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ABSTRACT. Hurricanes act as large external shocks potentially causing considerable
damage to agriculture in the Caribbean. While a number of studies have estimated their
historic economic impact, arguably the wider community and policy makers are more
concerned about their future risk and potential losses, since this type of information is
useful for disaster preparedness and mitigation strategy and policy. This paper imple-
ments a new approach to undertaking a quantitative wind risk and loss assessment of
agriculture in Caribbean island economies. The authors construct an expected loss func-
tion that uses synthetically generated, and historical, hurricane tracks within a wind field
model that takes cropland exposure derived from satellite data into consideration. The
results indicate that expected wind losses are potentially large but vary considerably
across the region, where the smaller islands are considerably more likely to be negatively
impacted. Moreover, we find that the structure of the agricultural sector can be important
in terms of vulnerability.

1. Introduction
The potential for destruction from hurricanes in the Caribbean as indicated
by past events arguably leads to the desire to conduct some sort of risk
assessment so that estimates of expected return periods and anticipated
damages can aid in choosing appropriate disaster prevention and mitiga-
tion strategies. However, while there are a number of papers that focus on
hurricane risk and loss assessment for the United States (Pielke et al., 2008;
Emanuel, 2011; Mendelsohn et al., 2012), to date there are only a handful
that provide evidence of the hazard risk in the Caribbean. For instance,
Trepanier (2012) only provides evidence of a greater likelihood of increased
hurricane activity for very large areas within the Caribbean. Similarly, the
OAS (1999) provides a limited number of return period maps for the entire
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Environment and Development Economics 85

region, allowing for no clear country-specific assessment. This paper esti-
mates hurricane wind induced expected losses in the agriculture sector of
Caribbean island economies.

While hurricane strikes can cause damages across all sectors of
Caribbean island economies, arguably agriculture is particularly vulner-
able. More specifically, hurricanes induce losses to crops and livestock
through excessive winds and associated factors (Crowards, 2000; Benson
and Clay, 2001), and these factors may also have more long-term implica-
tions, as crops and arable land often require time to recover and mature.
For instance, in 2004 Hurricane Ivan downed 80 per cent of nutmeg trees
in Grenada, resulting not only in short-term destruction of existing crops,
but also in long-term consequences for the industry, since nutmeg trees
typically take 7–9 years before their first harvest and reach full maturity
for production only after 20 years (International Trade Centre, 2010). Sim-
ilarly, Benson and Clay (2001) have shown that the agricultural sector in
Dominica failed to recover to pre-hurricane production levels after each
major hurricane over the period 1979–1995. Importantly in this regard,
most Caribbean economies are significantly dependent on agriculture,
making them potentially susceptible to hurricane-induced agricultural
losses. For example, agriculture’s value added to GDP was on average
7 per cent for the region in 2012, and as high as 24 per cent (Dominican
Republic).

In trying to assess what the future losses to agriculture across Caribbean
islands might be, the infrequency of particularly extreme storms over time
and space makes direct inference solely based on historical events prob-
lematic (Emanuel and Jagger, 2010). More specifically, despite the fact that
hurricane track data are available from as far back as 1855, the actual
number of historical hurricane events is not sufficient to derive a reli-
able probability distribution for individual islands. Moreover, even if the
numbers were sufficient, the weather driving tropical storm formation is
unlikely to have been stable over the last 160 years, and thus using these
tracks to forecast future losses due to hurricanes may not be suitable.

A recent, statistically deterministic method consists of generating a large
set of synthetic hurricane events on the basis of existing meteorological
data within a coupled ocean–atmosphere tropical storm model, to derive
a probability distribution. We follow this approach and employ a large
set of synthetic tracks generated using the methodology of Emanuel et al.
(2008) in accordance with weather patterns over recent years. This allows
us to derive a distribution of hurricane winds across the Caribbean accord-
ing to the recent climate. Using these tracks within a wind field model
and spatially gridded data on the location of cropland, we are able to
derive return periods of potentially damaging storms across Caribbean
islands for the near future. We combine these probabilities with an agri-
cultural loss function estimated from historical data to derive expected
losses across countries. As such, our paper provides for the first time a
hurricane expected loss assessment for Caribbean agriculture, and does so
explicitly on a country-by-country basis. That is, while previous studies
have provided estimates of hurricane return periods for the region, these
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have been at a more spatially aggregate level. Moreover, they have not cal-
culated expected agricultural losses. Nevertheless, it must be pointed out
that our analysis here does not allow for future adaptation and thus should
be viewed as an estimate of the upper bound of losses.

The rest of the paper is organized as follows. Section 2 outlines our risk
and loss assessment methodology. Section 3 describes the hurricane data
used. Section 4 summarizes our agricultural data. Section 5 gives the results
of our empirical analysis. Section 6 concludes the paper.

2. Risk and loss assessment methodology
Our main goal is to calculate expected losses and related hurricane wind
risk concepts for Caribbean agriculture due to hurricane strikes. As is com-
mon in the literature (Emanuel, 2005), we model losses as a function of
hurricane wind speed, defined for convenience as V . While rule of thumb
practice is to classify possible damages due to hurricanes by a particu-
lar storm’s maximum wind speed, it is important to note that, even for
a given storm with a given maximum wind speed, the winds experi-
enced, and hence implied losses, can differ considerably across locations
within islands at any point in time. One thus ideally needs to model wind
speed locally (rather than using the maximum wind speed per storm)
to take account of this heterogeneity.1 We hence consider here a set of
Caribbean island economies, j = 1, . . ., M , as consisting of an ensemble of
individual land masses where, on some subset of which, say, i = 1, . . . , Nj ,
agricultural-related activity occurs. The expected total agricultural losses
due to hurricanes of island economy j at any point in time are thus
assumed to be:

E(L(V )) j =
N j∑

i=1

V∫
V

L(Vi, j )d fV i, j (Vi, j )dVi, j for j = 1, . . . , M, (1)

where L is an agricultural hurricane loss function, V is some lower thresh-
old of wind speed below which losses are negligible, V is the theoretical
upper threshold of possible hurricane wind speeds, and f (Vi, j ) is the
probability density function of Vi, j for location i in island j .

Our challenge here is to estimate island economy-specific expected losses
with (1), given available data. More specifically, we will need the following
inputs. First, a set of local, preferably as disaggregated as possible, agri-
cultural areas, i = 1, . . ., N within islands. Secondly, we have to estimate
the probability density functions across the range of damaging hurricane
speeds, V to V , for our set of agricultural land masses. Finally, we need to
specify an agricultural loss function.

