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Abstract 

 

Despite substantial advances in the treatment of various cancers, many patients still receive 

anti-cancer therapies that hardly eradicate tumor cells but inflict considerable side effects. To provide 

the best treatment regimen for an individual patient, a major goal in molecular oncology is to identify 

predictive markers for a personalized therapeutic strategy. Regarding novel targeted anti-cancer 

therapies, there are usually good markers available. Unfortunately, however, targeted therapies alone 

often result in rather short remissions and little cytotoxic effect on the cancer cells. Therefore, 

classical chemotherapy with frequent long remissions, cures, and a clear effect on cancer cell 

eradication remains a corner stone in current anti-cancer therapy. Reliable biomarkers which predict 

the response of tumors to classical chemotherapy are rare, in contrast to the situation for targeted 

therapy. For the bulk of cytotoxic therapeutic agents, including DNA-damaging drugs, drugs targeting 

microtubules or antimetabolites, there are still no reliable biomarkers used in the clinic to predict 

tumor response. To make progress in this direction, meticulous studies of classical chemotherapeutic 

drug action and resistance mechanisms are required. For this purpose, novel functional screening 

technologies have emerged as successful technologies to study chemotherapeutic drug response in a 

variety of models. They allow a systematic analysis of genetic contributions to a drug-responsive or –

sensitive phenotype and facilitate a better understanding of the mode of action of these drugs. These 

functional genomic approaches are not only useful for the development of novel targeted anti-cancer 

drugs but may also guide the use of classical chemotherapeutic drugs by deciphering novel 

mechanisms influencing a tumor’s drug response. Moreover, due to the advances of 3D organoid 

cultures from patient tumors and in vivo screens in mice, these genetic screens can be applied using 

conditions that are more representative of the clinical setting. Patient-derived 3D organoid lines 

furthermore allow the characterization of the “essentialome”, the specific set of genes required for 

survival of these cells, of an individual tumor, which could be monitored over the course of treatment 

and help understanding how drug resistance evolves in clinical tumors. Thus, we expect that these 

functional screens will enable the discovery of novel cancer-specific vulnerabilities, and through 

clinical validation, move the field of predictive biomarkers forward. This review focuses on novel 

advanced techniques to decipher the interplay between genetic alterations and drug response. 

  



3 
 

1. Introduction 

Anti-cancer drug resistance is the major cause of death of cancer patients with disseminated 

tumors (Borst, 2012). In some patients intrinsic (or primary) drug resistance is already observed from 

the start (i.e. prior to chemotherapy) and tumors grow in the presence of chemotherapy (Holohan et 

al., 2013). Such intrinsic drug resistance can be a cancer-type specific or caused by individual cancer 

features (Gottesman, 2002). Frequently however, resistance arises in two steps. The tumor initially 

responds, but not all tumor cells are eradicated. From the residual disease the tumor regrows and 

eventually becomes resistant to all available chemotherapeutic drugs (Borst, 2012). We have recently 

reviewed various mechanisms that may cause minimal residual disease (Blatter and Rottenberg, 

2015). Although residual disease may already contain selected drug-refractory tumor cells, it is also 

possible that the residual tumors are only transiently resistant due to cell cycle characteristics (Pajic et 

al., 2017). Then, drug resistance is acquired during the course of treatment (Housman et al., 2014). 

This secondary resistance is often due to (epi-)genetic alterations arising during the treatment and 

lead to, for instance, the activation of alternative signaling pathways, increased drug efflux, altered 

drug target availability, or rewiring of the DNA damage response (Holohan et al., 2013, Borst, 2012, 

Bouwman and Jonkers, 2012). To attenuate the development of drug resistance, combinational 

therapies of several drugs with different molecular mechanisms are frequently given to cancer 

patients (Al-Lazikani et al., 2012). Another approach is to re-sensitize resistant tumor cells by drugs 

targeting the resistance mechanism or the tumor microenvironment (De Henau et al., 2016, Callaghan 

et al., 2014). Unfortunately, we often lack knowledge about the mechanisms underlying resistance 

and therefore we usually lack a personalized strategy how to treat patients with (relapsing) tumors. 

In the past decades, progress in the treatment of disseminated cancers has reduced cancer-

related mortality (Kort et al., 2009). In addition to classical chemotherapy, also targeted anti-cancer 

drugs further improved cancer remission (Motzer et al., 2015, Zhou et al., 2011). Despite these 

advances, treatment failure due to drug resistance remains a substantial challenge in the clinical 

management of cancer. Treating a non-responsive tumor causes side effects without providing a 

benefit for the patient. Moreover, it incurs unnecessary costs and may even decrease the likelihood of 

success of subsequent treatments with other regimens (Siddiqui and Rajkumar, 2012). 

To improve cancer therapy outcome, precision oncology is a promising strategy. Through the 

assessment of a tumor’s specific genetic or proteomic changes, i.e. its biomarkers (Mehta et al., 

2010), an individualized best treatment regimen can be chosen. Prognostic gene expression 

signatures are clinically well established, because prognosis of tumor recurrence directly depends on 

the altered expression of a number of genes involved in tumor progression and metastasis (Reyal et 

al., 2008, Wirapati et al., 2008, Cardoso et al., 2016). Conversely, a tumor’s response to a particular 

treatment can fail due to the alteration of a single gene, such as the drug target or drug entry 

transporter (Borst and Wessels, 2010). Such alterations may not reliably be picked up by standard 

gene expression profiling. Thus, it is not surprising that only few predictive biomarkers are 

established, and even those remain imperfect in predicting therapy success. Currently, biomarkers 

are only available for targeted therapies, which block or stimulate specific pathways of tumor cells 
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(Twomey et al., 2017) and usually yield good initial response with a modest effect on overall survival 

(Fojo and Parkinson, 2010). In contrast, classical cytotoxic chemotherapy interferes with all rapidly 

dividing cells, does not rely on oncogenic protein or pathway alterations, but often results in long-term 

remission and even cures some cancer types, and reduces cancer-related mortality. Unfortunately, 

not all patients benefit from the treatment and many eventually become resistant to all drugs 

available. Hence, there is a lack of clinically validated predictive biomarkers for classical 

chemotherapy. 

