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ABSTRACT 19 

It has been hypothesized that the environment can influence the composition of the nasal microbiota. 20 

However, the direct influence of pig farming on the anterior and posterior nasal microbiota is unknown. 21 

Using a cross-sectional design, pig farms (n=28) were visited in 2014-2015 and nasal swabs from 43 pig 22 

farmers and 56 pigs as well as 27 air samples taken in the vicinity of pig enclosure were collected. As 23 

controls, nasal swabs from 17 cow farmers and 26 non-animal exposed individuals were also included. 24 

Analyses of the microbiota were performed based on 16S rRNA amplicon sequencing and the DADA2 25 

pipeline to define sequence variants (SVs). We found that pig farming is strongly associated with specific 26 

microbial signatures (including alpha- and beta-diversity), which are reflected in the microbiota of the 27 

human nose. Furthermore, the microbial communities were more similar within the same farm as 28 

compared to between the different farms, indicating a specific microbiota pattern for each pig farm. In 29 

total, there were 82 SVs that occurred significantly more abundantly in samples from pig farms than from 30 

cow farmers and non-exposed (i.e. the core pig farm microbiota). Of those, nine SVs were significantly 31 

associated with the posterior part of the humans’ nose. The results strongly indicate that pig farming is 32 

associated with a distinct human nose microbiota. Finally, the community structures derived by the 33 

DADA2 pipeline showed an excellent agreement with the outputs of the mothur pipeline which was 34 

revealed by procrustes analyses. 35 

Importance 36 

The knowledge about the influence of animal keeping on the human microbiome is important. Previous 37 

research shows that pets are significantly affecting the microbial communities of humans. However, the 38 

effect of animal farming on the human microbiome is less clear although it is known that the air in farms, 39 

and in particular pig farms, is charged with high amounts of dust, bacteria and fungi. In this study we 40 

have simultaneously investigated the nasal microbiota of pigs, humans and the environment in pig farms. 41 

We reveal an enormous impact of pig farming on the human nasal microbiota which is far more 42 

pronounced as compared to cow farming. In addition, we have analyzed the airborne microbiota and 43 

found significant associations suggesting an animal-human transmission of the microbiota within pig 44 
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farms. We also reveal that microbial patterns are farm-specific suggesting that the environment 45 

influences animals and humans in a similar manner. 46 

 47 

  48 
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INTRODUCTION 49 

The human nares are an important niche for bacterial colonization by both, pathogens and commensals 50 

and it is one of the main interfaces between the internal body and the external environment. Pig farmers 51 

are exposed to a complex and heterogeneous environment including large amounts of bacteria on a 52 

daily basis (1) and swine represent a potential reservoir for many pathogens which can be transmitted to 53 

humans, such as Streptococcus suis and Clostridium difficile (2). Also, there is a growing concern with 54 

the transmission of antibiotic resistant bacteria, such as methicillin-resistant Staphylococcus aureus 55 

(MRSA) in pig farms and other livestock-associated areas (3-7). A considerable number of studies has 56 

been published, showing transmission of these bacteria from pigs to humans (for reviews, see 2, 8, 9, 57 

10). However, previous studies mainly focused on the investigation of only one or two bacterial species 58 

and were culture–dependent, but the overall impact on the entire human microbiota has never been 59 

investigated.  60 

A recent study investigated 25 households containing 56 pets and 30 humans and revealed that 61 

household membership was strongly associated with microbial communities, in both humans and pets, 62 

using culture-independent, next generation sequencing methods (11). In another, longitudinal study, 63 

evidence for substantial exchanges among human, home, and pet microbiota were shown as well (12). 64 

The authors concluded that such interactions could have considerable human and animal health 65 

implications. Some studies have also shown that living or working with animals can protect against 66 

asthma and atopic diseases due to the exposure to specific animal microorganisms (13, 14). However, 67 

despite the relevance, the pattern of the microbiota exchange among animals, humans and environment 68 

in pig farms has never been investigated. The aims of our study were to 1) describe the influence of pig 69 

farming on the human nasal microbiota, 2) identify the sequence variants (SVs) predominantly shared 70 

between pigs, air from the pig enclosure and pig farmers, 3) identify which of the latter were significantly 71 

associated with either the posterior or anterior nasal cavities of pig farmers and 4) to compare the 72 

findings derived by DADA2 with the outputs of the more traditionally used mothur pipeline.  73 
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RESULTS 74 

