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Comparison of Preoperative Quantitative Magnetic Resonance
Imaging and Clinical Assessment of Deep Pain Perception as
Prognostic Tools for Early Recovery of Motor Function in

Paraplegic Dogs with Intervertebral Disk Herniations

A. Wang-Leandro , J.S. Siedenburg , M.K. Hobert, P. Dziallas, K. Rohn, V.M. Stein, and
A. Tipold

Background: Prognostic tools to predict early postoperative motor function recovery (MFR) after thoracolumbar interver-

tebral disk herniation (IVDH) in paraplegic dogs represent an opportunity to timely implement novel therapies that could

shorten recovery times and diminish permanent neurological dysfunctions.

Hypothesis: Fractional anisotropy (FA) values obtained using diffusion tensor imaging have a higher prognostic value

than a lesion extension ratio in T2-weighted images (T2W-LER) and clinical assessment of deep pain perception (DPP) for

MFR.

Animals: Thirty-five paraplegic dogs with diagnosis of acute or subacute thoracolumbar IVDH.

Methods: Prospective, descriptive observational study. At admission, absence or presence of DPP, T2W-LER, and FA

values was evaluated. MFR was assessed within 4 weeks after decompressive surgery. Values of T2W-LER and FA of dogs

with and without MFR were compared using t-tests. All 3 methods were evaluated for their sensitivity and specificity as a

prognostic factor.

Results: No differences were found between groups regarding T2W-LER. FA values differed statistically when measured

caudally of lesion epicenter being higher in dogs without MFR compared to dogs with MFR (P = .023). Logistic regression

analysis revealed significance in FA values measured caudally of the lesion epicenter (P = .033, area under the curve = 0.72).

Using a cutoff value of FA = 0.660, the technique had a sensitivity of 80% and a specificity of 55%. Evaluation of DPP had

a sensitivity of 73.3% and specificity of 75% (P = .007).

Conclusions and Clinical Importance: Evaluation of DPP showed a similar sensitivity and a better specificity predicting

early MFR than quantitative magnetic resonance imaging.

Key words: Canine; Diffusion tensor imaging; Paraplegia; Spinal cord injury.

Acute thoracolumbar intervertebral disk herniation
(IVDH) is a common neurological disease in dogs

that may lead to permanent sensorimotor and visceral

function impairments.1–3 Thoracolumbar IVDH occurs
predominantly in chondrodystrophic dogs due to early
degeneration of intervertebral disks and exerts a mix-
ture of contusive and compressive forces to the spinal
cord.4–6

Current treatment for paraplegic dogs with IVDH is
focused on eliminating the source of primary mechani-
cal damage and consists of surgical decompression of
the spinal cord.7–10 However, shortly after the primary
injury, a complex and dynamic cascade of cellular pro-
cesses including inflammation, edema, ischemia, reactive
species liberation, excitotoxicity, and microglial and
astrocytic activation occur.11–14 This spectrum of
responses is known as the “secondary injury,” and it
occurs seconds to weeks after the primary injury.12,15

Research on novel therapies is performed and aims to
neutralize or diminish the effects of the early secondary
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wave of damage.16,17 Early motor function recovery
(MFR) has been rarely explored as an outcome mea-
surement, but represents an opportunity for timelier
implementation of novel therapies that could shorten
recovery times and contribute to diminish permanent
neurological dysfunctions.

Assessment of deep pain perception (DPP) during
neurological examination, composition of cell popula-
tions and biomarkers present in the cerebrospinal fluid
(CSF) and quantitative magnetic resonance imaging
(MRI) have been formerly evaluated as prognostic fac-
tors for long-term functional recovery in dogs with tho-
racolumbar IVDH.2,3,18–25 Evaluation of DPP and
length of intramedullary hyperintense signal in sagittal
T2-weighted MRI were proven to be useful predictive
tools for long-term MFR.2,18,21,23

Diffusion tensor imaging (DTI) is a state-of-the-art
modality of MRI that allows in vivo microstructural
evaluation of white matter tracts by quantifying water
molecule diffusion.26 DTI of the spinal cord has been
increasingly applied for numerous diseases including
SCI in different animal models and humans.27–30 Frac-
tional anisotropy (FA) is a unitless value that ranges
from 0 to 1. An FA equal to zero represents unre-
stricted directional diffusion of water molecules, and
FA equal to one represents a completely restricted diffu-
sion in only one possible direction.26,31 Therefore,
highly organized tissues such as white matter tracts pro-
vide a homogeneous anisotropic environment for water
molecule diffusion.27,32 Recently, feasibility of DTI of
the canine healthy spinal cord has been reported and
the tissue was characterized.33–35 As a correlation
between parenchymal damage of the spinal cord and
severity of neurological deficits was found by Henke
and colleagues,36 the introduction of DTI as an objec-
tive clinical tool for assessment of structural integrity of
the spinal cord may be valuable for preoperative deter-
mination of prognosis.

