
E U R O P E A N U R O L O G Y 7 1 ( 2 0 1 7 ) 4 1 7 – 4 2 5

ava i lable at www.sciencedirect .com

journal homepage: www.europeanurology.com
[1_TD$DIFF]Review – Prostate Cancer

[2_TD$DIFF]DNA Repair in Prostate Cancer: Biology and Clinical Implications
Joaquin Mateo a,b, Gunther Boysen a, Christopher E. Barbieri c,d,e, Helen E. Bryant f, Elena Castro g,
Pete S. Nelson h,i, David Olmos g, j, Colin C. Pritchard h, Mark A. Rubin d,e,k, Johann S. de Bono a,b,*

a Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research, London, UK; b Drug Development Unit, The Royal Marsden

NHS Foundation Trust, London, UK; c Department of Urology, Weill Cornell Medicine, New York, NY, USA; d Caryl and Israel Englander Institute for Precision

Medicine, New York Presbyterian Hospital-Weill Cornell Medicine. New York, NY, USA; e Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine,

New York, NY, USA; f Sheffield Institute for Nucleic Acids, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK; g Prostate Cancer

Unit, Spanish National Cancer Research Centre, Madrid, Spain; h Department of Laboratory Medicine, University of Washington, Seattle, WA, USA; i Divisions

of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA; j Medical Oncology

Department, CNIO-IBIMA Genitourinary Cancer Unit, Hospital Virgen de la Victoria and Hospital Regional de Malaga, Malaga, Spain; k Department of

Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
Article info

Article history:

Accepted August 12, 2016

Associate Editor:

James Catto

Keywords:

Prostate cancer

DNA repair

PARP

BRCA

Personalized medicine

DNA damage

Please visit www.eu-acme.org/

europeanurology to read and

answer questions on-line.

The EU-ACME credits will

Abstract

Context: For more precise, personalized care in prostate cancer (PC), a new classification
based on molecular features relevant for prognostication and treatment stratification is
needed. Genomic aberrations in the DNA damage repair pathway are common in PC,
particularly in late-stage disease, and may be relevant for treatment stratification.
Objective: To review current knowledge on the prevalence and clinical significance of
aberrations in DNA repair genes in PC, particularly in metastatic disease.
Evidence acquisition: A literature search up to July 2016 was conducted, including
clinical trials and preclinical basic research studies. Keywords included DNA repair, BRCA,
ATM, CRPC, prostate cancer, PARP, platinum, predictive biomarkers, and hereditary cancer.
Evidence synthesis: We review how the DNA repair pathway is relevant to prostate
carcinogenesis and progression. Data on how this may be relevant to hereditary cancer
and genetic counseling are included, as well as data from clinical trials of PARP inhibitors
and platinum therapeutics in PC.
Conclusions: Relevant studies have identified genomic defects in DNA repair in PCs in
20–30% of advanced castration-resistant PC cases, a proportion of which are germline
aberrations and heritable. Phase 1/2 clinical trial data, and other supporting clinical data,
support the development of PARP inhibitors and DNA-damaging agents in this molecu-
larly defined subgroup of PC following success in other cancer types. These studies may
be an opportunity to improve patient care with personalized therapeutic strategies.
Patient summary: Key literature on how genomic defects in the DNA damage repair
pathway are relevant for prostate cancer biology and clinical management is reviewed.
Potential implications for future changes in patient care are discussed.

# 2016 European Association of Urology. Published by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
then be attributed
automatically. * Corresponding author. Division of Clinical Studies, The Institute of Cancer Research Drug
Development Unit, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK.

Fax: +44 208 6427979.
.de-bono@icr.ac.uk (J.S. de Bono).
Tel. +44 208 7224028;
E-mail address: johann
http://dx.doi.org/10.1016/j.eururo.2016.08.037
0302-2838/# 2016 European Association of Urology. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.eururo.2016.08.037
http://www.eu-acme.org/europeanurology
http://www.eu-acme.org/europeanurology
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:johann.de-bono@icr.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eururo.2016.08.037&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eururo.2016.08.037&domain=pdf
http://dx.doi.org/10.1016/j.eururo.2016.08.037
http://creativecommons.org/licenses/by-nc-nd/4.0/