Characterization of study cohort and sequence analysis 75 

Details of the sampling population can be found in Table 1. In total, 28 pig farms were visited, on which 76 

one to three pigs (total n=56), one air sample (total n=27) and one to four pig farmers (total n=43) were 77 

sampled (Table 1). As control, individuals with contact to cows but no contact to pigs (cow farmers, 78 

n=17), and individuals without contact to any type of farm animal (non-exposed persons, n=26) working 79 

in offices were chosen to assess the effect of pig exposure on the human nasal microbiota. All 80 

individuals were recruited in the same geographical area and were roughly age-matched.  After 81 

exclusion of 17 samples due to PCR amplification issues, 255 samples with a total of 9,692,391 reads 82 

were included in our study. The mean number of reads per sample was 38,009 (± standard deviation 83 

19,412) ranging from 2,243 to 120,642 reads. Reads were clustered into a total of 13,585 SVs 84 

(Sequence Variants). Sequencing depth was sufficient, as determined by the low slope of the rarefaction 85 

curves (Supplementary Fig. S1).  86 

Pig farming is associated with increased diversity  87 

All 13,585 SVs were grouped into 43 phyla and 310 families and the phyla Actinobacteria, Bacteroidetes, 88 

Firmicutes and Proteobacteria included the majority of all SVs (at least 97% mean relative abundance for 89 

all sample groups). Pig-farmer nasal samples showed the highest Shannon diversity indices and 90 

richness, while non-exposed samples displayed the lowest SDI and richness values (Fig. 1, A and B). To 91 

take into account that multiple samples were collected on the same farms, we additionally performed a 92 

linear mixed regression with the location ID as random effect to compare the differences between 93 

groups. The overall model was significant (analysis of variance; SDI P value<0.001, richness P 94 

value<0.001), and revealed that the bacterial richness in nasal samples from pig farmers was 95 

significantly higher than those of non-exposed individuals (SDI: P < 0.001; richness: P < 0.001), air 96 

samples (SDI: P = 0.03; richness: P = 0.001), and pig nasal samples (SDI: P < 0.001; richness: P < 97 

0.001). The alpha diversity in cow farmers was nearly as high as in pig farmers and the differences were 98 

also significant when compared to non-exposed (SDI: P < 0.001; richness: P < 0.001) and pig nasal 99 

samples (SDI: P = 0.003; richness: P = 0.002).  100 
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Pig farming influences the microbial community composition 101 

The ordination method based NMDS plots with weighted and unweighted input (Fig. 1, C and D) showed 102 

a distinct clustering of pigs, air, pig farmers, cow farmers and non-exposed and was confirmed by 103 

permutational multivariate analysis of variance (PERMANOVA, unweighted: F-value: 0.15, P < 0.001, 104 

weighted: F-value: 0.18, P < 0.001). Profiles of cow farmers were more similar to non-exposed controls 105 

as compared to pig farmers, indicating a very strong effect of pig farming on the human microbiota. 106 

Analysis of similarity (ANOSIM) further confirmed the strong differences between pig farmer and cow 107 

farmer/non-exposed samples (Supplementary table S1). Interestingly, pig farmers seemed to display a 108 

significantly lower beta-diversity dispersion as compared to cow farmers and non-exposed individuals 109 

(weighted distances from the centroid; Tukey’s HSD test; P < 0.001; Fig. 1, E), indicating that pig farming 110 

leads to a more homogenous microbial community structure. All comparisons of unweighted distances 111 

from the centroid were non-significant (Tukey’s HSD tests; P < 0.05; Fig. 1, F), suggesting more of an 112 

effect of community structure than community composition on variation in beta-diversity across groups of 113 

samples. 114 

We next examined how many SVs were shared between sample types; 54% of all SVs occurring in pig 115 

farmers also occurred in pigs and/or air, whereas only 25% of the SVs from pig farmers were shared with 116 

cow farmers and/or non-exposed (Fig. 2, A and B). This illustrates that more SVs are shared within the 117 

same environment (pig farms) of the different sample types (pigs, air and pig farmers) than within the 118 

same sample type (humans) of the different environments (pig farms, cow farms and offices). 119 