Therefore, the aim of this study was to evaluate the
potential preoperative prognostic value for early MFR
in a population of dogs with thoracolumbar IVDH
using 3 techniques: measurement of the extension of
spinal cord compression and hyperintensity in sagittal
T2W sequences at the level of SCI, FA values obtained
from DTI sequences, and clinical assessment of DPP.
We hypothesize that DTI parameters will show a higher
sensitivity and specificity than a lesion extension ratio
in T2W images (T2W-LER) and assessment of DPP
predicting postoperative MFR.

Materials and Methods

Animals

For this study, dogs admitted to the Department of Small Ani-

mal Medicine and Surgery of the University of Veterinary Medi-

cine Hannover between June 2013 and April 2015 were

prospectively recruited. The dogs had to fulfill the following inclu-

sion criteria: acute paraplegia (0–7 days since observed onset of

clinical signs) or subacute paraplegia (8–28 days since onset of

clinical signs),23,37,38 SCI confined to the T3-L3 spinal cord seg-

ments and a body weight <20 kg. Onset of clinical signs was

defined and recorded as the time point when owners noticed a

nonambulatory state of their dog. Time elapsed between nonam-

bulatory state of the dog and admission to the clinic was used for

classification of acute and subacute paraplegia.25 At admission,

each dog underwent a physical and neurological evaluation, plain

radiographic imaging of the thoracic and lumbar vertebral column

and MRI of the thoracolumbar spinal cord to diagnose IVDH.

Furthermore, complete blood workup, serum biochemistry, and

CSF analysis were performed to exclude differential diagnoses.

IVDH was confirmed during surgery, all dogs were treated with

decompressive surgery of the spinal cord, and appearance of MFR

was documented within 4 weeks thereafter. Dogs were excluded

from the study, if a compression caudal to the L4 vertebral body

or neurological deficits compatible with a lower motor neuron

lesion were present. Postoperative MFR was noted, when dogs

regained voluntary movement of the hindlimbs together with pres-

ence of DPP within 4 weeks after decompressive surgery and was

recorded as a dichotomous outcome (yes or no). This study was

performed after the approval of the German Animal Welfare

instances (Number: 33.9-42502-04-11/0661) and the written own-

ers’ consent for each examination.

Assessment of Deep Pain Perception

Dogs were tested for presence or absence of DPP during clinical

evaluation. Presence of DPP was defined as an obvious and repro-

ducible behavioral response that could be interpreted as pain

toward a noxious stimulus (ie, whining, sudden turning the head,

and/or biting attempts toward the source of stimulus). For the

test, digits of both hindlimbs were clamped using forceps.2,25,39

Magnetic Resonance Imaging

Magnetic resonance imaging scans were performed under gen-

eral anesthesia using a 3 tesla scannera and protocols consisted of

sagittal and transversal T2W and transversal DTI sequences as

previously reported.33,34 T2-weighted images sequences were

assessed by board certified neurologists (AT, VS, or both) to deter-

mine localization of SCI for subsequent surgical procedures.

Lesion extension ratio in T2W images (T2W-LER) was defined as

lengths of spinal cord compression and intramedullary hyperin-

tense signal expressed as a ratio in relation to length of vertebral

body of L2.21 T2-weighted—lesion extension ratio was evaluated

in sagittal planes using commercially available software.b

Moreover, T2W images were used as templates for placement

of regions of interest (ROIs) in transversal DTI sequences using a

DTI software tool.c Regions of interest were placed in signals

deriving from the spinal cord in FA maps directly dorsally of

intervertebral disk spaces at the epicenter of the lesion and one

vertebral body cranial and caudal to the epicenter. Epicenters were

defined as spinal cord segments with compression evidenced in

T2W sequences. As a clear differentiation between gray and white

matter can be challenging in the lesioned spinal cord even evaluat-

ing conventional T2W sequences, ROIs were positioned in the

whole spinal cord parenchyma, as reported previously.33,34,40

Regions of interest were placed using individual voxels, sized

1.65 9 1.65 9 2 mm, to avoid measuring diffusion metrics deriv-

ing from CSF or epidural fat. Afterward, voxels were fused and

values of FA were obtained from each ROI.