E U R O P E A N U R O L O G Y 7 1 ( 2 0 1 7 ) 4 1 7 – 4 2 5418
1. Introduction

While therapeutic options for patients with advanced

prostate cancer (PC) have improved over the last decade,

castration-resistant PC (CRPC) remains a lethal disease

[1]. Recently, relevant studies have identified genomic

defects in DNA repair in advanced and primary PC. This has

led to clinical studies that provide a strong rationale for

developing PARP inhibitors and DNA-damaging agents in

this molecularly defined PC subgroup. Following the

successful development of targeted agents for molecularly

defined subpopulations in other cancer types [2,3], there

may be an opportunity to potentially improve patient care

in PC via personalized therapeutic strategies. In this article,

we review the biology and clinical implications of

deleterious inherited or acquired DNA repair pathway

aberrations in PC.

2. Evidence acquisition

A literature search for clinical trials and preclinical

basic research studies up to July 2016 was conducted.

Keywords for the included ‘‘DNA repair’’, ‘‘BRCA’’, ‘‘ATM’’,

‘‘CRPC’’, ‘‘prostate cancer’’, ‘‘PARP’’, ‘‘platinum’’, ‘‘predic-

tive biomarkers’’, and ‘‘hereditary cancer’’.

3. Evidence synthesis

3.1. The molecular landscape of primary and advanced PC

Advances in genomics have permitted the identification of

putative drivers of carcinogenesis and cancer progression.

These genomic data provide for precise molecular tumor

subclassification that extends beyond traditional histologic

descriptions. For optimal utility, molecular clusters should

provide prognostic or predictive information relevant for

patient care [4].
Table 1 – Prevalence of DNA repair gene mutations and deletions desc

Study Disease status Samples

(n) Ho

SU2C-PCF CRPC CRPC metastasis 150 BRCA1

genomic landscape BRCA2

[12] ATM

UM PC genomics CRPC metastasis 50 BRCA1

[11] BRCA2

ATM

UM PC genomics Treatment-naı̈ve tumors 11 BRCA1

[11] BRCA2

ATM

Weill Cornell/Broad Prostatectomy for localized 109 BRCA1

[6] or locally advanced PC BRCA2

(somatic only) ATM

TCGA localized PC Localized PC 333 BRCA1

[8] BRCA2

ATM

MMR = mismatch repair; NER = nucleotide-excision repair; PC = prostate cance

Cancer Foundation; UM = University of Michigan; TCGA = The Cancer Genome At
Several studies have depicted the genomic landscape of

primary prostate tumors [5–7]. Recently, The Cancer

Genome Atlas Research Network (TCGA) reported on

whole-exome sequencing of a series of 333 localized PCs

[8]. Seven subgroups were defined on the basis of certain

gene fusions involving the ERG/ETS transcription factor

family (ERG, ETV1/4, and FLI1) or recurrent mutations in

specific genes (SPOP, FOXA1, and IDH1); these subgroups

differ with regard to androgen receptor (AR) signaling

activity, DNA methylation, and microRNA expression.

In the TCGA study, in which Gleason �8 tumors

represented 26% of the cohort, 62/333 (19%) tumors had

deleterious germline or somatic aberrations in genes key to

the DNA damage repair pathway (BRCA2, BRCA1, CDK12,

ATM, FANCD2, RAD51C). Six of these aberrations involved a

BRCA2 K3326* nonsense germline variant, which arguably

does not greatly impact protein function despite a modest

association with risk of cancer [9], and 23 cases had

heterozygous deletions of FANCD2 or RAD51 without

evidence of biallelic inactivation; consequently, the pro-

portion of localized PCs with impaired DNA repair function

is probably less than 19%.

Next-generation sequencing studies of metastatic

tumors identified enrichment of mutations in DNA repair

genes among patients with lethal disease [10,11]. To

provide a systematic analysis of the genomic landscape of

CRPC and its potential relevance for patient care, the Stand

Up To Cancer (SU2C)-Prostate Cancer Foundation (PCF)

International Dream Team pursued whole-exome and

transcriptome sequencing of 150 biopsies from metastatic

CRPC (mCRPC) [12]. Higher prevalence of aberrations in key

DNA repair genes (23%), TP53 (53%), RB1 (21%), the PTEN-

PI3K pathway (49%), and AR (63%) in mCRPC than in

localized disease was confirmed. It is not yet clear if this

enrichment is secondary to a tumor evolution process in

response to therapy exposure, or purely suggests markers of

more aggressive PCs (Table 1).
ribed in studies on localized and metastatic prostate cancer

