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Abstract. Systematic data quality issues may occur at var-
ious stages of the data generation process. They may affect
large fractions of observational datasets and remain largely
undetected with standard data quality control. This study in-
vestigates the effects of such undetected data quality issues
on the results of climatological analyses. For this purpose,
we quality controlled daily observations of manned weather
stations from the Central Andean area with a standard and an
enhanced approach. The climate variables analysed are min-
imum and maximum temperature and precipitation. About
40 % of the observations are inappropriate for the calcula-
tion of monthly temperature means and precipitation sums
due to data quality issues. These quality problems unde-
tected with the standard quality control approach strongly
affect climatological analyses, since they reduce the correla-
tion coefficients of station pairs, deteriorate the performance
of data homogenization methods, increase the spread of in-
dividual station trends, and significantly bias regional tem-
perature trends. Our findings indicate that undetected data
quality issues are included in important and frequently used
observational datasets and hence may affect a high number
of climatological studies. It is of utmost importance to apply
comprehensive and adequate data quality control approaches
on manned weather station records in order to avoid biased
results and large uncertainties.

1 Introduction

Records of in situ weather observations are essential for cli-
matological analyses. Although automatic stations are now
often in use, many national station networks have been based
completely on manned station observations, and many still
depend largely or partly on this type of observation. Various
authors have demonstrated the possible errors in data records
of manned stations (e.g. Rhines et al., 2015; Trewin, 2010;
Viney and Bates, 2004). In order to detect and remove such
errors, observational time series should be quality controlled
before they are analysed (WMO, 2011, 2008). However, data
quality issues are not always detected by common quality
control (QC) methods (Hunziker et al., 2017). The overall
impact of such undetected errors on climatological analyses
is largely unknown.

In order to detect and remove non-climatic signals such as
station relocations from observational data, station records
should be homogenized (Aguilar et al., 2003; Brönnimann,
2015). For the success of the widely applied relative homog-
enization method, highly correlated time series are required
(Cao and Yan, 2012; Gubler et al., 2017; Plummer et al.,
2003; Trewin, 2013; Venema et al., 2012). Similarly, the im-
portant spatial consistency test in the QC process depends on
suitable neighbouring stations (Durre et al., 2010; Plummer
et al., 2003). Usually, the correlation between station pairs
decreases with increasing distance. In some regions of the
world, correlations are clearly lower or lose significance af-
ter shorter distances than in others (Gubler et al., 2017; New
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2 S. Hunziker et al.: Effects of undetected data quality issues on climatological analyses

et al., 2000). According to Gubler et al. (2017), not only cli-
matological factors may be responsible for such differences,
but also factors related to the quality of the observations,
such as station siting and observation practices. Besides po-
tentially reducing the correlation between station pairs, data
quality issues may also induce inhomogeneities in time se-
ries (WMO, 2008). As a result, the performance of statistical
data homogenization methods is reduced due to the higher
number of break points (Domonkos, 2013). To the authors’
knowledge, the impact of data quality problems on station
correlations and statistical data homogenization has not been
thoroughly studied so far.

Trend magnitudes and signs in station records may
strongly differ among neighbouring stations. This was ob-
served in many parts of the world and for various climate
variables and indices, such as minimum temperature (López-
Moreno et al., 2016), precipitation (Rosas et al., 2016; Vuille
et al., 2003), diurnal temperature range (Jaswal et al., 2016;
New et al., 2006), and extremes indices (Skansi et al., 2013;
You et al., 2013). Certain trend differences may be expected
even on short spatial scales due to factors such as topogra-
phy and feedback processes (You et al., 2010). However, er-
rors in observations may also affect individual station trends
and hence increase the trend spread within a region. Further-
more, regional trends may deviate from observations in com-
parable areas. For instance, studies have found stronger pos-
itive trends in maximum than minimum temperatures since
the middle of the 20th century in the Bolivian and Peruvian
Altiplano (e.g. López-Moreno et al., 2016), and Alexander
et al. (2006) detected a decrease in the number of warm
nights in the same region. These findings are not in accor-
dance with the globally observed and expected increase in
night-time temperatures and the decrease in the diurnal tem-
perature range (Alexander et al., 2006; Donat et al., 2013b;
IPCC, 2013; Morak et al., 2011; New et al., 2006; Quintana-
Gomez, 1999; Vincent et al., 2005). Therefore, the question
arises of whether non-climatic factors may cause systematic
trend biases in entire regions.

The present study addresses the aforementioned research
questions by applying two different QC approaches on the
same observational dataset and comparing the results of rel-
evant climatological analyses afterwards. As the standard
QC approach, we used the method that is applied to the
GHCN-Daily dataset (Menne et al., 2012). As the enhanced
approach, we applied the QC tests suggested by Hunziker
et al. (2017) that focus on the detection of systematically oc-
curring data quality issues. Since this is not a self-contained
method, the GHCN-Daily QC was additionally applied after-
wards.

The dataset used in the present study consists of manned
station observations from the Central Andean region. This
area is highly suitable for investigating the impacts of un-
detected data quality issues for two main reasons: first, all
the uncertainties discussed in the previous paragraphs are
found in Central Andean station data, and second, data qual-

ity issues that may not be detected by standard QC meth-
ods are well studied (Hunziker et al., 2017). Furthermore,
the topography in the area is complex, and station density is
sparse, making QC and data homogenization difficult. The
dataset used contains the climatological key variables max-
imum temperature (TX), minimum temperature (TN), and
precipitation (PRCP).

In this article, we first describe the data (Sect. 2) and ex-
plain the methods (Sect. 3). Next, we present the results
(Sect. 4), in which we describe the frequency of the data
quality issues (Sect. 4.1) and focus on their effects on the
correlation of station pairs (Sect. 4.2), data homogeniza-
tion (Sect. 4.3), and trends (Sect. 4.4).We discuss the results
(Sect. 5), and finally draw the conclusions of our findings
(Sect. 6).

2 Data

The dataset used for the present study includes observational
records from Bolivia (Servicio Nacional de Meteorología e
Hidrología de Bolivia, and the Bolivian civil airport adminis-
tration), the Peruvian department of Puno (Servicio Nacional
de Meteorología e Hidrologí a del Perú), and selected
Chilean and Paraguayan stations located near the Bolivian
border (Dirección Meteorológica de Chile, Dirección de Me-
teorología e Hidrología – Paraguay; Fig. 1). The dataset was
created within the framework of the project “Data on climate
and Extreme weather for the Central AnDEs” (DECADE)
and includes daily TX, TN, and PRCP measurements
((http://www.geography.unibe.ch/research/climatology_
group/research_projects/decade/index_eng.html)). All
records in the DECADE dataset originate from manned
weather stations. This reflects the conditions of weather
observation networks in the Central Andean area where only
a few automatic weather stations are in service (Hunziker
et al., 2017). The first records in the DECADE dataset date
back to 1917, and the most recent observations were taken
in 2015. For more details on weather observations in the
Central Andean region, see Hunziker et al. (2017).

The altitude of the stations in the study area ranges
between 98 and 4667 ma.s.l. Stations at elevations
≤ 600 ma.s.l. group in the east (henceforward referred
to as “lowland stations”), while stations at elevations
≥ 3500 ma.s.l. are located in the west (henceforward
referred to as “Altiplano stations”; see Fig. 1). Stations
at altitudes between the lowlands and the Altiplano are
grouped along the eastern slopes of the Central Andes and
are henceforward referred to as “valley stations”.

A large fraction of the 341 TX, 339 TN, and 698 PRCP
time series in the original dataset cover only short obser-
vation periods or contain large gaps. Therefore, all records
with a sum of measurements < 20 years (i.e. < 7300 valid
daily observations) were excluded. This nearly divided the
number of time series in half, resulting in 180 remaining TX
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Figure 1. Stations of the DECADE dataset with ≥ 20 years of valid observations for maximum temperature (TX), minimum temperature
(TN), and precipitation (PRCP). Solid lines represent country borders, and the dashed line is the border of the Peruvian department of
Puno. Circles and pluses indicate stations with ≥ 80 % of valid measurements from 1981 to 2010 in the datasets quality controlled with
a standard method (DATAQC-S) and with an enhanced approach (DATAQC-E), respectively. White crosses mark stations with < 80 % of
valid observations from 1981 to 2010 in both datasets. Colours classify stations regarding their elevation in lowlands (≤ 600 ma.s.l.), valleys
(601 to 3499 ma.s.l.), and Altiplano (≥ 3500 ma.s.l.). The grey background shading indicates the elevation in m a.s.l.

and TN and 378 PRCP records. This dataset containing the
raw data (i.e. not quality controlled or homogenized) is called
“DATARAW” henceforward.

For the present study, all time series of DATARAW were
quality controlled and homogenized. However, for the sub-
sequent analyses (i.e. error frequency, correlation, and trend
analyses), only the period 1981 to 2010 was analysed. During
this 30-year standard period, the highest number of station
records is available (104 TX, 106 TN, and 220 PRCP time
series with ≥ 80 % of valid observations), and data quality is
usually higher than earlier in time.

3 Methods

3.1 Quality control

DATARAW was quality controlled with two different ap-
proaches. The first approach represents an established stan-
dard QC method. Such methods mostly focus on the detec-
tion of single suspicious values (Hunziker et al., 2017). The
second approach additionally takes systematically occurring
data quality issues into account that may remain undetected
with standard QC. It is therefore considered as enhanced QC.

3.1.1 Standard approach

The Global Historical Climatology Network GHCN-Daily
was developed for a wide range of applications, including
studies of extreme events (Menne et al., 2012), and it is the
premier source of daily TX, TN, and PRCP observations
from various regions of the globe (Donat et al., 2013a). The
GHCN-Daily data are quality controlled with a comprehen-

sive set of 19 QC tests, including spatial consistency tests
(Durre et al., 2010). It is a fully automatic QC approach
that was particularly developed to run unsupervised (Menne
et al., 2012). Evaluations of the performance showed that
the method is effective at detecting gross errors and more
subtle inconsistencies with a low false-positive rate (Durre
et al., 2010). This QC method was applied to DATARAW
(http://www.geography.unibe.ch/research/climatology_
group/research_projects/decade/index_eng.html).