Regarding targeted therapy, an early example of a predictive biomarker is HER2 expression 

status for trastuzumab treatment in metastatic breast cancer, an anti-cancer drug approved by the 

FDA in 1998. In combination with classical chemotherapy, trastuzumab efficiently decreases disease 

progression in HER2-amplified metastatic breast cancer (Cobleigh et al., 1999). In contrast, 

trastuzumab provides no benefit in breast cancer patients lacking HER2. Unfortunately, only about 

30% of all HER2-positive breast cancer patients respond to trastuzumab-containing chemotherapy 

(De Palma and Hanahan, 2012). Thus, there are additional factors that influence therapy response, 

such as the intertumoral heterogeneity among a cancer (sub-) type, reflecting variations in molecular 

profiles of cancers in different patients. Additionally, the intratumoral heterogeneity complicates 

predictions of drug response (Ng et al., 2014). Molecular and genetic profiling of tumors has become 

cheaper and is often readily available. For mutations in specific genes, for instance BRAF, the effect 

on therapy response has been well characterized, so that sequencing of the corresponding genomic 

region will directly yield a predictive marker for therapy response. Unfortunately, the number of such 

well-defined biomarkers is limited, and to date only a small fraction of cancer patients directly benefit 

from established biomarkers. This is aggravated by the fact that not all patients bearing BRAF 

mutations do respond equally well to targeted BRAF inhibitors (Corcoran et al., 2015, Long et al., 

2014, Prahallad et al., 2012). Thus, even such well-defined biomarkers are not sufficient, and 

additional characterization of the tumor is needed.  

Several approaches have successfully identified novel molecular peculiarities which serve as 

predictive biomarkers. Hypothesis-driven approaches have, for instance, resulted in the establishment 

of BRCA1/2 mutational status in predicting a positive response upon PARP inhibitor treatment in 

breast and ovarian cancer (Farmer et al., 2005, Tutt et al., 2010, Bryant et al., 2005). Analyses of 

large, population-based clinical trials have also identified subgroups of responsive patients (Uryniak et 

al., 2011), e.g. leukemia patients with the Philadelphia chromosome responded better to imatinib 

treatment (Druker et al., 2001). Predictive markers based on clinical data have also been suggested 

for classical chemotherapeutics, including high HER2 or low tau expression as markers for paclitaxel 

sensitivity (Pusztai, 2007). Besides BRCA1/2 status, these markers have not entered the clinic, 

however, and still require additional validating clinical studies (Schork, 2015). 

In recent years, advances in experimental genetic screening techniques have linked many 

genotypes to novel phenotypes in mammalian cells (Chen et al., 2015, Brockmann et al., 2017, Zhou 

et al., 2014b, Blomen et al., 2015, Wang et al., 2015b, Hart et al., 2015). Furthermore, genome-wide 

screens have broadened our understanding of molecular mechanisms responsible for therapy 



5 
 

response ((Ruiz et al., 2016, Berns et al., 2016, Planells-Cases et al., 2015, Wijdeven et al., 2015), for 

instance; and Table 1. Thus, these screens are valuable tools which can reveal novel mechanisms of 

resistance or hypersensitivity towards drugs, and facilitate a better understanding of drug response 

which might ultimately result in novel predictive biomarkers (Figure 1). While most targeted anti-

cancer therapeutics exploit gain-of-function alterations, e.g. in terms of oncogene addiction (Pagliarini 

et al., 2015), not all tumors bear targetable gain-of-function mutations. Inactivation of tumor 

suppressor genes is frequent, and cannot be directly targeted with a drug. However, as shown by the 

example of PARP inhibitor treatment in BRCA1/2 mutated tumors, loss of a tumor suppressor can 

offer a treatment option with low side effects for healthy tissue. The study of synthetic lethality and 

context-dependent gene essentiality has been challenging in mammalian cells and was for long time 

limited to few model organisms. With the development of CRISPR/Cas9 genome editing and 

insertional mutagenesis in haploid human cells, it is now possible to efficiently study genetic 

interactions as well as the functional consequence of genetic mutations and possibly reveal new 

predictive biomarkers by linking drug-responsive phenotypes to genotypes.  

Although some novel anti-cancer drugs have been successful and have yielded 

improvements for cancer patients, they remain imperfect (Fojo and Parkinson, 2010, Groenendijk and 

Bernards, 2014), and have also become a financial burden for the health system (Kantarjian et al., 

2013, Aggarwal, 2010, Prasad and Mailankody, 2017, Fojo and Parkinson, 2010). During the course 

of treatment, most patients sooner or later also received classical chemotherapy including platinum 

drugs, topoisomerase inhibitors, microtubule-targeting agents or antimetabolites as part of standard 

care (Gonen and Assaraf, 2012, Giovannetti et al., 2017). Their clinical use is based on empirical 

experience. However, these drugs are relatively cheap, effective and widely used. If clinical 

oncologists could be supported in their choice of classical chemotherapy based on molecular 

characteristics of a tumor, the therapeutic benefit of a standard treatment may increase and drugs to 

which the tumor is unlikely to respond would be avoided. To improve the proper selection of the 

treatment of choice and to expand our repertoire of drug response predictions, one needs to identify 

more molecular peculiarities of tumors which impact therapy response. 

This review therefore elaborates on genome-wide screening techniques in mammalian cells 

with special emphasis on the response against classical cytotoxic drugs. 

 

2. Forward genetic screens to improve our understanding of drug resistance and synthetic 

lethality. 

 Using forward genetic screens, genetic mutations can efficiently be linked to phenotypes of 

interest and identify the crucial genes for the selected phenotype. The success of a screen depends 

on the choice of the best model as well as efficient gene suppression. Genome-wide screens were 

made possible in mammalian cells with the discovery of RNA interference, which introduces small 

specific RNA molecules into cells and targets the corresponding host mRNA for degradation (Carthew 
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and Sontheimer, 2009, Brummelkamp et al., 2002). RNA interference screens have led to the 

discovery of novel predictive biomarkers for chemotherapy response which could be translated into 

the clinic. For instance, large-scale RNA interference screens identified loss of PTEN as a 

determinant of trastuzumab resistance in breast cancer (Berns et al., 2007) and feedback activation of 

EGFR as a resistance mechanism in BRAF-mutated colorectal cancer (Prahallad et al., 2012). 