Gene frequency

mologous recombination MMR NER

0.7% CDK12 4.7% MLH1 1.3% ERCC2 1.3%

13.3% CHEK2 3.0% MSH2 3.0% ERCC5 1.3%

7.3% PALB2 2.0% MSH6 2.0%

0% CDK12 6.0% MLH1 2.0% ERCC2 2.0%

12.0% CHEK2 MSH2 2.0% ERCC5 12.0%

6.0% PALB2 0% MSH6 2.0%

0% CDK12 0 MLH1 0 ERCC2 0

1/11 CHEK2 0 MSH2 1/11 ERCC5 0

1/11 PALB2 0 MSH6 1/11

1.8% CDK12 0 MLH1 0 ERCC2 0

0% CHEK2 0 MSH2 0 ERCC5 0

2.8% PALB2 1.8% MSH6 0.9%

1.0% CDK12 2.0% MLH1 0.3% ERCC2 0.6%

3.0%* CHEK2 0% MSH2 0.3% ERCC5 0.3%

4.0% PALB2 0% MSH6 1.5%

r; CRPC = castration-resistant PC; SU2C-PCF = Stand Up To Cancer-Prostate

las.
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With regard to DNA repair genes, the SU2C-PCF study

identified inactivation of key DNA repair genes in at least

23% of cases, including homologous recombination (HR)–

mediated repair genes (most commonly BRCA2 and ATM)

and mismatch repair (MMR) genes (MLH1, MSH2). Other

DNA repair mechanisms are also likely to be impacted

because of known influences of the AR in nonhomologous

end-joining (NHEJ), and possibly aberrations in nucleotide

excision repair (NER) and base excision repair (BER).

Intrapatient tumor heterogeneity represents a challenge

for genomic stratification of PC in the clinic. Several studies

have comprehensively observed an overall higher degree of

heterogeneity within primary prostate tumors than in

advanced disease [13–15]. This is likely to be related to: (1)

bottlenecks in the metastatic process that limit metastatic

spread and growth; (2) the capacity of metastatic tumor

cells to seed other metastasis and even reseed the primary

tumor; and (3) the selection of resistant clones driven by

treatment exposures. Alterations in DNA repair genes have

been related to increased mutational burden and may

generate increased intrapatient heterogeneity; specific

studies addressing the impact of genomic instability on

treating the diverse subtypes of this common disease are

now needed.

3.2. The DNA damage response pathway: a general overview

At any time, the DNA in human cells is constantly being

damaged. If there is a deficient repair of this damage,

genome stability is compromised, which can contribute to

tumorigenesis. Damage can occur endogenously (due to

spontaneous hydrolysis of bases or reaction of DNA with

naturally occurring reactive oxygen species or alkylating

agents) or can be induced by exogenous agents (eg,

radiation and toxins). To protect their genome integrity,

cells have evolved a complex signaling machinery for

recognizing and repairing damage that includes several

pathways with complementary and partially overlapping

functions. Different forms of DNA damage trigger a response

from different branches of this complex system. The main

workflow is as follows[8_TD$DIFF]; [9_TD$DIFF]when genomic insults are detected,

cell-cycle checkpoints are activated to halt the cell cycle and

allow the cellular machinery to repair the DNA damage. If

the repair is successful, the cell can continue its normal

cycle; otherwise, programmed cell death or senescence

programs are triggered. If the DNA repair mechanisms are

dysfunctional, genomic instability, which is one of the

hallmarks of carcinogenesis, ensues.

When damage is limited to one of the DNA strands

(single-strand breaks or base modifications), different

repair mechanisms can be deployed. These include BER,

single-strand break repair (SSBR), NER, and MMR. Each of

these pathways uses the complementary undamaged

strand as a template to ensure fidelity of repair. BER is

mainly activated to repair endogenous oxidative or

alkylated base damage [16]. PARP1 and PARP2 are involved

in detecting single-strand breaks, which are formed either

directly or as intermediates in BER, and help to coordinate

the SSBR response [10_TD$DIFF]. The NER machinery is responsible for
repairing bulky adducts such as those induced by UV light,

for which the ERCC family of proteins are key mediators. The

MMR pathway corrects mutations formed during DNA

replication and recombination. The MSH and MLH family of

genes are, among others, critical for MMR. The primary

mechanisms involved in DNA double-strand break (DSB)