However, the detections (i.e. the flags for failing certain
tests) of the GHCN-Daily QC had to be slightly adapted
in order to be more appropriate for weather observations in
the Central Andean region. One of the internal consistency
tests detects cases in which TX is lower than TN of the pre-
vious day. This test should guarantee the physical consis-
tency of TX and TN measurements that are representative
of a 24 h period. However, in various Bolivian stations (par-
ticularly stations at airports), TX is representative of the af-
ternoon hours only (observations start at noon and end in the
evening). This measurement practice should avoid problems
in attributing the observation to a specific calendar day. Usu-
ally, daily temperature maxima occur in the afternoon indeed.
Nevertheless, during certain weather events (particularly the
frequent cold surges in the lowlands; e.g. Espinoza et al.,
2013; Garreaud, 2001; Vera and Vigliarolo, 2000), the tem-
perature in the afternoon does not exceed the TN value mea-
sured in the morning. As a result, a high number of obser-
vations in the lowlands was flagged. To the authors’ knowl-
edge, this measurement practice has been applied to TX but
not to TN observations, and no large-scale changes in this
practice in the Central Andean area are known. Therefore,
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this practice (even though not ideal) does not introduce any
error or bias as long as it remains unchanged. As a conse-
quence, internal consistency flags that were set because of
this particular QC test were regarded as invalid.

Furthermore, the GHCN-Daily QC did not flag a few ex-
treme outliers. This may happen if a reported value exceeds
the maximum of five places in tens of degrees Celsius or mil-
limetres allowed in the GHCN-Daily data format (e.g. values
≤−10 000). In order to remove such erroneous numbers, we
added an additional flag to all unflagged temperature values
> 70 ◦C and <−70 ◦C and to all unflagged negative PRCP
values.

In total, about 0.35 % (temperature) and 0.15 % (PRCP) of
all measurements were flagged. This is similar to the over-
all fraction of 0.24 % flagged observations in the GHCN-
Daily dataset (Durre et al., 2010). In DATARAW, about two-
thirds of the flagged temperature and the great majority of
the flagged PRCP observations are monthly or yearly dupli-
cate data. For any further analyses, all flagged values were
removed. The dataset quality controlled with this standard
QC approach will be called “DATAQC-S” henceforward.

3.1.2 Enhanced approach

Following the suggestions by Hunziker et al. (2017),
DATARAW was carefully checked for systematically oc-
curring data quality issues. An extensive set of tests
(11 for TX and TN, 15 for PRCP) was applied, and
flags were set for each test on an annual timescale
(http://www.geography.unibe.ch/research/climatology_
group/research_projects/decade/index_eng.html). Thanks
to flagging each quality issue individually in the database,
specific time series segments can subsequently be selected
that are adequate for the intended purpose. Furthermore, for
a segment of one station record (TN of Progreso in Peru;
see Hunziker et al., 2017), daily corrections were calculated,
since the origin of the correctable error was unambiguously
identified.

Time series segments affected by data quality issues that
disturb the calculation of monthly means (temperature) and
sums (PRCP) were removed from further analyses, which
reduced the number of valid measurements by about 40 %.
Table 1 briefly describes the data quality issues and related
thresholds that led to the exclusion of time series segments.
Thresholds were chosen so that quality problems that may
significantly affect the subsequent climatological analyses
are excluded, whereas data containing minor problems still
remain in the dataset. Note that the QC tests were applied in
parallel, and therefore time series segments may be affected
by several data quality issues simultaneously. If suspicious
data patterns could not clearly be attributed to a specific data
quality issue, they were classified as “irregularities in the data
pattern”. For details on most of the data quality issues in-
cluded in the present study, see Hunziker et al. (2017).

Some data quality issues may significantly affect daily ob-
servations, but they may lose their significance by monthly
aggregation. This particularly applies to observations af-
fected by multi-day PRCP accumulations. Such data may
still be adequate to calculate monthly totals (WMO, 2011)
but cannot be used on a daily timescale (Viney and Bates,
2004). Therefore, more rigorous thresholds were used for
data quality issues that cause multi-day PRCP accumulations
(i.e. “small PRCP gaps” and “weekly PRCP cycles”) if the
data were later analysed on a daily timescale (Table 1). In the
present study, daily data are used to analyse the correlation
on a daily scale (Sect. 3.3) and the climate change indices
(Sect. 3.5).

The QC tests suggested by Hunziker et al. (2017) detect
data quality issues that occur systematically during longer
time periods (months to years). Therefore, they are not a self-
contained QC approach and should be combined with other
tests. That is why the GHCN-Daily QC was additionally ap-
plied (see Sect. 3.1.1) after removing time series segments
of insufficient quality for monthly aggregation. The GHCN-
Daily QC added flags to approximately 0.26 % (temperature)
and 0.10 % (PRCP) of the remaining observations.

This QC procedure may be considered as an enhancement
of applying the GHCN-Daily QC only. Hence, the resulting
dataset will be named “DATAQC-E” henceforward.

Note that Hunziker et al. (2017) further suggest the inclu-
sion of additional information derived from metadata into the
QC process. This allows for the removal of station records
that were generated under inappropriate conditions, such as
poor station siting or severe lack of station maintenance. The
present study, however, only considers quality issues and er-
rors that are directly detectable in the measurement data.
Hence, time series of questionable quality that could be re-
moved by including metadata in the QC process remain in
the dataset.

3.2 Calculation of monthly and yearly means and sum

According to WMO (2011), monthly means can be calcu-
lated for continuous variables such as temperature if ≤ 10
daily measurements are missing. However, we used the
stricter approach suggested for the calculation of monthly 30-
year standard normals (WMO, 1989) that allows≤ 5 missing
observations (3 if in succession). For cumulative variables
such as rainfall, values should be calculated only if all daily
observations are available or if unrecorded PRCP amounts
are incorporated in the next measurement (WMO, 2011). At
various Bolivian stations, measurements are not taken on one
day a week (usually Sundays; Hunziker et al., 2017). This
particularly affects weather stations at secondary airports that
do not operate on Sundays. PRCP on these days is usually
incorporated in the measurement of the next operation day.
Therefore, monthly PRCP sums were calculated if ≤ 5 daily
observations were missing and if no missing observations oc-
curred in succession. Annual means (temperature) and sums
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Table 1. Description of systematic data quality issues and their frequencies in the DECADE database (station records with ≥ 20 years
of observations) between 1981 and 2010. If not specified, the frequencies of data quality issues apply to daily observations and monthly
aggregations. Frequencies of the data quality issues in maximum (TX) and minimum (TN) temperature and precipitation (PRCP) observations
are shown for the different regions (Altiplano, valleys, and lowlands; see Fig. 1). Thresholds leading to the exclusion of data were chosen so
that data quality issues should not affect the subsequent climatological analyses of the daily and monthly aggregated data. For other analyses,
these thresholds may not be adequate and consequently the frequencies of relevant data quality issues may differ. Tests were done in parallel,
and time series segments may therefore be affected by several data quality issues simultaneously. For a detailed description of frequent data
quality issues, see Hunziker et al. (2017).

Data quality
issue

Description Threshold leading to
exclusion

Frequency [%]

Altiplano Valleys Lowlands

Missing
temperature
intervals

Observations within a temperature in-
terval are missing or occur with
a clearly reduced frequency

Interval of missing tem-
perature observations
> 1 ◦C

TX: 1.0
TN: 7.4

TX: 0.3
TN: 6.9

TX: 0.3
TN: 0.0

Rounding
errors

Rounding errors in the conversion from
degrees Fahrenheit to degrees Celsius
(may also indicate further errors in the
data)

Any error in the round-
ing

TX: 0.0
TN: 0.0

TX: 4.3
TN: 2.4

TX: 1.9
TN: 1.9

Asymmetric
rounding
patterns

Numbers in the decimal places are not
equally distributed and occur in an
asymmetric form

Asymmetry in round-
ing pattern is strong

TX: 8.8
TN: 8.2
PRCP: 10.0

TX: 9.6
TN: 11.0
PRCP: 13.7

TX: 5.1
TN: 4.2
PRCP: 6.7

Low mea-
surement
resolution

The reported resolution of the measure-
ments is low

Reported measurement
resolution > 1 ◦C and
> 1 mm

TX: 0.0
TN: 0.0
PRCP: 0.1

TX: 4.1
TN: 3.4
PRCP: 0.0

TX: 1.4
TN: 1.4
PRCP: 0.0

Irregularities
in the data
pattern

Obviously erroneous patterns in the
data that cannot be classified as an-
other data quality issue (e.g. all values
in a very narrow range, randomly and
strongly varying variance, truncation of
negative temperatures)

Irregularities in the data
pattern are moderate or
strong

TX: 31.6
TN: 28.5
PRCP: 37.7

TX: 42.3
TN: 42.2
PRCP: 42.9

TX: 10.9
TN: 15.8
PRCP: 21.4

Obvious
inhomo-
geneities

Inhomogeneities that are large enough
to be clearly identified visually as
non-climatic and that occur frequently
within a time series segment (i.e. inho-
mogeneities that are hardly correctable
with data homogenization methods)

Inhomogeneities are
large and occur fre-
quently

TX: 7.7
TN: 2.5
PRCP: 2.3

TX: 13.5
TN: 12.6
PRCP: 1.9

TX: 0.8
TN: 0.8
PRCP: 3.2

Heavy
PRCP
truncations

Observations of heavy PRCP events are
truncated or their frequency is clearly
reduced above a certain threshold

Heavy PRCP events are
partially or completely
truncated

PRCP: 13.3 PRCP: 12.5 PRCP: 5.2

Small PRCP
gaps

Small PRCP events are not reported,
leading to a gap or a frequency reduc-
tion in values below a certain threshold

Partial and complete
small PRCP gaps
> 5 mm (monthly) and
> 2 mm (daily)

PRCP: 3.0
(monthly)
PRCP: 15.2
(daily)

PRCP: 7.5
(monthly)
PRCP: 29.9
(daily)

PRCP: 9.5
(monthly)
PRCP: 21.9
(daily)

Weekly
PRCP
cycles

The occurrence of PRCP events (wet
days) significantly differs between the
days of the week

Weekly PRCP cycles
are strong (relaxation
for monthly aggregated
data if cycle pattern
indicates regularly
missed observations
followed by accu-
mulation the next
day)

PRCP: 0.0
(monthly)
PRCP: 1.3
(daily)

PRCP: 1.8
(monthly)
PRCP: 2.1
(daily)

PRCP: 2.6
(monthly)
PRCP: 3.2
(daily)

www.clim-past.net/14/1/2018/ Clim. Past, 14, 1–20, 2018
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(PRCP) were calculated based on monthly values, and yearly
values were calculated only if 12 valid months were available
(WMO, 2011).

For many datasets and studies, gaps in time series are
filled (e.g. Auer et al., 2007; Kizza et al., 2012; Vuille et al.,
2000). There are many techniques for data estimation (e.g.
WMO, 2011) that may increase the time series complete-
ness and hence the data availability. However, data estima-
tion is difficult to apply to Central Andean station records due
to complex topography, sparse station networks, and mostly
few observed atmospheric variables. Furthermore, the input
data for ACMANT3 (homogenization method used in the
present study; see Sect. 3.4.2) should not include estimated
data (Domonkos and Coll, 2017). Hence, in order to avoid in-
troducing uncertainty by filling gaps, no data were estimated
for the present study.