Within-farm as compared to between-farm dissimilarity is reduced  120 

In order to investigate if the microbiota in pig farm samples is influenced by the farm (location ID), we 121 

compared pairwise distances between samples originated from the same farm (within farm) and between 122 

samples originating from different farms (between farms) (Fig 3, A and B). All “within” distances were 123 

significantly lower than the “between” distances (Kruskal-Wallis rank sum tests with BH correction (15); 124 

all P < 0.001), strongly indicating the existence of an effect of farm location on the microbiota. This was 125 

true within (Fig. 3, left side of dotted line) but also between (Fig. 3, right side of dotted line) different 126 
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sample types. However, as expected, the values for the within-dissimilarities for a given host (Fig. 3; pigs 127 

vs pigs and pig farmers vs pig farmers) were generally smaller than values observed between sample 128 

types. 129 

Identification of SVs significantly associated to pig farming (core pig farm microbiota) 130 

Performing an omnibus test (PERMANOVA) with all factors and all samples (n=255) revealed overall 131 

significant factor effects on community variation (P = 0.001, with and without stratifying for farm ID). Thus 132 

we next analyzed the SVs which were associated with the changes performing three different analyses. 133 

First, SVs that where significantly associated with samples from pig farms were identified by screening 134 

all SVs for significantly higher abundance in pigs, air and pig farmers as compared to cow farmers, by 135 

applying pairwise Mann-Whitney-Wilcoxon Tests followed by BH correction for multiple testing(15). A 136 

total of 82 SVs were identified with significantly higher abundance in samples from pig farms compared 137 

to cow farmers and this low abundance was also present in non-exposed (Fig. 4, A). Second, we 138 

conducted a similar approach using frequency (presence-absence) data as input, using Fisher’s exact 139 

test with BH correction. Eighty-one SVs were identified in both approaches and one SV (SV125) was 140 

identified only by the approach based on relative abundances (Supplementary table S2). Finally we 141 

performed an ANOVA-Like Differential Expression (ALDEx) analysis for the analysis of the proportional 142 

data (16, 17). Effect size plots showing the within and between differences of SVs between the 143 

respective groups are shown in the Supplementary Fig. S2 A-C. Overall 41 SVs (50%) were significant 144 

for all three analyses and 9SVs were newly identified with ALDEx (Supplementary Fig. S3 and 145 

Supplementary table S2).  146 

Differences and similarities of the microbiota between anterior and posterior nasal samples 147 

After having identified large microbiota differences in the anterior nasal cavities associated with pig 148 

farming, we subsequently analyzed if there were also associations with the posterior part of the nose. 149 

For this, we again first performed an omnibus test (PERMANOVA, nested per individual) with all SVs 150 

from pig farmer samples (n=86) which showed an overall significance (P = 0.001) between anterior and 151 

posterior in each individual. We next analyzed all the 82 SVs that were identified as being specific for pig 152 
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farming. In total, 9 out of 82 SVs were significantly more abundant in the posterior than in the anterior 153 

part of the nose, and included SVs from the bacterial families of Prevotellaceae and Veillonellaceae 154 

(Wilcoxon singed rank tests with BH correction (15) (Fig. 4B; P < 0.05). We then analyzed the ten most 155 

abundant SVs (Supplementary Fig. S4), and mainly SVs from Corynebacteriaceae and 156 

Staphylococcaceae were more frequently found in the anterior as compared to the posterior part of the 157 

nose (Supplementary Fig. S4).  158 

Analysis of sequencing data using the mothur pipeline 159 

Finally, we compared our findings from the DADA2 with the mothur pipeline. As for mothur, the final 160 

mean number of reads per sample was 34232 (95% Confidence Interval: ±2117) ranging from 3340 to 161 

109182 reads and the sequences were clustered into a total of 31951 OTUs (Operational taxonomic 162 

units). After rarefying, 10553 OTUs were left with 3340 reads per sample. These OTUs clustered into 41 163 

phyla and 310 families respectively. The taxonomic profiles were very similar to the profiles obtained with 164 