repair comprise the HR system and NHEJ. HR requires a

sister chromatid as template and is therefore restricted to

the S/G2 phases of the cell cycle. It restores the original DNA

code error-free. Key mediators of this pathway include

BRCA1, BRCA2, PALB2, ATM, ATR, RAD51, MRE11, CHEK2,

and XRCC2/3. In contrast, NHEJ functions by ligating broken

DNA ends without the use of a template and is therefore

functional throughout the cell cycle. The error-prone mode

of NHEJ action leads to errors that are permanent and can

drive genomic instability (Fig. 1). SSBs that are not repaired

before DNA replication takes place will collapse replication

forks, leading to formation of DSBs, which then require HR

for repair and continued replication [17].

3.3. DNA repair defects play a relevant role in carcinogenesis

and PC progression

Prostate carcinogenesis is mediated, as in other cancers, by

the accumulation of genetic and epigenetic aberrations;

these molecular changes can be inherited or be the result of

altered AR transcriptional activity, changes in chromatin

architecture, oncogenic replication, error-prone DNA repair,

or defective cell division. The sum of these processes confers

survival and growth advantage to the transformed cell.

Many of these alterations are induced by factors of the

microenvironment, particularly the immune system. Chron-

ic inflammation with continued oxidative stress contributes

to carcinogenesis of the prostate epithelium by inducing

genomic damage. Deficient DNA repair response and

defective apoptotic checkpoint control can then lead to

permanent incorporation of these genome abnormalities.

AR signaling is critical not only for normal development

of the prostate gland but also for prostate carcinogenesis.

Genomic instability is related to AR transcriptional activity,

and the cross-regulation between AR signaling and DNA

damage response pathways appears to be relevant for PC

progression [18]. Nevertheless, the role of AR in genome

instability is only partly understood [19,20].

Rearrangements between the androgen-regulated

TMPRSS2 gene and the ETS genes ERG, ETV1, and ETV4 are

common in PC; these appear to be early events contributing

to, but not sufficient on their own,[1_TD$DIFF] prostate carcinogenesis,

and are at least partly lineage-specific [5]. AR-driven

transcription can result in increased DNA DSB generation

at transcriptional hubs, probably as a result of topoisomer-

ase-IIb enzyme activity, leading to complex structural

rearrangements across the genome [21,22]. Mechanistically,

this is supported by AR binding to specific chromosomal

sites creating a proximity to otherwise distant chromatin

loci [20]. TMPRSS2-ERG translocation is probably the

commonest example of such processes [23,24].

Interestingly, some PCs are characterized by high

numbers of rearrangements. Many of these tumors have
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Fig. 1 – An overview of the most important DNA damage–inducing stresses and the corresponding molecular pathways that eukaryotic cells established
to repair these. Diverse environmental and endogenous stresses can damage DNA, causing either single-strand (lilac) or double-strand (red box) DNA
breaks. Eukaryotic cells developed various molecular mechanisms that repair such damage. DNA double-strand breaks are the most toxic DNA
damage, and can be lethal for a cell if not properly repaired. The two most common and best-studied DNA double-strand repair pathways are
homologous recombination (HR; error-free) and nonhomologous end-joining (NHEJ; error-prone). HR is limited to the S/G2 phases of the cell cycle and
requires a sister chromatid as repair template. Key pathway components are highlighted. NHEJ is active mostly during the G1 phase of the cell cycle
and can lead to structural genomic alterations (rearrangements), loss of genomic material (deletion), or insertion of additional nucleotides as a
consequence of its imprecise nature. Key pathway components are highlighted.
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oncogenic mutations in the SPOP gene that stabilize

proteins including AR and its transcriptional regulators.

Mechanistically, SPOP mutant tumors rely predominantly

on NHEJ-based DSB repair (while reducing error-free HR-

mediated DSB repair activity) [25].

The pattern of genomic aberrations may partly depend

on deficiencies in specific DNA repair pathway branches. It

has been shown that loss of MMR function induces a

hypermutated microsatellite unstable genotype [12]. So-

matic complex rearrangements in MSH2 and MSH6, as well

as somatic and germline truncating mutations in these two
genes, have been described as the most common mecha-

nism for MMR-deficient prostate tumors [26,27]. BRCA2-

deficient PCs also present specific mutation signatures

enriched in deletions and with higher mutational burden

than wild-type–BRCA2 tumors [28,29].