In terms of identifying agricultural areas, we detail our data sources
for this in the following section, while our estimation of the probability

1 See, for instance, Strobl (2011, 2012b), who show the importance of taking account
of differences in local wind speeds in terms of capturing the potential damages of
hurricanes.
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distribution functions is based on a set of synthetically generated storms
outlined in section 4. However, even for a given synthetic storm, one still
needs to estimate local wind speeds, as noted earlier. In this regard, we fol-
low Strobl (2012b) and employ a wind field model to generate wind speeds
experienced at any point within islands due to a storm. More specifically,
to calculate the wind speed experienced due to a hurricane at any point
P = i in island j at any time t , i.e., Vi jt , we employ the Boose et al. (2004)
version of the well-known Holland (1980) wind field model:

Vijt = G F

[
Vm, j t − S

(
1 − sin(Tijt)

) Vh, j t

2

]

×
[(

Rm, j,t

Rit

)B jt

exp

(
1 −

[
Rm, j,t

Ri t

]B jt
)] 1

2

, (2)

where Vm is the maximum sustained wind velocity anywhere in the hurri-
cane, T is the clockwise angle between the forward path of the hurricane,
and a radial line from the hurricane center to the point of interest P = i ,
Vh is the translation speed of the hurricane, Rm is the radius of maxi-
mum winds, and R is the radial distance from the center of the hurricane
to point P . The remaining variables consist of the gust factor G and the
scaling parameters F, S and B, for surface friction, asymmetry due to the
forward motion of the storm, and the shape of the wind profile curve,
respectively.

Finally, we need to specify an agricultural loss function for the
Caribbean. Unfortunately, as far as we are aware, there are no existing loss
functions we could use in this regard. We thus resort to using historical
data on hurricanes and agricultural production, also described in sections
3 and 4, respectively, to estimate the likely relationship between losses and
experienced wind speeds for the Caribbean region.2 Our starting point fol-
lows Emanuel (2005, 2011) and assumes, on energy dissipation grounds,
that damages should vary with the cubic power of wind speed above some
threshold. More specifically, for any point i on island j we use Emanuel’s
(2005) power dissipation index to measure the potential destruction of a
storm as:

PDIi j =
∫ R

s=1
V 3

i, j,s ds for Vi, j > V , (3)

where V is the locally measured wind speed as constructed from the wind
field model, and R is the lifetime of the storm as accumulated over time
intervals s. This index can be used in our context to obtain an estimate of
the potential damage of a hurricane at a particular spatial locality in terms
of wind speed units, and subsequently at the island level by summing
its value for a storm over locations within an island. As a lower thresh-
old of wind speed below which damage is likely to be negligible, i.e., for

2 One should note that here, for the sake of simplicity, we will be assuming that the
loss function is the same across all island economies.
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V ≤ V , we here and throughout our analysis use the lower threshold of
the lowest of the Saffir–Simpson hurricane classification categories, namely
119 km/h.

To translate a unit of potential damage into likely agricultural production
reduction, we employ the following general regression model specification:

AGRICULTURE j,t = α + �T
s=0βt−s PDI j,t−s + μ j + λt + ε j,t , (4)

where AGRICULTURE denotes agricultural production for island j in
year t , and PDI is the island-specific index of potential hurricane destruc-
tion in (3), summed over islands for historical storms over the period t .
The estimated set of coefficients β on PDI serves to translate a unit of PDI
into losses in agricultural production, where we allow for the possibility
that a hurricane may have more than just an immediate impact through
lagged values of PDI. The vector μ consists of a set of island-specific indi-
cator variables that allow us to control for any unobserved time-invariant
island-specific factors that determine agricultural production, but may also
be related to anticipated time-invariant hurricane distribution character-
istics in island j , and hence the exclusion of which may result in biased
estimates of β. For example, islands that are on average hit by more hurri-
canes may be more likely to plant crops that are more hurricane resistant.
In the implementation of (4), the vector of μ is purged from the equation
by taking deviations of means of all variables. The vector of time-specific
indicator variables λ serves to control for unspecified time-varying factors
common to all islands also potentially correlated with hurricane destruc-
tion, where these are implemented as a set of zero-one indicator variables.
Examples might include a decline in agricultural production across the
region due to competition in the market from other parts of the globe.
Finally, α is a common intercept, while ε is a standard unexplained random
error term.

Our estimated β allows us, for any storm with wind speeds V , to calcu-
late the expected losses in agricultural production, i.e., to approximate the
losses for country j , as:

L(V ) j t = �N
i=1�

T
s=0βt−sPDIijt−s . (5)

The expected losses to agriculture due to hurricanes as approximated by
(5) bring together a number of different aspects. More specifically, it takes
the local wind speeds during a storm derived from a wind field model,
translates these into energy dissipation, aggregates total energy dissipa-
tion at the island level, and finally translates these into agricultural losses
from the estimated historical relationship between energy dissipation and
agricultural production.

We can also calculate other potentially insightful and related risk and
loss factors. For instance, the return period, RP, of a damaging hurricane in
island j is simply:

RP j = 1∫ �V
V d fVj (Vj )dVj

, (6)
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and the expected losses conditional on damaging hurricane occurrence, EC,
are:

EC(L(V )) j =
N j∑

i=1

�V∫
V

L(Vij)dVij for j = 1, . . . , M. (7)

It is important to point out at this point that, in its strictest interpreta-
tion, our proxy in (7) is only measuring damage to agriculture as caused
by wind. Our reliance solely on wind speed as an indicator, ignoring other
damage characteristics of storms, such as storm surge or excess rainfall,
is because of the lack of data availability, a limitation that was faced by
other studies on the impact of hurricanes on agriculture (Chen and McCarl,
2009; Israel and Briones, 2012). In this regard, one should point out that
the extent of storm surge is known to be related to the wind strength of a
storm (Emanuel, 2011). In contrast, there appears to be no direct relation-
ship between storm intensity as measured by maximum wind speed and
rainfall during the storm. However, it has been found that both winds and
precipitation are highest nearer to the eye of the storm (Riehl, 1954). Since
we are modeling wind across the space of a storm using a wind field model,
higher winds within our wind field model are also likely, at least to some
extent, to be correlated with greater rainfall.

