). The net N2O

production results from potentially large gross fluxes of production and consumption (Bange, 2008; Devol,
2008). The different denitrification steps have been shown to exhibit different O2 sensitivities, with N2O pro-
duction starting at higher [O2] compared to N2O reduction (Babbin et al., 2015; Castro-Gonzalez & Farias,
2004; Ji et al., 2015). Resulting N2O depth profiles may exhibit characteristic double peak structure, where
N2O is depleted within anoxic zones (Arévalo-Martínez et al., 2016; Babbin et al., 2015; Bange, 2008; Ji et al.,
2015; Kock et al., 2016). Nitrification and denitrification share common intermediate products (NO−

2 , N2O)
such that processes are potentially coupled at suboxic transitions within the water column complicating the
interpretation of in situ profile data (Devol, 2008; Frame et al., 2014; Ji et al., 2015).

Additional processes such as heterotrophic nitrification (Bange, 2008), anammox (Kartal et al., 2007), and
chemoautotrophic denitrification (Gilly et al., 2013) might also contribute to N2O production. It has also been
suggested that an interplay of abiotic-biotic reactions might lead to N2O production, where enzymatically
produced intermediates (NH2OH, NO−

2 ) are oxidized or reduced to N2O by metals (Zhu-Barker et al., 2015).

Given these complexities, modeling studies so far have largely employed highly parameterized frameworks
and do not resolve the mentioned intermediate products or individual process rates. Studies have estimated
global marine N2O emissions either from interpolated surface measurements of pN2O and related air-sea flux
parameterizations (4 (1.2–6.8) Tg N yr−1 Nevison et al., 1995) or from inferred N2O yields per O2 consumption
coupled to observed O2 or temperature climatologies and modeled or observationally inferred respiration
rates (5.8 ± 2 Tg N yr−1 Nevison, 2003, 2.2–4.3 Tg N yr−1 Freing et al., 2012, and 6.2 ± 3.2 Tg N yr−1 Bianchi
et al., 2012). Modeling studies within global ocean circulation models usually couple N2O production to
modeled aerobic remineralization fluxes, assuming that nitrification follows aerobic remineralization instanta-
neously. The yield of N2O per unit organic matter remineralized is assumed to depend nonlinearly (Schmittner
et al., 2009; Suntharalingam & Sarmiento, 2000) or linearly (Zamora et al., 2012; Zamora & Oschlies, 2014) on
oxygen concentrations. Sometimes a first-order (Jin & Gruber, 2003; Martinez-Rey et al., 2015) or zeroth-order
(Zamora & Oschlies, 2014) consumption term for denitrification is included. The [O2] threshold below which
consumption starts is different in different models (10 mmol m−3 O2, Zamora et al., 2012, 4 mmol m−3, Nevison,
2003; Jin & Gruber, 2003, and 5 mmol m−3, Martinez-Rey et al., 2015).

Explicit N2O production and consumption from denitrification in line with requirements from organic mat-
ter stoichiometry and with O2-dependent decoupling of N2O production and consumption was only recently
implemented in a 1-D water column model (Babbin et al., 2015). This model was applied together with
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observations of N2O and related tracers in the eastern tropical North Pacific (Babbin et al., 2015), and denitri-
fication was identified as the major net source of N2O. Trimmer et al. (2016), on the other hand, employing a
similar model, explained their data from a neighboring site with low oxygen archaeal production from nitri-
fication. N2O production in this study was modeled as an exponential function of −[O2], without coupling
to remineralization rates. Nevertheless, results by Ji et al. (2015) and Babbin et al. (2015) confirm that gross
local N2O fluxes from denitrification may be up to hundred times larger than those from nitrification. Yet gross
fluxes from denitrification, consistently linked to the stoichiometry of organic matter fluxes, have never been
implemented in a global ocean circulation model.

Here in a novel approach, we implement marine N2O production and consumption fluxes within the Bern3D
Earth System Model of Intermediate Complexity (EMIC). Stoichiometric relationships between the produced
and consumed N2O from denitrification and their corresponding organic matter fluxes are explicitly consid-
ered. We interpret modeled mean O2 concentrations in each grid cell to represent a range of [O2] and microen-
vironmental conditions at the subgrid scale. This is described by a distribution around the mean [O2] allowing
nitrification and denitrification to co-occur within the same grid cell in low oxygen waters. Nitrification
is modeled with an exponential O2-dependent yield from organic matter remineralization fluxes in line with
earlier parameterizations. Denitrification considers stoichiometry with respect to organic matter fluxes fol-
lowing Paulmier et al. (2009) and a Michaelis-Menten-type regulation of N2O consumption. N2O is taken as
the only obligate intermediate of the denitrification series. This permits us to evaluate simulated denitrifica-
tion fluxes with independent estimates of total nitrogen (N) loss (20–150 Tg N yr−1, as summarized in Yang &
Gruber, 2016).

Model parameters and uncertainties are estimated in a Bayesian, Monte Carlo approach using a 1,000-
member model ensemble. For the first time, both water column concentration and surface partial pressure
N2O data (Kock & Bange, 2015) are used together as constraints. In addition, the model circulation, simu-
lated O2 distribution, and remineralization fluxes are constrained by observation-derived fields of natural
radiocarbon (Key et al., 2004) and dissolved O2 (Bianchi et al., 2012; Garcia et al., 2014). Data-constrained, prob-
abilistic estimates are presented for regional-to-global marine N2O production and consumption, sea-to-air
N2O fluxes, and the marine N2O-climate feedback. The simulations cover the industrial period and the 21st
century applying a low (Representative Concentration Pathway (RCP)2.6) and a high (RCP8.5) greenhouse gas
scenario. These are extended to year A.D. 10,000 to quantify century to millennial-scale changes and long-term
feedbacks between marine N2O and climate similar to the constant composition commitment simulations
presented in Zickfeld et al. (2013).

2. Modeling Framework
2.1. The Bern3D Model
The Bern3D Earth System Model of Intermediate Complexity is a three-dimensional frictional geostrophic bal-
ance ocean model (Müller et al., 2006) with a sea ice component coupled to a single-layer energy and moisture
balance model of the atmosphere (Ritz et al., 2011) and a prognostic marine biogeochemistry module (Parekh
et al., 2008; Tschumi et al., 2011). Here a version with a horizontal resolution of 41 by 40 grid cells and 32 log-
arithmically scaled vertical layers is used (see also Battaglia et al., 2016; Roth et al., 2014). The components
atmosphere, ocean, and sea ice share the same horizontal resolution. The physical ocean model has an isopy-
cnal diffusion scheme and Gent-McWilliams parameterization for eddy-induced transport (Griffies, 1998). The
National Centers for Environmental Prediction/National Center for Atmospheric Research monthly wind stress
climatology (Kalnay et al., 1996) is prescribed at the surface. Air-sea gas exchange, carbonate chemistry, and
natural Δ14C of dissolved inorganic carbon are modeled according to Ocean-Carbon Cycle Model Intercom-
parison Project (OCMIP)-2 protocols (Najjar et al., 1999; Orr & Najjar, 1999). Carbonate chemistry calculations
are updated according to Orr and Epitalon (2015). The global mean air-sea transfer rate is reduced by 19%
compared to OCMIP-2 to match observation-based estimates of natural and bomb-produced radiocarbon
(Müller et al., 2008). N2O solubility and the Schmidt number are calculated according to Wanninkhof (1992).

The carbon cycle model (Parekh et al., 2008; Tschumi et al., 2011) simulates production and remineraliza-
tion/dissolution of organic matter, calcium carbonate, and opal. The N cycle is not explicitly modeled. The
euphotic zone is defined above 75 m. Production of particulate organic matter (POP, expressed in phos-
phorous (P) units) within the euphotic zone is a function of temperature, light availability, phosphate, and
iron following Doney et al. (2006). Remineralization of POP follows a power law profile (Martin et al., 1987,
equation (A1)). The organic flux reaching the seafloor is remineralized in the deepest box. As in the original
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Figure 1. Remineralization profiles, fraction of aerobic remineralization, and N2O yield factors. (a) The original
remineralization profile using the standard value of 𝛼aerob (light blue profile) and two profiles with lower
remineralization under anaerobic conditions indicating the sampled range in 𝛼denit (orange and gray profiles).
(b) Fraction of aerobic remineralization p1 as a function of grid cell mean-dissolved O2 (black line). Colored lines offset to
lower [O2] represent the sampled p2 distributions to regulate N2O production and consumption by denitrification.
Vertical dashed lines indicate the 2𝜎 range of p1. (c) N2O yield from nitrification as sampled in the Monte Carlo
framework (colored lines). Black thick lines show N2O yields from the literature. Colored lines in Figures 1b and 1c are
coded according to the skill score of the related model simulation.

model version, two thirds of organic matter production form dissolved organic matter (DOP), which here
decays into its mineral constituents with an e-folding lifetime of 1.5 years. A new formalism is introduced
which assigns remineralization of POP and DOP to aerobic (p1) and anaerobic (1-p1) pathways depending
on the mean grid cell-dissolved O2 concentration (see p1 in Figure 1b and equation (A5)). We introduce two
power law profiles, Faerob and Fdenit, with two distinct remineralization length scales for aerobic and anaerobic
remineralization (𝛼aerob and 𝛼denit). The changes of the respective piecewise Martin curves are weighted with
p1([O2]) and (1-p1([O2])) to yield the total remineralization profile (equations (A2)–(A4)). This way, aerobic and
anaerobic remineralization may co-occur within the same grid cell. The effect on the remineralization profile
is illustrated in Figure 1a (refer to the Appendix A for implemented equations).