3.4. Inherited mutations in DNA repair genes and PC risk

Hereditary germline mutations in DNA repair genes are

associated with a higher risk of PC. This results in one gene

allele being dysfunctional in every cell, with the second
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allele commonly lost by a second hit (mutation, deletion,

epigenetic silencing) [30]. Germline mutations in BRCA2

increase the risk of developing PC (relative risk 8.6 in

men <65 yr) [31,32]; their role in the development and

progression of breast, ovarian, and pancreatic cancers is also

well established. Moreover, inherited mutations in other

DNA repair genes such as PALB2, MLH1, MSH2, and PMS2

also appear to be associated with PC risk [33]. While the

proportion of patients carrying a germline BRCA1/2 muta-

tion is low (1–2%) among the general population of primary

PC patients, a multicenter study lead by the SU2C-PCF

consortium in metastatic PC patients estimated the preva-

lence of germline BRCA2 mutations as 5.3% in the setting of

advanced disease; when a panel of 20 DNA repair genes was

considered, 82/692 (11.8%) of patients with metastatic

disease carried an underlying germline mutation [34]. In-

terestingly, age at diagnosis and family history of PC did not

identify the mutation carriers, although there was enrich-

ment among patients with a family history of cancer. It is

therefore now critical to reconsider current guidelines for

germline DNA testing; this could be relevant not only for

treatment stratification but also in triggering cascade

genetic testing for relatives who may be candidates for

targeted cancer screening programs.

At present there is no consensus on how to manage this

high-risk population with regard to screening for PC. To

address this issue, the IMPACT study is evaluating targeted

PC screening in men with germline BRCA1/2 (gBRCA1/2)

mutations. Annual prostate-specific antigen (PSA) tests are

performed, and a biopsy is triggered if PSA >3ng/ml. A total

of 1522 gBRCA1/2 mutation carriers and 959 controls had

been recruited at last reporting. Preliminary results have

revealed a higher incidence of PC in [11_TD$DIFF]gBRCA2[12_TD$DIFF]mutation carriers

(3.3% vs 2.6% in [11_TD$DIFF]gBRCA1[13_TD$DIFF] mutation carriers, <2% for controls),

who also have a higher likelihood of intermediate/high risk.

Final results from these studies are awaited to ascertain the

optimal screening strategies for this population [35].

Inherited mutations impairing the MMR function (Lynch

syndrome) have been associated with an almost fivefold

higher risk of PC, although additional work is needed to

determine precise risks [36].

3.5. Impact of DNA repair defects on clinical outcome and

response to treatment in PC

The relevance of somatic loss of function of DNA repair

genes in the treatment of CRPC is still not clear, as neither

the TCGA (primary tumors) nor the SU2C/PCF (metastatic

disease) landscape studies reported follow-up clinical

outcome data. Prospective studies looking at whether this

molecular classification results in clinically relevant strati-

fication for prognosis and treatment response are needed

[8,12]. There are data on clinical outcome according to

gBRCA1/2 in localized disease. In a series of more than

2000 patients with localized PC, including 61 BRCA2 and 18

BRCA1 mutation carriers, 23% of gBRCA1/2 mutation carriers

developed metastasis after 5 yr of radical treatment,

compared to 7% of noncarriers (p = 0.001). Cause-specific

survival was significantly shorter among carriers (8.6 yr)
compared to noncarriers (15.7 yr; p = 9 � 10�8
[7_TD$DIFF]). Subgroup

analysis confirmed [11_TD$DIFF]gBRCA2 mutations as independent factor

for poor prognosis [37]. The poorer outcome for [11_TD$DIFF]gBRCA2

mutation carriers seems to be particularly relevant for

patients treated with radical radiotherapy in comparison to

surgery, although the patient numbers evaluated were too

small to support a robust claim [38]. The exact biological

reasons underlying this poorer outcome remain to be fully

elucidated; data from small series suggest that these tumors

remain sensitive to taxanes [39,40].

3.6. Using DNA repair defects as a therapeutic target:

PARP inhibitors

Over the last decade, exploitation of the vulnerabilities of

tumor cells with DNA repair gene defects has been pursued

in different tumor types, most successfully in ovarian and

breast cancers. The identification of a subgroup of mCRPC

with DNA repair defects with a similar genomic profile

provides a strong rationale for developing the same

therapeutic strategies for this molecular subtype of PC [10].