Before proceeding to the description of our data and results, an impor-
tant caveat needs to be pointed out regarding our analytical framework.
Specifically, one should note that our use of historical data to estimate the
reaction of agricultural production to hurricane strikes, i.e., β, makes a
number of restrictive assumptions regarding adaptation. First, by restrict-
ing β to be homogeneous over time, we are implicitly assuming that there
was no significant adaptation over the historical time period. Secondly, by
assuming that β is appropriate for calculating future losses, we are also
supposing that there is no future adaptation. Clearly, if countries adapt to
try to mitigate the impact of hurricanes on agricultural production, then
our estimate of losses is likely to serve only as an upper bound on actual
future losses.

3. Hurricane data
3.1. Hurricane risk modeling
Hurricane risk assessment models can be broadly divided into the tradi-
tional single site probability models and the more recent hurricane track
modeling using statistical deterministic methods (Vickery et al., 2000). In
traditional probabilistic models, location-specific statistics of key hurri-
cane parameters are first estimated using historical storm track data. An
extreme value distribution is then selected and fitted typically to the maxi-
mum wind speeds of a hurricane approaching a specific location of interest,
allowing the calculation of probabilities of annual occurrence of storms of
a given wind speed strength via Monte Carlo methods. Importantly, how-
ever, single site probability models are typically only valid for a specific
location or a small region, given that they use site-specific tropical cyclone
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parameters. Also, since these models use historical hurricane tracks, they
assume that the intensity evolution of the hurricane is independent of the
particular track taken. Moreover, since the historical data contain only a
few very strong hurricane strikes, the estimated probabilities can be very
sensitive to the tail of the assumed distribution, making direct inference
fairly unreliable, particularly for regions that experience infrequent storms
(Emanuel et al., 2008).3

To address some of the weaknesses of the single site models, Vickery et al.
(2000) pioneered the hurricane track modeling method, which models the
entire track of a given tropical cyclone from its formation over the sea
to its final dissipation as it makes landfall, using empirical global distri-
butions of relative intensity in conjunction with climatological values of
potential intensity to derive local intensity distributions. This allowed for
the modeling of hurricane risk via generating synthetic tracks for large
geographic areas, such as the entire coastline of the US. More recently,
Emanuel et al. (2008) built on the approach of Vickery et al. (2000) in gen-
erating synthetic tracks, but instead used a random hurricane track model,
together with a deterministic approach, to model the hurricane intensity
over the period of formation to dissipation. More precisely, hurricane tracks
are generated from a random draw using a space time probability density
function of tropical cyclone formation locations derived from the National
Hurricane Centre’s (NHC) data from 1970 onward (the year they consider
the global satellite detection of tropical cyclones to be complete). Using
information such as sea surface temperature and humidity together with
historical storms, the model is able to trace the strengthening and weaken-
ing of hurricanes as they progress along the modeled tracks, but without
using statistical models to model the changes in hurricane intensity as in
traditional models. Once the synthetic tracks have been produced, a deter-
ministic numerical simulation of hurricane intensity along each synthetic
track is used to determine maximum wind speed and radius of maximum
winds using the model developed by Emanuel et al. (2004). A filter is then
applied to the tracks to select those coming within a specified distance of
the location of interest. For each location of interest, the intensity model can
then produce probabilities as a function of wind speed for that location.4

3.2. Synthetic hurricane tracks
In this paper we use the synthetic tracks generated with the Emanuel et al.
(2008) approach as a basis for the hurricane risk assessment. In this regard,
Kerry Emanuel kindly implemented this methodology to generate for us
4,000 hurricane strength storms traversing the Caribbean region on the

3 The weakness of limited data points at the tails of the distribution was partially
circumvented by using empirical global distributions of relative intensity in con-
junction with climatological values of potential intensity to derive local intensity
distributions, although this approach is not suitable when tropical cyclones move
into regions of small or vanishing potential intensity (Emanuel et al., 2008).

4 The model was validated through comparisons with models that estimated
maximum winds with the NHC best track data.
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basis of yearly weather data (wind, sea surface temperature, air temper-
ature and humidity) observed over the 1980–2010 period. Thus we have at
hand a large set of possible hurricanes in the Caribbean that might form
if the weather were to remain similar to that of the last 30 years. For each
of these storms, the model provides, for every two hours of the storm’s
lifetime, the location of the eye, the maximum wind speed, the forward
velocity, the central pressure, and the radius of maximum wind speed.
For our set of storms the maximum wind speed varies between 119 and
314 km/h, with a standard deviation of 36 km/h.

In order to generate a large set of synthetic tracks from which we can
calculate probabilities, we followed the approach by Emanuel (2011). More
specifically, we took each of our 4,000 synthetic storms and assumed that
the probability of each year’s weather over the 1980–2010 period is equally
likely to occur. To then generate a set of hurricane events specific to a year’s
climate, we randomly picked a year and used a Poisson distribution to
randomly draw a number of storms from that year’s set, according to the
expected frequency of events of that year as given by the data. This was
done 100,000 times, generating a total of 271,065 storms, for each of which
an annual probability of occurrence can be calculated. Note that the aver-
age maximum wind speed of this sample is slightly larger than the base
data set, standing at 164 km/h. This derives from the fact that the proba-
bility of being drawn into the simulated set is not equal across storms but
depends on the year of the climatic data, as determined by the underlying
model from which they were generated. In order to demonstrate the spa-
tial variability of storms in our simulated set, we divided the Caribbean
region into 100 km cells and calculated the probability that a storm would
pass over each cell, the graph of which is given in figure A1 in the online
appendix available at https://doi.org/10.1017/S1355770X16000176. As is
clear, there is considerable variability in storm activity across the region
and within islands.

Since we will be using synthetic tracks generated from climate models
according to relatively recent weather, it is of course important to con-
sider how informative such tracks are for making predictions of hurricane
damage in the future. In this regard, note that recent research by Emanuel
(2011) using a number of climate change scenarios under the same model
has shown that any global warming signal is unlikely to emerge before
40 years, and even changes in probability are not likely to occur before 25
years. One can thus view our risk predictions using the synthetic tracks
generated from the 1980–2010 climate as probably being indicative of hur-
ricane damages in the more immediate future, i.e., less than 25 years, but
not in the longer term.

3.3. Historical hurricane data
Estimation of the translation parameter in (4) for our loss function requires
the use of historical hurricane tracks, since we are inferring it from esti-
mating the observed relationship between agricultural production and
hurricanes. These are taken from the NHC ‘best track’ data set over the
period 1980–2010, which consists of six-hourly reports of storm positions
and maximum wind speeds of all known tropical cyclones in the North
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Atlantic Basin. We interpolated these into two-hour segments to be in line
with our synthetic track data reporting frequency. Overall there were 123
storms that traversed the Caribbean and we depict these in figure A2 in the
online appendix.