2.2. Marine N2O Pathways
2.2.1. N2O From Nitrification
Net nitrification is assumed to instantly follow aerobic remineralization and is stoichiometrically accounted for
in the O2 consumption term (J(O2); see equation (A6) (as equation 10 in Paulmier et al., 2009). N2O produced
during nitrification J(N2Onit.prod.) (mmol N2O m−3 s−1) is therefore coupled to the aerobic remineralization flux
below the euphotic zone with an O2-dependent yield:

J(N2Onit. prod.) = [𝛼 + 𝛽 ⋅ f ([O2])] ⋅ J(O2), (1)

f ([O2]) = f1 ⋅ exp(−f2 ⋅ [O2]) + (1 − f1) ⋅ exp(−f3 ⋅ [O2]). (2)

𝛼 is a constant yield factor (not to be confused with 𝛼aerob and 𝛼denit) and the function 𝛽*f (O2) describes
an O2-dependent N2O yield from nitrification (Figure 1c). This O2-dependent yield of nitrification follows
the functional form applied by Jin and Gruber (2003) and Martinez-Rey et al. (2015) using two exponentials
(equation (2)). It is motivated by the linear relationship between excess N2O and apparent oxygen utilization
in well-oxygenated waters (Butler et al., 2000; Cohen & Gordon, 1979), laboratory data of Goreau et al. (1980),
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oceanic observations of Nevison (2003) and Ji et al. (2015), and most recent incubation results of Trimmer
et al. (2016). This functional form is chosen here as it offers many degrees of freedom and therefore produces
a wide range of solutions; from almost linear to exponential covering the range reported by other studies.
Parameterizations employed in other global modeling studies (Jin & Gruber, 2003; Martinez-Rey et al., 2015;
Nevison, 2003; Suntharalingam et al., 2000; Zamora & Oschlies, 2014) and derived in observational studies
(Ji et al., 2015) are shown in Figure 1c for comparison. N2O production emerges from the product of yield and
remineralization rate. The selected range of parameterizations covers the parameterizations used by Nevison
(2003), Zamora and Oschlies (2014), and Martinez-Rey et al. (2015), whereas Jin and Gruber (2003) used a sim-
ilar functional form but applied much higher yield factors. This discrepancy was also noted in Martinez-Rey
et al. (2015, section 2.2, p. 4136) and could arise from lower remineralization fluxes in the low O2 regions in
the Jin and Gruber (2003) model.

2.2.2. N2O From Denitrification
N2O consumption from denitrification is modeled with first-order kinetics following Yamagishi et al. (2007)
and Babbin et al. (2015), and consumption is therefore the product of a loss rate kc and [N2O]. To ease nota-
tion, grid cell indices (x, y, k) are omitted. In addition, a Michaelis-Menten term reduces the consumption rate
coefficient, kc, at low [N2O] and a function (1-p2) describes the grid cell fraction with consumption. kc (in units
of s−1) equals

kc =
1
𝜏
⋅

[N2O]
KN2O + [N2O]

⋅ (1 − p2). (3)

We introduce a function, p2 (Figure 1b), as a function of the mean grid cell [O2] to parameterize small-scale
processes of N2O consumption and production. p2 codetermines the relative importance of N2O consump-
tion and N2O production by denitrification (see equation (B1) and Figure 1b). This way, N2O consumption by
denitrification sets in at lower [O2] compared to N2O production by denitrification in agreement with obser-
vations (Babbin et al., 2015; Castro-Gonzalez & Farias, 2004; Ji et al., 2015) and similar to the 1-D water column
model of Babbin et al. (2015). Potential N2O consumption by denitrification is computed by using a semiim-
plicit numerical scheme as the timescale for consumption (1∕kc) is a few days only and comparable to the
length of the model time step, Δt

J(N2Odenit. cons.)pot = −kc ⋅ [N2O] 1
(1 + Δt ⋅ kc)

,

where the fraction results from the numerical scheme.

Potential N2O consumption rates do not depend on organic matter availability and may thus exceed corre-
sponding organic matter conversion rates. This would violate the first-order principle of mass conservation. In
addition, N2O production by denitrification is assumed to co-occur in low oxygen grid cells which is also cou-
pled to anaerobic remineralization of organic matter. Therefore, we limit N2O consumption, J (N2Odenit.cons.)
(mmol N2O m−3 s−1) (i) by the anaerobic remineralization flux to conserve mass and (ii) by limiting the frac-
tion of the anaerobic remineralization that is available for N2O consumption to enforce that consumption and
production can co-occur in a grid cell. We write

J(N2Odenit. cons.) = −min
(

kc ⋅ [N2O] 1
(1 + Δt ⋅ kc)

, zcons ⋅ Jdenit (PO4) ⋅ 20.5%
)
. (4)

The first term in the minimum function represents potential N2O consumption. The second term represents
the upper limit of consumption as a function of anaerobic remineralization; Jdenit(PO4) (mmol P m−3 s−1) is the
P release from organic matter by denitrification (ΔFdenit (zk )

(zk−1−zk )
+ [DOP]⋅(1−p1)

1.5 years
) and zcons the stoichiometric ratio

between P and N2O for consumption (refer to the Appendix C for stoichiometric relationships, equation (C3).
The stoichiometric ratio for production (zsource = 69) is 4 times smaller than for consumption (zcons = 276).
Equal N2O consumption and production by denitrification would therefore correspond to a share of Jdenit(PO4)
equal to 20% for N2O consumption and equal to 80% for N2O production. Here an upper limit share of 20.5%
is applied for the N2O consumption pathway in equation (4). This means that up to 5% more N2O may be
consumed than produced by denitrification within a grid cell. This choice permits a large range of consump-
tion and production fluxes in our probabilistic approach, discussed in the next section, and reflects the notion
that denitrification leads to a substantial net production not to a net consumption of N2O (Babbin et al., 2015;
Naqvi et al., 2000; Nicholls et al., 2007). In a small ensemble without the 20.5% limitation, consumption fluxes
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Table 1
Sampled Model Parameters and Their Prior Distributions

Best consistent

Parameter Description Prior distributiona parameter setb

Ocean transport and mixing

kdiff-dia Ocean diapycnal diffusivity (m2 s−1) L(2.25E−5, s = 0.2, l = 0) 2.2E−05

Organic matter remineralization

𝛼aerob Coefficient of Martin curve for aerobic N(−0.83, −0.0625) −0.83

remineralization

𝛼denit Coefficient of Martin curve for denitrification U(−0.1,−0.01) −0.03

Nitrification

𝛼 Background N2O yield from nitrification U(0, 7E−5) 3.3E−05

(mol N2O /mol O2)

𝛽 Maximal N2O yield from nitrification U(5E−5, 2E−3) 9.1E−4

at lowest [O2] (mol N2O /mol O2)

f1 Factor to weight first exponential U(0.4, 0.7) 0.6

in N2O yield from nitrification

f2
c Rate of decrease in first exponential of N2O U(−150, −80) −83

yield from nitrification (m3/mol O2)

f3
c Rate of decrease in second exponential of N2O U(-40, −10) −25.5

yield from nitrification (m3/mol O2) U(-40, −10) −25.5

Denitrification

𝜏 Timescale of N2O consumption from denitrification (days) U(4, 20.9) 10.5

KN2O [N2O] where consumption rate is half its maximal value U(10, 60) 38.1

(Michaelis-Menten term) (μmol N2O m−3)

Offset Offset in error function for N2O consumption N(0, 0.5) 0.16

(mmol O2 m−3) (sampled around 0,

absolute value is taken for model)

aNormal distribution N (standard value, standard deviation), lognormal distribution L (standard value, s = shape parame-
ter, l = location parameter), uniform distribution U (min., max.). bSee section 3.3; parameter set reproduces median fluxes
and median concentration fields. cWe sampled f2 and f3 but give here also the ranges for their inverse values for conve-
nience. The range in f2 corresponds to a range in (1/f2) from 6.667 to 12.5 mmol m−3. The range in f3 corresponds to a
range in (1/f3) from 25 to 100 mmol m−3.

were slightly bigger decreasing net N2O production by between 0.1–0.8 Tg N yr−1. While the impact on emis-
sions is small, the resulting N2O concentrations show larger discrepancy with observations (higher errors and
lower correlation).

The remaining remineralization of phosphorous is scaled to result in N2O production (mmol N2O m−3 s−1):

J(N2Odenit. prod.) = zsource ⋅ max
(

Jdenit (PO4) −
|J(N2Odenit. cons.)|

zcons
, 0
)
. (5)

Observations do not indicate large [N2O] gradients near the seafloor of the open ocean. Guided by this
observation, the organic matter flux reaching the seafloor is not coupled to denitrification fluxes and N2O
production/consumption by denitrification is set to zero for this deposition flux. In other words, we implicitly
postulate that organic matter reaching the seafloor is largely converted within reactive sediments and that
any N2O produced within the reactive sediment layer by denitrification is also consumed in these low oxygen
environments. The overestimation of [N2O] in parts of the deep ocean (Figure 6) may be linked to these sim-
plified boundary assumptions regarding nitrification and denitrification. To this end, we tested the impact on
global N2O production of our assumption of zero net production by denitrification near the seafloor in a sen-
sitivity simulation using the “best consistent” parameter set shown in Table 1. Inclusion of N2O production
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and consumption by denitrification from the deposition flux in the lowermost cells leads to a increase in net
N2O production of 0.5 Tg N yr−1. Then, simulated concentrations are higher leading to higher errors with
available observations.

The Michaelis-Menten formalism and limiting the N2O consumption to 20.5% of the anaerobic remineraliza-
tion flux help to avoid that [N2O] falls below the saturation concentration. This would be in disagreement
with available observations. The parameterization allows for large production and consumption fluxes of
N2O and potentially large net positive N2O production from denitrification as argued for by Babbin et al.
(2015). In addition, our parameterization considers appropriate stoichiometric ratios and ensures mass con-
servation such that organic matter is consumed only once. Mass conservation is usually neglected in 1-D
studies (Babbin et al., 2015) but important for global applications. N2O production and consumption at low O2

concentrations in previous global studies was not explicitly tied to denitrification fluxes. The O2-dependent
nitrification yield was sometimes taken to represent N2O production from denitrification (Jin & Gruber, 2003;
Martinez-Rey et al., 2015). For N2O consumption, low rates were chosen (𝜏 = 4 months, Jin & Gruber, 2003,
k−1 = (1∕0.138) years = 7.2 years Martinez-Rey et al., 2015) or assumed to follow zero-order kinetics (Zamora
& Oschlies, 2014).