However, for many applications RNA interference screens are imperfect, because this technique 

usually fails to inactivate gene function completely and remaining gene activity may mask the 

phenotype (Echeverri et al., 2006, Booker et al., 2011, Kaelin, 2012), although in some cases, such 

as the knock-down effect of essential genes on drug response, an incomplete gene inactivation might 

be required to detect an effect of the knock-down on drug response. Nevertheless, off-target effects 

complicate RNA interference screens through a high proportion of false positive hits. As RNA 

interference screens for biomarker discovery have been reviewed elsewhere (Mullenders and 

Bernards, 2009, Iorns et al., 2007, Swanton et al., 2008), we will focus here on more recent 

developments in screening technologies (Table 2 and Figure 2).  

 

2.1 CRISPR/Cas9 screens in 2D cell lines 

 The discovery of the bacterial Cas9 endonuclease has revolutionized genome engineering. A 

20-basepairs site-specific single guide RNA (sgRNA) directs the endonuclease to its corresponding 

target site and introduces a DNA break. This break stimulates repair by non-homologous end-joining 

(NHEJ) or homology-directed repair (HDR) by frequently introducing frameshifts by indel mutations, 

resulting in a premature stop codon or nonsense-mediated decay of the transcript. Consequently, 

gene inactivation is achieved at the genomic level by CRISPR (clustered regularly interspaced short 

palindromic repeats)/Cas9 by creating a gene knock-out which, for many applications, outperforms 

gene knock-down by RNA interference (Evers et al., 2016, Hart et al., 2015, Wang et al., 2015b). 

CRISPR/Cas9 also allows the study of inactivation of non-transcribed elements (Wang et al., 2014b).  

 

2.1.1 Choice of cellular model 

The universal applicability of CRISPR/Cas9 screens in a broad repertoire of models (Wang et 

al., 2015b) makes this technique a powerful tool to study cancer-type-specific genetic requirements. 

The most outstanding advantage of CRISPR/Cas9 is that genetic mutations can be introduced into 

versatile cellular models. Some mechanisms of drug resistance or hypersensitivity might only be 

present in a certain lineage or cancer type. Melanoma patients bearing the valine-to-glutamate 

change at residue 600 (V600E) of BRAF, for instance, respond well to a BRAF inhibitor in 

combination with a mitogen/extracellular signal-regulated kinase (MEK) inhibitor (Long et al., 2014), 

whereas the same treatment in colorectal patients bearing the same BRAF mutation is less efficient 

(Corcoran et al., 2015).  It may therefore be necessary to study specific genetic requirements in 

several models to identify novel genetic dependencies originating from pathway rewiring following 
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genetic perturbations. Exploiting such lineage-specific vulnerabilities could identify targets for use in 

personalized medicine (Muller et al., 2012).  

Despite this major advantage, the large genetic variation between tumor cell lines may also 

hinder the successful identification of genetic contributions to a phenotype. The efficacy of genetic 

modification of CRISPR/Cas9 depends on the number of target loci in the genome. Whereas most 

human cells are diploid, cancer cell lines often have increased numbers of chromosomes or individual 

gene amplifications due to genomic instability (Stratton et al., 2009). To inactivate genes in HeLa 

cells, for instance, which have up to five copies of a chromosome (Landry et al., 2013), Cas9 needs to 

cleave the locus with higher efficiency compared to a cell line with a diploid gene set. Screens 

performed in diploid cells will therefore likely yield more robust data with a higher signal-to-noise ratio 

compared to polyploid cells. Furthermore, cells adapt to genetic mutations with secondary genetic 

changes or other forms of compensation (Teng et al., 2013). This needs to be particularly considered 

when comparing studies in long-term cultured isogeneic cells (Housden et al., 2017). Due to the 

individual variation of genes affecting their genetic interactions, every cell line will have a different 

essentialome. Combining several screens from multiple cell lines can therefore identify the “core 

essentialome” of a lineage, while at the same time some information will be missed as a result of the 

variation in genetic context between cell lines. Hence, the properties of the chosen cell line directly 

impact screening results. 

Moreover, the activity of DNA repair pathways in a cell line influences mutation efficiency by 

CRISPR/Cas9. The introduced DNA break can be repaired by HDR, which uses a homologous DNA 

template such as a sister chromatid. HDR is usually error-free, resulting in an unchanged genomic 

locus. The success of genetic inactivation using CRISPR/Cas9 therefore depends on the error-prone 

NHEJ repair pathway. The DNA cleavage site gets trimmed before re-ligation of the two DNA ends. 

This causes insertions or deletions of base pairs, resulting in a frameshift. If both HDR and NHEJ are 

active in a chosen cell line, one can expect a lower probability for complete gene inactivation in every 

locus (Miles et al., 2016). However, in cell lines lacking a functional HDR, CRISPR/Cas9-mediated 

gene knock-out has a high success rate (Miles et al., 2016).  

 

2.1.2 Impact of the sgRNA library on screening success 

To date, three major classes of CRISPR/Cas9-mediated genomic modifiers are available. The 

most common CRISPR libraries are knock-out libraries, but gene repression (CRISPRi) and activation 

(CRISPRa) libraries are also employed for specific research questions (Lopes et al., 2016, Miles et 

al., 2016, Gilbert et al., 2014, Dominguez et al., 2016). Libraries can either be genome-wide, targeting 

for example about 20,000 genes (Sanjana et al., 2014), or specifically designed to study one 

particular pathway or a selection of genes of interest (Zhou et al., 2014b). For instance, within a 

genetic region of interest, CRISPR/Cas9 tiling screens are able to dissect which genetic segments 

encode functional domains relevant for a phenotype (Korkmaz et al., 2016). Recent developments of 
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the CRISPR system for RNA targeting or base editing will further broaden the investigable research 

fields (Cox et al., 2017, Gaudelli et al., 2017). 

The selection of the individual sgRNAs in a library directly impacts screening results. For loss-

of-function screens, sgRNAs should preferably target an early, constitutively expressed exon of a 

gene of interest. Ideally, this leads to nonfunctional transcripts of all gene variants with no off-target 

activity on other genes. Most commercially available libraries contain 5-10 sgRNAs per gene 

designed to achieve high cleavage efficacy and low off-target activity. However, these libraries do not 

take potential genomic pleomorphisms of different cell lines into account, and for some genes, shorter 

sequence variants might not be targeted and retain some gene functionality. 