DADA2 (Supplementary Fig. S5, A-D), except for a slightly higher abundance of “Others” for the samples 165 

analysed using mothur. We also noted a very high correlation between DADA2 and mothur in case of 166 

alpha- and beta-diversity. Richness (R2=0.68) and SDI (R2=0.92) showed strong positive linear 167 

relationships between values based on DADA2 and mothur (Figure 5, A and B). The Procrustes analysis 168 

comparing beta-diversity values from these two pipelines (Figure 5, C-F) also showed a strong 169 

correspondence between these two datasets for both Jaccard and Ružička dissimilarity (Procrustes 170 

symmetric correlation: Jaccard: 0.95, P=0.001; Ružička: 0.91, P=0.001). The number of procrustes 171 

residuals were evenly distributed between the investigated sample types (Figure 5, D and F). 172 

 173 

  174 
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DISCUSSION 175 

This cross-sectional study investigated the relationships between pig farming and the composition of the 176 

nasal microbiota of farmers. We revealed an increased bacterial richness and diversity in the anterior 177 

nose of pig farmers as compared to cow farmers and non-exposed control group. In addition, beta-178 

diversity analyses revealed significant differences in the composition of the nasal microbiota of these 179 

human groups. Samples from within the pig farms shared more of their microbiota as compared to the 180 

samples from between farms. We were also able to identify the SVs that were significantly associated 181 

with pig farming and the SVs which were predominantly more abundant in posterior than in anterior 182 

nasal cavities of the pig farmers.  183 

The found differences in alpha-diversity suggest that farmers raising pigs have an increased bacterial 184 

diversity in their nose as compared to non-exposed individuals and to farmers working on a cow farm. A 185 

possible explanation is that the high concentration of diverse aerosolized bacteria present in pig barns 186 

leads to a modification and an enrichment of the “natural” farmer’s nasal microbiota. Therefore, it 187 

appears that the establishment of this modified microbial community could be a “finger print” of the nasal 188 

microbiota of pig farmers. As for changes in community structure (beta diversity), we revealed that 189 

samples from pigs, air and pig farmers form distinct, yet related clusters, which are all clearly separated 190 

from samples from cow farmers and non-exposed office workers. It becomes obvious from our data that 191 

pig farming is associated with stronger divergence of the human nasal microbiota as compared to cow 192 

farming. These findings could be explained by the fact that pig farmers spend more time in a confined 193 

environment with the animals than cow farmers and by the fact  that airborne dust concentration are 194 

higher in pig than in cow farms (18).   It has been shown that pets can share a small part of their 195 

microbiota with their owners by hypothesized, frequent direct contacts (11, 19). However, our study data 196 

strikingly points out that airborne microbiota may indeed play an important role in this microbial transfer. 197 

Moreover, we also show that the extent of microbiota sharing between pigs and farmers is remarkable. 198 

We additionally found that samples from the farmers working on the same farm shared more of their 199 

microbiota than they do with individuals from different farms. This was true not only for pig farmers, but 200 

also when comparing air samples and pigs from the same farm, hinting at the existence of an even more 201 
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pronounced farm-specific microbiome. Similarly, it has been shown that household members shared 202 

more of their microbiota than they do with individuals from different households (12, 19). In our study, the 203 

degree of shared microbiota was again large and the type of farm management practices could be 204 

influential. Indeed, it has been already shown that farm management (diet and antimicrobial use) 205 

influenced the nasal microbiota of pigs (20). Therefore, we can suppose that the management and the 206 

farm characteristics can also have an influence on the air quality of the barn. Humans inhale 10,000L of 207 

air per day and airborne bacteria may have a direct effect on the nasal bacterial communities of humans 208 

(21). Furthermore, it is known that the air in farms, and in particular pig farms, is charged with high 209 

amounts of dust, bacteria and fungi (as shown in this and other studies (22, 23)) and that the 210 

concentration of airborne bacteria can be 2 x 107 times higher than the level usually measured in indoor 211 

air  (24). 212 

Our results strikingly revealed a very high number of SVs shared between the pigs, air and the pig 213 

farmers, indicating a frequent exchange of members of the microbiota and suggesting that air could play 214 

an important role in the transmission of animal-associated bacteria to the farmers, too. Among these 215 