2.3. Ensemble Generation, Metrics for Skill Assessment, and Data Sets
Latin hypercube sampling (McKay et al., 1979) is applied to generate a 1,000-member ensemble including 11
parameters (Table 1). It is an efficient, statistical, Monte Carlo sampling technique which generates controlled
random samples from a multidimensional distribution. The sampled parameters concern ocean transport and
mixing (one parameter) and organic matter remineralization (two parameters) as these exert a crucial control
on N2O production. Importantly, the parameters governing the N2O yield from nitrification (five parame-
ters) and parameters affecting N2O consumption by denitrification (three parameters) are sampled. We apply
normal, uniform, or lognormal priors based on literature information and previous sensitivity tests (see below
and Table 1). Normal or lognormal distributions are chosen if a best guess parameter value has previously
been identified (𝛼aerob, kdiff-dia, offset). Lognormal distributions are chosen for asymmetric ranges to limit the
parameter values at the lower range. Uniform distributions are chosen for parameters which are poorly known.
For each ensemble member and each of the data sets (see below) a relative mean square error (MSErel) is cal-
culated as a sum over all grid cells (indexed j) where observations are available. The sum is weighted by aj ,
which represents the grid cell volume/area and normalized by 𝜎2:

MSErel =
∑

j

aj ⋅

(
Xmodel

j − Xobs
j

)2

𝜎2
. (6)

Model errors are thus judged small or large relative to the magnitude of 𝜎2 (Schmittner et al., 2009). Following
Steinacher et al. (2013) and Schmittner et al. (2009), we estimate 𝜎2 as the volume-weighted variance of the
model-data residuals for the ensemble member with the lowest MSE such that the best fitting ensemble mem-
ber has a MSErel close to unity. The different MSErel (here three) are averaged to a total MSErel

tot to yield a skill
score Sm as follows:

Sm = exp
(
−0.5 ⋅ MSErel

tot

)
. (7)

Sm is a likelihood-type function and corresponds to a Gaussian distribution of the data-model residuals
with zero mean and variance 𝜎2. Sm can be interpreted as an indication of the relative performance of
each individual model configuration, where configurations which have relatively small deviations from the
data are considered more probable than configurations which differ more from the observations. Sm are
used as weight to compute probability density functions (PDFs) and related measures such as the median
(50th percentile) and 68% confidence interval (±1𝜎, the 16th to 84th percentile range) of the ensemble results.
The methodology follows earlier papers of Steinacher et al. (2013), Steinacher and Joos (2016), and Battaglia
et al. (2016).

Three observational data sets (Table 2) are used to constrain marine N2O emissions. We use (1) water column
[N2O] data and (2) surface pN2O measurements from the MEMENTO database (Kock & Bange, 2015, accessed
23.11.2016). The measurements are assigned to the corresponding Bern3D grid cell. Different measurements
on the same grid cell are averaged using distance weighting. Another score based only on the (3) mean N2O
concentrations below 1.5 km in each basin (three values for each run) is calculated in addition. This is to ensure
that [N2O] in the deep ocean is not overestimated.
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Table 2
Observational Data Used to Constrain the Model Ensemble

Variable Reference Time frame of model

(1) Dissolved N2O (∼10% of all grid cells) MEMENTO, Kock and Bange (2015) 1990–2005

(2) Surface pN2O (∼50% of surface grid cells) MEMENTO, Kock and Bange (2015) 1977–1995

(3) N2O mean concentration below 1,500 m MEMENTO, Kock and Bange (2015) 1990–2005

in each basin (three average values

from 426 (Atlantic), 138 (Pacific), and 62 (Indian)

measurements on the Bern3D grid)

We average the modeled N2O over the time period 1990–2005 (a 15 year period until the start of the RCP
scenarios) and the modeled pN2O over 1977–1995 where most observations were made. The N2O skill scores
are insensitive to the time periods considered for averaging.

𝜎2 is estimated based on the variance of the model-data residuals for the ensemble member with the lowest
MSE as described above. The only exception is constraint (3). Here𝜎2 is taken as the variance of all observations
below 1.5 km. In a final evaluation step we penalize members which have a correlation coefficient of less than
0.35 (score 0 by choice). See sections 3 and 4 for a discussion.

Sensitivity tests with smaller ensembles were used to determine plausible prior ranges for the parameters
describing nitrification and denitrification. In addition, the parameters affecting mixing (kdiff−dia) and aerobic
organic matter remineralization (𝛼aerob) have been tuned during the development of Bern3D with respect to
O2, natural Δ14C, and CFC distributions (Battaglia et al., 2016; Gerber & Joos, 2013; Roth, 2013). Here these
two parameters are sampled within relatively narrow ranges such that all members achieve similar and good
skill scores with respect to O2 and natural Δ14C distributions. This represents a preselection step in the model
evaluation and acknowledges uncertainties in circulation and remineralization fluxes. The remineralization
coefficients (𝛼aerob and 𝛼denit) and the O2 thresholds (𝜇 and 𝜎) tend to have compensatory effects on modeled
O2 and remineralization fluxes (see also similar case in supporting information of DeVries et al., 2013). Only
the remineralization parameters are therefore sampled in the Monte Carlo framework in order to minimize the
degrees of freedom and facilitate interpretation. The scaling factor in the Martin curve is 1 order of magnitude
lower for remineralization by denitrification (𝛼denit) than for aerobic remineralization (𝛼aerob). This low range
of values for (𝛼denit) is consistent with the available observational evidence and reproduces remineralization
fluxes in line with estimates of total N loss as summarized by Yang and Gruber (2016).

2.4. Experimental Design
Each model run is first spun-up over 5,000 years to a preindustrial steady state, with atmospheric CO2 set to
278 ppm and N2O to 272.96 ppb. Over the industrial period (A.D. 1765–2005) we include CO2 and non-CO2

radiative forcings according to Eby et al. (2013) and we prescribe the atmospheric N2O history according to
Meinshausen et al. (2011). From A.D. 2005 to A.D. 3000 the RCP2.6 and RCP8.5 scenarios (Meinshausen et al.,
2011) are prescribed similar to the constant composition commitment simulations in Zickfeld et al. (2013).
Simulations are extended from year A.D. 3000 to year A.D. 10,000 for the 200 members with the highest skill
score. After year A.D. 3000, the concentrations and radiative forcings are kept constant (Figure 9a). The cumu-
lative weight of the 200 best simulations is 54% of the total weight. These 200 members yield a ±1𝜎 range of
2.6 to 5.0 Tg N yr−1 for modern N2O production. This is lower than for the full ensemble (3.0 to 6.1 Tg N yr−1)
(see Figure D1 for an illustration of the skill score).

The equilibrium climate sensitivities (ECSs) of the model configurations range between ∼3.5 and ∼4∘C for a
doubling of atmospheric CO2. The range reflects variations in the diapycnal mixing coefficient (kdiff-dia). These
ECSs are at the higher end of values summarized in the latest report of the Intergovernmental Panel on Climate
Change (IPCC) (likely between 1.5 and 4.5∘C; T. Stocker et al., 2013). The current model configuration does
not include sediment interactions, temperature-dependent remineralization, variable stoichiometry, nitrogen
cycle feedbacks, atmospheric nutrient deposition, dynamic wind, nor freshwater input/albedo changes from
melting of continental ice sheets.

We distinguish marine N2O production from each individual production term. N2O production from nitrifi-
cation results from two components: (i) the constant nitrification yield (“𝛼 term” in equation (1) and (ii) the
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Figure 2. Probability density functions (PDFs) of modeled N2O fluxes. (a) Net N2O production and air-sea exchange, (b) net oceanic N2O production from
nitrification and denitrification, and (c) gross production and consumption by denitrification. Dashed curves indicate the associated prior and continuous curves
the constrained posterior PDFs. Straight lines below the PDFs indicate associated ranges published in the literature. In Figure 2a estimates from Ciais et al. (2013),
Nevison et al. (1995), Suntharalingam and Sarmiento (2000), Zamora and Oschlies (2014), Nevison (2003), Bianchi et al. (2012), Saikawa et al. (2014), and
Thompson et al. (2014). In Figure 2c estimates of total N loss as summarized by Yang and Gruber (2016) converted to N loss by conversion to N2 from
denitrification given the here assumed stoichiometric ratios (see main text).

O2-dependent nitrification yield (“𝛽*f (O2) term” in equation (1), [N2O𝛽 ]). (iii) “Net denitrification” results from
(iv) N2O production minus (v) N2O consumption by denitrification (equations (4) and (5)). N2O from both nitri-
fication terms, from net denitrification and N2O’s solubility component, are explicitly carried as model tracers.
Tracers add up to within 10−11 μmol m−3. This way, the model-data differences can be attributed to processes.
The oceanic N2O inventories are separated in a biological production component (including all production
terms) and a solubility component. Changes in emissions due to changes in storage can therefore be disen-
tangled. Additional tracers (O2 solubility component, remineralized nutrients, ideal age) are included to aid
the interpretation of the future projections.

3. Results
3.1. Current N2O Production From Nitrification and Denitrification
The constrained model ensemble yields an average global median (and ±1𝜎 range) net N2O production of
4.5 (3.0 to 6.1) Tg N yr−1 for the time period 1990 to 2005 (Figure 2a). Noticeably, the observational constraints
shift the prior distribution of N2O production to lower values (Figure 2, dashed versus solid lines). The sampled
(prior) N2O production ranges from 1.0 to over 13 Tg N yr−1 (Figure 2a). The 1990 to 2005 average global mean
sea-to-air flux is slightly lower than N2O production, 4.3 (2.8 to 5.9) Tg N yr−1, as rising atmospheric N2O leads
to a solubility driven oceanic N2O uptake anomaly. The observation-constrained range of global emissions is
narrower than the range of 1.8 to 9.4 Tg N yr−1 summarized in the IPCC AR5 (see pink line in Figure 2a), IPCC
AR5 Ciais et al., 2013).