3.4. Implementation of wind field model on synthetic and historical hurricane
tracks
We employ the wind field model on each storm described in section 2 to
determine local wind speeds experienced for a particular location. In terms
of implementing (2), note that Vm is given by the synthetic storm track data,
Vh can be directly calculated by following the storm’s movements between
locations, and R and T are calculated relative to the point of interest P = i .
All other parameters have to be estimated or assumed. In this regard, it
should be noted that we have no information on the gust wind factor G.
However, a number of studies that have measured it explicitly suggest that
it will generally vary around 1.5 (Paulsen and Schroeder, 2005), which is
also the value used by Boose et al. (2004), and hence we similarly assume it
to be 1.5.

There is also no explicit information on the surface friction to directly
determine F . However, in the studies cited in the Review of Tropical Storm
Hazard Modeling, Vickery et al. (2009) suggested that the reduction factor
was about 0.7 in open water, about 0.14 on the coast, and 0.28 50 km inward.
Thus, we adopted a reduction factor that linearly decreased within this
range when considering points i further inland from the coast. As in Boose
et al. (2004), we assume that S takes a value of 1.

In terms of the remaining parameters, Vickery and Wadhera (2008) noted
that the parameters of radial pressure profile parameter B and the radius of
maximum winds play an important role in estimating local wind speeds.
While the synthetic track data provide a measure of the radius of maxi-
mum wind speed, an estimate of the value of B is needed. We employed
Holland’s (1980) approximation method to generate an estimate of B.

4. Agricultural data
4.1. Agricultural areas
The most comprehensive and reliable global database regarding the per-
centage of land area that is cropland, as derived from national sources,
is the United Nations Food and Agriculture Organization (UNFAO) data.
Unfortunately, however, these data do not provide the spatial distribution
of cropland within countries. Moreover, there are no other consistent and
comprehensive locally derived maps of agricultural areas available for the
islands in the Caribbean. An alternative is thus to identify agricultural
areas in a country using gridded spatial maps derived from informa-
tion obtained from earth observation satellite data, such as the Global
Land Cover 2000 (GLC, 2000) database.5 As a matter of fact, there are

5 Examples of such data sets include the United States National Land Cover
Database, the South Africa National Land Cover Database and GLC 2000.
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now numerous researchers and government agencies that use such data
to determine agricultural areas, and more specifically agricultural crop-
land, across the globe.6 All data of these types are mainly based on using
satellite-derived spectral reflectance data to measure vegetation growth at
a spatially detailed gridded level in order to classify local land areas as
cropland and other land cover categories.

While such remote sensing derived databases conveniently provide
researchers and policy makers with relatively detailed maps of cropland
within countries when there is often no other alternative, there are a
number of complicating factors that will inevitably introduce measure-
ment error into the identification process. These include differences across
countries in terms of crop management practices, crops planted, and his-
torical, political, social and technological factors, as well as more general
misclassifications.7 To highlight the potential importance of the possible
measurement error in using land cover data for the Caribbean, we cal-
culated the percentage of cropland in the Caribbean as taken from the
UNFAO database (which are derived from national non-satellite sources)
and that inferred by the GLC database, in which cropland is identified
as belonging to (i) cropland, (ii) mosaic of cropland/shrub or herbaceous
cover, and (iii) mosaic of cropland/tree cover/other natural vegetation
land categories. For some countries there are large discrepancies in the per-
centage of land classified as cropland, where on average the percentage
point difference is 13.6 with a standard deviation of 11.9. This can be seen
in table A1 in the online appendix. Perhaps most alarmingly, many of the
smaller islands according to the GLC 2000 data have zero cropland, beg-
ging the question of how suitable the GLC 2000 may be for these territories
and hence for the task at hand in this study.

Of course, the GLC 2000 is just one of several remote sensing derived
land cover databases available. Each differs in their vegetation growth
information source, classification algorithms and period of analysis. In a
recent study, Pittman et al. (2010) used an innovative approach to com-
bine several land classification products, as well as other data sources,
to determine the probability with which vegetation growth derived from
the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the
Terra satellite is able to predict cropland across the globe. The authors
calculated the Normalized Vegetation Index (NDVI) for 250 megapixels
from the MODIS spectral bands for the period 2000–2008 and then used
a classification tree analysis and other land cover products8 to derive prob-
abilities of cropland predicted by the satellite-measured vegetation growth
for 1 km gridded spatial land areas. These probabilities were then used to

6 Examples of scientific studies that include agencies using satellite-derived crop-
land maps are, for instance, the UNFAO, GIEWS, FEWS and USAID.

7 See Pittman et al. (2010) for a discussion of these issues.
8 These were Geocover Land Cover Product, the UNFAO AfriCover, the USDA

National Agricultural Statistics Service Cropland Data Layer, the US National
Land Cover Database, the Agricultural and Agri-Food Canada, the South Africa
State of the Environment and the European CORINE Land cover data sets.
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derive country-specific threshold probabilities of cropland existence for a
grid cell. While they show that this procedure is fairly successful for large
countries and for the regions of Africa, Europe, Central Asia, South East
Asia and Latin America, examining their gridded cropland identification
for Caribbean islands suggests a similar lack of ability to identify cropland
in the smaller islands. Less than half of these island economies had any
cropland at all at the 1 km level with their chosen threshold of 0.6, as can
be seen in online table A1.

An obvious option to identify enough cropland areas within islands to be
congruent with UNFAO data would have been to simply set the threshold
for each island lower than the 0.6 chosen by Pittman et al. (2010), under the
assumption that higher probability cells are indeed more likely to contain
cropland compared to lower probability ones. However, for some islands
there were not enough non-zero cells available so that we would have
had to arbitrarily choose cropland areas among the zero probability cells
for at least some parts of the islands in this regard. In order to identify
cropland not found under these data sets, we make use of other avail-
able gridded information that may be correlated with whether a given
area is cropland or not. In particular, arguably specific economic aspects
such as the population density, as well as geographical features like ele-
vation, slope and distance to the shore, may also provide some predictive
power as to whether an area is likely to have cropland. We thus assem-
bled available potentially relevant spatial characteristics at the 1 km grid
level within Caribbean islands as possible predictive factors for cropland
location, namely: population density, neighborhood population density,
elevation (relative to the sea level), gradient slope of the land, and the
distance to the shoreline. These predictive factors are derived from two
sources. First, in order to proxy population density, we used gridded night-
light imagery as provided by the Defense Meteorological Satellite Program
(DMSP), which makes available annual nightlight intensity values at the
1 km grid cell level across the globe. As a measure of neighborhood pop-
ulation intensity, we simply calculated the average value of intensity for
all neighboring cells in 2010.9 The source for the calculation of the ele-
vation and slope gradient of land is the gridded Global 30-Arc-Second
(GTOPO30) elevation data set from the US Geological Survey’s website
(http://rda.ucar.edu/).