3.3 Correlation analysis

Before calculating the correlation coefficient of station pairs,
time series were standardized by subtracting the mean and
dividing by the standard deviation (SD). In order to remove
the influence of trends and inhomogeneities, the differences
between one observation and the next were calculated. From
these time series of the first differences, Spearman rank cor-
relations were computed for the period 1981 to 2010.

For correlations on the monthly timescale, daily observa-
tions were aggregated as described in Sect. 3.2. Only time se-
ries containing≥ 80 % of valid monthly values in the 30-year
period of interest were considered. Removing the flagged ob-
servations and time series without sufficient data resulted in
98 (TX), 99 (TN), and 218 (PRCP) valid monthly station
records for DATAQC-S and in 56 (TX), 54 (TN), and 105
(PRCP) valid monthly time series for DATAQC-E.

To standardize measurement values on a daily timescale,
daily means and SDs were calculated based on the linear in-
terpolation of monthly means and SDs. If equal values oc-
curred in succession in the original observations, the first dif-
ferences of the standardized values were set to zero in order
to not bias correlation coefficients by the seasonality of the
standardization.

Because unreported shifting of dates occurs frequently in
the Central Andean observation networks (Hunziker et al.,
2017), temporal dislocation in daily time series pairs must
be considered. For example, a high correlation of two Cen-
tral Andean time series of the first differences often becomes
slightly negative if one of the two time series is shifted by
1 day. Therefore, shifts of −2 to +2 days were applied to
one time series of each station pair, and the highest corre-
lation value was expected to be the real correlation coeffi-
cient. This method may artificially increase correlations that
are close to zero or negative in reality. However, such low
correlations are not of interest in the present study. Further-
more, we use the median to quantify the effect of data qual-
ity issues on correlations, which eliminates the potential bias

introduced to low correlations. Time series with < 80 % of
daily observations in the period 1981 to 2010 were removed
from the daily correlation analysis. This resulted in 104 (TX),
106 (TN), and 220 (PRCP) valid daily station records avail-
able for DATAQC-S and in 59 (TX), 58 (TN), and 90 (PRCP)
records for DATAQC-E.

3.4 Data homogenization

3.4.1 Clustering

In order to build station groups that share a similar back-
ground climate, we applied agglomerative hierarchical clus-
tering with complete linkage on the monthly station cor-
relation matrices (see Sect. 3.3). Time series that did not
share ≥ 120 common valid months with ≥ 10 neighbours
were removed from the data homogenization process. For
the break detection and adjustment method used in this study
(Sect. 3.4.2), the optimal cluster size is usually around 20 to
30 stations, but the optimal number of stations can be much
higher if record lengths and data completeness differ between
the time series (Domonkos and Coll, 2017). This strongly ap-
plies to the Central Andean data. Therefore, we selected three
clusters for TX and TN with a median size of 60 (DATAQC-S)
and 40 (DATAQC-E) stations. For PRCP, 6 (DATAQC-S) and
5 (DATAQC-E) clusters were selected with a median cluster
size of 65 (DATAQC-S) and 42 (DATAQC-E). The minimum
and maximum cluster size is 11 and 94 stations, respectively.

The spatial structure of the clusters is similar for
DATAQC-S and DATAQC-E. For temperature, two main clus-
ters were detected, representing the lowlands and the Alti-
plano. Stations of the third cluster are located mostly along
the eastern Andean slopes. Spatial illustrations of the clusters
are shown in Fig. S1 in the Supplement.

3.4.2 Break-point detection and adjustment

There are various established homogenization approaches
(e.g. Aguilar et al., 2003; Ribeiro et al., 2016; Venema et al.,
2012). For the present study, the method ACMANT was cho-
sen. ACMANT is a fully automatic method that does not in-
corporate metadata. Hence, the approach is objective in con-
trast to semi-automatic approaches such as HOMER (Mestre
et al., 2013) that require various subjective decisions. This
subjectivity may influence the results of the homogenization
process (Vertačnik et al., 2015). For the aim of the present
study to evaluate the effects of undetected data quality is-
sues, it is important to avoid such disturbances. ACMANT
is a state-of-the-art homogenization method with one of the
best performances (Ribeiro et al., 2016; Venema et al., 2012).
Recently, a new version of the approach (ACMANT3) was
published (Domonkos and Coll, 2017). Compared to previ-
ous versions (Domonkos, 2011, 2015), the performance of
the method was further improved and the range of use in-
creased (Domonkos and Coll, 2017).
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ACMANT3 includes a recommended function for detect-
ing monthly outliers that was applied before detecting and
correcting break points. About twice as many monthly out-
liers were detected in DATAQC-S than in DATAQC-E. The
highest frequency of monthly outliers was found in TN of
DATAQC-S with 0.16 outliers per decade. All monthly out-
liers were removed from DATAQC-S and DATAQC-E.

3.5 Trend calculation

Trends of annual values and climate change indices were
analysed for the entire study area in the 30-year time period
1981 to 2010. However, trend signals differ between the var-
ied climate zones covered by the DECADE dataset. There-
fore, we decided to focus particularly on the Altiplano re-
gion for trend analyses. Time series from the Altiplano that
satisfy the completeness requirements originate nearly exclu-
sively from stations located in the north-western Bolivian de-
partment of La Paz and the adjacent Peruvian department of
Puno. In this spatially limited region, the station network is
dense compared to the rest of the study area (Fig. 1). There-
fore, relatively homogeneous trend signals may be expected.

The magnitudes of linear trends were calculated with the
Theil–Sen estimator, which is the median of the slopes of
all data pairs of a time series (Sen, 1968; Theil, 1950). The
method is more insensitive to outliers and more robust than
other trend estimators such as ordinary least squares. For
individual station records, the significance of trends is not
of major interest in the present study and was therefore not
tested. Furthermore, taking serial correlation into account in
trend tests would cause large uncertainties due to the missing
values in the time series. However, for the Altiplano stations,
trends of spatially averaged anomalies were tested with the
Mann–Kendall test at the 5 % significance level. Before ap-
plying the Mann–Kendall test (Mann, 1945; Kendall, 1948),
the time series were pre-whitened (Wang and Swail, 2001;
Zhang and Zwiers, 2004) in order to remove the influence of
serial correlation.

Trends of annual means (temperature) and sums (PRCP)
were analysed based on yearly aggregated data (see
Sect. 3.2). Time series with < 80 % of valid yearly values
from 1981 to 2010 were removed previously. This resulted
in 54 (TX), 48 (TN), and 105 (PRCP) valid annual station
records for DATAQC-S and in 40 (TX), 29 (TN), and 48
(PRCP) annual time series for DATAQC-E.

In order to investigate the effect of undetected data quality
issues on extremes, we computed the frequently used climate
change indices defined by the CCl/CLIVAR/JCOMM Ex-
pert Team on Climate Change Detection and Indices (ETC-
CDI; http://etccdi.pacificclimate.org/list_27_indices.shtml)
for 1981 to 2010. For the calculation of the indices, we used
the software tool RClimDex (Zhang and Yang, 2004) that
is often applied in climatological studies (e.g. Kioutsioukis
et al., 2010; Kruger and Sekele, 2013; New et al., 2006).
RClimDex calculates monthly (yearly) index values if ≤ 3

(≤ 15) observations are missing (Zhang and Yang, 2004).
The indices discussed in the present study are namely the
diurnal temperature range (DTR), cool days (TX10p), cool
nights (TN10p), warm days (TX90p), warm nights (TN90p),
frost days (FD), annual contribution from very wet days
(R95pTOT), and the simple daily intensity index (SDII; Ta-
ble 2). Note that all indices were calculated on an annual
scale. For indices based on percentiles, the baseline period
was calculated from the 30-year period 1981 to 2010. Indices
units in percentage were converted to days per year.

The ETCCDI climate change indices describe moderate to
very moderate extreme events that occur usually many times
per year. Therefore, they are particularly suitable for appli-
cation on short time series. For the index calculation of the
homogenized datasets, daily measurements were corrected
by adding monthly adjustment values (temperature) and by
multiplying with monthly adjustment factors (PRCP) that
were computed with ACMANT3. Applying monthly cor-
rections on a time series does not guarantee homogeneity
on a daily timescale (Brönnimann, 2015; Costa and Soares,
2009; Trewin, 2013). However, since the present study aims
to compare the effects of different QC methods, potential
deficits in adjusting daily observations with monthly factors
do not bias the results. Considering the large and frequent
inhomogeneities detected in the Central Andean time series
(Sect. 4.3), the homogeneity of the ETCCDI climate change
indices will most likely be increased strongly by correcting
the daily time series with the monthly adjustment values.

Trends of the ETCCDI climate change indices were only
calculated for time series with ≥ 80 % of valid yearly in-
dex values in the period 1981 to 2010. For the analyses of
the climate change indices, about 50 (DATAQC-S) and 30
(DATAQC-E) valid time series for the temperature-derived in-
dices (TX10P, TX90P, TN10P, TN90P, and FD) were avail-
able. For DTR, which depends on both TX and TN ob-
servations, 41 (DATAQC-S) and 22 (DATAQC-E) time series
could be analysed. For the PRCP-derived indices SDII and
R95pTOT, 106 (DATAQC-S) and 38 (DATAQC-E) indices time
series were available.

4 Results

4.1 Frequency of data quality issues

The frequency of systematic data quality issues clearly varies
between the different regions (Table 1). Overall, data quality
issues occur least frequently in the lowlands. Many weather
stations in this area are located at airports and are oper-
ated by the Bolivian civil airport administration (Hunziker
et al., 2017). The personnel at the airports are generally bet-
ter trained in taking observations than the laypersons running
most of the other weather stations in the Central Andean area.
In contrast, data quality issues occur most frequently in the
valleys. Many of these stations are located in rather remote
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Table 2. ETCCDI climate change indices analysed in the present study. Note that all indices were calculated on an annual timescale. Index
units in percentage were converted to days per year in the following analyses.

ID Index name Index definition Unit

DTR Daily temperature range Monthly mean difference between TX and TN ◦C
TX10p Cool days Percentage of days when TX < 10th percentile %
TN10p Cool nights Percentage of days when TN < 10th percentile %
TX90p Warm days Percentage of days when TX > 90th percentile %
TN90p Warm nights Percentage of days when TN > 90th percentile %
FD Frost days Annual count of days when TN < 0 ◦C days
R95pTOT Annual contribution from very wet days Annual total of daily PRCP when PRCP > 95th percentile mm
SDII Simple precipitation intensity index PRCP sum on wet days (PRCP≥ 1 mm) divided by mm day−1

the number of wet days

Figure 2. Annual frequency of the data quality issues that cause the exclusion of the affected time series segments for maximum and
minimum temperature (TX and TN, respectively) and precipitation (PRCP). If not specified, the frequencies apply to daily observations and
monthly aggregations. Note that tests for systematic data quality issues were done in parallel, and time series segments may therefore be
affected by several quality issues simultaneously.

regions, and they generally receive less attention from the
network operators than other stations in the network.