Statistical Analysis

Dogs were divided into 2 groups: dogs with and without post-

operative MFR. Age and body weight between groups were com-

pared via t-tests. Variance analyses for FA values at each

independent localization were performed. Significances in logistic

Early Motor Function Recovery After IVDH 843



regression analyses were calculated and receiver-operating charac-

teristics (ROC) curves were plotted to assess and describe validity

of FA and T2W-LER measurements and Youden indices were

applied for significances found in order to set a cutoff point. Sensi-

tivity and specificity of DPP was calculated as a dichotomous

model using Fisher’s exact test. False positives were defined as

dogs presenting intact DPP or quantitative MRI values below the

cutoff point and showing no MFR. Furthermore, false negatives

were defined as dogs presenting absent DPP or quantitative MRI

values above the cutoff point and showing early MFR. Continu-

ous variables were depicted descriptively as mean (�standard devi-

ation; SD) for normally distributed variables. Significance level

was considered as P < .05. Power and sample size calculation,

analysis of data, and graphic generation were performed using sta-

tistical software.d,e,f

Results

Animals

Thirty-five dogs, 19 males and 16 females, fulfilled
the inclusion criteria. Thirty-three dogs presented an
acute and 2 dogs a subacute SCI due to IVDH. The
mean time between onset of nonambulatory status and
preoperative clinical examination was 2.2 days (median
1 day, range 0–22 days). Most dogs were Dachshunds
with 17 individuals and 7 mixed-breed dogs. Further-
more, 3 French bulldogs, 2 Jack Russell Terrier, 2 Shih-
Tzu and 1 dog of each of the following breeds were
included: Chihuahua, small Munsterlander pointer, and
Lhasa Apso. Twenty dogs showed early MFR within
4 weeks after surgical decompression of the spinal cord,
whereas 15 dogs did not improve. No differences in age,
weight, or time since onset of clinical signs were found
between groups (Table 1). Most common localizations
for IVDH were Th12/13 and Th13/L1 with 10 cases
each.

T2W—Lesion Extension Ratio

Mean T2W-LER measured from dogs without post-
operative MFR was 4.46 � 1.73 and with postoperative
MFR 3.33 � 1.96. Variance analysis revealed no signifi-
cant differences between dogs with and without MFR
after decompressive surgery (P = .085). Logistic regres-
sion analysis displayed no significant differences for pre-
diction of early MFR between groups (P = .097). ROC
curves displayed an area under the curve (AUC) = 0.73
(Fig 1).

Fractional Anisotropy

Mean values of FA obtained at the level of epicenters
were 0.764 � 0.067 and 0.775 � 0.073 for dogs with

Table 1. Comparison of age, body weight, and time
between onset of nonambulatory status and clinical
examination between groups.

MFR

(n = 20)

No MFR

(n = 15) P

Age (years; mean � SD) 5.5 � 2.8 6.8 � 3.5 .22

Body weight (kg; mean � SD) 9.8 � 4.2 9.2 � 3.1 .70

Time between onset of

nonambulatory status and

clinical examination

(days; mean � SD)

2.9 � 5.2 1.3 � 2.0 .28

MFR, motor function recovery; SD, standard deviation.

Fig 1. Receiver-operating characteristics (ROC) curves to predict

early motor function recovery (MFR). ROC curve for (A) values

of T2-weighted-lesion extension ratio (T2W-LER) and (B–D) frac-

tional anisotropy (FA) values obtained from the spinal cord of 35

paraplegic dogs at the (B) epicenter, (C) one vertebral body cra-

nially, and (D) one vertebral body caudally. P value derived from

linear predictors calculated through logistic regression analysis at

each localization. Abbreviations: AUC, area under the curve.
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postoperative MFR and without postoperative MFR,
respectively. One vertebral body cranially, mean FA
value from dogs with MFR was 0.714 � 0.104, whereas
in dogs without MFR values of 0.741 � 0.093 were
determined. Furthermore, measurements of FA one ver-
tebral body caudally to epicenters had a mean of
0.658 � 0.093 for dogs with MFR and 0.735 � 0.094
for dogs without MFR. Variance analysis showed no
significant differences between groups at lesion epicen-
ters (P = .95) and one vertebral body cranial to the epi-
center (P = .44); however, significant differences in FA
were evidenced in the spinal cord one vertebral body
caudal to the epicenters (P = .023).