About 96.0% of net production stems from nitrification, 4.2 (2.8 to 5.8) Tg N yr−1, with the reminder from
denitrification, 0.2 (−0.34 to 0.79) Tg N yr−1 (Figure 2b). The small net contribution from denitrification
results from large gross N2O fluxes (Figure 2c). About 52.9 (33.2 to 74.3) Tg N yr−1 are consumed and 53.2
(33.4 to 74.7) Tg N yr−1 produced (median values of gross fluxes do not add up to the median net flux of
0.2 Tg N yr−1).
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Figure 3. Maps of variables of interest. Modeled median (a) net production of N2O, (b) average [O2] in the upper ocean (175–824 m depth), and (c) aerobic
remineralization of POM and DOM below 75 m for the time period 1990 to 2005. (d) The average upper ocean [O2] of WOA13 (Garcia et al., 2014; Bianchi
et al., 2012).

The N2O consumption flux of 52.9 Tg N yr−1 represents the conversion of N2O to N2 (equation (C2)). In addition,
NH3 produced during N2O production and consumption (equations (C1) and (C2)) is likely also oxidized to
N2 (NH+

3 +3/5 HNO−
3 −→ 4/5 N2 + 9/5 H2O; equation 17 in Paulmier et al., 2009). Total N loss by conversion

to N2 amounts then to 65.1 (40.9 to 91.6) Tg N yr−1, given the assumed stoichiometric ratios. This compares
very well with estimates of total N loss from denitrification which span 20–150 Tg N yr−1 as summarized by
Yang and Gruber (2016). Modeled global export of particulate organic carbon out of the euphotic zone is
9.88 (9.19 to 10.6) Gt C yr−1. This estimate from the constrained model ensemble is well within published
estimates (Sarmiento and Gruber, 2006, 6.5 to 13.1 Gt C yr−1) but higher than what CMIP5 models simulate
(4.9 to 8.1 Gt C yr−1, Bopp et al., 2013). Aerobic remineralization of dissolved and particulate organic carbon
below the euphotic zone is 19.7 (18.2 to 21.2) Gt C yr−1, and anaerobic remineralization below the euphotic
zone is 48.3 (30.3 to 67.7) 10−3 Gt C yr−1.

The geographic pattern of water column-integrated N2O production (Figure 3a) resembles to some extent
that of POM export and water column-integrated aerobic remineralization (Figure 3c). High N2O production
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Figure 4. Profiles at 10.5∘N and 98∘W. (a) Modeled N2O production and consumption from denitrification. (b) Net N2O
production and N2O production from the two nitrification terms. (c) Modeled N2O and O2 concentrations. Lines
correspond to modeled median and ranges to the 68% confidence interval given by the ensemble. (d) Observational
profiles of N2O and O2 at four neighboring locations. Production from 𝛼 refers to the constant nitrification yield,
and production from 𝛽*f (O2) refers to the O2-dependent nitrification yield.

is simulated in the high biological productivity regions of the Southern Ocean, the northern North Pacific, and
North Atlantic, and low N2O production is simulated in the oligotrophic gyre regions. In these regions, N2O
production scales approximately linearly with aerobic remineralization. Simulated [O2] are high (Figure 3b)
such that the N2O yield is approximately constant (close to constant nitrification yield, 𝛼, equation (1). N2O
production is highest in the low-oxygen regions of the eastern tropical Pacific, Atlantic, and Indian Oceans.
Here moderate-to-high remineralization combines with highest N2O yields (equation (1)) for nitrification.
In addition, N2O is affected by denitrification. The interplay of the different fluxes within low oxygen waters
is illustrated at a profile located in the Pacific Oxygen Minimum Zone (OMZ) at 10.5∘N and 98∘W. Here mod-
eled O2 concentrations decrease rapidly from the surface and allow for denitrifying conditions over the first
kilometer. The modeled N2O profile exhibits a typical structure (Figure 4c) with a N2O peak at shallow depths,
a broad minimum at intermediate depths in the thermocline and increasing [N2O] toward the deep ocean.
Gross fluxes from denitrification are∼50 times higher than those from nitrification (Figure 4a), and nitrification
and denitrification can co-occur within grid cells (Figure 4b). The modeled consumption rates are compa-
rable to the N2O consumption rates measured at offshore stations by Babbin et al. (2015, ∼2 nmol L−1 d−1

= 730 μmol m−3 yr−1). Observational profiles of N2O at neighboring locations show high variability (Figure 4d).
This small-scale variability makes it difficult to match individual N2O observations in the simulations.
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Figure 5. Modeled median (colors) and observed (black) relationship
between N2O and O2 concentrations. The colors indicate the latitudinal
position of each modeled N2O-O2 pair ranging from 70∘S to 72.5∘N.

3.2. Evaluation of Modeled N2O and O2 Concentrations
We start the model-data comparison with the relationship between N2O
and O2 concentrations (Figure 5) before turning to the actual N2O and O2

distributions, separately. Median fields are chosen for evaluation purposes.
We note that median fields are, by definition, not necessarily physically
self-consistent. However, individual runs with N2O production close to
the median fluxes and a run with the best guess parameters provided
in Table 1 produce fields for individual N2O production terms, N2O emis-
sions, and for N2O concentrations that show generally small differences
compared to the corresponding median fields.

The N2O and O2 relationship is important given the critical role of O2

concentrations in setting both the N2O yield from nitrification and in
separating aerobic remineralization from denitrification. Generally, the
observed relationship is matched by the model (colored versus black
dots in Figure 5). Three features stand out. First, the model repro-
duces the widespread of [N2O] observed at very low [O2] (N2O spanning
5–100 μmol m−3). Such conditions prevail in equatorial regions (see colors
in Figure 5 indicating the latitudinal position). Consumption and produc-

tion by denitrification is critical to achieve this spread. Second, modeled N2O at O2 concentrations spanning
20–150 mmol O2 m−3 is well within the observational range, while modeled variability of N2O is lower than
observed (black dots in Figure 5). Most of the observations at these intermediate O2 have been made in
equatorial regions, too. Third, at high [O2] (>200 mmol O2 m−3), where essentially background [N2O] prevail,
model-data agreement is good. Such conditions prevail in high-latitude waters.

We now examine modeled [N2O] in more detail. The MEMENTO database of marine N2O measurements (Kock
& Bange, 2015) currently covers∼10% of the ocean volume. This low coverage, combined with the small-scale
variability of N2O, hampers any model-data comparison. Globally, the modeled RMSE is 11.1 μmol N2O m−3

with a correlation coefficient r of 0.52 between simulated median and observed [N2O]. Other modeling stud-
ies achieve similarly low correlation coefficients (Martinez-Rey et al., 2015, their P. OMZ parameterization:
r = 0.42, their P. TEMP parameterization: r = 0.49) but usually have higher errors (see Figure 3 of Martinez-Rey
et al., 2015). In Figure 6, we compare measured and simulated N2O profiles for three latitudinal bands in
the Atlantic, Pacific, and Indian. In the northern North Atlantic, measured and simulated [N2O] are close or
somewhat above the saturation concentration relative to atmospheric N2O (10 μmol m−3) and model-data
agreement is high, except below 3.5 km, where the model tends to overestimate [N2O]. Reasonable to
good data-model agreement is also found in the Southern Ocean where N2O increases from saturation con-
centration at the surface to about 20 μmol m−3 in the upper 1,000 m below which it remains relatively
constant. In the North Pacific, the model median underestimates peak concentrations found at ∼1 km depth.
In equatorial regions, observed [N2O] are highly variable (𝜎 = 14.7 μmol m−3) and reach concentrations up to
126.4 μmol m−3 within the upper ocean. In the lower water column of equatorial regions, measured concen-
trations show smoother profiles back to more uniform values of 15–20 μmol m−3. The model fails to produce
the observed high (small-scale) variability in the upper ocean of equatorial regions, particularly so in the
Pacific. Modeled profiles generally are smoother than observed (compare also Figures 4c and 4d). In equato-
rial regions, high net positive N2O production from denitrification close to the surface can lead to single high
outliers in the model (up to 203 μmol m−3) which are not present in the Bern3D gridded MEMENTO database.
Nevertheless, high [N2O] have been reported, ∼250 μmol m−3 (Arévalo-Martínez et al., 2015), 986 μmol m−3

(Arévalo-Martínez et al., 2016), 533 μmol m−3 (Naqvi et al., 2000), and ∼850 μmol m−3 (Kock et al., 2016).
Consumption of N2O by denitrification is critical to reduce concentrations in these hot spot environments
to essentially solubility concentrations. The model thereby simulates steep concentration gradients in these
regions but on larger spatial scales than observed. Data-model misfits exist in bottom waters along the coast
of the eastern equatorial Pacific. Ocean-sediment interactions are not included in the model setup, and all
organic matter reaching the seafloor is nitrified in the model. Below low O2 waters, a larger fraction of exported
organic matter reaches the seafloor in comparison with a fully aerobic water column (see also Figure 1a). This
apparently leads to an overestimation of local N2O production. Near-seafloor production is relatively small
and amounts to ∼5% of net N2O production in the Pacific.
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Figure 6. Spatial spread of modeled median and observed [N2O] within different geographic regions (see title of subplots). The green line represents the median
concentration, and the green (gray) shadings represent the spatial spread (16th to 84th percentile of the median (observational) field). Blue: modeled solubility
component, green: modeled N2O, and black: observations.