With our predictive factors at hand, we next regressed the probability
values of the 1 km grid cells as derived from the Pittman et al. (2010) data
on these, thus allowing us to assess how well these features can predict
the probability of cropland of the data. One should note that we included
squared values of all these predictive factors in order to allow for poten-
tial nonlinear relationships. Additionally, we also included the longitude
and latitude of the cells and distance to the shoreline, as well as coun-
try indicator variables to capture unobserved country-specific effects. Since

9 See, for instance, Small (2004) as an example of the use of nightlight intensity as a
proxy for population density.
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the dependent variable varies between 0 and 1, we used a fractional Probit
model as outlined by Papke and Wooldridge (2008) as our estimator.

The results of estimating of our fractional Probit model are given in
table A2 in the online appendix.10 All factors, except nightlight squared,
significantly act to predict the probability of cropland and the sign of their
coefficients are generally what one would probably expect to be correlated
with the presence of cropland. More specifically, those areas directly on the
coast are less likely to be cropland. In contrast, the higher a grid cell level
is above sea level, the higher the probability is that it is classified as crop-
land in the Pittman et al. (2010) database, although at a decreasing rate.
A greater slope is also less likely to predict cropland presence, although
again at a decreasing rate. More populated areas, as proxied by night light
intensity, reduce cropland probability in a linear manner. Unsurprisingly,
this indicates that the more densely populated an area is, the less likely
there is to be cropland located in it. Greater night light intensity in nearby
areas, in contrast, predicts a greater probability of cropland presence at a
decreasing rate, suggesting nevertheless that agriculture is located not too
far from populated areas. The results on nightlight would suggest that,
although cropland is less likely to be directly located in populated areas,
it is nevertheless more probable not too far away from them. Given the
insignificance of night light intensity squared, we re-ran the specification
without this variable. As can be seen from the second column in online
table A2, the results on the other variables do not change in any noticeable
manner.

We next used these regression results to calculate the predicted proba-
bility of cropland presence as suggested by the explanatory factors. This
predicted probability was then utilized as additional information to iden-
tify cropland cells within countries so that suggested total cropland area
within an island was in congruence with the national figures reported in
the first column of table A1. The Pittman et al. (2010) probability values
of cells served to determine the base classification rule for each country.
In this regard, for each individual country we ordered positive probabil-
ity cells and identified the higher probability cells as cropland until the
suggested cropland area was equal to that of the actual cropland area as
recorded in the UNFAO data. In cases where there were not enough pos-
itive probability cells to fulfill this requirement, we then ranked the zero
probability cells according to their predicted probability, as calculated from
the fractional Probit regression, and classified the higher probability cells
as cropland until the total identified cropland area was equal to that of the
national figure from the UNFAO data. This involved classifying 884 zero
probability cells as more likely to have cropland than other zero probability
cells. We show the cropland area for the islands in our sample in figure A3
in the online appendix.

10 We investigated whether our model might be plagued by multi-collinearity by
examining the correlation matrix of our variables as well as conducing variance
inflation factor tests, but found no evidence of such.
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4.2. Agricultural production
Our translation parameter of the wind loss function requires historical agri-
cultural production data to be estimated. Given that our spatial agricultural
areas are in terms of cropland, we also measure agriculture production
in terms of cropland production, for which the data were taken from the
UNFAO database. In this regard, the UNFAO provides annual data on
13 island economies for the Caribbean. Given that our synthetic tracks
are generated under 1980–2010 weather conditions, we restricted the time
period we used to the 1980–2010 period, as available. A list of the coun-
tries used and their total crop production in 2010 are given in table A3
in the online appendix. Agricultural cropland production and its impor-
tance to total country-level GDP differs considerably within the Caribbean.
Additionally, there is some heterogeneity in the main type of crops pro-
duced. While most of the countries are dependent on tree crops, namely
sugar, banana, coconut, mango, melon and nutmeg, in the case of Dominica
and St. Vincent and the Grenadines, roots crops (yam and sweet potato)
together with tree crops constitute a main crop produced.

5. Results
With the methodology and data sets outlined in the previous sections, we
can now proceed to undertake a risk assessment of the Caribbean. We first
use our synthetic tracks to calculate probabilities of local wind speeds expe-
rienced, i.e., to approximate the probability density function f (Vij) from
(1). That is, we take each of our 4,000 storms and then, for each cropland
grid cell in an island, use the wind field model described above to calcu-
late the local wind speed experienced by each storm, where we classify
values above 119 km/h as potentially damaging. We can then use our sim-
ulated set of tracks, generated as outlined in section 3.2, to generate f (Vij).
We depict the distribution of return periods, which is just the inverse of
the probability of occurrence, across all our cropland cells in the Caribbean
in figure A4 in the online appendix, as well as listing them by island in
table 1. As can be seen, there is a large variation across cropland cells within
the Caribbean, with most of the density being around 40 years. It should
be noted that this is not just due to variation across island economies. A
look at standard deviations of return periods within islands shows that
particularly in large countries, such as Haiti and Cuba, the difference can
be as large as 63 years. Even within the smaller islands, like St Lucia, the
standard deviation is close to four years.

Our local probabilities can next be used to generate country-specific
return periods by considering the probability of at least some destruction
for each synthetic storm and its associated likelihood of occurrence as in
(6). As can be seen from table 1, the average return period for a damag-
ing hurricane in the Caribbean is 13 years. However, looking across islands
one sees that there is large variability in this regard. For instance, Cuba’s
return period is as low as two years. Other countries for which one would
expect a damaging hurricane to occur within at least every 10 years are
Dominica, Haiti, the Bahamas, Trinidad and Tobago, and Jamaica, with
annual return probabilities of a damaging hurricane of 46, 25, 18, 14, 12,
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Table 1. Summary of loss return periods [RP] and annual probability of
experiencing a loss [L(V)]

Return period Return period Annual
Country (average) (S.D.) probability

Antigua and Barbuda 23 12 0.04
Bahamas 7 4 0.14
Barbados 19 10 0.05
Cuba 2 60 0.46
Dominica 15 49 0.07
Dominican Republic 4 5 0.25
Grenada 13 8 0.08
Haiti 6 10 0.18
Jamaica 10 8 0.10
St. Kitts & Nevis 24 11 0.04
St. Lucia 15 4 0.07
St. Vincent & the Grenadines 22 16 0.04
Trinidad & Tobago 8 8 0.12

Average 13 23 0.13

Notes: Calculations performed using equation (6). Annual probability is the
inverse of the return period.

and 10 per cent, respectively. In contrast, there are a number of countries for
which the return period suggests that there is on average only a 4 per cent
chance that a damaging hurricane will occur in any year. These include St.
Kitts and Nevis which has the highest return period of 24 years, followed
by Antigua and Barbuda with 23 years, and St. Vincent and the Grenadines
with 22 years. Other countries with relatively long return periods include
Barbados with 19 years, followed by Dominica and St. Lucia with 15 years,
and Grenada with 13 years.