SVs, Veillonellaceae and Lactobacillaceae were the most abundant groups in pigs, air, and pig-farmers. 216 

Lactobacillaceae and Veillonellaceae have been found in the nares of both healthy pigs and humans (20, 217 

25-27). We also simultaneously sampled the posterior and anterior nasal cavities of the human 218 

participants. This is important as spatial variation in nasal microbial communities has been highlighted  219 

(28), although in another study, the bacterial composition did not significantly change along the nasal 220 

passage (29). In addition, the microbiota of the posterior cavity should reflect a more persistent (vs 221 

transient) colonization than that of anterior cavity. Our data shows, that the microbiota between anterior 222 

and posterior differ and that there are some SVs which are associated with either of the two sites. 223 

The farmer’ s respiratory tract also receives a lot of attention due to the hygiene hypothesis 224 

demonstrating that growing up on a farm may be protective against allergies and asthma (13). This has 225 

been shown to be very significant in the case of pig farming (30). Therefore, SVs associated with pig 226 

farming identified in this study which were found in higher abundance in the posterior region of the nose, 227 

could hypothetically be protective against asthma development.  Indeed, many SVs found in our study 228 
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have been associated with respiratory health rather than disease, like asthma (31-34). Therefore, these 229 

SVs could have potential protective implication for allergic and atopic diseases. However, as  we only 230 

included healthy adult subjects, differences in the nasal microbiota that were associated to certain 231 

occupational health problems and/or health benefits (e.g. atopic and allergic diseases) were not 232 

investigated. 233 

Within this study, we decided to use the DADA2 algorithm rather than the more known 97% Operational 234 

Taxonomic Units (OTU) approach. The DADA2 algorithm has been shown to produce a higher resolution 235 

of microbial populations when applied to 16S rRNA gene sequences as compared to the popular 236 

clustering into OTU as implemented in mothur or QIIME pipelines (35). The resulting SVs only contain 237 

one read per SV, making additional analysis steps, such as oligotyping, unnecessary (36). Even though 238 

DADA2 leads to a decrease in alpha-diversity, it does not lead to changes in the community structure, 239 

which makes the approach comparable to results produced by other clustering algorithms (35, 37). By 240 

comparing DADA2 with mothur in our study, we can clearly confirm the later statement as shown in our 241 

procrustes analyses. 242 

This study has some major strengths: By taking into account all potential confounding factors (season, 243 

age, geographical region); we reliably demonstrated, that pig farming has an extensive effect on the 244 

human nasal microbiota and we were able to reveal the specific SVs which were associated to these 245 

changes.  Moreover, recruiting cow farmers as control group allowed ascertaining that the observed 246 

differences are linked to the close contact to pigs and not simply by the lifestyle associated with living on 247 

a farm. By including multiple samples from identical farms, we additionally were able to reveal the 248 

existence of a pronounced farm-specific microbiome by observing more similarity between the 249 

microbiota within a same farm than between the different farms. Finally we also included microbiota 250 

analysis of posterior nasal samples, and bacteria from this region of the nose are more likely to be 251 

relevant for the respiratory tract microbiota and community disturbance which could lead to potential 252 

dysbiosis (34, 38). 253 

There are limitations to this study, too. We only included healthy adult subjects. We were thus not able to 254 

investigate differences in the nasal microbiota that were associated to certain occupational health 255 
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problems (e.g. atopic and allergic diseases). Therefore the relevance of the distinct microbiota needs to 256 

be studied in the future with different experimental designs. In addition, we did not perform longitudinal 257 

sampling, and, therefore, were not able to investigate the temporal stability of the different microbiota. 258 

Finally, as this was a ‘field study’, we did not perform some additional upper or even lower respiratory 259 

tract sampling. This would more clearly reveal the composition of the respiratory tract microbiota as 260 

shown before (32, 33). 261 

In conclusion, we have identified that pig farming has an extensive effect on the human nasal microbiota 262 

and we were able to reveal the specific SVs associated to these changes. The relevance and stability of 263 

these changes need to be investigated in the future. 264 

Materials and Methods 265 

Study design and sampling 266 

Ethical clearance for this study was sought and obtained from Human Research Ethics Committee of the 267 