In the following, we turn to the modeled distribution of O2. The Bern3D model does simulate low O2 envi-
ronments in eastern boundary upwelling systems of all basins (compare Figures 3b and 3d). In the Equatorial
Pacific, the EMIC fails to resolve Equatorial Undercurrents. The OMZ here is therefore one coherent region
rather than showing two distinct regions separated by a well-ventilated band. In the North Pacific, mod-
eled [O2] are too high; in the equatorial Atlantic, modeled [O2] are too low; and in the Indian Ocean, the
volume of low O2 waters is too large (Figures 3b and 3d). Despite these shortcomings, a frequency dia-
gram reveals similar frequency distributions for modeled and observed oxygen (Figure 7a). Both model and
observation-based distributions cover a range between 0 and 400 mmol O2 m−3 and show two peaks around
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Figure 7. Volume-weighted histograms of modeled median and observed [O2]. (a) Evaluation of median [O2] for the
modeled modern reference period (1990–2005) with WOA13 (Garcia et al., 2014; Bianchi et al., 2012) and (b) projections
of modeled median [O2] at model year A.D. 2099, (c) at model year A.D. 4000 and (d) at model year A.D. 10,000.
The modeled reference period is included in Figures 7b–7d for comparison.

150 and 200 mmol O2 m−3. Importantly, the median model results feature a realistic extent of low O2 envi-
ronments. The modeled volume of water with [O2] <80 mmol m−3 and with [O2] <50 mmol m−3 matches
observation-based estimates within some percent (see Table D1). As most models, the Bern3D model overes-
timates the volume of water with O2 < 5 mmol O2 m−3 by about a factor of 5. This is less than found for the
Earth System models considered in Cocco et al. (2013), except for the IPSL model which underestimates the
volume occupied by suboxic waters (Table D1).

3.3. The Role of Individual Observational Constraints
In this section we address how the observational constraints (Table 2) used in the skill assessment constrain
the parameter ranges and resulting N2O fluxes. Recall that skill scores are set to zero if the correlation between
observed and modeled [N2O] is less than 0.35. This serves as an additional constraint. As mentioned in
section 2.3, the parameters were sampled within plausible ranges as informed by literature values and pre-
ceding simulations with a smaller ensemble size. The constrained ensemble shows substantially narrower
distributions for N2O production and air-sea fluxes than present in the unconstrained ensemble. This finding
lends support to our approach.

The observational constraints reject both very low and very high net N2O production and sea-to-air fluxes.
The confidence intervals obtained when only including one constraint in the skill computation are similar
(Figure 8). The surface partial pressure data constraint yields lower production than inferred from the water
column concentration constraints. The combination of all constraints yields the narrowest confidence interval
(3.1 versus 3.7 Tg N yr−1). In a further sensitivity test, we added observation-based O2 and natural Δ14C as two
additional constraints. This yields slightly higher median values and ranges than the standard computation
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Figure 8. Impact of different observational constraints on N2O production from nitrification (x axis) and net N2O
production from denitrification (y axis). Colors represent scores for the individual observational targets described in
Table 2, namely, (a) dissolved N2O, (b) surface pN2O, (c) mean N2O concentration below 1,500 m, and (d) the correlation
coefficient and (e) the total score. Values given in parenthesis represent the net N2O production if only the respective
score is considered. Gray shading marks the 90% and 68% confidence interval for the respective fluxes using the total
score. The black dot represents the selected best consistent model with parameters given in Table 1.

(4.7 (3.2 to 6.6) Tg N yr−1). In brief, our results are moderately sensitive to choices such as whether an individual
constraint is included or not and how exactly the individual constraints are aggregated in the skill assessment.

Low net N2O production from nitrification (<2 Tg N yr−1) yields on average low absolute errors, but correla-
tion between modeled and measured N2O fields is also very low (Figure 8d). Members with low productivity
are therefore rejected as we require correlation coefficients to be larger than 0.35 (section 2.3). Very high
production by nitrification, on the other hand, leads to too high background concentrations in the deep
ocean via transport and mixing and to low skill (Figure 8c). The additional skill score computed from deep
basin-averaged N2O concentrations (data set (3) in Table 2) therefore constrains nitrification at the high end.
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The surface pN2O data alone hardly constrain N2O production from nitrification (Figure 8b). The N2O pro-
duction related to the constant yield factor for nitrification (𝛼 term in equation (1)) is hardest to constrain.
These fluxes yield a smooth background [N2O] field in the entire ocean which does not lead to pronounced
errors. Ensemble members with net N2O production by denitrification higher than ∼2 Tg N yr−1 yield results
in conflict with water column N2O data, and those with net N2O production by denitrification higher than
∼1 Tg N yr−1 yield results in conflict with surface pN2O (Figures 8a and 8b). These ensemble members have
low skill scores.

A single run is highlighted in Figure 8 (black dot). This run reproduces the median fluxes presented and can
be regarded as a best consistent model. Evaluation of its N2O and O2 fields is comparable to the median
fields presented in section 3.2, and its parameter values are included in Table 1. This best consistent model
configuration may be chosen for paleomodeling studies.

3.4. Future Projections
The short- and long-term responses of marine N2O production and marine N2O emissions to increased lev-
els of GHGs are different. N2O production and emissions are projected to first decrease over the 21st century
(7.7% less net production compared to the modern reference period). Thereafter, N2O production and emis-
sions are projected to increase to reach higher levels under new steady state conditions (21% higher net
production compared to the modern reference period). The changes result from changes in meridional over-
turning, deoxygenation, warming, and resulting changes in remineralization fluxes. We look at each of these
contributing factors in turn to explain the N2O signal in more detail (Figure 9 and Table D2). In Table D2, the
modern reference median values and±1𝜎 ranges of the variables of interest are given along with the changes
by the end of the 21st century and the changes for new steady state conditions by A.D. 10,000 for both the
RCP2.6 and RCP8.5 GHG scenario. Changes are expressed relative to the modern reference period. We focus
the following discussion on the RCP8.5 scenario.
3.4.1. Transient Circulation Changes, Export Production, and Deoxygenation
In response to the constant composition commitment scenario RCP8.5, atmospheric temperatures rise and
stabilize after ∼1,000 years. For the ocean, it takes∼4,000 years to reach a new thermal equilibrium (Figure 9c,
7.2∘C warmer compared to today). As temperatures rise and surface density decreases, meridional overturn-
ing in the ocean slows down (Figure 9e) in line with other global warming modeling studies (T. Stocker
et al., 2013). Here meridional overturning in the Atlantic (AMOC) decreases by 42% at A.D. 2100 compared to
the modern reference period and recovers to preindustrial levels thereafter. In the new steady state condi-
tions, the upper cell of the AMOC becomes shallower in the Bern3D. An AMOC slowdown and partial or full
recovery emerges in other multimillennial simulations (Li et al., 2013; Schmittner et al., 2008; Weaver et al.,
2012; Zickfeld et al., 2013). No recovery of the AMOC was found in Yamamoto et al. (2015 4×CO2 simula-
tion). In our simulations, the peak weakening of meridional overturning in the Indo-Pacific follows after the
one in the North Atlantic (−52% compared to the modern reference period), and its recovery is slower. After
∼3,000 years of simulation, the Indo-Pacific MOC overshoots preindustrial conditions in the Bern3D and sta-
bilizes thereafter at a higher level (+27% compared to the modern reference period). The mechanisms involve
increased precipitation, reduced sea ice formation, and weaker vertical mixing which lead to a strong initial
freshening and stratification in surface deep water formation regions in the Southern Ocean. After∼A.D. 2100,
sea ice formation is absent. At higher overall temperatures and in the absence of sea ice formation stronger
deepwater formation results for the new steady state. Ocean ventilation is also affected by convection (not
analyzed within the scope of this work). A reduction and a slow increase toward recovery of the Indo-Pacific
MOC have also been reported by Schmittner et al. (2008, SRES A2 scenario) over a 2000 year simulation
involving similar mechanisms. In Yamamoto et al. (2015 4×CO2 simulation), Antarctic Bottom Water formation
initially decreases and overshoots preindustrial levels after 1,000 years. In their model simulation, enhanced
deep ocean convection contributed to enhanced ventilation. Generally, pre-industrial circulation states, mag-
nitudes, and timing of changes highly depend on model configurations and applied forcings such that the
long-term evolution of meridional overturning remains uncertain. Most global warming simulations, includ-
ing ours, do not include melting of continental ice sheets, which would tend to further (transiently) reduce
circulation (Bakker et al., 2016).

The transient slow down of ocean ventilation impacts tracer distributions and export production. Deep ocean
water masses age, remineralized nutrients accumulate, [O2] decreases, and it takes millennia to re-equilibrate
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Figure 9. Time series of physical and biogeochemical variables as simulated over the industrial period and projected for RCP2.6 (blue) and RCP8.5 (red).
A reduced ensemble, including only the 200 members with the highest skill (Sm), is used after A.D. 3000. See Table D2 for modern reference values and changes
at A.D. 2099 and A.D. 10,000. (e) Indo-Pacific MOC is the minimum of the Indo-Pacific and AMOC is the maximum of the Atlantic meridional overturning stream
function below 400 m depth. (h) The changes in individual N2O production terms are shown only for RCP8.5. Production from 𝛼 refers to the constant
nitrification yield, and production from 𝛽*f (O2) refers to the O2-dependent nitrification yield. (j) The climate feedback factor for changing marine N2O emissions
is expressed relative to preindustrial (see section 3.5; values are shown from 2000 A.D. onward).
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Figure 10. Maps of median changes (Δ) of variables of interest for the extended RCP8.5 scenario. (a, b) Aerobic remineralization of particulate and dissolved
organic matter below the euphotic zone, (c, d) upper ocean (175–824 m) [O2], and (e, f ) net N2O production integrated over the entire water column. Results are
for year 2099 minus 1990–2005 averaged time period (first column) and for year 10,000 minus 1990–2005 averaged time period (second column). Contour lines
in Figures 10c and 10d mark the extent of waters with less than 5 mmol O2 m−3 for modern (black) conditions and at 2099 and 10,000 A.D. (red). Color bars apply
to both time slices.

their distributions. As the Indo-Pacific MOC is enhanced under the new steady state, the deep ocean is bet-
ter ventilated, except in the North Atlantic, where a shallower AMOC increases water mass age and nutrient
concentrations in the deep.