Some systematic data quality issues are relevant in one re-
gion, but not in another. For instance, the “missing tempera-
ture intervals” are important in TN observations in the Alti-
plano and the valleys, but barely occur in the lowlands. This
problem usually occurs in measurements around 0 ◦C. Tem-
peratures in the lowlands rarely drop to the freezing point,
and hence this issue is largely absent. In contrast, “weekly
PRCP cycles” occur particularly often in the lowlands where
the fraction of observations at airports is large (secondary
airports are usually out of service on Sundays).

The data quality issue “irregularities in the data pattern”
reaches the threshold for exclusion of time series segments
more often than the other quality problems. This error classi-
fication combines all suspicious data patterns that cannot be
clearly classified as another quality issue. In contrast to other
data quality issues, irregularities in the data pattern occur in
all regions. Time series segments of low quality are often

affected by several problems simultaneously, which usually
includes rather unspecific irregularities in the data pattern.

Overall, the quality of the TX, TN, and particularly
PRCP observations has slightly increased in the last decades
(Fig. 2). However, the frequency of some data quality is-
sues has increased, such as strong “asymmetric rounding pat-
terns” in TX and TN observations, and “missing temperature
intervals” in TN time series. There is no strong or abrupt
change in the frequency of the data quality issues between
1981 and 2010. The same applies to the temporal develop-
ment of data quality issues in the single regions Altiplano,
valleys, and lowlands (not shown).

4.2 Correlation analysis

Detecting and removing erroneous measurement values and
time series segments affects the correlation of station pairs
in two ways. On the one hand, time series may no longer
fulfil the completeness requirements in the time period of in-
terest. This occurs more often when applying the enhanced
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Table 3. Monthly and daily median correlation coefficients of station pairs within a 300 km radius (100 km for daily PRCP) for maximum
temperature (TX), minimum temperature (TN), and precipitation (PRCP).

TX TN PRCP

DATAQC-S DATAQC-E DATAQC-S DATAQC-E DATAQC-S DATAQC-E

Monthly All stations (≤ 300 km) 0.53 0.68 0.39 0.63 0.34 0.45
Altiplano stations (≤ 300 km) 0.68 0.72 0.57 0.64 0.45 0.50
Valley stations (≤ 300 km) 0.46 0.60 0.34 0.61 0.31 0.35
Lowland stations (≤ 300 km) 0.76 0.79 0.72 0.75 0.33 0.36

Daily All stations (≤ 300 km for tempera-
ture, ≤ 100 km for PRCP)

0.25 0.35 0.14 0.27 0.13 0.19

Altiplano stations (≤ 300 km for
temperature, ≤ 100 km for PRCP)

0.26 0.31 0.24 0.28 0.14 0.18

Valley stations (≤ 300 km for tem-
perature, ≤ 100 km for PRCP)

0.26 0.45 0.12 0.22 0.12 0.24

Lowland stations (≤ 300 km for
temperature, ≤ 100 km for PRCP)

0.55 0.59 0.40 0.44 0.28 0.32

Figure 3. Correlation coefficients of station pairs as a function of station distance for maximum temperature (TX), minimum temperature
(TN), and precipitation (PRCP). This figure shows the example of monthly correlations in the Altiplano (≥ 3500 ma.s.l.). Black circles
indicate equal correlation coefficients in DATAQC-S and DATAQC-E (absolute difference≤ 0.01), grey circles indicate correlation coefficients
of station combinations of DATAQC-S that do not occur in DATAQC-E (or the absolute difference to the equivalent in DATAQC-E is > 0.01),
green triangles show correlation coefficients of DATAQC-E that are higher than in DATAQC-S (difference >+0.01), and red triangles show
correlation coefficients of DATAQC-E that are lower than DATAQC-S (difference <−0.01).

than the standard QC approach. While highly correlated sta-
tion records remain in DATAQC-E, the enhanced QC largely
removes the low correlation coefficients found in DATAQC-S
(Fig. 3). Hence, data quality issues that are undetected by
the standard QC method result in low correlation coefficients
of station pairs. On the other hand, the correlations of sta-
tion pairs may change if rather short time series segments
are removed due to data quality problems. Usually, this re-
sults in an increase in the correlation coefficients (Fig. 3),
which may reach up to 0.07 (TX) and 0.09 (PRCP) on
a monthly and daily timescale. For TN, maximum corre-
lation improvements are 0.10 and 0.05 on a monthly and
a daily timescale, respectively. Since this study only includes

time series with ≥ 80 % of valid values, each time series pair
shares ≥ 60 % of common observations between 1981 and
2010 (i.e. ≥ 18 years).

The resulting median differences of correlation coeffi-
cients between DATAQC-S and DATAQC-E are relatively con-
stant up to station distances of approximately 300 km (Figs. 4
and 5). The overall differences between DATAQC-E and
DATAQC-S are 0.15 (TX), 0.24 (TN), and 0.11 (PRCP) on
a monthly timescale and 0.10 (TX) and 0.13 (TN) on a daily
timescale (Table 3). For daily PRCP, median correlation co-
efficients converge quickly to zero with increasing station
distance, and therefore stations within a 100 km radius were
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Figure 4. Monthly median correlation coefficients within a 49 km running window for maximum temperature (TX), minimum temperature
(TN), and precipitation (PRCP). The median correlation coefficient is not shown if there are less than three station pairs within the running
window. Colours mark the medians for all regions combined, the lowlands (≤ 600 ma.s.l.), the valleys (601 to 3499 ma.s.l.), and the Altiplano
(≥ 3500 ma.s.l.). Light and dark colours indicate correlation coefficients derived from DATAQC-S and DATAQC-E, respectively.

Figure 5. Same as Fig. 4 but for daily data.

analysed. The resulting median correlation difference for
daily PRCP between DATAQC-E and DATAQC-S is 0.06.

However, the effect of undetected data quality issues on
station correlations varies strongly between the different re-
gions. While it is small in the lowlands, it is very pronounced
in the valleys. This can be partly explained by the high frac-
tion of station records affected by severe data quality issues
in the valleys. Lowland stations, in contrast, are often located
at airports where data quality problems occur less frequently.

There are remarkable differences between the median cor-
relation coefficients of station pairs in the lowlands, the val-
leys, and the Altiplano (Figs. 4 and 5, Table 3). This is pri-
marily explained by the varied topography. While the low-
lands are largely flat, the topography of the Altiplano and
the valleys is moderately and highly complex, respectively.
Therefore, the median correlations are overall highest in the
lowlands and lowest in the valleys.

However, spatial correlations are further modulated by
regional weather and climate characteristics. For instance,
PRCP correlation coefficients in the Altiplano are higher than
in the lowlands on a monthly timescale, whereas the op-
posite applies to correlations on a daily timescale (Figs. 4
and 5, Table 3). On the one hand, the Altiplano receives pre-
cipitation from deep convective storms during austral sum-
mer (Garreaud, 2009), and wet periods tend to cluster in
episodes of about a week, interrupted by dry spells of similar
duration (Garreaud, 1999). On the other hand, cold surges
in the lowlands occur with a periodicity of approximately
1 to 2 weeks (Garreaud, 2000) and usually last 2 or 3 days
(Espinoza et al., 2013). In summertime, these events cause
synoptic-scale bands of enhanced and suppressed deep con-
vection that structure temporal PRCP occurrence (Garreaud,
2000). Hence, rain events in the Altiplano cluster on clearly
larger timescales than in the lowlands. This favours high cor-
relation of monthly PRCP sums in the Altiplano and high
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Table 4. Break-point frequencies and break sizes. For minimum and maximum temperature (TX and TN, respectively), absolute break size
values in ◦C are shown. For precipitation (PRCP), the factors of the break sizes are indicated.

TX TN PRCP

DATAQC-S DATAQC-E DATAQC-S DATAQC-E DATAQC-S DATAQC-E

Break points per decade 1.0 0.9 1.1 0.9 0.3 0.2
Median absolute break-point size 1.1 ◦C 0.8 ◦C 1.1 ◦C 0.8 ◦C 1.25 1.15
Mean absolute break-point size 1.5 ◦C 1.0 ◦C 1.6 ◦C 1.2 ◦C 1.30 1.20
Maximum absolute break-point size 10.2 ◦C 5.0 ◦C 8.4 ◦C 5.0 ◦C 3.40 2.00

Figure 6. Kernel density of the adjustments calculated with ACMANT3 for all regions and the complete time series (a) and for the Altiplano
stations from 1981 to 2010 (b). For maximum and minimum temperature (TX and TN, respectively), inhomogeneous time series segments
are corrected by adding the adjustment values, whereas for precipitation (PRCP), inhomogeneous segments are corrected by multiplication
with the adjustment factors.

correlation coefficients of daily observations in the lowlands.
Note, however, that the correlation differences between the
regions are more pronounced within DATAQC-S than within
DATAQC-E.

4.3 Data homogenization

One out of three TN station clusters of DATAQC-S (34 sta-
tion records) could not be homogenized because of too-low
spatial–temporal coherence. Most of the time series in this
cluster are affected by systematic data quality issues that
were not detected with the standard QC approach. Since
these station records could not be homogenized, they were
excluded from all further analyses.

ACMANT3 detected a high number of break points in
the station records. For temperature, about one break point
per decade was detected on average, with a slightly higher
break-point frequency in DATAQC-S than in DATAQC-E (Ta-
ble 4). For PRCP, 0.3 break points per decade were found in
DATAQC-S and 0.2 in DATAQC-E. Median, mean, and maxi-

mum break-point sizes are clearly larger in DATAQC-S than
in DATAQC-E for all climate variables (Table 4).