Poly (ADP-ribose) polymerases (PARP) are a family of

enzymes involved, primarily, in transcriptional regulation

and in detecting and localizing other DNA repair proteins to

DNA single strand breaks. Activation of PARP1 and PARP2

triggers the damage response and recruits of key effectors of

repair.

The fundamental basis for inhibiting PARP as anticancer

therapy is the established biological concept called syn-

thetic lethality: two genomic events that are each relatively

innocuous individually become lethal when occurring

together [41]. When PARP1/2 are pharmacologically inhib-

ited, SSBs cannot be repaired and eventually progress to

toxic DSBs. If a cell is competent in repairing damage, it will

be able to fix the DSB. However, if a cell is lacking HR repair

capacity (eg, BRCA1, BRCA2, PALB2 or ATM is dysfunctional or

lost), then PARP inhibiton would become lethal.

Two landmark studies demonstrated in 2005 specific

killing of cell lines in which BRCA1/2 had been silenced or

lost by the PARP inhibitor (PARPi) KU-0059436 (later named

AZD2281, olaparib) [42,43]. In these studies, PARP inhibition

led to gH2AX accumulation and the absence of RAD51 foci

formation in BRCA-deficient models. Subsequent studies

have revealed similar effects for other PARP inhibitors now

in clinical development, and demonstrated that sensitivity to

PARP inhibition also appears when other HR proteins besides

BRCA1/2 are nonfunctional or lost [44,45].

This mechanistic interpretation of PARPi-associated

synthetic lethality may, however, be a simplification of

the underlying biological effect. It is now clear that PARP1 is

involved in other DNA damage responses as well as SSBR,

with reported functions in DNA replication and repair of

stalled replication forks [46,47]. Moreover, certain PARP

inhibitors may also have a direct cytotoxic effect by

trapping PARP at DNA SSBs. These trapped PARP enzymes

eventually induce replication fork stalling, which results in

cell cycle arrest and apoptosis [48].

Lastly, of particular relevance to PC, PARP1 is involved in

transcriptional regulation and has been implicated in AR
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signaling and ERG function [49,50]. This direct interaction

between PARP1 and ERG, as well as an interaction between

PI3K/PTEN pathway aberrations and HR DNA repair [51,52],

also raised hopes for a wider target population. However,

these mechanisms have not been confirmed in human

clinical trials to date [53,54].

3.7. Clinical development of PARP inhibitors in PC

A first-in-man clinical trial of olaparib among a cohort of

patients with advanced solid tumors enriched in gBRCA1/2

mutation carriers provided critical proof of concept and

clinical data on the exquisite antitumor activity of this drug

in BRCA-deficient tumors [55]. Since then, olaparib has been

evaluated in several phase [14_TD$DIFF]II/III studies, mainly in ovarian

cancer as a single agent, until granted US Food and Drug

Administration and European Medicines Agency approval

in 2014 for advanced ovarian cancer associated with BRCA1/

2 mutations [56–59].

With regard to mCRPC patients, a few carriers of

deleterious gBRCA1/2 mutations were enrolled in the initial

trials of olaparib, and showed promising tumor responses.

In a phase 2 basket trial including 298 [11_TD$DIFF]gBRCA1/2 mutation

carriers with different tumor types, eight mCRPC patients

were enrolled (1 BRCA1 mutant carrier, 7 BRCA2 cases)

[60]. Half (4/8) of the mCRPC patients experienced a

radiologic partial response; the median progression-free

survival for all eight patients was 7.2 mo, with two patients

responding for over 1 yr. Of note, 4/8 patients had prior

treatment with platinum-based chemotherapy before

receiving olaparib. In line with data suggesting some

degree of secondary cross-resistance [61], only 1/4 patients

who were exposed to platinum responded to olaparib,

compared to 3/4 of those who were platinum-naı̈ve.