Global export production and remineralization fluxes decrease till A.D. ∼2200, slowly recover thereafter and
overshoot preindustrial levels at A.D. ∼5000 (Figure 9b and Table D2). The long-term increase in export pro-
duction is driven by higher biological export productivity in the Arctic and Southern Oceans due to reduced
temperature and light limitation of productivity in response to warming and sea ice retreat. This results in cor-
respondingly higher remineralization fluxes in high latitudes (Figures 10a and 10b). In contrast, no change or a
decrease in export and remineralization is projected in other regions (Figures 10a and 10b). Negative anoma-
lies in remineralization are most pronounced in the northern North Atlantic and also occur in the Atlantic,
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Indian, and northern North Pacific. This is mainly a result of increased stratification and a concomitant increase
in nutrient limitation of productivity, similarly as discussed by Steinacher et al. (2009). On global average, the
decrease in the remineralization flux is largest when the MOC is lowest.

O2 is affected by changing ocean physics, warming, and biogeochemistry. The global mean [O2] decreases
by a factor of 2 in the next 2,000 years and remains below preindustrial over the entire high GHG simulation
(RCP8.5) (Figures 7, 9g, 10c, and 10d). These changes only emerge on multicentury to millennial timescales.
By the end of the 21st century, the distribution of low O2 water volumes has hardly changed (Figure 7b and
Table D1). Deoxygenation peaks at year A.D. 4000 when deep water had sufficient time to age, to accumulate
remineralized nutrients, and to integrate losses by oxygen consumption. In addition, warming causes O2 loss
due to changes in solubility (see also Battaglia & Joos, 2017 for process attribution).

The projected changes affect the distribution of low O2 waters, and the volume of water holding low O2 con-
centrations expands in the deep ocean. The volume of water with [O2] <50 mmol O2 m−3 increases by about
a factor of 8, and the volume of water with [O2] <5 mmol O2 m−3 increases by more than a factor of 2 until
A.D. 4000 (Table D1 and Figure 7). Under new steady state conditions, the respective volumes are still ∼50%
larger than today. Transiently, higher [O2] is established in upper ocean equatorial waters where remineraliza-
tion is lowered and ventilation increased compared to preindustrial. Under new steady state conditions, O2

concentrations partly recover in much of the deep ocean as deep overturning is again enhanced. A lower O2

solubility component (−43.0 mmol O2 m−3) due to warming prevents global average [O2] from recovering to
preindustrial values, and negative [O2] anomalies establish in the upper ocean. Also, negative [O2] anomalies
remain in the deep North Atlantic as a result of the shallower AMOC. The simulated O2 changes are com-
parable to those by Schmittner et al. (2008 SRES A2 scenario over 2,000 years) who found global mean [O2]
concentrations to transiently decline by 30% and slowly recover thereafter and the suboxic volume to triple.
Similar mechanisms, albeit different magnitudes, were reported by Yamamoto et al. (2015) for a 4 × CO2 sim-
ulation over 2,000 years. Global mean [O2] concentrations initially decrease but overshoot preindustrial levels
after 1,500 years as overturning is enhanced. In their simulation, the volume of hypoxic waters increased ini-
tially and decreased thereafter. This results from sustained reductions in export production and shallower
remineralization depth in response to increased temperatures in their study.

3.4.2. Drivers of N2O Production Changes
The evolution of remineralization and [O2] determines the evolution of marine N2O production. Globally aver-
aged N2O production is projected to decrease over the 21st century (Figures 9f and 9h) in line with reductions
in aerobic remineralization. The trend is reversed in the 22nd century, and projected N2O production increases
to reach a new steady state around A.D. 7000. Global N2O production increases faster than global reminer-
alization fluxes, highlighting the influence of changes in O2 on the N2O yield from aerobic remineralization.
By the end of the 21st century, global N2O production decreases by 0.33 (0.21 to 0.46) Tg N yr−1 (median per-
centage change: 7.7%). N2O production stabilizes at rates of 0.73 (0.56 to 0.98) Tg N yr−1 (21%) higher than
today. The air-sea flux of N2O adjusts to changes in N2O production with a time lag related to the exchange
timescales between deep and surface ocean waters. The transient slow down of the overturning circulation
manifests itself in a transient increase in the oceanic N2O inventory (Figure 9i). Additional N2O from biological
production accumulates within the ocean when circulation slows, despite a decrease in net N2O production.
The prescribed increase in atmospheric pN2O under the RCP scenarios leads to an increase in the ocean’s N2O
solubility component and a corresponding perturbation in the air-sea N2O flux.

At the global scale, nitrification (0.67 (0.47 to 0.93) Tg N yr−1, 92%) dominates the long-term increase in
N2O production (Figure 9h). The O2 dependency of nitrification-production, “𝛽*f (O2) term,” 0.49 (0.24 to
0.82) Tg N yr−1, 68%, contributes the most. Over the 21st century, on the other hand, the dependency on
organic matter remineralization prevails.

Turning to spatial patterns of change, changes in N2O production are small in large parts of the Pacific, Indian,
and Atlantic but significant in eastern equatorial regions, along the coast of Africa and in high latitudes
(Figures 10e and 10f). [O2] in the upper ocean is projected to slightly increase in equatorial regions over the
industrial period and the 21st century (Figure 10c), while changes in export and remineralization are small
around the equator (Figure 10a). As a result, pronounced negative anomalies in N2O production are projected
in eastern equatorial regions by 2099 A.D. (Figure 10e). There, [O2] concentrations in the thermocline are low
(Figure 3b), and, in turn, the sensitivity of N2O production to changes in O2 is high (Figure 1c). By the time a
new steady state has established, positive O2 anomalies are much less abundant and negative O2 anomalies
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prevail (Figure 10d). These negative O2 anomalies explain the pronounced positive production anomalies in
the eastern equatorial Pacific and Indian and along the coast of southern Africa, as well as in the North Pacific
by the end of the simulation. The long-term increase in N2O production in the Southern Ocean and the Arctic
is linked to the increase in productivity, related to sea ice retreat, and the decrease in O2 in the high-latitude
thermocline and deep ocean.

Global N2O production from denitrification is projected to moderately change over the course of the simu-
lation. Small increases or decreases are possible. Under new steady state conditions, the median is projected
to increase slightly. This evolution results from a complex interplay of anaerobic remineralization of organic
matter, and O2 and N2O concentrations, and is more difficult to disentangle (Figures 9d, 9g, and 9i). Spatially,
denitrification fluxes show anomalies in the OMZs of the eastern tropical Pacific, Atlantic, and Indian Oceans.
Transiently, new denitrifying regions establish in the deep North Pacific and parts of the deep Southern Ocean.

In summary, an increase in export production and aerobic remineralization of organic material leads to
positive N2O production anomalies in the Arctic and Southern Oceans and a decrease in export and rem-
ineralization to negative production anomalies in the northern Atlantic. In other regions, particularly those
with intermediate to low [O2], N2O production changes are mainly driven by changes in N2O yield due to
changes in [O2].

3.5. N2O Climate Feedback
The simulated changes in marine N2O emissions to the atmosphere will provide a feedback on radiative
forcing and climate. We diagnose the resulting changes in radiative forcing from a simple one box model
(assuming a constant perturbation lifetime of 109 years (Prather et al., 2015) and using the radiative forcing
given by Etminan et al., 2016). The related transient feedback factor is expressed as radiative forcing per tem-
perature change (Figure 9j). Simulated changes in N2O emissions initially cause a negative feedback by the
end of the 21st century (−0.005 W m−2 K−1 for RCP8.5). By the time a new steady state establishes, higher N2O
emissions cause a positive feedback to climate change (0.004 W m−2 K−1 for RCP8.5).

4. Discussion

We find that marine N2O production and its changes are dominated by nitrification. The dominant role of
nitrification to N2O production has also been inferred from in situ concentration measurements in combina-
tion with observational water mass age tracers (Freing et al., 2012,∼93% from nitrification). Comparison to
other global modeling studies is difficult. Denitrification has not been included explicitly, and the remaining
parameter values are usually chosen to yield net N2O production of ∼3.8 Tg N yr−1. Gross, global denitrifica-
tion fluxes in our study for the modern ocean are ∼13 times larger than N2O from nitrification; the net effect,
however, may range from net negative (−0.34 Tg N yr−1) to slightly positive (0.79 Tg N yr−1), supporting the
view that net N2O production is dominated by nitrification. In response to anthropogenic warming, net N2O
production by denitrification in the probabilistic assessment makes up 7.8% of the net change.

Marine production and emissions of N2O critically depend on remineralization fluxes and O2 concentrations
with highest sensitivities at O2 concentrations below∼80 mmol O2 m−3 such as found in the Equatorial Pacific.
The Bern3D model projects regionally slightly elevated O2 concentrations in this environment by the end
of the 21st century, while the global volume occupied by low O2 waters remains almost unchanged on this
timescale. These results are in line with many Earth System models considered in Cocco et al. (2013, their
Figures 2 and 6). Schmidtko et al. (2017), on the other hand, inferred from O2 measurements that the oxy-
gen minimum zones in the Equatorial Pacific expanded over the last five decades. Bern3D simulates such an
expansion in the upper ocean of the Equatorial Pacific only on longer timescales.

The projected decrease in global N2O production by the end of the 21st century under RCP8.5 (0.33 (0.21
to 0.46) Tg N yr−1) is comparable to what Martinez-Rey et al. (2015) have found (0.41 Tg N yr−1, their P.OMZ
parameterization) for the IPSL Earth system model. While the global decrease by the end of the 21st cen-
tury and underlying mechanisms are compatible between the two studies, models can differ in their regional
response. In the Equatorial Pacific, for instance, Martinez-Rey et al. (2015) project higher remineralization rates
and lower O2 concentrations and therefore increased N2O production by 2099 which is in contrast to our
results. In Bern3D, this region shows positive N2O production anomalies only on longer timescales.