To associate the probabilities of damaging hurricane strikes with con-
ditional expected and annual expected losses we next derive our loss
function, which requires the estimation of the translation parameter β from
(4). To do so we used the historical hurricane tracks from the NHC and the
wind field model described above to calculate annual PDI values for our
13 Caribbean islands.11 As can be seen from the summary statistics of these
storms, on average one in every two years results in a damaging hurricane
in the region. Across countries the experience has been variable, though,
with some countries, such as the Bahamas and Cuba experiencing over 20
damaging storms, and others like Trinidad and Tobago having been subject
to fewer than 10 over the 30-year period. More specifically, islands like St.
Kitts and Nevis, Jamaica, and Antigua and Barbuda were subject to large

11 On average for each country about one-third of the 30 years of our sample period
were characterized by hurricane damaging years, according to our PDI index,
with substantial variation across countries. For instance, the Bahamas experienced
about one potentially damaging hurricane every seven years.
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potential destruction, while Trinidad and Tobago experienced the lowest
average value over our sample period.

We next combine annual country-level PDI values with the annual agri-
cultural cropland production data to estimate (4).12 It can be noted in this
regard that, while we have a limited amount of control variables, our hurri-
cane destruction proxy is arguably exogenous, particularly after controlling
for fixed effects.13 Hurricanes have an immediate negative and significant
effect on agricultural cropland production in the Caribbean (table A4 in the
online appendix). Introducing further lags of PDI suggests, moreover, that
this effect lasts up to a year after the strike, and we build our loss function
accordingly. One should note that a relatively short-term and/or lagged
effect is in line with previous studies.14 We also experimented with using a
lower threshold than the benchmark 119 km/h to define when damage to
agriculture occurs. This may be particularly important, because even lower
tropical storm level winds may induce damage to some crops (Guard and
Lander, 1999). To experiment with whether taking account of such lower
winds will increase the precision of our estimate, we redefined the damag-
ing threshold to coincide with the minimum wind speed associated with a
tropical storm, i.e., 119 km/h, and show the results of using this index in the
fourth column of table A4 in the online appendix. As can be seen, while the
effect at least for the contemporaneous and lagged values remains negative,
the coefficient is no longer statistically significant, thus providing evidence
in favor of the higher benchmark threshold. Finally, we also experimented
with using the duration of excess winds rather than their maximum value
for a storm, as shown in the last column of table A4. Again, while the signs
are as expected negative, the relative imprecision of their estimates sug-
gests that it is more important to take account of the maximum level of
wind rather than its duration.

With our estimated β at hand, we next calculated average expected losses
given a damaging hurricane strike, i.e., the average of losses for each island
across all damaging synthetic storms, both in terms of tons and of monetary
value using country-specific prices. More specifically, while our estimated
β is in units of tons, in order to gain a feel for the impact in monetary terms
we used 2012 UNFAO export value and quantity figures (or latest avail-
able data) to calculate the average price per country of agricultural crops
to arrive at the loss value in 2012 US$. As seen in table 2, if a damaging
hurricane were to strike, large losses in terms of tons are forecasted across

12 Note that in doing so we allowed for arbitrary cross-correlation and serial correla-
tion of the error term as developed by Hoechle (2007) to obtain Driscoll and Kraay
(1998) standard errors.

13 Even if agents have some idea of the local probability distribution of hurricane
strikes and make decisions accordingly, after controlling for fixed effects we are
simply capturing the exogenous events conditional on accounting for spatial
differences in their probability distribution.

14 More specifically, Mohan and Strobl (2013) find that hurricanes have had a short
term but lagged impact on historical sugar production in the Caribbean, and a
similar effect was found by Strobl (2012a) for the more recent times period for
satellite-derived agricultural production.
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Table 2. Expected loss in agricultural crop exports

Ann. Ann. Ann. E(L) Ann.
E(L) E(L) E(L) E(L) E(L) E(L) GDP E(L)

Country (tons) (US$m) (%) (tons) (US$m) (%) (%) GDP(%)

Antigua and
Barbuda

16,059 20 100 706 0.89 5 1.68 0.07

Bahamas 940 1 0.67 130 0.14 0.09 0.01 0.001
Barbados 32,776 112 10.96 1,639 5.62 0.55 2.65 0.13
Cuba 6,726 19 0.03 3,099 8.55 0.01 0.03 0.01
Dominica 11,567 102 9.99 810 7.15 0.70 20.58 1.44
Dominican

Republic
12,189 18 0.11 3,007 4.55 0.03 0.03 0.01

Grenada 16,496 72 42.57 1,320 5.78 3.41 8.98 0.72
Haiti 12,962 29 0.31 2,307 5.09 0.06 0.37 0.06
Jamaica 34,068 110 1.3 3,410 11.02 0.13 0.74 0.07
St. Kitts & Nevis 16,857 20 100 674 0.80 12.22 2.73 0.11
St. Lucia 23,883 23 40.3 1,594 1.52 2.69 1.75 0.12
St. Vincent & the

Grenadines
20,789 27 17.16 930 1.20 0.77 3.89 0.17

Trinidad &
Tobago

5,862 11 4.28 706 1.29 0.52 0.05 0.01

Average 16,244 43 25.21 1,564 41 2.01 3.35 0.23

Total 211,142 607 0.53 21,896 94.60 0.05 0.30 0.03

Notes: E(L) refers to expected losses given a damaging hurricane, while Ann.
E(L) refers to annual expected losses. The upper threshold effect is set at 100%
of agriculture crops in 2012 values destroyed.

the entire region, resulting in over 211,100 tons in cropland production
losses, i.e., crops with an estimated value in excess of US$607 m. However,
these losses are not homogeneously distributed in level terms across the
Caribbean. More specifically, the largest proportion would be attributable
to Jamaica, with over 34,000 tons worth US$110 m, followed by some 32,000
tons valued at US$112 m in Barbados. Relatively large amounts of agricul-
tural production are also expected to be lost if a hurricane hits St. Lucia
(23,888 tons worth US$23 m) and St. Vincent and the Grenadines (20,789
tons worth US$27 m). The lowest amount of losses, i.e., 940 tons worth
about US$1 m, would be in the Bahamas.