Adjustments values (temperature) and factors (PRCP)
close to zero (temperature) and one (PRCP) are more fre-
quent for DATAQC-E than for DATAQC-S (Fig. 6). Further-
more, maxima of the absolute adjustments are higher for
DATAQC-S than DATAQC-E, reaching up to 10.2 ◦C (temper-
ature) and 3.5 (PRCP). However, there are not only differ-
ences in the SD, but also in the symmetry of the adjustment
distributions. For example, the adjustment factors for PRCP
of DATAQC-E indicate a density peak at around 1.3, which
is not found for DATAQC-S (Fig. 6). For TN of the Altiplano
stations from 1981 to 2010, there is a high density of adjust-
ment values around −1 ◦C. This peak is more pronounced
in DATAQC-E than in DATAQC-S. As a result, the median
adjustment in DATAQC-E is −0.5 ◦C, whereas it is +0.2 ◦C
in DATAQC-S. The same median adjustments are calculated
for complete record lengths of the Altiplano stations (not
shown), indicating the detection of an overall warm bias in
earlier TN observations of DATAQC-E but not of DATAQC-S.
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Figure 7. Trends of individual station records for maximum temperature (TX) (a), minimum temperature (TN) (b), and precipitation
(PRCP) (c) from 1981 to 2010. The first column shows the results for the unhomogenized dataset quality controlled with the standard
approach (DATAQC-S), the second column shows the homogenized dataset quality controlled with the standard approach (DATAQC-S_H),
the third column shows the unhomogenized dataset quality controlled with the enhanced approach (DATAQC-E), and the fourth column
shows the homogenized dataset quality controlled with the enhanced approach (DATAQC-E_H). For temperature, trends are indicated in ◦C
per decade. For PRCP, the relative magnitudes of the trend changes from 1981 to 2010 are shown. They are calculated from the difference
between the fitted value at the end and the beginning of the time series, which is divided by the mean of the fit. A relative trend increase by
1 is equal to an increase by 200.0 %, and a relative decrease by 1 is equal to a decrease by 66.7 %.

Henceforward, the homogenized datasets DATAQC-S and
DATAQC-E are named “DATAQC-S_H” and “DATAQC-E_H”,
respectively. Note that some time series segments could not
be homogenized due to lacking reference stations with the
required correlation. For the trend analyses, all time se-
ries segments that remained unhomogenized were also ex-
cluded from the unhomogenized datasets (i.e. DATAQC-S and
DATAQC-E) in order to maintain comparability between un-
homogenized and homogenized datasets.

4.4 Trends

4.4.1 Annual temperature averages

Overall, there is a clear positive TX trend in the entire study
area (Fig. 7). The few negative TX trends in the unhomoge-
nized station records disappear due to data homogenization.
In the Altiplano, the trend of the spatially averaged anoma-
lies is significant and varies between +0.40 (DATAQC-E_H)
and +0.44 ◦C (DATAQC-E) per decade (Table 5). TN trends,
however, are more ambiguous. Spatial trend patterns are un-
clear, except for DATAQC-E_H in which a clear warming is
found in the north-eastern Altiplano and slight cooling in the

south and the lowlands. This pattern is spatially coherent and
substantially diverges from the spatial trend patterns derived
from the other datasets. As a result, TN trends of spatially
averaged anomalies calculated from DATAQC-E_H in the Alti-
plano are significant with+0.22 ◦C per decade, whereas they
are close to zero and insignificant if calculated from the other
datasets (Table 5). This may be at least partly ascribed to the
results of the data homogenization process, which suggest
a clear overall warm bias in earlier TN observations in the
Altiplano in DATAQC-E, but not in DATAQC-S (Sect. 4.3).

The spread of individual station trends is slightly lower in
DATAQC-E than in DATAQC-S (Fig. 8). However, the spread
of trends is much more reduced by data homogenization than
by enhancing the QC approach. For TX, the trend spreads
derived from the homogenized datasets DATAQC-S_H and
DATAQC-E_H are similar, whereas they strongly differ for
TN. The TN trend spread of the entire study area derived
from DATAQC-S_H is small and ranges between +0.02 and
+0.09 ◦C per decade within the 25th and 75th percentile.
In contrast, the data homogenization of DATAQC-E does not
cause such a pronounced decrease in the trend spread.
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Table 5. Trends of spatially averaged anomalies in the Altiplano (≥ 3500 ma.s.l.) in the period 1981 to 2010. Trends are shown for the
annual means, for the 10th and 90th percentile of maximum temperature (TX) and minimum temperature (TN; i.e. TX10p, TN10p, TX90p,
TN90p), and for the number of frost days (FD). Bold numbers denote significance at the 5 % level.

TX TN

DATA DATA DATA DATA DATA DATA DATA DATA
QC-S QC-S_H QC-E QC-E_H QC-S QC-S_H QC-E QC-E_H

Annual means (◦C decade−1) +0.41 +0.42 +0.44 +0.40 −0.04 +0.05 −0.12 +0.22
10th percentile (days decade−1) −13.2 −14.4 −12.0 −11.9 +0.4 −1.0 −0.9 −5.8
90th percentile (days decade−1) +8.7 +11.0 +9.8 +9.3 +0.2 +3.7 +2.0 +8.8
FD (days decade−1) – – – – +2.9 −1.3 +1.4 −6.5

Figure 8. Trends of individual station records for maximum temperature (TX), minimum temperature (TN), and precipitation (PRCP) in
the period 1981 to 2010. Trend box plots for the complete study area and for the Altiplano (≥ 3500 ma.s.l.) are shown. Colours indicate
the different datasets that are unhomogenized and quality controlled with the standard approach (DATAQC-S), homogenized and quality
controlled with the standard approach (DATAQC-S_H), unhomogenized and quality controlled with the enhanced approach (DATAQC-E), and
homogenized and quality controlled with the enhanced approach (DATAQC-E_H). For temperature, trends are specified in ◦C per decade. For
PRCP, relative trends from 1980 to 2010 are shown (see the caption of Fig. 7 for details). The box plots show the median, the 25th and 75th
percentile, and the 1.5× IQR (whiskers).

4.4.2 Annual precipitation sums

PRCP trends are negative for most station records (Fig. 7).
The spatial pattern of trend magnitudes is more coherent if
trends are calculated from DATAQC-E_H than from the other
datasets. Despite the previous homogenization of the time
series in DATAQC-S_H, there are strong positive and nega-
tive trends of stations within a short distance. For all regions
(lowlands, valleys, and Altiplano), trends of the spatially av-
eraged anomalies are negative, particularly if derived from
DATAQC-E_H (not shown). However, these trends are barely
significant due to the high interannual variability of PRCP.

The trend spread and frequency of very strong trends is
lower in DATAQC-E than in DATAQC-S (Fig. 8). Data homog-
enization reduces the trend spread of the PRCP time series,

but considerably less than for temperature data. Overall, the
spread of PRCP trends of individual station records is rela-
tively large in all datasets.

4.4.3 Climate change indices

Trends of the median diurnal temperature range (DTR) of
all datasets are positive (Fig. 9). The spread of trends calcu-
lated from the unhomogenized datasets is large, ranging from
−1.21 to +2.17 ◦C per decade. It is lower for DATAQC-E
than for DATAQC-S, particularly on a regional scale such as
in the Altiplano (Fig. 10). However, data homogenization is
most relevant for increasing the coherency of DTR trends.
This is particularly remarkable for DATAQC-E_H in the Al-
tiplano, where individual station trends of the DTR are re-
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Figure 9. Trends of individual station records of the complete study area for the climate change indices daily temperature range (DTR),
number of cool days (TX10p), number of warm days (TX90p), number of cool nights (TN10p), and number of warm nights (TN90p) in
the period 1981 to 2010. Colours indicate the different datasets that are unhomogenized and quality controlled with the standard approach
(DATAQC-S), homogenized and quality controlled with the standard approach (DATAQC-S_H), unhomogenized and quality controlled with
the enhanced approach (DATAQC-E), and homogenized and quality controlled with the enhanced approach (DATAQC-E_H). For the DTR,
trends are specified in ◦C per decade and for the other indices in days per decade. The box plots show the median, the 25th and 75th percentile,
and the 1.5× IQR (whiskers).

Figure 10. Same as Fig. 9 but for the Altiplano stations (≥ 3500 ma.s.l.). Additionally, trends of frost days (FD) are shown.

duced to a range between +0.10 and +0.29 ◦C per decade
(Fig. 10). Besides this high DTR trend coherency derived
from DATAQC-E_H in the Altiplano, trend magnitudes are
clearly lower than those derived from the other datasets. This
manifests in an insignificant trend of the spatially averaged
anomalies of+0.23 ◦C per decade for DATAQC-E_H, whereas
the trends calculated from the other datasets are all signifi-
cant and range between +0.39 (DATAQC-S_H) and +0.54 ◦C
per decade (DATAQC-S).

The overall trend signal of the TX-based percentile in-
dices TX10p and TX90p is relatively uniform among the
different datasets, indicating a reduction in cool days and

an increase in warm days (Figs. 9 and 10). The trends
of the spatially averaged anomalies in the Altiplano calcu-
lated from the different datasets are all significant and range
between −11.9 (DATAQC-E_H) and −14.4 (DATAQC-S_H)
cool days per decade and between +8.7 (DATAQC-S) and
+11.0 (DATAQC-S_H) warm days per decade (Table 5). For
both indices, the trend magnitudes are more pronounced for
DATAQC-S_H than for DATAQC-E_H.

The median trend magnitudes of TN-based percentile in-
dices (TN10p, TN90p) are smaller than those based on TX,
and the spreads of individual station trends are larger, par-
ticularly in the Altiplano (Figs. 9 and 10). In this region,
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trend magnitudes derived from DATAQC-E_H differ substan-
tially from the other datasets (Fig. 10) by indicating a clear
warming trend in all indices (i.e. decrease in cool nights and
frost days, increase in warm nights). This is confirmed by
the trends of the spatially averaged anomalies that indicate
a significant decrease in cool nights (−5.8 days per decade)
and a significant increase in warm nights (+8.8 days per
decade; Table 5). In contrast, the trends calculated from the
other datasets are all insignificant and have lower trend mag-
nitudes. The same pattern is found for trends of the frequency
of frost days (FD). Trends calculated from DATAQC-E_H in-
dicate a significant decrease in FD (−6.5 days per decade),
whereas the trends of the other datasets are insignificant and
close to zero (Table 5).

The PRCP-based climate change indices indicate a slight
decrease in the annual contribution of very wet days
(R95pTOT) and a decreasing intensity of precipitation events
(SDII), particularly in the Altiplano. This signal is more pro-
nounced for the datasets quality controlled with the standard
method than for the datasets quality controlled with the en-
hanced approach. Trends of the spatially averaged anoma-
lies are not significant, except for the trends of SDII de-
rived from the dataset quality controlled with the standard
approach in the Altiplano, i.e. −3.1 mmday−1 (DATAQC-S)
and −2.1 mmday−1 (DATAQC-S_H) per decade. In contrast
to the indices derived from temperature data, applying the
enhanced QC approach reduces the trend spread of the
PRCP-based indices more than statistical data homogeniza-
tion. Compared to DATAQC-S, the SDs of the relative trends
in the complete study area calculated from DATAQC-S_H,
DATAQC-E, and DATAQC-E_H are 20, 40, and 50 % lower, re-
spectively.