Our long-term simulations project that marine N2O emissions will eventually cause a small, positive feed-
back to climate change on millennial timescales. As such, they would tend to add to the positive feedback
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associated with the terrestrial biosphere (B. Stocker et al., 2013). We find a much smaller sensitivity of N2O
emissions to climate change than proposed by Schmittner et al. (2008), who projected a doubling of N2O
production in response to an extended high greenhouse gas scenario (SRES A2).

Ice core records have revealed a positive climate feedback in Earth’s history, with higher natural N2O produc-
tion and emissions in warmer climates both from the land and from the ocean (Schilt et al., 2014, 2010). In
our simulations, this positive feedback in response to anthropogenic warming becomes evident in long-term
projections as a result of deoxygenation and higher remineralization fluxes. On the short term, transient
decreases in circulation determine decreases in remineralization fluxes which decrease N2O production. Such
decreases are also in line with paleomodeling studies, where transient decreases in the AMOC lead to tran-
sient decreases in N2O emissions. The Younger-Dryas cold period (12.7–11.55 kyr B.P., Goldstein et al., 2003)
or Dansgaard-Oeschger climate oscillations (modeled for the period 50–45 kyr B.P. in Schmittner & Galbraith,
2008) are examples of such changes in the past.

5. Caveats in Modeling Marine N2O

Observations of N2O concentrations reveal high variability which are not resolved in EMICS such as Bern3D nor
in state-of-the-art Earth System Models. It is likely that N2O production varies on small spatial and temporal
scales together with the variable availability of organic matter and O2. Here we account for this subgrid-scale
variability by introducing functions for the relative share of aerobic versus anaerobic remineralization and of
N2O production versus consumption by denitrification. This permits the three processes—N2O production
by nitrification and denitrification and consumption by denitrification—to co-occur within a single grid cell
with low [O2]. In this framework, a tight coupling between N2O produced and consumed by denitrification
emerges. Higher-resolution modeling studies are needed to confirm this finding. We also recall that vast areas
of the ocean have not been sampled yet.

Potentially important feedback mechanisms have been neglected in this study. Imbalances within the N cycle
(denitrification versus N2 fixation) can feedback on export production and therefore impact long-term projec-
tions of N2O and marine biogeochemistry. Remineralization rates are assumed to be constant in time, as there
is a lack of information on this issue (see, e.g., Roth et al., 2014). Further, we prescribe constant stoichiometric
ratios and do not account for anthropogenic nitrogen deposition.

Ocean sediments are not explicitly represented in this study. Thus, organic matter remineralization and N2O
production and consumption by nitrification and denitrification within the sediments as well as diffusive
exchange of N2O between sediment pore water and ocean waters are not modeled. We assumed that all
organic matter falling to the seafloor is nitrified under aerobic conditions, likely biasing N2O production by
nitrification high at the seafloor. This has a small impact on simulated N2O emissions in our coarse-resolution
model as the associated N2O production is small. Regarding denitrification, we assume zero net produc-
tion/consumption for the sedimentary deposition flux. This assumption appears justified for the open ocean
and for simplicity as N2O concentration data show small near-bottom gradients but may be more problematic
along continental margins. In such boundary regions, N2O concentrations and thus mechanisms modulating
N2O production and consumption show strong spatial heterogeneity (Bourbonnais et al., 2017). Benthic den-
itrification may significantly affect near-bottom N2O concentrations as benthic denitrification fluxes are large.
Our ensemble yields an N loss by benthic denitrification of 131.0 (121.0–144.0) Tg N yr−1, well within the range
of published estimates (Yang & Gruber, 2016 70–300 Tg N yr−1) and larger than N loss by denitrification in the
open ocean. Future modeling work may address benthic denitrification and associated N2O production and
consumption explicitly.

In addition, we did not account for pH dependencies. Surface ocean pH is projected to drop by the end of
the 21st century (mean of CMIP5 models is 0.31 for RCP8.5) as anthropogenically emitted CO2 dissolves in the
ocean. This would further decrease the direct availability of NH3 over NH+

4 (pKa = 9.25 at 25∘C), which serves
as the actual substrate of nitrification. Nitrification rates have been shown to decline in short-term manip-
ulative experiments with lower pH (Beman et al., 2011). How the N2O yield responds is uncertain given the
complex production pathways. Rees et al. (2016) found less N2O production with decreasing pH in temperate
and polar marine environments, and Frame et al. (2017) found higher N2O yields with unaltered nitrifica-
tion rates in a freshwater lake. How potentially slower rates affect equilibrium distributions and competition
among different processes remains to be determined.
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Controversy also exists around potential nitrification in the surface ocean and associated production of N2O.
N2O production in the euphotic zone was excluded in our model formulation. Because AOBs are thought to
be light inhibited (Ward, 2008), nitrification (and N2O production) in the surface layer has long been ruled
out. A compilation of open ocean measurements of the specific rate of surface nitrification in combina-
tion with global modeling by Yool et al. (2007) revealed that nitrification may account for half of the nitrate
taken up by growing phytoplankton. In recent years, AOA have in fact been observed in the euphotic zone
(Beman et al., 2012; Church et al., 2010) and within enrichment cultures and incubation experiments AOAs
have been shown to produce N2O (Loescher et al., 2012; Santoro et al., 2011). Most studies quantifying global
surface N2O production, nevertheless, rely on N2O concentrations measurements within the water column
and air-sea and cross-thermocline flux parameterizations (Charpentier et al., 2010; Dore & Karl, 1996; Law &
Ling, 2001; Morell et al., 2001). Large uncertainties exist in the extrapolation of instant, local gas exchange
fluxes over annual timescales and globally (Freing et al., 2012). N2O production in the euphotic zone would
be hard to constrain within data assimilation efforts such as ours, as the imprint on N2O in the water column
is small due to fast outgassing (see also Zamora & Oschlies, 2014). As the total flux of N2O to the atmosphere
10.5 ± 1 Tg N yr−1 is constrained by its atmospheric lifetime (123 years for preindustrial conditions, Prather
et al., 2015) the room for surface production is not that large as we already require 4.6 (3.1 to 6.1) Tg N yr−1

from the ocean for preindustrial conditions. This would leave 5.9 Tg N yr−1 preindustrial emissions from
land in line with IPCC AR5 estimates of 6.6 (3.3 to 9.0) Tg N yr−1. Nevertheless, extremes of the confidence
intervals (3.1 from the ocean and 3.3 Tg N yr−1 from the land) would allow for up to 5.1 Tg N yr−1 from
surface production.

6. Conclusion

We present a novel parameterization of marine nitrous oxide (N2O) production and consumption for applica-
tion in ocean biogeochemical and Earth System Models. A probabilistic, Bayesian framework is applied, relying
on a 1,000-member model ensemble and a comprehensive set of diverse observational data. The frame-
work is used to constrain model parameters, modern global and regional marine N2O fluxes, and probabilistic
projections over this century and the next 8,000 years.

Observations of dissolved N2O within the water column and of surface partial pressure of N2O are used as
constraints. In addition, observation-derived, globally gridded data sets of natural radiocarbon and dissolved
oxygen (O2) are used to constrain modern ocean circulation and physical transport timescales, remineraliza-
tion fluxes of organic matter, and oxygen concentrations. These environmental parameters exert a crucial
control on marine N2O production and emissions.

Earlier N2O modeling in global ocean models interpreted the O2 dependency of nitrification to represent N2O
production from denitrification. Here denitrification fluxes are represented explicitly and related stoichiomet-
rically to remineralization fluxes of organic matter. This new approach permits evaluation with estimates of
total nitrogen loss by denitrification from the marine environment and considers the mass balance of organic
matter conversion. Modeled N2O production by denitrification and environmental sensitivities depends on
the availability of organic matter, dissolved N2O, and dissolved O2. The median value and uncertainty range
of the constrained global denitrification flux are consistent with independent estimates of total nitrogen loss.
Globally, net denitrification fluxes make up 4.5% of modern N2O production and are responsible for about
7.8% of projected production changes.

The confidence range in marine N2O emissions from our probabilistic framework, 2.8–5.9 Tg N yr−1, is
narrower than summarized in the latest report of the Intergovernmental Panel on Climate Change (IPCC),
1.8–9.4 Tg N yr−1, while our constrained median of 4.3 Tg N yr−1 is higher than the IPCC best guess estimate
of 3.8 Tg N yr−1 (Ciais et al., 2013). In response to human-made global warming and increased concentrations
of greenhouse gases, we project marine N2O production to first decrease by 7.7% over the 21st century in a
business-as-usual scenario. This results from projected decreases in circulation and associated reductions in
the export and remineralization of organic matter. For sustained anthropogenic forcing, the global marine
oxygen inventory is reduced by a factor of 2 within the next two millennia with potential for far-reaching
environmental consequences. Marine production of N2O is projected to eventually become 21% higher than
for today in response to widespread deoxygenation and higher remineralization fluxes. As such, marine N2O
emissions constitute a small, positive feedback to climate change on millennial timescales. Our simulations
reveal intricate interactions between the marine carbon cycle, N2O, oxygen, and climate.
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Appendix A: Remineralization of Particulate Organic Matter

This appendix details the calculation of the remineralization of particulate organic matter (POP) in the Bern3D
model. Biological productivity within the euphotic zone is a function of temperature, light availability, phos-
phate, and iron following Doney et al. (2006). One third of production is exported as POP and is remineralized
instantaneously in the water column beneath. We apply the empirical power law profile of Martin et al. (1987)
for both aerobic and anaerobic remineralization but with different scaling factors for aerobic (𝛼l = 𝛼aerob) and
anaerobic (𝛼l = 𝛼denit) remineralization. The general form of the power law profile is

Fx,y(zk) = Fx,y(zk−1) ⋅
(

zk

zk−1

)𝛼l

, for z> z0. (A1)

Fx,y(zk) (mmol P m−2 s−1) is the downward particle flux per unit area evaluated at the bottom of the grid cell
(zk) with longitude, latitude, and depth indices x, y, and k, respectively. z0 is the depth of the euphotic zone
and Fx,y(z0) is the export flux out of the euphotic zone taken as initial flux. The index k is taken to increase
with depth.

