The integration of orthodontic miniscrews under mechanical loading: a pre-clinical study in rabbit

Maino, BG; Di Blasio, A; Spadoni, D; Ravanetti, F; Galli, C; Cacchioli, A; Katsaros, Christos; Gandolfini, M (2017). The integration of orthodontic miniscrews under mechanical loading: a pre-clinical study in rabbit. European journal of orthodontics, 39(5), pp. 519-527. Oxford University Press 10.1093/ejo/cjw069

[img] Text
cjw069.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (1MB) | Request a copy

Orthodontic miniscrews are an increasingly popular choice to achieve absolute anchorage. The temporary use of miniscrews and their recent introduction have limited the debate over the biological aspect of the materials to that of the surface that permeates the field of dental implants. The aim of the present study was to investigate the integration of grade 5 titanium mini-implants with machined or sand blasted acid etched surface (SAE) under mechanical load in a rabbit tibia model of implant integration.
A total of 64 miniscrews (Ti6Al4V) of 1.5 mm diameter and 6.5 mm length were inserted in the proximal medial surface of each tibia in eight male rabbits aged 6 months. Each tibia received four miniscrews. A 100 g nickel-titanium coil spring (Neosentalloy) was applied between two miniscrews along the main axis while two miniscrews were left unloaded. The removal torque was measured for loaded and unloaded miniscrews after 12 weeks. Two miniscrews were harvested for histology.
Removal torque was significantly higher for SAE mini-implants than for machined screws, under both loading conditions. Although no difference in bone to implant contact was observed among the groups, cortical area significantly decreased with both surfaces under loading.
Our data indicate that SAE miniscrews have higher bone retention than MA miniscrews, although the effects of mechanical loading of these devices on cortical bone require further investigations.

Item Type:

Journal Article (Original Article)


04 Faculty of Medicine > School of Dental Medicine > Department of Orthodontics

UniBE Contributor:

Katsaros, Christos


600 Technology > 610 Medicine & health




Oxford University Press




Renate Imhof-Etter

Date Deposited:

02 Feb 2018 13:55

Last Modified:

22 Oct 2019 18:58

Publisher DOI:


PubMed ID:





Actions (login required)

Edit item Edit item
Provide Feedback