5 Discussion

Systematically occurring data quality issues affect a large
fraction of Central Andean station records, making about
40 % inadequate for the calculation of monthly means (tem-
perature) and sums (PRCP). The frequency of such problems
may vary strongly in space and time. Systematic data qual-
ity issues remain largely undetected when applying standard
data quality control methods such as the one used for the
GHCN-Daily database. Hence, important data sources may
be substantially affected by such undetected data quality is-
sues (abbreviated as UDQIs henceforward). Including tests
to specifically detect such erroneous patterns could signifi-
cantly increase the quality of many datasets.

On a monthly timescale and up to 300 km of station dis-
tance, UDQIs cause a reduction of median correlation co-
efficients by 0.15 (TX), 0.24 (TN), and 0.11 (PRCP) com-
pared to unaffected data. On a daily timescale, this reduction
is 0.10 (TX) and 0.13 (TN) for station pairs within 300 km
of distance and 0.06 (PRCP) for stations within 100 km of
distance. These findings confirm the assumption by Gubler

et al. (2017) that the strong differences in correlation co-
efficients between station networks of the Peruvian Andes
and Switzerland may not be explained by unequal climate
regimes alone. Hypothesizing that UDQIs occur more fre-
quently in the station networks of developing than devel-
oped countries, a higher frequency of such errors can be ex-
pected in tropical areas than in mid-latitudes. Making this
assumption, UDQIs may partly explain the particularly low
correlation decay distances in the tropics described by New
et al. (2000). Using relatively high minimum correlation
thresholds in climatological analyses (e.g. data homogeniza-
tion) may reduce the amount of station records affected by
UDQIs. As a more advanced approach, weighting correla-
tion coefficients with station distances (i.e. more weight to
station pairs further away from each other for equal correla-
tion coefficients) could particularly take UDQIs into account.

UDQIs induce additional inhomogeneities in observa-
tional records. The resulting decrease in the signal-to-noise
ratio may decrease the performance of statistical data ho-
mogenization methods (Domonkos, 2013). This is particu-
larly problematic in sparse observational networks in which
a high number of break points may result in adjustments
that deteriorate the temporal consistency of station records
(Gubler et al., 2017). In the Central Andean region, UDQIs
increase the number of statistically detected break points by
about 15 % for TX and TN and by 50 % for PRCP. They also
increase the median break-point size by 35 to 40 % (TX and
TN) and 60 % (RPCP) and increase break size maxima by
up to 100 % (temperature) and 70 % (PRCP). Since UDQIs
have larger relative effects on break sizes than on the num-
ber of detected break points, they apparently deteriorate the
detectability of small non-climatic inhomogeneities.

The effect of UDQIs also manifests in the adjustment val-
ues (temperature) and factors (PRCP) resulting from the data
homogenization process. UDQIs cause a reduction in the fre-
quency of small adjustments and an increase in large adjust-
ments. They also may induce an adjustment bias. For in-
stance, the median adjustment value for TN station records in
the Altiplano is−0.5 ◦C. If the same dataset contains UDQIs,
the resulting median adjustment is +0.2 ◦C. This difference
in the adjustment could be caused in two ways. First, UDQIs
may introduce a systematic bias (a cold bias in earlier obser-
vations in this case). This would require the occurrence of
certain types of UDQIs in many station records of a dataset,
which would cause a systematic bias and strongly change
their frequency in time. For the Central Andean area, how-
ever, there is no clear indication that UDQIs meet these re-
quirements in the period 1981 to 2010. Second, UDQIs may
not introduce a bias by themselves, but they impede the de-
tection of an existing bias (warm bias in earlier observations
in the case of TN in the Altiplano) by introducing artificial
noise. Such a warm bias could have been introduced, for ex-
ample, by location changes of weather stations to systemat-
ically different sites (e.g. further away from buildings). The
second possibility seems to be the more likely cause of the
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observed adjustment differences of TN records in the Alti-
plano. Hence, UDQIs may impede the adjustments of sys-
tematic biases introduced by inhomogeneities. In summary,
UDQIs may substantially decrease the performance of statis-
tical data homogenization methods.

Between 1981 and 2010, a pronounced and relatively uni-
form increase in global mean temperatures was observed
(IPCC, 2013). Similarly, clear overall warming trends in the
same period were reported from analyses of extremes indices
(Donat et al., 2013b). Hence, 1981 to 2010 is a suitable pe-
riod for analysing linear temperature trends, and clear trend
signals may be expected in the Central Andean area too.

UDQIs increase the overall spread of individual station
trends. Statistical data homogenization may largely reduce or
eliminate this effect, but only at the cost of more and larger
break points, which lowers the performance of data homog-
enization methods. For instance, the trend spread of homog-
enized TN time series quality controlled with the standard
approach (DATAQC-S_H) is extremely small (Fig. 8). This
clearly deviates from the trend spreads observed for TX and
from the trend spread derived from DATAQC-E_H. Hence, sta-
tion trends computed from DATAQC-S_H seem rather implau-
sible and may indicate an over-homogenization. In contrast,
the low trend spread of the diurnal temperature range (DTR)
derived from DATAQC-E_H (Fig. 10) suggests that the inde-
pendent data homogenizations of TX and TN observations
are consistent with each other. Furthermore, trends calculated
from DATAQC-E_H are spatially more coherent than those
derived from DATAQC-S_H, particularly for TN and PRCP
(Fig. 7).

If datasets contain UDQIs and/or are unhomogenized, TN
trends of averaged anomalies in the Altiplano are close to
zero and insignificant, and trends of the diurnal tempera-
ture range (DTR) are strongly positive and significant at the
5 % level (Table 5). In contrast, TN trends derived from
DATAQC-E_H are significantly positive, and trends of the
DTR are insignificant. Hence, mean temperature trends in the
Altiplano are more in accordance with the global observa-
tions (IPCC, 2013) if systematically occurring data quality
issues are removed from the dataset. Nevertheless, the in-
fluence of UDQIs in station records from the Altiplano ex-
plains roughly half of the trend difference between TX and
TN. Hence, there must be other factors (climatological or
non-climatological) that cause a stronger increase in TX than
TN in the Altiplano. An indication of a climatological expla-
nation for the positive DTR trend is the simultaneously ob-
served negative PRCP trend. Several authors have described
a negative correlation between DTR and PRCP trends (Dittus
et al., 2014; Jaswal et al., 2016; Zhou et al., 2009). Hence, the
observations in the Altiplano would be in accordance with
these findings.

Since systematically occurring data quality issues espe-
cially affect extremes (Hunziker et al., 2017), UDQIs have
a stronger effect on ETCCDI climate change indices than
on trends of annual means (temperature) and sums (PRCP).

Particularly in the Altiplano, the spread of individual station
trends is usually more coherent if trends are calculated from
DATAQC-E_H than from the other datasets. For the climate
change indices derived from PRCP analysed in the present
study (R95pTOT and SDII), most very strong trends of in-
dividual time series are caused by UDQIs and cannot be ad-
justed by statistical data homogenization. Hence, highly in-
coherent spatial trend signals and strong differences in trend
magnitudes between neighbouring stations as detected in
many studies (e.g. Skansi et al., 2013; Vuille et al., 2003;
You et al., 2011) may potentially be ascribed to UDQIs.

The overall temperature trend signals derived from
DATAQC-E_H in the Altiplano are highly coherent, indicating
significant warming throughout all indices. This trend pattern
of moderate extreme events is more in accordance with the
global observations (e.g. IPCC, 2013) than the trend patterns
derived from the other datasets. Consequently, UDQIs may
at least partly explain the discrepancies of trends detected in
the Altiplano compared to most other world regions.

According to Donat et al. (2013b), gridding observations
minimizes the impact of data quality issues at individual
stations due to averaging. This, however, may not be true
if UDQIs cause systematic biases. We calculated trends of
the relevant climate change indices derived from the two
2.5◦× 3.75◦ grid cells of the HadEX2 dataset (Donat et al.,
2013b) that are most representative for the Altiplano. Over-
all, these trends in the period 1981 to 2010 are most similar
to the trends derived from DATAQC-S_H. However, the trends
of a few climate change indices derived from HadEx2 have
extreme magnitudes, such as a detected increase of +14.0
frost days per decade in one of the grid cells. Furthermore,
virtually all of these trends are insignificant due to large vari-
abilities in the annual index time series. Even though these
findings do not allow clear conclusions to be drawn, they
suggest that UDQIs affect the dataset and influence the trend
calculations.

The quantifications of the effects of UDQIs presented in
this study are rather an estimate of the lower limit, since
the enhanced QC method applied here may still not have de-
tected and removed all relevant data quality issues. Further-
more, metadata were not accessed as an information source
for QC, which may help to detect and remove additional
time series segments of inadequate quality (Hunziker et al.,
2017). The quantifications presented in this article cannot
be generalized to global datasets. The frequencies and char-
acteristics of data quality issues occurring in manned sta-
tion networks depend on various factors, such as observing
practices, the capabilities of the personnel, and data tran-
scription procedures. Furthermore, the wide range of QC
approaches applied in national weather services will detect
different fractions of errors and data quality issues. The ef-
fects of UDQIs on climatological analyses also depend on
the climate regime. For instance, missed measurements of
small precipitation events of up to a few millimetres may
only have a negligible effect on monthly sums in wet regions
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(e.g. Amazonian lowlands), whereas they may significantly
bias monthly PRCP sums in rather dry areas (e.g. Altiplano)
due to low overall PRCP and evaporation losses. As demon-
strated in this work, UDQIs have stronger effects on climato-
logical analyses derived from TN than TX observations. On
the one hand, TN is generally more variable and spatially het-
erogeneous than TX (Luhunga et al., 2014; Mahmood et al.,
2006; New et al., 1999). On the other hand, measurement
errors may occur more frequently in TN than TX. For exam-
ple, TN falls naturally more often below freezing tempera-
ture than TX, and temperature values around and below 0 ◦C
often trigger measurement errors by observers and data tran-
scription errors (Hunziker et al., 2017). Hence, the frequency
and effects of UDQIs also vary spatially and temporally.

Removing a relatively large fraction of observations (about
40 % in the present study) from a dataset may affect the re-
sults of climatological analyses. Reducing the spatial den-
sity of available data normally decreases the quality of the
results such as for data homogenization (Caussinus and
Mestre, 2004; Domonkos, 2013; Gubler et al., 2017). With
the present study, however, we have demonstrated that re-
moving time series segments affected by UDQIs increases
the overall quality of the dataset, and the results of climato-
logical analyses are consequently more coherent and reliable.
The disadvantage of fewer available observations is outper-
formed by the quality increase in the dataset.