We assume that the O2 concentration within a grid cell varies around a modeled mean concentration such
that aerobic and anaerobic remineralization may co-occur within the same grid cell. The fractions of DOP and
POP that follow the aerobic path are (p1), and the fraction that follows the anaerobic remineralization path is
(1-p1), where p1 is a function of [O2]. This yields for the flux of POP at depth k

Fx,y(zk) = Fx,y(zk−1) ⋅
(

p1([O2])
(

zk

zk−1

)𝛼aerob

+ (1 − p1([O2]))
(

zk

zk−1

)𝛼denit
)
, for z> z0. (A2)

The change in the POP flux with depth for aerobic remineralization within grid cell x, y, and k is then given by
(omitting x and y for clarity)

ΔFaerob (zk) = p1([O2(k)]) ⋅ F(zk−1) ⋅
(

1 −
(

zk

zk−1

)𝛼aerob
)
. (A3)

For anaerobic remineralization it is given by

ΔFdenit (zk) = (1 − p1([O2(k)])) ⋅ F(zk−1) ⋅
(

1 −
(

zk

zk−1

)𝛼denit
)
. (A4)

(p1) is given by an error function (Figure 1b). This function depends on the mean modeled O2 concentration,
O2(x,y,k)

p1([O2]) = 0.5 ⋅

(
1 + erf

[O2(x, y, k)] − 𝜇

𝜎 ∗
√

2

)
. (A5)

The error function (erf ) varies between −1 and +1. 𝜇 (6 mmol O2 m−3) corresponds to the O2 concentration
where erf is zero and p1 equals 0.5 (see Figure 1b). 𝜎 (0.7 mmol O2 m−3) is the standard deviation of the dis-
tribution. At low [O2], p1 is zero and only denitrification occurs. p1 increases from zero to one as the mean O2

concentration in a grid cell increases from about 4.4 to 7.4 mmol O2 m−3. Within this O2 concentration range
(∼𝜇 ± 2𝜎) both denitrification and aerobic remineralization (including nitrification) co-occur. p1 is one for
higher O2 concentrations such that only the aerobic path is followed.

The parameter values of the function p1 are selected based on sensitivity experiments. While values of 𝛼aerob

and 𝛼denit are varied within the Monte Carlo approach, the parameters of p1 are not varied. This is to limit the
number of free parameters and as variations in 𝜇 and 𝜎 and variations in 𝛼l that have compensating influence
on remineralization.

The remineralization of DOP is assigned to aerobic and anaerobic conditions with the same function (p1).
The organic flux reaching the seafloor is remineralized in the deepest box. The O2 demand for complete
aerobic remineralization (rO2∶P) is 170 mol O2

mol PO4
and includes nitrification. There is no O2 consumption during

denitrification. The O2 consumption term (or aerobic remineralization, mmol O2 m−3 s−1) then is

J(O2) = 170 ⋅
(
ΔFaerob(zk)

zk−1 − zk
+

[DOP] ⋅ p1

1.5 years

)
. (A6)
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Fixed stoichiometric ratios are used to convert biological P fluxes into carbon (C) and alkalinity (Alk) fluxes
for both aerobic and anaerobic remineralization (P:Alk:C = 1:17:117). Alkalinity fluxes are not adjusted under
anaerobic conditions for reasons of mass conservation as the model does not include N2 fixation.

Appendix B: N2O Production Versus Consumption

The function separating N2O production and consumption at low O2 is defined as

p2([O2]) = 0.5 ⋅

(
1 + erf

[O2] − (𝜇 − offset)

𝜎 ∗
√

2

)
. (B1)

p2 is equal to the function separating aerobic and anaerobic conditions, except that it is shifted toward lower
O2 values by an offset (Figure 1b).

Appendix C: Stoichiometry for Denitrification With N2O as Obligate Intermediate
Product
To develop formulations of N2O production by denitrification, we establish the stoichiometric relationships
between N2O produced (zsource) or consumed (zcons) per molecule P released by anaerobic remineralization.
The stoichiometric relationship with N2O as the direct and only obligate intermediate product is—after
Paulmier et al. (2009)

CaHbOcNdP + 2 ⋅ zsource ⋅ HNO3 →

aCO2 + dNH3 + H3PO4

+
(1

2
a + 5

8
b − 1

4
c − 15

8
d − 7

8

)
H2O

+ zsource ⋅ N2O

(C1)

for N2O production and

CaHbOcNdP + zcons ⋅ N2O →

aCO2 + dNH3 + H3PO4

+
(1

2
b − 3

2
d − 3

2

)
H2O

+ zcons ⋅ N2

(C2)

for N2O consumption. It follows that

zsource =
(1

2
a + 1

8
b − 1

4
c − 3

8
d + 5

8

)
,

zcons =
(

2a + 1
2

b − c − 3
2

d + 5
2

)
.

(C3)

How much N2O is produced (zsource) and how much consumed (zcons) per P remineralized therefore depends
on the composition of the organic matter (a, b, c, and d). As most global biogeochemical models, the standard
version of the Bern3D model prescribes only the C:P (a = 117) and N:P (d = 16) ratios without specifying the
assumed H and O content of the organic matter. However, the terms ( 1

8
b− 1

4
c) and ( 1

2
b−c) in equation (C3) can

be consistently inferred from the oxygen demand of complete aerobic remineralization, set to O2∶P = −170
in the Bern3D model. Complete aerobic remineralization of organic matter (including nitrification) follows
(Paulmier et al., 2009):

CaHbOcNdP +
(

a + 1
4

b − 1
2

c + 5
4

d + 5
4

)
O2 →

aCO2 + dHNO3 + H3PO4

+
(1

2
b − 1

2
d − 3

2

)
H2O.

(C4)

Thus, (a+ 1
4

b − 1
2

c + 5
4

d + 5
4
) = 170 or equivalently 1

8
b − 1

4
c = 15.875 and 1

2
b - c = 63.5 in Bern3D. This yields

zsource = 69 and zcons = 276 for the given C:P and N:P ratios and the given oxygen demand of complete aerobic
remineralization. Different compositions of organic matter have been reported. Assuming classical Redfield
(1963) stoichiometry of C106H263O110N16P would imply that zsource = 53 and zcons = 212. The stoichiometry
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proposed by Anderson (1995) of C106H175O42N16P would result in zsource = 59 and zcons = 236. Here we rely
on stoichiometric values derived from the analysis of thermocline and deep water composition by Anderson
and Sarmiento (1994), which results in 30% and 15% higher values for these stoichiometric ratios.

Appendix D: Summary of Numerical Results

In Figure D1, the cumulative weight and a histogram of the skill scores are shown. In the Bern3D model, the
chosen formulations of N2O production and consumption can lead to very high point sources close to the

Figure D1. (a) Cumulative weight and (b) histogram of the skill scores. The top 200 ensemble members, chosen for the extended long-term projections,
represent 54% of the total weight of all 1,000 members.

Table D1
Modeled and Observed Volumes of three Different Low O2 Regimes

Volume (1015 m3)

O2 < 80 mmol m−3 O2 < 50 mmol m−3 O2 < 5 mmol m−3

This studya(1990–2005) 144.9 (125.2 to 170.5) 68.5 (61.1 to 78.4) 7.1 (6.4 to 8.1)

WOA09b(WOA13con B3D grid) 126 (127.7) 60.4 (64.6) 2.43 (1.4)

From Cocco et al. (2013)

BCM-C 1990s 137 68.4 19.9

IPSL 1990s 38.9 18.5 1.01

UVIC2-8 1990s 67.9 32.9 4.91

CSM1.4 1990s 33.3 18.1 5.44

CCSM3 1990s 38.6 22.5 6.55

GFDL 1990s 153 105 39.9

MPIP 1990s 154 93.6 35.7

RCP2.6

This study A.D. 2099 153.0 (135.0 to 177.0) 73.0 (66.4 to 83.1) 7.37 (6.51 to 8.33)

This study A.D. 4000 252.0 (174.0 to 337.0) 99.6 (75.5 to 137.0) 8.5 (7.54 to 9.3)

This study A.D. 10,000 120.0 (111.0 to 135.0) 61.7 (59.0 to 65.7) 7.01 (6.46 to 7.8)

RCP8.5

This study A.D. 2099 157.0 (141.0 to 182.0) 76.5 (69.9 to 86.5) 7.31 (6.24 to 8.34)

This study A.D. 4000 777.0 (731.0 to 813.0) 555.0 (468.0 to 613.0) 18.6 (15.7 to 30.7)

This study A.D. 10,000 201.0 (185.0 to 223.0) 106.0 (99.9 to 113.0) 11.9 (10.4 to 13.5)

aValues for this study include the median and the ±1𝜎 range. bFrom Cocco et al. (2013) (including Bianchi et al., 2012
correction). cIncluding Bianchi et al. (2012) correction.
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surface which in turn can lead to numerical oscillations from the advection scheme (neighboring cells in hori-
zontal direction without these high sources have negative [N2O] or [N2O𝛽 ] lower than its solubility component;
see section 2.4 for the definition of [N2O𝛽 ]). In the skill assessment, these grid cells are excluded. This concerns
∼1% of the oceanic grid cells. For the calculation of median values and ranges all cells are considered. Skill
scores computed by including these cells yield indistinguishable results compared to excluding these cells.

Table D1 summarizes modeled and observed volumes of three different low O2 regimes, and Table D2
summarizes the median values and confidence intervals for critical variables addressed in the main text.
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