Similarly, logistic regression analysis of FA values to
predict postoperative MFR revealed no significant dif-
ferences between groups at the level of epicenters
(P = .63, ROC curve AUC = 0.57) and one vertebral
body cranially (P = .43, ROC curve AUC = 0.57).
Nonetheless, a significant difference was found caudal
to the epicenter (P = .033, ROC curve AUC = 0.72;
Fig 1). Youden index calculations applied to FA values
caudal to the lesion epicenter revealed a sensitivity of
80% (CI 95%, 51.9–95.7%) and a specificity of 55%
(CI 95%, 31.5–76.9%) for prediction of negative out-
come using a cutoff value of FA >0.660.

Deep Pain Perception

Evaluation of DPP before decompressive surgery
revealed a positive response in 19 dogs and a negative
response in 16 dogs. About 79% of dogs with intact
DPP (15/19) and 31% of dogs with absent DPP (5/16)
developed postoperative MFR within 4 weeks after
decompressive surgery. Table 2 describes the distribu-
tion of paraplegic dogs according to presence or
absence of DPP, early MFR, and elapsed time between
onset of clinical signs and admission to the clinic.

Fisher’s exact test for evaluation of DPP as a prognos-
tic tool for lack of early functional recovery displayed a
significance of P = .007, sensitivity of 73.3% (CI 95%,
50.9–95.7%), and specificity of 75% (CI 95%, 56–94%).

Discussion

This study prospectively evaluates preoperative mea-
surements of spinal cord lesion extension in conven-
tional T2W MRI sequences, DTI parameters, and
clinical assessment of DPP as prognostic factors for
early MFR in a population of paraplegic dogs with

acute and subacute SCI. Dogs were tested for presence
or absence of DPP, length of SCI was measured in
sagittal T2W sequences, and values of FA were
obtained from epicenter of the lesion and one vertebral
body cranially and caudally. After decompressive sur-
gery, neurological examinations were repeated and data
from dogs with and without postoperative MFR within
4 weeks were compared.

Evaluation of prognostic tools for early MFR in
paraplegic dogs with SCI has been uncommonly
reported.20,41 Establishment of clinical tools that could
provide a prognostic value in the time window of early
MFR may have an impact on timely selection of
patients with unfavorable prognosis for early implemen-
tation of novel therapies.

In the population of affected dogs, Dachshund was
the breed presented the most and Th12/13 and Th13/
L1 occurred most frequently as localization of thora-
columbar IVDH, in ten and eleven cases, respectively,
as previously reported.8,23,42,43 Chondrodystrophic
breeds such as Dachshunds are frequently affected by
early degeneration of intervertebral disks and presence
of intercapital ligaments may partially prevent inter-
vertebral disks to herniate in cranial segments of the
thoracic vertebral column.2–5,23,42,44,45

Assessment of DPP remains an accepted and com-
monly applied test for prognosis of recovery in para-
plegic dogs with IVDH,25 although its performance and
interpretation have been considered as controversial.46,47

For long-term functional recovery, presence of DPP in
nonambulatory dogs with thoracolumbar IVDH is asso-
ciated with positive outcomes in nearly 100% of the
cases;2,39,48 however, absence of DPP has been corre-
lated with a recovery rate of approximately 50%.2,6,25,39

A clear difference is detected in the current study with
lower accuracy of DPP to predict early MFR in com-
parison with formerly reported prediction of long-term
MFR. Late-onset recovery of ambulation in paraplegic
dogs with IVDH after surgical decompression can
appear up to 6 months thereafter and ranges from
13.4% to 31.8% of which some dogs regain ambulation
without regaining DPP.2 However, for early application
of novel treatment strategies in dogs which would fail
standard therapy, prediction of early MFR becomes
useful and necessary allowing selection of target popula-
tions.