Canton Vaud (243/14 and P_2017-00265) and the Veterinary Ethics Committee of the Canton Vaud 268 

(VD2903). Sample collection was conducted between October 2014 and March 2015 in the western part 269 

of Switzerland. We focused on the winter season as hypothesized that, the doors etc. may be more likely 270 

to be closed and, therefore, the pig farmers are more exposed to the indoor bacterial communities.  271 

Related to this, it has been described that there is a decrease in some of the air contaminants during 272 

summer of swine confinement buildings. In total, 28 pig farms were visited and nasal swabs from 273 

suckling or weaning pigs were obtained by swabbing their noses using sterile cotton swabs. The piglets 274 

rather than pigs were chosen for ease of handling and sampling. The pig farmers collected two swabs, 275 

outside the pig barn, from their left nares (anterior and posterior) themselves under supervision of the 276 

study personnel. In addition, personal information was collected in a questionnaire. Airborne bacteria 277 

were sampled with a Coriolis μ air sampler (Bertin Technologies, Montigny-le-Bretonneux, France), 278 

positioned approximately one meter above ground in the middle of the pig house and the airborne 279 

particles of a total of 3 m3 air (0.3 m3/min for 10 minutes) were collected into a sterile cone containing 15 280 

ml 0.005% Triton X-100 solution. As controls, 17 cow farmers and 26 non-farming individuals, having no 281 
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contact with any type of farm animal, were included. All samples were immediately transported to the 282 

laboratory in a cold box (4 °C), and stored at -20 °C until further analysis. DNA extraction, amplification 283 

and sequencing were done as outlined in the supplementary material. In brief, the V4 region of the 16S 284 

rRNA gene was amplified using forward (5’-GTGCCAGCMGCCGCGGTAA-3’) and reverse (5’-285 

GGACTACHVGGGTWTCTAAT-3’) primers previously described (39) and modified with an Illumina 286 

adaptor sequence at the 5’ end. Samples were submitted to the Next Generation Sequencing Platform 287 

for indexing and pair-end 2x250 bp sequencing (Reagent Kit v2) on the Illumina MiSeq platform (San 288 

Diego, USA). The reads were deposited at the National Center for Biotechnology Information Sequence 289 

Read Archive (accession no. PRJEB21578). Reads were analyzed using the DADA2 package version 290 

1.5.0 and workflow (35) in R version 3.1.2 (http://www.R-project.org) as illustrated in the supplementary 291 

material. The output of DADA2 consist of exact SVs which replace the traditional OTUs received by 292 

more ‘traditional’ pipelines like Mothur. Using DADA2, no rarefying of sequence reads was necessary. 293 

Alpha-, beta-diversity analyses and identification of SVs associated with pig farming 294 

If not otherwise stated, all calculations were performed in R utilizing functions from R base or the vegan 295 

package. We did not rarefy our sequences for downstream analyses as the DADA2 algorithm drastically 296 

reduces the issues of having different sequencing depths for the samples being compared, which is the 297 

main reason for rarefying. Alpha-diversity (within-sample diversity) was assessed by calculating richness 298 

and Shannon Diversity Indices (SDIs), using the functions estimateR and diversity. Linear regression 299 

models with a random effect to correct for clustering on the location level was used to test for statistical 300 

significances between sample types (lmer function from the lmeTest package) and overall significance of 301 

these models was confirmed with analyses of variance (anova function)  302 

Beta-diversity (between-sample diversity) was measured by the weighted Ružička index (abundance-303 

based) and the unweighted Jaccard index (presence/absence-based) of dissimilarity. Ružička is also 304 

called the quantitative version of Jaccard and unlike Bray-Curtis which is semimetric, is metric and 305 

probably should be preferred (http://cc.oulu.fi/~jarioksa/softhelp/vegan/html/vegdist.html).  306 