Off-target effects arise from partial complementarity of the sgRNA target site with additional 

unintended target sites. Off-target effects can be reduced by the use of improved Cas9 nuclease 

variants, e.g. by a decreased binding efficacy and increased site specificity, by the use of alternative 

endonucleases or improved bioinformatics algorithms to design specific sgRNAs (Kleinstiver et al., 

2016, Slaymaker et al., 2016, Kim et al., 2016, Zetsche et al., 2015, Doench et al., 2014). This, in 

turn, increases the need for a perfect alignment of the sgRNA sequence with the target site. A single 

nucleotide mismatch as a cell line-specific genomic variation or the introduction of a terminal G during 

sgRNA design could by itself prevent sgRNA alignment with the target site. Moreover, optimized PAM 

sequence variants may also improve site specificity (Kleinstiver et al., 2015). 

Another crucial step in CRISPR/Cas9 screens is the efficacy of library transduction in a cell 

line. Typically, sgRNA libraries are transduced at a MOI of 0.4 to 0.6 to ensure that every cell contains 

only a single sgRNA (Shalem et al., 2014, Wang et al., 2014b). For successful screens, a single copy 

of each sgRNA needs to cleave both (or even more) copies of the target locus (Wang et al., 2014b). If 

more than one sgRNA is introduced into a single cell (as usually achieved through direct transfection), 

it is challenging to determine which sgRNA caused the phenotype due to the relatively low number of 

distinct sgRNAs. In contrast, less than one sgRNA per cell can lead to insufficient library coverage at 

the end of a screen. 

 Depending on the plasmid system used to deliver the library, a stable expression of both 

sgRNA as well as Cas9 increases the genomic cleavage over time (Wang et al., 2014b). This may be 

on purpose, but it might also be problematic when screens are performed over a long time period, as 

not only on-target sites but also off-target sites will be cleaved repeatedly. DNA double strand breaks 

also result in genotoxic stress, causing a non-specific anti-proliferative effect which limits the use of 

CRISPR/Cas9 for highly amplified genomic regions (Aguirre et al., 2016, Munoz et al., 2016, Housden 

et al., 2017). 

 

2.1.3 Data analysis 
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Owing to the popularity of CRISPR/Cas9 screens, a broad spectrum of resources for data 

analysis is available. To analyze a screen, sgRNA sequences are amplified by PCR before deep 

sequencing. The library sequencing reads may subsequently be analyzed using publically available 

algorithms, including HitSelect (Diaz et al., 2015) or MaGeCK (Li et al., 2014b). Although they require 

some programming experience, these algorithms are widely used, relatively user-friendly and provide 

a certain consistency in the analysis of many CRISPR/Cas9 screens. 

When analyzing CRISPR/Cas9 screens, it is crucial to remember that sgRNA copy 

abundance is counted as an indirect measurement of mutations. Not every sgRNA necessarily 

creates a frameshift mutation, since the DNA break can also be repaired error-free by HDR or with an 

in-frame mutation retaining functionality of the transcript. When a sgRNA introduces both frame-shift 

and in-frame mutations, resulting in a mixed phenotype of this sgRNA, it is possible that this sgRNA 

will not score as being significant in the analysis (Shalem et al., 2015).  

 

2.1.4 Applications to study drug response 

CRISPR/Cas9 screening technology has enabled a systematic analysis of gene function in 

mammalian cells in terms of both positive (enrichment of mutants) and negative selection (depletion 

of mutants) (Wang et al., 2014b, Shalem et al., 2014, Zhou et al., 2014b, Wang et al., 2015b). Already 

at an early stage of development of the CRISPR/Cas9 technology, it has been shown that 

multiplexing with several sgRNAs can be achieved in vitro as well as in vivo (Horii et al., 2013, Wang 

et al., 2013, Cong et al., 2013, Mali et al., 2013).  

In general, positive selection screens are less prone to alterations in library representation 

than negative selection screens which require a quantitative evaluation of sgRNA abundance. A good 

coverage and few false positives made CRISPR/Cas9 screens a valuable tool to study resistance 

phenotypes. In terms of anti-cancer drug resistance, for instance, genes were identified whose loss-

of-function-mutations cause resistance to vemurafenib, cytosine arabinoside, 6-thioguanine and DNA 

topoisomerase II (Shalem et al., 2014, Kurata et al., 2016, Koike-Yusa et al., 2014, Wang et al., 

2014b). As an example, Shalem et al., identified two known mediators of resistance against the BRAF 

inhibitor vemurafenib, NF1 and MED12 (Huang et al., 2012, Whittaker et al., 2013) in a genome-wide 

CRISPR/Cas9 library screen targeting 18,080 genes with 3-4 sgRNAs/gene (Shalem et al., 2014). 

Additionally, the authors found novel genes which had not been linked to BRAF inhibitor response so 

far, and validated their inactivation as resistance factors towards vemurafenib in vitro. Among those 

genes were members of the STAGA complex which recruit Mediator complex proteins including 

MED12, which negatively regulates TGF-β, to c-myc activating cell proliferation (Liu et al., 2008). 

Thus, CRISPR/Cas9 screens are able to identify novel mechanisms of anti-cancer drug resistance. 

For the analysis of negative selection screens, the abundance of all sgRNAs needs to be 

quantified to identify the sgRNAs that were depleted from the population. As a consequence, gene 

knock-out efficacy needs to be close to 100% because every remaining non-modified cell or in-frame 
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modification may mask the phenotype. These screens are less robust compared to positive selection 

screens and thus depend on more extensive statistical analysis, which in turn could be complicated 

by poor sgRNA-mediated cleavage efficacy. Despite these technical hurdles, CRISPR/Cas9 screens 

have successfully identified essential genes in mammalian cells (Wang et al., 2015b, Hart et al., 

2015), as well as synthetic lethal genetic interactions which could potentially serve as targets for 

cancer therapy (Toledo et al., 2015, Steinhart et al., 2017). For instance, a study focusing on synthetic 

lethal interactions with oncogenic Ras identified critical regulators of the MAPK pathway in acute 

myeloid leukemia cell lines (Wang et al., 2017). 