If we compare expected losses conditional on damaging hurricane inci-
dence relative to current (2012) cropland production, then our estimates
imply that agricultural crops in Antigua and Barbuda and St. Kitts and
Nevis would be completely wiped out and more than 40 per cent would
be expected to be destroyed in St. Lucia; see column 4 of table 2.15 Simi-
larly, Grenada and St. Vincent and the Grenadines are likely to experience a
substantial blow to their agricultural sector when a hurricane strikes, with

15 Wherever average losses were larger than current production, we limited destruc-
tion to 100 per cent.
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losses of close to 18 per cent. On the other hand, in the larger countries,
such as the Dominican Republic, Cuba, Haiti, Jamaica, and Trinidad and
Tobago, effects are likely on average to destroy only a minor proportion of
their cropland production, i.e., less than a few percentage points. Overall, if
a damaging hurricane were to strike, one should expect a loss of about 0.53
per cent of total cropland production for the region. This relatively small
figure is due to the fact that, in most countries carrying the largest share of
agricultural production in the region, such as Cuba, Dominica, and Haiti,
the expected overall percentage reduction is fairly small.

One can combine the probability of each damaging synthetic hurricane
with its accompanying losses to calculate annual expected losses across
countries (table A5 in the online appendix). Accordingly, yearly expected
losses are about 22,000 tons, worth US$95 m, which constitutes about 0.05
per cent of total annual agricultural output in the region. In absolute terms,
the largest losses are for Jamaica, standing at 3,410 tons worth US$11m,
although this constitutes only 0.13 per cent of their annual agricultural out-
put. In contrast, while absolute values are small for St Kitts and Nevis (375
tons worth US$0.4m), this would constitute about 12 per cent of their crop-
land output. Other small countries with relatively large expected annual
losses are Antigua and Barbuda and St. Lucia, standing at 5 and 3 per cent,
respectively. As with the conditional losses, the larger countries, i.e., Cuba,
Jamaica, Dominican Republic and Haiti, are also likely to experience much
smaller losses each year relative to their yearly agricultural production.

Agricultural losses can also be evaluated in terms of their importance
for the overall economy of the islands. In this regard we used the latest
available GDP figures from the World Bank’s (2015) World Development
Indicators database and calculated losses as a percentage of these, the
results of which are given in the last two columns of table 2. The total loss
as a percentage of GDP if a hurricane occurs in the region is 0.3 per cent,
while total expected annual losses are 0.03 per cent of total regional output.
However, across countries there are significant differences. More specifi-
cally, again the smaller countries are more negatively affected. For instance,
the expected loss in agriculture given a damaging hurricane strike is 21
per cent of GDP for Dominica, 9 per cent for Grenada and 4 per cent for
St. Vincent and the Grenadines, while the corresponding figures for the
larger countries of Cuba, the Dominican Republic, Trinidad and Tobago,
and Jamaica are less than 1 per cent. The expected annual losses as a per-
centage of GDP are approximately 1.4 per cent for Dominica and 0.7 per
cent for Grenada. In all other territories the corresponding figure is less
than 0.1 per cent, although notably lower for the larger islands.

It should be noted that our contrasting results across island size are in
congruence with historical experience. For example, in 2004 the region
experienced severe damage as a consequence of two major hurricanes,
Ivan and Jeanne, and the direct and indirect damages reported indicate the
marked difference in destruction between the small and large countries.
More precisely, in Grenada the documented total damages, i.e., including
losses other than agriculture, were more than twice the value of GDP in
2003, while for Jamaica the damages were around 10 per cent and less than
2 per cent in the Dominican Republic (ECLAC, 2004). Our results therefore
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indicate that the smaller countries of the Caribbean are likely to continue
to be relatively more adversely affected by hurricane strikes in the future,
at least in terms of agriculture.

Thus far we have treated agriculture as homogeneous across Caribbean
islands in terms of its susceptibility to tropical storms. However, in reality
agricultural production across the Caribbean is fairly heterogeneous. For
instance, while all countries are generally dependent on agriculture, some
countries are much more dependent than others, as can be seen from the
agriculture value added as a percentage of GDP figures in online appendix
table A3. More agricultural dependence may also mean a larger relative
amount of agricultural inputs over greater spatial areas that are exposed
to hurricane strikes and thus makes these countries more susceptible. The
concentration of individual crops in agricultural production may also mat-
ter. More specifically, a greater concentration in few agricultural products
can increase the exposure through a relative lack in temporal production
and spatial location of crops. Indeed, concentration is not homogeneous
across the Caribbean, as indicated by the Herfindahl index in table A3,
defined at the crop level using a total of 170 crops. One may also want
to distinguish between the different types of crops. In this regard, it was
shown by Spencer and Polachek (2015) that above-ground crops are much
more susceptible to hurricane strikes than those below. Our data allow us to
distinguish between root crops and tree crops and, as indicated in table A3,
the proportion of tree crops also varies across islands and hence may also
make countries heterogeneous in the response of their agricultural sector
to hurricanes.

Given the above differences in the above-described aspects of the agri-
culture sector across the Caribbean, we next explored how separating coun-
tries into subsamples accordingly may alter our damage function estimates
and subsequent future losses calculations. In this regard, we identify those
countries as more agricultural based, concentrated and tree crop based if
they were ranked in the top eight according to the summary measures just
described. The results of rerunning our historical regressions for these are
shown in table A5 in the online appendix. In this regard, column 1 includes
countries that are more agriculture based according to their agriculture
value added as a percentage of GDP shown in table A3 (Cuba, Dominica,
Dominican Republic, Grenada, Haiti, Jamaica, St. Lucia and St. Vincent
and the Grenadines), whereas estimates in column 2 are for the remaining
less agriculturally based countries (Antigua and Barbuda, the Bahamas,
Barbados, St. Kitts and Nevis and Trinidad and Tobago). Columns 3 and
4 show the results for countries that have a more concentrated agricul-
ture sector based on the Herfindahl index shown in table A3 (Antigua
and Barbuda, the Bahamas, Dominica, Grenada, St. Kitts and Nevis, St.
Lucia, St. Vincent and the Grenadines and Trinidad and Tobago) versus
countries with a less concentrated one (Barbados, Cuba, Dominican Repub-
lic, Jamaica and Haiti). Finally, column 5 re-estimates our specification for
countries with a relatively higher share of tree crops in agricultural pro-
duction (Antigua and Barbuda, the Bahamas, Barbados, Cuba, Dominica
Republic, Grenada, St. Lucia and Trinidad and Tobago), in contrast to col-
umn 6 where we show the results for those with a relatively lower share
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(Dominican Republic, Jamaica, Haiti, St. Kitts and Nevis and St. Vincent
and the Grenadines). This sample decomposition exercise produces a num-
ber of interesting results. More specifically, we find that hurricanes have a
significant negative impact on countries that are more agriculture based,
countries which have a less diversified agriculture sector and countries that
are more tree crop based. On the other hand, the impacts for less agricul-
ture based, less tree crop based countries and less concentrated countries
are not statistically significant.