Other PARP inhibitors are in clinical development; data

for PC patients are primarily from [11_TD$DIFF]gBRCA1/2 mutation

carriers with PC who participated in early clinical trials of

these compounds. Preclinical studies of BMN673 (Biomarin/

Medivation) demonstrated high potency in inhibiting PARP

[62], and tumor responses were seen in BRCA1/2 mutation

carriers across tumor types in a phase 1 clinical trial

[63]. Rucaparib (AG-014699/CO-338, Pfizer/Clovis Oncolo-

gy) and veliparib (ABT-888, Abbott Laboratories) have

mainly been developed so far in combination with

chemotherapies or other targeted agents [64,65].

The antitumor activity of PARP inhibitors as single agents

in patients besides [11_TD$DIFF]gBRCA1/2 mutation carriers has been

investigated in two studies. During the first-in-man trial of

niraparib (MK-4827, Merck/Tesaro), an expansion cohort

for ‘‘sporadic’’ CRPC patients was pursued. Eighteen patients

received niraparib at the recommended phase 2 dose

(300 mg QD). One patient achieved a >50% decrease in PSA,

remaining on treatment for 10 mo [54]. Three more patients

had significant declines in circulating tumor cell (CTC)

counts for >6 mo. The trial was unable to associate

responses with either PTEN or ERG expression.

More recently, results from the first stage of a phase

2 investigator-initiated adaptive study of olaparib in mCRPC

have been reported, raising interest in developing PARP
inhibitors for this disease. The TOPARP study conducted in

the UK included a first stage (TOPARP-A) aimed at testing

the antitumor activity of olaparib in a ‘‘sporadic’’ mCRPC

population (not known to be [11_TD$DIFF]gBRCA1/2 mutation carriers

and not selected based on any prior knowledge of the

genomic background) [66]. The primary endpoint of the

study was the response rate, using a composite definition of

response: radiologic response according to RECIST 1.1 and/

or PSA declines >50% and/or conversion in CTC count from

poor (>5 CTC/7.5 ml of blood) to positive prognostic profile

(�5 CTC/7.5 ml of blood), confirmed in at least two readings

4 wk apart. Progression-free and overall survival were

explored as secondary endpoints. Response to olaparib was

evaluated in 49/50 patients who received at least one dose

of olaparib. These were all mCRPC patients progressing on

docetaxel and, for all but one, on abiraterone and/or

enzalutamide. Some 58% of patients also progressed on

cabazitaxel before participating in the study. Of the

49 patients, 16 fulfilled at least one of the response criteria,

including 11 cases with a PSA decline >50% and 6/32 with

radiologic partial responses among the patients with

measurable disease. The antitumor activity observed was

strongly associated with the presence of mutations or

homozygous deletions in DNA repair genes, evaluated by

next-generation sequencing for metastatic biopsies collect-

ed at trial entry. Seven patients were found to have biallelic

loss of BRCA2, either by germline or somatic mutations and

deletions, with all seven responding to therapy. In five

cases, mutations impacting ATM function were found; 4/5

responded to olaparib, including patients with germline and

somatic mutations, and two patients with a single-allele

mutation in the ATM kinase domain and no evidence of

biallelic loss. Moreover, four cases with biallelic events in

other genes involved in DNA damage response, including

PALB2, FANCA, and BRCA1, showed benefit, primarily

involving prolonged CTC conversions. Only two patients

responding to olaparib did not have a clear DNA repair

defect according to genomic analysis. Several long response

durations were observed, including four patients benefiting

for >1 yr. Patients with defects in DNA repair genes

exhibited improved progression-free and overall survival

from treatment initiation, although the preliminary survival

data reported will need to be re-evaluated after longer

follow-up.

The promising results in this first stage of the TOPARP

study led to initiation of a second trial (TOPARP-B) with

prospective selection of patients with aberrations in DNA

repair genes; the objectives are to validate the antitumor

activity seen in patients with the most common mutations

(BRCA2, ATM) and to acquire critical data on sensitivity to

olaparib for patients with mutations or deletions in less

commonly affected genes [2_TD$DIFF].

The tolerability profile of PARP inhibitors is manageable,

with anemia, thrombocytopenia, fatigue, and gastrointesti-

nal toxicities (primarily nausea) the most frequent. In the

TOPARP-A trial, anemia (20%) and fatigue (12%) were the

most common grade �3 adverse events; gastrointestinal

toxicities were less relevant than reported for ovarian

cancer [67]. Hematologic toxicities and fatigue were also
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the dose-limiting events determining the recommended

dose for other PARP inhibitors such as BMN673 and

niraparib [54,63].