Moreover, CRISPR/Cas9 screens have proven useful to study intracellular phenotypes by 

employing reporter- or antibody-labelled quantitative protein measurements (DeJesus et al., 2016, 

Parnas et al., 2015). This type of screen compares cell populations with high and low signal 

measurements, and couples genes to an intracellular phenotype which does not necessarily result in 

altered cell viability. Studying such intracellular phenotypes broadens the understanding of key 

biological processes, and may identify crucial genetic dependencies of a phenotype of interest.  

 

 

2.2 Haploid insertional mutagenesis screens 

 Insertional mutagenesis screens are a powerful alternative to CRISPR/Cas9 screens. They 

provide the possibility of applying principles of classical genetics in mammalian cells to uncover 

fundamental biological processes in a highly comparative manner. In particular, recessive genetic 

screens in haploid yeast have substantially contributed to gene discovery and our understanding of 

development, basic physiology, and various diseases (Giaever and Nislow, 2014). It was therefore a 

great achievement of Thijn Brummelkamp and coworkers to establish insertional mutagenesis 

screens in haploid human cell lines and thereby increase the power of insertional mutagenesis in a 

mammalian system (Carette et al., 2009). 

 

2.2.1 Haploid cell lines  

Insertional mutagenesis screens crucially depend on haploid (or near-haploid) cell lines, 

because no second copy of the gene exists which could phenotypically mask the effect of gene 

inactivation. Thus, genetic manipulation is highly efficient in haploid cells. To date, only few haploid 

cell lines exist. The KBM7 cell line, derived from a chronic myeloid leukemia patient, is haploid except 

for chromosome 8 (Kotecki et al., 1999). Its non-hematopoietic derivate HAP1 is haploid for all 

chromosomes, except of a duplicated 30-megabase fragment of Chromosome 15 fused to 

Chromosome 19, which was excised to obtain the fully haploid eHAP cell line (Essletzbichler et al., 

2014). With the isolation of haploid human, murine, rat and monkey embryonic stem cells, a broader 

repertoire of haploid cell lines is currently being established, also by further differentiating these cells 
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into several lineages (Elling et al., 2011, Leeb and Wutz, 2011, Sagi et al., 2016, Yang et al., 2013, Li 

et al., 2014a). 

Compared to CRISPR/Cas9 screens, the restriction to a few haploid cell lines, limits the use 

of haploid screens in the study of lineage-specific biology. However, this limitation simultaneously 

provides an opportunity, exemplified by the achievements of yeast genetics where a well-

characterized single-model organism unveiled numerous insights into diverse biological processes 

(Giaever and Nislow, 2014, Boone et al., 2007). By introducing genetic alterations into a clearly 

defined, controlled genetic background, effects of gene inactivation can be studied and compared with 

precision, facilitating the investigation of complex genetic effects and interactions (Costanzo et al., 

2016, Brockmann et al., 2017). Subsequently, findings from haploid screens may be validated in a 

variety of cell lines to address lineage-specific variations. 

 

2.2.2 Insertional mutagenesis 

 In contrast to CRISPR/Cas9 screens, which depend on a sgRNA library, mutations are 

usually achieved by random mutagenesis in haploid screens. The choice of the random mutagenesis 

technique is commonly determined by the ease of retrieving genetic mutation sites for analysis from a 

pool of cells, with transposon- or retroviral gene-trapping being the most frequent mutagenesis 

strategies to date. Mutagenesis performed by gene-trapping is highly efficient and delivers a 

molecular tag to identify mutations in the genome, by integrating an exogenous viral DNA section in 

the host genome which marks the mutation site (Carette et al., 2009). The gene-trap cassette 

introduces a splice acceptor site, followed by a polyadenylation signal, which prematurely terminates 

gene splicing and translation and thereby creates mutants resembling knock-outs (Carette et al., 

2009). Transposon-mediated gene-trap mutagenesis is achieved by co-transfecting a gene-trap 

vector with a plasmid for transposase expression. The transposase stimulates insertion of the gene-

trap in the genome, and by varying transposase expression, the gene-trap insertion frequency can be 

influenced (Mates et al., 2009, Pettitt et al., 2015). 

 In theory, gene-trapping mutation events occur all over the genome and this technique 

therefore provides a very high coverage. However, the gene-trap integration is not completely 

random, as preferred viral or transposon integration sites exist (Lee et al., 2007, Wang et al., 2014b, 

Carette et al., 2009, Blomen et al., 2015). Nevertheless, a genome-wide distribution of integration 

sites, for example integrations in more than 98% of expressed genes by retroviral gene trapping 

(Carette et al., 2011a), is achieved, and improved vectors can reduce integration bias (Schnuetgen et 

al., 2008).  

Compared to the use of sgRNA libraries which employ a guiding RNA strand defining the 

target site and directly depend on sgRNA representation as well as cleavage success and error-prone 

DNA repair, insertional mutagenesis creates individual mutations at a higher frequency and efficiency 

(Blomen et al., 2015). The phenotypic effect of a gene is determined indirectly in CRISPR/Cas9 
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screens, usually by determining the abundance of DNA encoding the sgRNAs. In contrast, sensitive 

amplification of gene-trap insertion sites allows a direct count of hundreds of independent mutations in 

a gene, achieving a high resolution of the observed phenotype (Elling and Penninger, 2014). 

 However, similar to the need of a sgRNA disrupting all gene variants simultaneously to 

abolish gene function, alternative splicing as well as gene-trap integrations near the 3’ end of a gene 

can also maintain (partial) gene activity (Blomen et al., 2015). 

 

2.2.3 Data analysis 

 Deep sequencing following PCR amplification retrieves millions of unique gene-trap 

integration sites which are mapped to the genome, allowing subsequent direct counting of individual 

knock-outs that each has contributed to the phenotype of interest. The large number of individual 

mutants permits powerful statistical analyses. This enables an improved distinction between hits and 

background noise compared to other screening methods (Elling and Penninger, 2014). Due to the 

high efficacy of gene disruption and the absence of second gene copies, haploid cells further improve 

the signal to noise ratio compared to screens performed in diploid cells, enabling the identification of 

subtle fitness defects or advantages (Wang et al., 2014b, Blomen et al., 2015).   