Pairwise distances between samples were calculated using the vegdist function and the resulting 307 

matrices were used to generate non-metric multidimensional scaling (NMDS) plots (metaMDS function) 308 
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and dissimilarity boxplots. Significant groupings between samples were assessed by a permutational 309 

multivariate analysis of variance using 1000 Monte Carlo permutation tests (PERMANOVA; adonis 310 

function). Analyses of similarities were performed to test for significant differences between groups of 311 

samples using 1000 Monte Carlo permutation tests (ANOSIM; anosim function), followed by Bonferroni 312 

correction for multiple testing. Both PERMANOVA and ANOSIM were performed as hierarchical models 313 

with nesting at the farm level to address the fact that several samples originated from the same farm. 314 

The extent of beta-diversity dispersion for each sample group was determined by calculated as the 315 

average distance (based on Jaccard and Ružička index) to the sample type’s centroid using the 316 

betadisper function (40), and significant differences were assessed with Tukey’s Honest Significant 317 

Difference Test (TukeyHSD function). Significant differences between the groups in the dissimilarity 318 

boxplots were assessed by Kruskal-Wallis rank sum tests with Benjamini-Hochberg (BH) correction for 319 

multiple testing (15). Boxplots and NMDS plots were generated in R utilizing the ggplot2 package and 320 

Venn diagrams were created with help of the VennDiagram package.  321 

The identification of SVs associated with pig farming and of SVs associated with either the anterior or 322 

posterior nasal cavities is described in the supplementary file. This includes the ANOVA-Like Differential 323 

Expression (ALDEx) Analysis in R to analyses proportional data using the aldex2 package as described 324 

(17). 325 

Comparison of the pipelines DADA2 and mothur  326 

We also compared the findings from the DADA2 with the mothur pipeline as illustrated in the 327 

supplementary material. In brief, reads of all samples were additionally analyzed using the mothur 328 

software (version 1.36.1) (41) as indicated in the MiSeq standard operating procedure (42).  Unlike with 329 

DADA2, the data was normalized by random subsampling of sequences resulting in 3340 reads per 330 

sample. Beta-diversity comparison was accomplished by using Procrustes transformations with non-331 

metric multidimensional scaling (NMDS) ordinations (based on Jaccard and Ružička indeces of 332 

dissimilarity) as input. The plots were obtained by using the procrustes function and the significance 333 

between the two configurations was confirmed with the protest function.  334 

 335 
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Table 1: Characteristics of the study population 454 

location 
number 

No. of 
sampled 

indivi-
duals 

No. of 
sampled 

male 
individuals 

No. of 
sampled 
smokers 

Mean age of 
sampled 

individuals
a 

(s.d.) 

No. of 
samp-

led pigs 

Total No. 
of pigs on 

farm 

No. of air 
samples 
(pig barn) 

pig farm        

1 2 2 0 34 (11) 3 920 1 

2 1 1 0 65 2 80 1 

3 2 1 0 40 (1) 2 350 1 

4 1 1 0 33 2 435 1 

5 1 1 0 71 2 240 1 

6 1 1 0 45 2 80 1 

7 1 1 0 54 2 90 1 

8 1 1 0 50 2 120 1 

9 1 1 0 48 2 590 1 

10 1 1 0 32 2 520 1 

11 1 1 0 57 2 90 1 

12 2 2 2 32 (5) 2 950 1 

13 4 2 1 30 (14) 2 600 1 

14 1 1 0 49 2 100 1 

15 1 1 0 63 2 520 1 

16 1 1 0 42 2 280 1 

17 2 1 0 53 (1) 2 290 1 

18 1 1 0 62 2 320 1 

19 2 1 0 44 (30) 2 250 0 

20 1 1 0 53 1 130 1 

21 2 2 0 48 (11) 2 750 1 

22 2 1 0 53 (4) 2 250 1 

23 3 2 2 39 (14) 2 1950 1 

24 2 2 2 58 (4) 2 2700 1 

25 1 1 0 49 2 205 1 

26 3 2 0 46 (8) 2 270 1 

27 1 1 0 62 2 105 1 

28 1 1 0 50 2 350 1 

cow farm 

30 4 4 0 37 (14)    

31 9 8 0 38 (14)    

32 1 1 1 54    

33 2 1 1 60 (0)    