6 Conclusions

Systematically occurring data quality issues may affect large
fractions of time series in observational datasets. In the Cen-
tral Andean area, about 40 % of the observations are inap-
propriate for the calculation of monthly temperature means
and precipitation sums. These problems remain largely un-
detected by standard quality control methods. In the present
study, we applied a standard and an enhanced quality con-
trol approach on the same dataset. The enhanced approach
should particularly detect systematically occurring data qual-
ity issues. We subsequently compared the results of various
climatological analyses derived from the dataset quality con-
trolled with the two different methods.

Undetected data quality issues (UDQIs) substantially
lower the correlation coefficients of station pairs. This di-
rectly affects various methods such as clustering or data ho-
mogenization.

The performance of data homogenization approaches de-
teriorates if time series contain UDQIs. Since UDQIs induce
inhomogeneities in time series, they increase the number and
average size of break points in the data. As a result of the in-
creased noise in the station records, the skill of statistical data
homogenization methods to detect and correct smaller inho-
mogeneities is reduced. Furthermore, data homogenization
approaches may fail to detect and correct systematic biases
caused by inhomogeneities due to UDQIs. In the Altiplano,

for instance, a median adjustment value of −0.5 ◦C for min-
imum temperature observations was detected for time series
free of UDQIs, whereas a median adjustment of+0.2 ◦C was
computed for the station records affected by UDQIs. This
warm bias in earlier TN observations may affect previous
studies using station records from the Altiplano. Hence, data
homogenization methods rely on data that are largely free of
UDQIs in order to perform satisfactorily.

Removing UDQIs from a dataset increases the spatial co-
herence and reduces the spread of individual stations trends.
Furthermore, UDQIs may systematically bias trends. For in-
stance, regional minimum temperature trends in the Alti-
plano are insignificant and close to zero if calculated from
station records affected by UDQIs, whereas trends are sig-
nificant and clearly positive if derived from time series free
of UDQIs.

Since UDQIs especially affect extremes, they are partic-
ularly problematic for analysing trends of rare events such
as for the ETCCDI climate change indices. In the Altiplano,
trends of various indices based on minimum temperature dif-
fer significantly if derived from a dataset affected or unaf-
fected by UDQIs. For some climate change indices based on
precipitation, extreme trend magnitudes at individual stations
can be corrected by previously removing UDQIs from the
dataset, but not by statistical data homogenization.

Most likely, the results of various studies are affected
by UDQIs. If quality control approaches are enhanced and
UDQIs removed, the results of climatological analyses may
become more coherent and reliable. Note that an enhanced
and comprehensive quality control cannot substitute for ap-
propriate data homogenization and vice versa.

Data availability. The DECADE database including all quality
control flags is available under http://www.geography.unibe.ch/
research/climatology_group/research_projects/decade/index_eng.
html.

The Supplement related to this article is available online
at https://doi.org/10.5194/cp-14-1-2018-supplement.

Competing interests. The authors declare that they have no con-
flict of interest.

Acknowledgements. This work is part of the project “Data on
climate and Extreme weather for the Central AnDEs” (DECADE),
no. IZ01Z0_147320, which is financed by the Swiss Programme
for Research on Global Issues for Development (r4d). It was also
supported by the EU Horizon 2020 EUSTACE project (grant
agreement 640171). We thank Peter Domonkos for the support on
ACMANT3 and Xuebin Zhang and Yang Feng for providing the

www.clim-past.net/14/1/2018/ Clim. Past, 14, 1–20, 2018

http://www.geography.unibe.ch/research/climatology_group/research_projects/decade/index_eng.html
http://www.geography.unibe.ch/research/climatology_group/research_projects/decade/index_eng.html
http://www.geography.unibe.ch/research/climatology_group/research_projects/decade/index_eng.html
https://doi.org/10.5194/cp-14-1-2018-supplement


18 S. Hunziker et al.: Effects of undetected data quality issues on climatological analyses

newest version of RClimDex. We also thank the two anonymous
reviewers for their helpful comments and suggestions.

Edited by: Volker Rath
Reviewed by: two anonymous referees

References

Aguilar, E., Auer, I., Brunet, M., Peterson, T. C., and Wieringa, J.:
Guidlines on Climate Metadata and Homogenization. in:
WCDMP No. 53, WMO/TD No. 1186, World Meteorological
Organization, Geneva, Switzerland, 2003.

Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B.,
Klein Tank, A. M. G., Haylock, M., Collins, D., Trewin, B.,
Rahimzadeh, F., Tagipour, A., Rupa Kumar, K., Revadekar, J.,
Griffiths, G., Vincent, L., Stephenson, D. B., Burn, J., Aguilar, E.,
Brunet, M., Taylor, M., New, M., Zhai, P., Rusticucci, M., and
Vazquez-Aguirre, J. L.: Global observed changes in daily climate
extremes of temperature and precipitation, J. Geophys. Res.-
Atmos., 111, D05109, https://doi.org/10.1029/2005JD006290,
2006.

Auer, I., Böhm, R., Jurkovic, A., Lipa, W., Orlik, A., Potz-
mann, R., Schöner, W., Ungersböck, M., Matulla, C.,
Briffa, K., Jones, P., Efthymiadis, D., Brunetti, M., Nanni, T.,
Maugeri, M., Mercalli, L., Mestre, O., Moisselin, J.-M.,
Begert, M., Müller-Westermeier, G., Kveton, V., Bochnicek, O.,
Stastny, P., Lapin, M., Szalai, S., Szentimrey, T., Cegnar, T.,
Dolinar, M., Gajic-Capka, M., Zaninovic, K., Majstorovic, Z.,
and Nieplova, E.: HISTALP – historical instrumental climato-
logical surface time series of the Greater Alpine Region, Int. J.
Climatol., 27, 17–46, https://doi.org/10.1002/joc.1377, 2007.

Brönnimann, S.: Climatic Changes Since 1700,
Springer International Publishing, Cham, Switzerland,
https://doi.org/10.1007/978-3-319-19042-6_4, 2015.

Cao, L.-J., and Yan, Z.-W.: Progress in research on homogeniza-
tion of climate data, Adv. Climate Change Res., 3, 59–67,
https://doi.org/10.3724/SP.J.1248.2012.00059, 2012.

Caussinus, H. and Mestre, O.: Detection and correction of artifi-
cial shifts in climate series, J. R. Stat. Soc. C, 53, 405–425,
https://doi.org/10.1111/j.1467-9876.2004.05155.x, 2004.

Costa, A. and Soares, A.: Homogenization of climate data: review
and new perspectives using geostatistics, Math. Geosci., 41, 291–
305, https://doi.org/10.1007/s11004-008-9203-3, 2009.

Dittus, A., Karoly, D., C Lewis, S., and Alexander, L.: An
investigation of some unexpected frost day increases in
Southern Australia, Aust. Meteorol. Ocean., 64, 261–271,
https://doi.org/10.22499/2.6404.002, 2014.

Domonkos, P.: Adapted Caussinus–Mestre Algorithm for Networks
of Temperature Series (ACMANT), Int. J. Geosci., 2, 293–309,
https://doi.org/10.4236/ijg.2011.23032, 2011.

Domonkos, P.: Homogenization of precipitation time series
with ACMANT, Theor. Appl. Climatol., 122, 303–314,
https://doi.org/10.1007/s00704-014-1298-5, 2015.

Domonkos, P.: Measuring performances of homogenization meth-
ods, Q. J. Hungar. Meteorol. Serv., 117, 91–112, 2013.

Domonkos, P. and Coll, J.: Homogenisation of temperature and
precipitation time series with ACMANT3: method descrip-
tion and efficiency tests, Int. J. Climatol., 37, 1910–1921,
https://doi.org/10.1002/joc.4822, 2017.

Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Vose, R.,
and Caesar, J.: Global land-based datasets for monitoring
climatic extremes, B. Am. Meteorol. Soc., 94, 997–1006,
https://doi.org/10.1175/bams-d-12-00109.1, 2013a.

Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Vose, R.,
Dunn, R. J. H., Willett, K. M., Aguilar, E., Brunet, M., Caesar, J.,
Hewitson, B., Jack, C., Klein Tank, A. M. G., Kruger, A. C.,
Marengo, J., Peterson, T. C., Renom, M., Oria Rojas, C., Rus-
ticucci, M., Salinger, J., Elrayah, A. S., Sekele, S. S., Srivas-
tava, A. K., Trewin, B., Villarroel, C., Vincent, L. A., Zhai, P.,
Zhang, X., and Kitching, S.: Updated analyses of tempera-
ture and precipitation extreme indices since the beginning of
the twentieth century: the HadEX2 dataset, J. Geophys. Res.-
Atmos., 118, 2098–2118, https://doi.org/10.1002/jgrd.50150,
2013b.

Durre, I., Menne, M. J., Gleason, B. E., Houston, T. G., and
Vose, R. S.: Comprehensive automated quality assurance of daily
surface observations, J. Appl. Meteorol. Clim., 49, 1615–1633,
https://doi.org/10.1175/2010JAMC2375.1, 2010.

Espinoza, J., Ronchail, J., Lengaigne, M., Quispe, N., Silva, Y., Bet-
tolli, M., Avalos, G., and Llacza, A.: Revisiting wintertime cold
air intrusions at the east of the Andes: propagating features from
subtropical Argentina to Peruvian Amazon and relationship with
large-scale circulation patterns, Clim. Dynam., 41, 1983–2002,
https://doi.org/10.1007/s00382-012-1639-y, 2013.

Garreaud, R. D.: Multiscale analysis of the summertime
precipitation over the Central Andes, Mon. Weather
Rev., 127, 901–921, https://doi.org/10.1175/1520-
0493(1999)127<0901:maotsp>2.0.co;2, 1999.

Garreaud, R. D.: Cold air incursions over subtropical South
America: mean structure and dynamics, Mon. Weather
Rev., 128, 2544–2559, https://doi.org/10.1175/1520-
0493(2000)128<2544:CAIOSS>2.0.CO;2, 2000.

Garreaud, R. D.: Subtropical cold surges: regional aspects
and global distribution, Int. J. Climatol., 21, 1181–1197,
https://doi.org/10.1002/joc.687, 2001.

Garreaud, R. D.: The Andes climate and weather, Adv. Geosci., 22,
3–11, https://doi.org/10.5194/adgeo-22-3-2009, 2009.

Gubler, S., Hunziker, S., Begert, M., Croci-Maspoli, M.,
Konzelmann, T., Brönnimann, S., Schwierz, C., Oria, C.,
and Rosas, G.: The influence of station density on cli-
mate data homogenization, Int. J. Climatol., 37, 4670–4683,
https://doi.org/10.1002/joc.5114, 2017.