  To analyze insertional mutagenesis screens, basic statistical tests such as Fisher's exact 

and/or binomial tests are usually employed. However, for complex research questions, such as the 

study of a cell line’s essentialome, more complex algorithms are used (Blomen et al., 2015). Recently, 

bioinformatics pipelines have been proposed for the analysis of gene-trap insertional mutagenesis 

screens (Yu and Ciaudo, 2017, Mayor-Ruiz et al., 2017). 

 

2.2.4. Applications to study drug response 

 Initially, haploid insertional mutagenesis screens were predominantly employed to study 

resistance factors of host cells towards pathogens (Carette et al., 2009, Carette et al., 2011b, 

Guimaraes et al., 2011, Jae et al., 2013). Furthermore, haploid screens yielded novel insight into 

resistance against chemical compounds including chemotherapeutic agents like platinum drugs, 

topoisomerase II, PARP, and other chemical inhibitors (Wijdeven et al., 2015, Planells-Cases et al., 

2015, Pettitt et al., 2013, Shen et al., 2016, Heijink et al., 2015). Regarding platinum drugs, it has 

been unclear which transporters are responsible for reduced drug uptake that may explain clinical 

drug resistance (Borst et al., 2008). Using a haploid screen, we identified volume-regulated anion 

channels composed of LRRC8A and D as a cellular uptake mechanism of cisplatin and carboplatin 

(Planells-Cases et al., 2015), providing a new lead to understand clinical resistance. Similarly, 

proposed resistance mechanisms against topoisomerase II inhibitors, such as doxorubicin, cannot 

explain all cases of therapy failure in the clinic (Pommier, 2013). Here, a haploid screen identified 

novel resistance mechanisms which reduce DNA double strand break formation or stimulate DNA 
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repair (Wijdeven et al., 2015). Although gene trap viruses should be inactivating, a gain-of-function 

mutation cannot be excluded. For example, we found a significant enrichment of integrations that 

induce the ABCG2 gene expression upon topotecan selection (Guyader, Blomen, Gerhards, 

Brummelkamp and Rottenberg, unpublished results). Despite the technical differences between 

haploid and CRISPR/Cas9-positive selection screens, direct comparisons of both approaches showed 

high concordance (Marceau et al., 2016, Timms et al., 2016, Wang et al., 2015b). 

 The inactivation of genes at high efficiency makes haploid screens very effective for negative 

selections, as most sense integrations in an intron will lead to reproducible and complete depletion of 

a gene (Elling and Penninger, 2014, Burckstummer et al., 2013). Since negative selection aims at 

identifying mutations that are depleted from a population of mutants, which is easily influenced by 

environmental factors, a robust identification of depleted mutations of the pool of cells can be 

challenging. A unidirectional design of the gene-trap cassette overcomes this problem and has 

facilitated the identification of essential genes in human cells as well as genotype-specific gene 

requirements by using the distribution of sense and antisense orientations as a readout for gene 

essentiality (Wang et al., 2015b, Blomen et al., 2015, Haarhuis et al., 2017). Haploid screens have 

furthermore been employed to study genotypes which sensitize cells to chemical compounds (Pettitt 

et al., 2017). For instance, we have recently found that loss of the tumor suppressor FBXW7 sensitize 

cells to Vinca alkaloids. This finding might aid the choice of microtubule-targeting chemotherapeutic 

drugs in patients (Gerhards et al., submitted). 

 Similar to CRISPR/Cas9, reporter- or antibody-based haploid screens have deciphered 

genetic modifiers of various intracellular phenotypes regardless of their effect on the viability of a cell 

(Brockmann et al., 2017, Lebensohn et al., 2016, Mezzadra et al., 2017, Timms et al., 2016, Lee et 

al., 2013). For instance, a reporter-based haploid screen for transgene silencing demonstrated the 

potential of this methodology to study epigenetic changes in human cells (Tchasovnikarova et al., 

2015). Epigenetic mechanisms such as DNA methylation or histone modifications are considered to 

drive secondary drug resistance by altering the expression of genes involved in drug transport, DNA 

repair or apoptosis (Wilting and Dannenberg, 2012, Brown et al., 2014). As genetic reporters are not 

available for all intracellular processes, antibody-based screens in fixed mutagenized cells further 

expanded the scale of query phenotypes that can be studied (Brockmann et al., 2017). Hence, 

haploid screens can contribute to our understanding of the epigenetic drivers of drug resistance and 

potentially identify novel therapeutic strategies.  

 

2.3 In vivo screens 

 Screens in 2D models are affected by assay conditions, the choice of cell lines as well as their 

growth on plastic in high oxygen. It has been shown that results vary between labs despite similar 

approaches (Scholl et al., 2009, Babij et al., 2011). Furthermore, it has been shown that tumors 

exhibit contrasting drug responses ex vivo and in vivo (Teicher et al., 1990) and that a tumor’s 

microenvironment impacts drug response (Straussman et al., 2012). Additionally, comparisons of 
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patient-derived and control cell lines revealed that the variation rather reflects the genetic background, 

culture conditions and cell line history than a disease-relevant phenotype (Soldner and Jaenisch, 

2012, Gillet et al., 2011). Thus, 2D cancer models encounter limitations regarding their clinical 

relevance and their application to study complex phenotypes such as metastasis formation or a host’s 

immune response. In vivo screens can overcome these limitations and bridge the gap to clinically 

more relevant settings. They allow not only assessing tumor cell-intrinsic contributions to drug 

sensitivity or resistance, but also take a body’s microenvironment and immune response into account. 