34 1 1 1 50    

non-exposed    

40-65 26 (one 
per work-

place) 

24 9 39 (14)    

amean age and s.d. (standard deviation are shown if more than one individual was sampled 456 

  457 
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FIGURE LEGENDS 458 

Figure 1. Alpha and Beta-diversity analyses of samples of pigs, air, pig farmers, cow farmers 459 

and non-animal exposed individuals. As for the alpha diversity, illustrated are A) the 460 

differences of richness (observed sequence variants (SVs)) and B) Shannon diversity indices 461 

based on sample types. As for the Beta diversity, illustrated are C) Unweighted (Jaccard) 462 

and D) Weighted (Ružička) distances in microbiota composition, reduced in a 2D-space by 463 

using NMDS, 95% confidence ellipse for the group centroid shown, In addition,  shown are 464 

the beta-dispersion based on E) Ružička and F) Jaccard dissimilarity indices in each sample 465 

type. The boxplots represent median (midline), interquartile ranges (shaded boxes), and 466 

ranges (whiskers). Different colours are indicated: orange (pig), blue (air), red (pig farmer), 467 

green (cow farmer) and purple (non-exposed). Significant differences within A), B), E) and F) 468 

are displayed with either * (p < 0.05), ** (p < 0.01) or *** (p < 0.001)  469 

Figure 2: Venn diagram showing unique and shared Sequence variants (SVs). Illustrated is 470 

A) the Venn Diagram showing the number of shared SVs between pig farmers, pigs and air 471 

and B) the Venn Diagram showing the number of shared SVs between pig farmers, cow 472 

farmers and non-exposed. Shared SVs were determined by identifying the total number of 473 

shared SVs between pig farmer, pig and air samples and between pig farmer, cow farmer 474 

and non-exposed samples. Pig farmers share more SVs with pigs and air than with cow 475 

farmers and non-exposed. 476 

Figure 3. Within and between pig farms dissimilarities measurements. Shown are A) the 477 

Unweighted (Jaccard) and B) Weighted (Ružička) distances in microbiota composition within 478 

farms (pairwise distances between sample types originated from the same farm) and in 479 

between farms- (pairwise distances between samples originating from different farms) 480 

dissimilarities.  The boxplot represents median (midline), interquartile ranges (shaded 481 

boxes), and ranges (whiskers). Significant differences are displayed with either * (p < 0.05), 482 

** (p < 0.01) or *** (p < 0.001). The dotted line separates the comparisons within and 483 

between sample types. 484 
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Figure 4. Sequence variants (SVs) associated with pig farming and differential SVs between 485 

anterior and posterior nasal samples. Illustrated are the 82 SVs which were significantly 486 

associated for pig farming (see text for details). Shown is A) a phylogenetic tree based on 487 

differences in their sequence reads (distance displayed at substitutions per site) and heat 488 

maps depicting relative abundances and frequencies for pig (n=56), air (n=27), pig farmer 489 

(n=56), cow farmer (n=17) and non-exposed (n=26). Assigned taxonomy (bacterial genus, 490 

order or family) for each SV is shown, too. The B) Forest plot displays the coefficients of 491 

pairwise differences between anterior and posterior nasal samples from pig farmers derived 492 

by Wilcoxon singed rank tests followed by Benjamini-Hochberg correction. Significant 493 

differences after multiple testing are illustrated (*) 494 

Figure 5: Alpha- and beta-diversity comparison calculated with DADA2 and mothur.  495 

Shown are A) the correlation analysis of richness values based on DADA2 and mothur, B) 496 

the correlation analysis of SDI values based on DADA2 and mothur, C) the Procrustes 497 

analysis of Jaccard dissimilarity calculated with DADA2 and mothur. Significant (P=0.001) 498 

correlation value indicated in figure, D) the bar chart of Procrustes residuals based on 499 

Jaccard dissimilarity calculated with DADA2 and mothur, E) the procrustes analysis of 500 

Ružička dissimilarity calculated with DADA2 and mothur. Significant (P=0.001) correlation 501 

value indicated in figure and F) the bar chart of Procrustes residuals based on Ružička 502 

dissimilarity calculated with DADA2 and mothur 503 

 504 
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