Hunziker, S., Gubler, S., Calle, J., Moreno, I., Andrade, M., Ve-
larde, F., Ticona, L., Carrasco, G., Castellón, Y., Oria, C., Croci-
Maspoli, M., Konzelmann, T., Rohrer, M., and Brönnimann, S.:
Identifying, attributing, and overcoming common data quality is-
sues of manned station observations, Int. J. Climatol., 37, 4131–
4145, https://doi.org/10.1002/joc.5037, 2017.

IPCC: Climate Change 2013: The Physical Science Basis, in: Con-
tribution of Working Group I to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by:
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Cambridge University Press, Cambridge, UK and New York, NY,
USA, https://doi.org/10.1029/2000JD000115, 2013.

Jaswal, A. K., Kore, P. A., and Singh, V.: Trends in diurnal temper-
ature range over India (1961–2010) and their relationship with

Clim. Past, 14, 1–20, 2018 www.clim-past.net/14/1/2018/

https://doi.org/10.1029/2005JD006290
https://doi.org/10.1002/joc.1377
https://doi.org/10.1007/978-3-319-19042-6_4
https://doi.org/10.3724/SP.J.1248.2012.00059
https://doi.org/10.1111/j.1467-9876.2004.05155.x
https://doi.org/10.1007/s11004-008-9203-3
https://doi.org/10.22499/2.6404.002
https://doi.org/10.4236/ijg.2011.23032
https://doi.org/10.1007/s00704-014-1298-5
https://doi.org/10.1002/joc.4822
https://doi.org/10.1175/bams-d-12-00109.1
https://doi.org/10.1002/jgrd.50150
https://doi.org/10.1175/2010JAMC2375.1
https://doi.org/10.1007/s00382-012-1639-y
https://doi.org/10.1175/1520-0493(1999)127<0901:maotsp>2.0.co;2
https://doi.org/10.1175/1520-0493(1999)127<0901:maotsp>2.0.co;2
https://doi.org/10.1175/1520-0493(2000)128<2544:CAIOSS>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128<2544:CAIOSS>2.0.CO;2
https://doi.org/10.1002/joc.687
https://doi.org/10.5194/adgeo-22-3-2009
https://doi.org/10.1002/joc.5114
https://doi.org/10.1002/joc.5037
https://doi.org/10.1029/2000JD000115


S. Hunziker et al.: Effects of undetected data quality issues on climatological analyses 19

low cloud cover and rainy days, J. Clim. Change, 2, 35–55,
https://doi.org/10.3233/JCC-160016, 2016.

Kendall, M. G.: Rank correlation methods, Griffin, London, 1948.
Kioutsioukis, I., Melas, D., and Zerefos, C.: Statistical assessment

of changes in climate extremes over Greece (1955–2002), Int.
J. Climatol., 30, 1723–1737, https://doi.org/10.1002/joc.2030,
2010.

Kizza, M., Westerberg, I., Rodhe, A., and Ntale, H. K.: Esti-
mating areal rainfall over Lake Victoria and its basin using
ground-based and satellite data, J. Hydrol., 464–465, 401–411,
https://doi.org/10.1016/j.jhydrol.2012.07.024, 2012.

Kruger, A. C. and Sekele, S. S.: Trends in extreme temperature in-
dices in South Africa: 1962–2009, Int. J. Climatol., 33, 661–676,
https://doi.org/10.1002/joc.3455, 2013.

López-Moreno, J. I., Morán-Tejeda, E., Vicente-Serrano, S. M.,
Bazo, J., Azorin-Molina, C., Revuelto, J., Sánchez-Lorenzo, A.,
Navarro-Serrano, F., Aguilar, E., and Chura, O.: Re-
cent temperature variability and change in the Altiplano
of Bolivia and Peru, Int. J. Climatol., 36, 1773–1796,
https://doi.org/10.1002/joc.4459, 2016.

Luhunga, P. M., Mutayoba, E., and Ng’ongolo, H. K.: Homo-
geneity of monthly mean air temperature of the United Repub-
lic of Tanzania with HOMER, Atmos. Clim. Sci., 4, 70–77,
https://doi.org/10.4236/acs.2014.41010, 2014.

Mahmood, R., Foster, S. A., and Logan, D.: The GeoProfile
metadata, exposure of instruments, and measurement bias in
climatic record revisited, Int. J. Climatol., 26, 1091–1124,
https://doi.org/10.1002/joc.1298, 2006.

Mann, H. B.: Nonparametric Tests Against Trend, Econometrica,
13, 245–259, https://doi.org/10.2307/1907187, 1945.

Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Hous-
ton, T. G.: An overview of the global historical climatology
network-daily database, J. Atmos. Ocean. Tech., 29, 897–910,
https://doi.org/10.1175/JTECH-D-11-00103.1, 2012.

Mestre, O., Domonkos, P., Picard, F., Auer, I., Robin, S., Lebar-
bier, E., Böhm, R., Aguilar, E., Guijarro, J., Vertachnik, G., Klan-
car, M., Dubuisson, B., and Stepanek, P.: HOMER: a homoge-
nization software – methods and applications, Q. J. Hungar. Me-
teorol. Serv., 117, 47–67, 2013.

Morak, S., Hegerl, G. C., and Kenyon, J.: Detectable regional
changes in the number of warm nights, Geophys. Res. Lett., 38,
L17703, https://doi.org/10.1029/2011GL048531, 2011.

New, M., Hulme, M., and Jones, P.: Representing twentieth-
century space–time climate variability. Part I: Develop-
ment of a 1961–90 mean monthly terrestrial climatol-
ogy, J. Climate, 12, 829–856, https://doi.org/10.1175/1520-
0442(1999)012<0829:RTCSTC>2.0.CO;2, 1999.

New, M., Hulme, M., and Jones, P.: Representing twentieth-
century space–time climate variability. Part II: Develop-
ment of 1901–96 monthly grids of terrestrial surface cli-
mate, J. Climate, 13, 2217–2238, https://doi.org/10.1175/1520-
0442(2000)013<2217:RTCSTC>2.0.CO;2, 2000.

New, M., Hewitson, B., Stephenson, D. B., Tsiga, A., Kruger, A.,
Manhique, A., Gomez, B., Coelho, C. A. S., Masisi, D. N., Kul-
ulanga, E., Mbambalala, E., Adesina, F., Saleh, H., Kanyanga, J.,
Adosi, J., Bulane, L., Fortunata, L., Mdoka, M. L., and La-
joie, R.: Evidence of trends in daily climate extremes over south-
ern and west Africa, J. Geophys. Res.-Atmos., 111, D14102,
https://doi.org/10.1029/2005JD006289, 2006.

Plummer, N., Allsopp, T., and Lopez, J. A.: Guidelines on
Climate Observations Networks and Systems, in: WCDMP
No. 53, WMO/TD No. 1186, World Meteorological Organiza-
tion, Geneva, Switzerland, 2003.

Quintana-Gomez, R. A.: Trends of maximum and mini-
mum temperatures in northern South America, J. Cli-
mate, 12, 2104–2112, https://doi.org/10.1175/1520-
0442(1999)012<2104:TOMAMT>2.0.CO;2, 1999.

Rhines, A., Tingley, M. P., McKinnon, K. A., and Huy-
bers, P.: Decoding the precision of historical temperature
observations, Q. J. Roy. Meteorol. Soc., 141, 2923–2933,
https://doi.org/10.1002/qj.2612, 2015.

Ribeiro, S., Caineta, J., and Costa, A. C.: Review and discussion
of homogenisation methods for climate data, Phys. Chem. Earth,
94, 167–179, https://doi.org/10.1016/j.pce.2015.08.007, 2016.

Rosas, G., Gubler, S., Oria, C., Acuña, D., Avalos, G., Begert, M.,
Castillo, E., Croci-Maspoli, M., Cubas, F., Dapozzo, M.,
Díaz, A., van Geijtenbeek, D., Jacques, M., Konzelmann, T.,
Lavado, W., Matos, A., Mauchle, F., Rohrer, M., Rossa, A.,
Scherrer, S. C., Valdez, M., Valverde, M., Villar, G., and
Villegas, E.: Towards implementing climate services in Peru
– the project CLIMANDES, Climate Services, 4, 30–41,
https://doi.org/10.1016/j.cliser.2016.10.001, 2016.

Sen, P. K.: Estimates of the regression coefficient based
on Kendall’s Tau, J. Am. Stat. Assoc., 63, 1379–1389,
https://doi.org/10.2307/2285891, 1968.

Skansi, M. d. l. M., Brunet, M., Sigró, J., Aguilar, E., Arevalo
Groening, J. A., Bentancur, O. J., Castellón Geier, Y. R., Cor-
rea Amaya, R. L., Jácome, H., Malheiros Ramos, A., Oria Ro-
jas, C., Pasten, A. M., Sallons Mitro, S., Villaroel Jiménez, C.,
Martínez, R., Alexander, L. V., and Jones, P. D.: Warming and
wetting signals emerging from analysis of changes in climate ex-
treme indices over South America, Global Planet. Change, 100,
295–307, https://doi.org/10.1016/j.gloplacha.2012.11.004, 2013.

Theil, H.: A rank-invariant method of linear and polynomial regres-
sion analysis, Indag. Math, 12, 85–91, 1950.

Trewin, B.: Exposure, instrumentation, and observing practice ef-
fects on land temperature measurements, WIRES Clim. Change,
1, 490–506, https://doi.org/10.1002/wcc.46, 2010.

Trewin, B.: A daily homogenized temperature data
set for Australia, Int. J. Climatol., 33, 1510–1529,
https://doi.org/10.1002/joc.3530, 2013.

Venema, V. K. C., Mestre, O., Aguilar, E., Auer, I., Guijarro, J.
A., Domonkos, P., Vertacnik, G., Szentimrey, T., Stepanek, P.,
Zahradnicek, P., Viarre, J., Müller-Westermeier, G., Lakatos,
M., Williams, C. N., Menne, M. J., Lindau, R., Rasol, D.,
Rustemeier, E., Kolokythas, K., Marinova, T., Andresen, L.,
Acquaotta, F., Fratianni, S., Cheval, S., Klancar, M., Brunetti,
M., Gruber, C., Prohom Duran, M., Likso, T., Esteban, P., and
Brandsma, T.: Benchmarking homogenization algorithms for
monthly data, Clim. Past, 8, 89–115, https://doi.org/10.5194/cp-
8-89-2012, 2012.

Vera, C. S. and Vigliarolo, P. K.: A diagnostic study
of cold-air outbreaks over South America, Mon.
Weather Rev., 128, 3–24, https://doi.org/10.1175/1520-
0493(2000)128<0003:adsoca>2.0.co;2, 2000.
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