Values of T2W-LER displayed no significant differ-
ences between dogs with and without early MFR. This
finding contrasts previous studies, where longer

Table 2. Temporal distribution of dogs at admission time point, motor function recovery (MFR), and presence or
absence of deep pain perception (DPP).

MFR (n = 20) No MFR (n = 15)

Time between onset of nonambulatory

status and clinical examination 0–1 day 2–3 days >3 days 0–1 day 2–3 days >3 days Total

Presence of DPP 11 (58%) 0 (0%) 4 (21%) 3 (16%) 0 (0%) 1 (5%) 19 (100%)

Absence of DPP 2 (13%) 2 (13%) 1 (6%) 8 (50%) 1 (6%) 2 (13%) 16 (100%)

MFR, motor function recovery; DPP, deep pain perception.

Early Motor Function Recovery After IVDH 845



intramedullary hyperintensities in sagittal T2W
sequences were predictive for unfavorable long-term
outcome using 0.3 and 1 tesla magnetic fields.18,21,23

Use of high-field MRI leads to increase in signal-to-
noise ratio and consequently to a change in image reso-
lution;49 therefore, mild intramedullary hyperintensities
in sagittal T2W sequences may be more frequently evi-
dent using 3 tesla magnetic fields. Presence of intrame-
dullary T2W hyperintensities during acute and subacute
stages of SCI is assumed to be a consequence of edema,
hemorrhage, and necrosis.6,50 This study intended not
only to quantify hyperintense signal in sagittal T2W
sequences but the complete extension of the SCI,
including length of intramedullary intensity changes as
well as extramedullary spinal cord compressions. How-
ever, preoperative T2W-LERs seem not to be of prog-
nostic value for early MFR using high-field MRI.
Based on the previous literature evaluating early
MFR,41,51 a sample size of 44 paraplegic dogs, 22 per
group, was calculated to detect differences between
groups with an alpha level of 0.05 and power of 0.80
using DPP as gold standard technique. Although the
initial calculated sample size could not be reached,
achieved statistical power for DPP and FA was 0.81
and 0.79, respectively. However, the achieved power for
T2W-LER within the population evaluated reached
only 0.60, and therefore, a type II statistical error could
influence the data concerning T2W-LER.

To the author’s knowledge, this study is the first
report to evaluate DTI parameters as prognostic tool
for MFR in paraplegic dogs with IVDH. Increased
preoperative FA values were found one vertebral
body caudal to the lesion epicenter in dogs without
MFR compared to dogs that showed MFR suggesting
the occurrence of cytotoxic edema and axonal
swelling.52–54 Although a difference was found, the
ability of DTI parameters to predict early MFR was
lower than evaluating DPP preoperatively, displaying
a similar sensitivity but a remarkably lower specificity.
Therefore, the assessment of preoperative DTI param-
eters did not offer benefits over DPP assessment.

Differentiation between gray and white matter in the
compressed and lesioned spinal cord is challenging, even
in conventional MRI sequences. Attempts to indepen-
dently measure DTI metrics from white and gray matter
using clinically applicable protocols could lead to par-
tial volume effects;55 therefore, ROIs were placed in
both, gray and white matter, and were positioned
equally in all patients. Albeit no intramedullary signal
voidance was noticed in T2* sequences, foci of intrame-
dullary hemorrhage may have an impact in diffusion
metrics.56

In conclusion, ability to predict early postoperative
MFR was evaluated for clinical assessment of DPP,
sagittal T2W sequences, and DTI parameters of the
spinal cord of paraplegic dogs with acute and suba-
cute IVDH. The hypothesis could not be proven that
DTI shows a higher sensitivity and specificity than a
lesion extension ratio in T2W images (T2W-LER) and
assessment of DPP predicting postoperative MFR. In

fact, presence of intact DPP had a similar sensitivity
and a better specificity in predicting early functional
recovery than quantitative MRI, herewith still empha-
sizing the importance of clinical examination.

Footnotes

a Philips Achieva, Phillips Medical Systems, Eindhoven, The

Netherlands
b EasyVET, Version 8.0.0.03/R3, Isernhagen, Germany
c Extended MR workspace, Version 2.6.3.4, Philips Medical Sys-

tems, The Netherlands
d G*Power, version 3.1.9.2, University of Duesseldorf, Germany
e SAS software, version 9.2, SAS Institute, Cary, NC
f GraphPad Prism, version 5, GraphPad Software, CA
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