 

2.3.1 Choice of model 

 In vivo screens may be conducted by using a large cohort of knock-out animal models 

(van der Weyden et al., 2017). However, this approach is not feasible for all laboratories, as the 

majority does not have an extensive collection of animal models. With the development of 

CRISPR/Cas9, powerful and fast alternatives became available. CRISPR/Cas9 can be employed for 

ex vivo gene editing of cells which are subsequently transplanted into recipient mice or for non-

germline manipulation of tumors in vivo. Somatic delivery of Cas9-expressing cells can cause an 

immune response clearing those cells (Wang et al., 2015a). Therefore, Cas9-transgenic mice are 

frequently employed, which only require locally or systemic delivery of the sgRNAs, for instance 

through lentiviruses, into mice (Platt et al., 2014, Annunziato et al., 2016). Alternatively, lentiviruses 

encoding both Cas9 and sgRNAs or ex vivo CRISPR/Cas9-modified cells can be injected into 

immunodeficient or Cas9-tolerant mice for in vivo screening (Chen et al., 2015, Braun et al., 2016). A 

genome-wide screen, targeting for instance 20,000 genes with 6 sgRNAs per gene, would consist of 

120,000 sgRNAs and therefore require millions of transplanted tumor cells. This is often not feasible, 

but a genome-wide screen is usually not necessary to study the phenotype of interest in vivo. For 

most in vivo screening approaches, a focused library targeting selected biological processes is 

sufficient to address the research question. 

 

2.3.2 Applications to study drug response 

The major benefit of in vivo over in vitro screens is the contribution of the animal organism to 

the phenotype. A solid tumor in vivo is a multicellular complex that interacts with its surrounding 

tissue, differing substantially from a clonal cancer cell line in a cell culture dish. The tumor 

microenvironment and tumor-stromal interactions gained increasing importance as modulators of drug 

response. For instance, stroma-induced drug resistance has been described in several preclinical 

models for chemotherapeutic drugs such as resistance to doxorubicin, vincristine or vemurafenib 

(McMillin et al., 2013).  

Until today, most in vivo screens were performed using RNA interference editing (Gargiulo et 

al., 2013, Zhou et al., 2014a, Beronja et al., 2013, Meacham et al., 2015, Rudalska et al., 2014, 
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Schramek et al., 2014). In vivo CRISPR/Cas9 screens have been employed to assess the metastatic 

potential upon gene inactivation (Chen et al., 2015). Furthermore, novel immune modulatory factors 

which could serve as immunotherapeutic targets were identified in a CRISPR/Cas9-edited melanoma 

screen in vivo (Manguso et al., 2017). Additional biological processes for in vivo screening 

approaches include the role of tumor angiogenesis and hypoxia in drug response, and basic research 

topics such as tumor development and tissue regeneration. Screens for these complex phenotypes 

are still in the process of being optimized. 

Nevertheless, limitations of pooled in vivo screens are encountered due to the complexity of 

the library, poor efficiency of virus delivery, loss of sgRNA representation and of diversity in the 

outgrown tumor after transplantation or injection, as well as the complex interactions of tumors with 

the host body (Chen et al., 2015). Furthermore, ethical concerns of performing in vivo screens may 

rise, as they require large numbers of experimental animals. 

 

 

2.4 Screens using 3D cancer organoids 

 A promising model to recapitulate in vivo tumor behavior in an ex vivo setting is the use of 3D 

organoid cultures (Clevers, 2016). These have several advantages over 2D cell lines. Traditional cell 

lines are usually clonal, immortalized cells, genetically adapted to cell culture conditions and lacking a 

tumor’s heterogeneity as well as its complex multilayered cell organization. In a solid tumor, a drug 

may not reach all cells at equal levels due to varying vascularization. This situation is mimicked to 

some extent in a 3D culture, as drugs do not freely penetrate the viscous biomaterial in which 

organoids are embedded. In contrast, all cells in a monolayer will receive equal concentrations of an 

administered drug. Furthermore, the composition and architecture of organoids correspond to the 

tissue they are derived from. Organoids can usually be expanded easily, cryopreserved and 

biobanked and efficiently genetically manipulated (van de Wetering et al., 2015, Schwank et al., 2013, 

Drost et al., 2017).  

 

2.4.1. Choice of model 

3D organoids have been generated from the eye (Eiraku et al., 2011, Nakano et al., 2012), 

brain (Lancaster et al., 2013, Pasca et al., 2015), intestine (Sato et al., 2009, Spence et al., 2011, 

Forster et al., 2014), kidney (Takasato et al., 2014, Takasato et al., 2015), liver (Takebe et al., 2013, 

Huch et al., 2013), lung (Dye et al., 2015), inner ear (Koehler et al., 2013) and other organs. 

Organoids have furthermore been derived from cancer tissues (so-called tumoroids) (Baker et al., 

2016, van de Wetering et al., 2015, Schutte et al., 2017, Pauli et al., 2017), or were transformed into 

cancer organoids by genetic modification (Drost et al., 2015, Matano et al., 2015). 3D cultures allow 
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an organ-like architecture, facilitate interactions with the extracellular matrix and provide rudiments of 

functionality (Fatehullah et al., 2016).  

Considering that organoids consist of primary cells, the passage number influences the 

organoid’s geno- and phenotype. During culturing, some cells of the heterogeneous cell pool will be 

lost, leading to a larger discrepancy between original tumor and the organoid line. When larger 

amounts of starting material is available, e.g. from large excised patient or mouse tumors, a higher 

complexity of the heterogeneous cell pool can be maintained for longer time than with little starting 

material such as a biopsy. Additionally, organoid culturing medium is frequently supplemented with 

various factors such as Noggin or R-spondin which further select cells or alter gene expression in the 

organoid culture. Thus, organoids are less robust and less well-characterized than cell lines, but the 

heterogeneity resembles more the tumors observed in patients. 

Gene editing components to modify organoids can be delivered by adenoviruses, retroviruses 

or lentiviruses (Wang et al., 2014a, Koo et al., 2012, Duarte et al., in press). The subsequently 

achieved modifications create a polyclonal pool of cells with mixed genotypes. To efficiently select 

modified cells, reporter genes can be added to the viruses. However, the introduction of genetic 

modifications will also cause additional selective pressure so that one should evaluate to what extent 

the original tumor is still fully represented in the modified organoid culture after some passages.  

 

2.4.2 Applications to study drug response 

 3D organoid cultures are useful to study drug response of patient-derived material in 

vitro. They can be archived easily and used for high-throughput analyses of drug response linked to 

their omics profiles (van de Wetering et al., 2015). Using matched samples of a PARP-inhibitor-

sensitive and -resistant BRCA2-mutated mammary tumor, we have recently shown that more 

sophisticated functional assays to measure drug response (e.g. replication fork stability) can be 

performed in tumoroids (Ray Chaudhuri et al., 2016). How reliable the in vitro drug responses are in 

predicting the drug response in the patient from whom the tumoroids were derived remains to be 

seen. When we tested several matched PARP-inhibitor-sensitive and -resistant BRCA1-mutated 

organoids in vitro, we found examples where the resistant tumors regained drug sensitivity in vitro, 

despite the stable in vivo resistance of tumors derived from these tumoroids (Duarte et al., in press). 