Table 3 provides the implied expected losses for the subsamples for
which we found a significant effect in table A5. Accordingly, the damage
suffered differs across agriculture-based countries, countries that are more
concentrated, and those that are more tree based. Moreover, these losses
are all larger than that which we found for our pooled sample. Looking
at the specific figures, our estimates suggest that if a damaging hurricane
were to strike countries that are more agriculture based, then there would
be expected losses of 305,267 tons in cropland production with an estimated
value of US$1,216 m. In contrast, expected strike losses in terms of more
production concentrated type countries are 169,656 tons with an estimated
value of US$681m. Finally, for countries that have a higher proportion of

Table 3. Expected losses in agricultural crop exports, by subsample

More agricultural More More tree
Subsample: based concentrated crop based

Country (tons) (US$m.) (tons) (US$m.) (tons) (US$m.)

Antigua and
Barbuda

– – 18,964 24 27,000 34

Bahamas – – 1,110 1 1,980 2
Barbados – – – – 78,902 270
Cuba 11,521 33 – – 14,168 40
Dominica 72,640 641 50,081 442 – –
Dominican Republic 20,877 31 – – 25,675 38
Grenada 43,166 188 29,760 130 53,086 232
Haiti 22,201 50 – – – –
Jamaica 58,350 188 – – – –
St. Kitts & Nevis – – 10,068 12 – –
St. Lucia 40,906 39 28,202 27 50,307 48
St. Vincent & the

Grenadines
35,606 46 24,549 32 – –

Trinidad & Tobago – – 6,922 13 12,347 23

Average 38,158 152 23,308 85 32,933 86

Total 305,267 1,216 169,656 681 263,465 687

Notes: Expected losses are predicted losses given a damaging hurricane. The
upper threshold effect is set at 100% of agriculture crops in 2012 values
destroyed. The cut-off to be relatively more agricultural, more concentrated,
or more tree crop based is to be one of the top eight ranked countries in these
categories.
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tree crops, a hurricane strike would result in an expected loss of 263,465
tons valued at US$687 m.

6. Conclusion
In this paper we use a large set of synthetic hurricane tracks, generated on
the basis of recent climate patterns, to derive damage risks of hurricanes
on agricultural cropland in the Caribbean. Our starting point is to identify
local cropland areas, and then calculate wind speeds experienced at these
areas for our set of hurricanes. These are then aggregated into country-
specific damages using a damage function estimated from historical track
data. Overall the results suggest that the region will continue to expe-
rience damaging hurricane strikes from which agricultural crops will be
negatively affected. In this regard, the average Caribbean island economy
should expect a damaging hurricane every 13 years. Total expected losses
for the region when a damaging hurricane occurs are estimated at over
US$600 m or 0.5 per cent of total agriculture production, while expected
losses annually are US$95 m or 0.05 per cent of total agriculture production.
Expected reduction as a percentage of GDP due to agricultural losses for
the region in case of a hurricane strike is 0.3 per cent and expected annual
reduction 0.03 per cent. It should be noted, however, that our analytical
framework does not allow for future adaptation and hence our results
feasibly serve only as upper bounds of potential losses.

At the individual country level, however, the expected impacts are likely
to vary considerably, in line with historical experience. The return period
of a damaging hurricane strike for the larger countries (actual land size)
is generally much lower and the probabilities much higher than for the
smaller islands. In Cuba, the Dominican Republic, Haiti and Jamaica, for
example, the return period ranges from every two to every 10 years. Alter-
natively, for many of the smaller countries, such as St. Kitts and Nevis,
Antigua and Barbuda, and St. Vincent and the Grenadines, damaging hur-
ricanes are expected to occur with about a 4 per cent probability of annual
hurricane occurrence.

Nevertheless, despite the higher return periods and lower annual prob-
abilities of occurrence for many of the smaller islands, the results show
that on these islands, the consequences of a damaging hurricane are likely
to be much larger than for larger island countries. Agricultural crops, for
instance, in St. Kitts and Nevis and Grenada are expected to be completely
destroyed, while losses in St. Lucia and Grenada are likely to be at least 40
per cent of cropland production when a damaging storm occurs. In con-
trast, in all of the larger islands, expected losses are on average going to
be less, or not much more, than 1 per cent of crop production. Similarly,
annual expected losses on average are much larger in the smaller than in
the larger Caribbean island economies.

We also investigated whether the structure of the agricultural sector may
impact an island’s susceptibility to hurricanes. In this regard we found that
those countries where agriculture plays a greater role are also those more
affected. Similarly, our results suggest that the more concentrated in a few
products the agricultural sector is, the greater the impact of a hurricane
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will be. Finally, a greater share of tree- rather than root-based agricultural
products will also make a country in the region more sensitive to damage
from these storms. Our findings thus suggest that less reliance on agri-
culture can reduce an island’s vulnerability. Even if this is not a feasible
adaptation option, our analysis also indicates that diversifying agricultural
production or at least relying less on tree-based agricultural products may
also be a strategy to deal with a potential increase in storm activity in the
future.

Overall our results suggest that losses in the agricultural sector can be
potentially large in Caribbean island economies. While these losses, as our
calculations show, are unlikely to translate into large reductions in overall
GDP, one needs also to consider that it tends to be the relatively poorer por-
tion of the population in Caribbean island economies that is employed in
agriculture. Policy makers may thus want to consider introducing explicit
disaster mitigation strategies for the agricultural sector in order to buffer
the consequences for the less wealthy.

Supplementary material and methods
To view supplementary material for this article, please visit https://doi.
org/10.1017/S1355770X16000176.
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