PARP inhibitors are also being evaluated in combination

trials in mCRPC. An obvious strategy is to combine PARPi

with DNA-damaging agents, mostly chemotherapy agents,

to achieve a synergistic effect by blocking the response to

chemotherapy-induced DNA damage. In a trial of veliparib

and the alkylating agent temozolamide [65], 2/26 treated

patients experienced PSA declines of>30%; the rate of grade

3–4 anemia and thrombocytopenia was 15% and 23%

respectively. Overlapping hematologic toxicities also rep-

resent a major hurdle for combining platinum chemothera-

pies and PARPi.

An alternative approach would be to aim for a synthetic

lethal interaction rather than a synergistic effect. Preclinical

data demonstrating enhanced death of prostate tumor cells

when combining HDAC and PARPi exemplify an opportuni-

ty for clinical development [68].

Lastly, trials combining PARPi with AR-targeting agents

may be of interest on the basis of the crossregulation of both

pathways and the central role of hormonal therapy in PC.

Preliminary results from a randomized trial combining

veliparib and abiraterone determined that 27% of patients

had aberrations in DNA repair genes; this subgroup

experienced high response rates to the combination and,

remarkably, to abiraterone alone [53]. Data from a

randomized trial combining abiraterone and olaparib are

also expected. However, interpretation of putative predic-

tive biomarkers of response in combination trials may be

challenging.

3.8. DNA damaging agents: should they be reconsidered for PC?

Platinum salts are part of standard management for other

tumor types, but their use in PC has been limited since

phase 3 trials of the orally available platinum derivative

satraplatin failed to meet the primary endpoint of overall

survival (OS) improvement [69]. However, some antitumor

activity has been described for carboplatin, cisplatin, and

satraplatin in mCRPC. This, together with the possibility

now of identifying DNA repair–defective tumors and data

on DNA repair mutations and response to platinum from

ovarian cancer studies, has raised interest in re-evaluating

the role of platinum agents in this disease.

Recently, Kumar et al reported longer benefit from

carboplatin for cases with HR defects in a retrospective

series of patients (p = 0.002 for duration of treatment,

n = 21). Small case series have reported tumor responses to

carboplatin in mCRPC patients with biallelic BRCA2 loss

[70]. Nonetheless, the mechanisms involved in sensitivity to

platinum and PARPi may be similar but not identical, and

further investigation of cross-sensitivity and cross-

resistance between agents is now needed following data

from ovarian cancer studies. For example, the predomi-

nance of NER in repairing platinum-generated adducts

warrants specific clinical trials [71,72].

A few clinical trials have explored combinations of

carboplatin and taxanes for PC. One of the most relevant
was a phase 2 study of carboplatin and docetaxel, followed

by cisplatin and etoposide on progression. The study

recruited 120 patients with mCRPC with prespecified

clinicopathologic characteristics suggestive of more aggres-

sive, arguably less AR-dependent disease [73]. With median

OS of 16 mo, the radiological response rate was �30% for

both first- and second-line combinations. The tolerability

was relatively acceptable, with only three cases of febrile

neutropenia.

Use of the topoisomerase inhibitor mitoxantrone in PC

has declined as several other therapies became available

over the last decade. However, the main mechanism in the

cytotoxicity of mitoxantrone is disruption of DNA synthesis

and repair, so re-evaluation of its activity in molecularly

defined populations may be of interest.

4. Conclusions

The identification of a subgroup of PCs with lethal disease

with genomic deleterious aberrations of DNA repair genes

supports further evaluation of this biomarker-driven

treatment stratification of advanced PC in registration

studies. If the efficacy of this strategy is, it might also be

possible to apply it to earlier disease stages, including high-

risk locally advanced disease.

Further studies are now needed to clinically qualify

multiplex predictive biomarkers of DNA repair–defective

PCs, particularly for the less common genomic aberrations

that cause this phenotype. On the basis of recent studies

indicating that these aberrations are common in the

germline DNA of patients with metastatic PC, somatic

and germline DNA testing for patients with advanced PC

should be considered in view not only of the therapeutic

consequences for the patient but also the possibility of

pursuing targeted screening in this population. A major

limitation at present for adoption of this strategy is the

implementation and standardization of genomic testing in

the community setting, but the decreasing costs of next-

generation sequencing and lessons learned from stratified

therapies in other diseases will help us to pursue more

precise care for PC patients.
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