This illustrates that further optimization of the in vitro conditions is required to mimic the response of 

real tumors. 

The CRISPR/Cas9 system facilitates rapid genome engineering as well as forward screening 

approaches in 3D organoids (Nie and Hashino, 2017). Given the heterogeneous nature of organoids, 

these screens are more complex, their statistical power is reduced compared to screens in well-

defined genetic backgrounds and the variation of size and shape of organoids further affect 

phenotypic selections. However, the sampling error is low due to the cellular complexity of the drawn 

test sample from the given pool of cells in the tumoroid and thus 3D screening results are expected to 
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validate in vivo. So far, a CRISPR screen in lung organoids with a miniature focused library 

discovered genes involved in ciliogenesis and barrier function in the airway epithelium (Gao et al., 

2015). The high number of cells, required to ensure an appropriate coverage, needs to be taken into 

consideration when organoid screens will be performed. These numbers of cells are usually only 

obtained after several passages which might conflict with the ambition of high similarity between the 

organoids and the original tumor. Additionally, the success of organoid screens strongly depends on 

the control of organoid size with clear pathophysiological gradients, as seen in a solid tumor, while 

preventing a too large area of central necrosis. Due to a batch-to-batch variation of the extracellular 

biomaterial, reproducibility and scalability of experiments is thus far limited. Thus, large-scale screens 

remain technically challenging in tissue-derived organoids. 

However, we found that a major advantage of tumoroids is that they can serve as a rapid 

intermediate step to introduce genetic modifications, and subsequently transplant the tumors into 

mice to test drug response in vivo (Duarte et al., in press). Using tumoroids from BRCA1-mutated 

mouse mammary tumors we introduced Trp53bp1 mutations by CRISPR/Cas9 and show that the 

tumors derived from the Trp53bp1-depleted tumoroids are resistant to PARP inhibition. Importantly, 

we also observed that tumoroids exhibit high clonal heterogeneity in vivo and give rise to tumors that 

preserve the cellular complexity of the parental organoid population (Duarte et al., in press). We 

therefore conclude that these models are suitable to study the effects of intratumoral heterogeneity in 

vivo and are useful for in vivo screening approaches to identify mechanisms of drug resistance. 

Since tumoroids are more readily cultured from patient tumors than patient-derived 2D cell 

lines (Boj et al., 2015, van de Wetering et al., 2015, Duarte et al., in press), they also provide an 

opportunity to better follow a patient’s disease development. Using genome-wide CRISPR/Cas9 

mutagenesis, the essentialome of an individual tumor may be determined to provide information about 

specific vulnerabilities of this particular tumor. The patient could subsequently receive a treatment 

accordingly, and if the tumor relapses or stops responding, a new organoid line could be obtained and 

the essentialome re-analyzed by another functional genome-wide screen. This “sensitive-to-resistant-

essentialome”-comparison approach may yield new insights into drug resistance mechanisms, directly 

received from clinical patients, and provide useful information for new vulnerabilities and treatment 

options. 

In summary, organoid screens are still in the process of optimization and technical hurdles 

need to be resolved. Nevertheless, they provide a very promising approach to study complex 

contributions to a phenotype of interest in vitro that resembles treatment responses in vivo. It is very 

likely that novel factors influencing drug response will be discovered soon in tumoroid models, and 

they will further broaden our repertoire to study cancer specimens directly derived from patients. 

 

3. Conclusions 



18 
 

In contrast to targeted anti-cancer treatment, predictive biomarkers for classical 

chemotherapy have been much more difficult to identify. This might be explained by the complex 

heterogeneity between tumors due to secondary mutations, epigenetic alterations or other 

mechanisms of drug resistance which are still poorly understood (Borst, 2012). Even in a well-

characterized genetically homogeneous tumor system, such as syngeneic transplantable tumors from 

genetically engineered mouse models, the identification of genes contributing to drug response is 

limited (Rottenberg et al., 2012). Only if a gene is altered in most of the analyzed tumors, gene 

expression analysis will detect it as a predictive candidate, whereas drug response mechanisms 

present only in a subset of tumors will be missed. Given the fact that a variety of mechanisms, either 

single- or multi-genetic in nature, influence drug response, together with various mechanisms of 

action of classical chemotherapeutics, it is not surprising that we have not been very successful to 

establish predictive biomarkers for these drugs.  

The advances in screening technologies however might provide the necessary starting point 

to develop novel hypotheses which might eventually translate into clinical predictive biomarkers. 

Forward genetic screens in mammalian cells have substantially broadened our understanding of cell 

biology, the mode of action of chemical compounds and anti-cancer drug resistance or 

hypersensitivity. These approaches offer crucial tools to discover novel tumor vulnerabilities, while at 

the same time highlighting context-specific dependencies and mechanistic complexities of cancer. A 

variety of cellular features determine drug sensitivity of a cell, and drug response varies between 

individual tumors and patients, which represents a major hurdle for clinical oncologists. Frequently, 

cancer patients do not benefit from a chosen treatment but predominantly experience the side effects, 

and better predictive biomarkers are urgently needed. Forward genetic screens allow modeling of the 

complex mutational landscape of human cancer and identifying similarities or differences between 

drug effects. For instance, studies performed on cellular platinum uptake showed that carboplatin and 

cisplatin, but not oxaliplatin, are entering cells through LRRC8A/D-containing anion channels 

(Planells-Cases et al., 2015). Thus, for patients with low LRRC8A/D expression, cisplatin and 

carboplatin might not be an effective treatment regimen. Such findings may be clinically useful and, 

thus, more screens using well-established, classical chemotherapeutic drugs may further contribute to 

improved precision oncology. 

We expect that further technical improvements of existing screening technologies and the 

comparison of screens for various drugs will aid in the development of novel treatment regimens. The 

potential use of patient-derived tumoroids for drug response screens can additionally be exploited for 

personalized medicine. Future treatment concepts will increasingly be based on specific personalized 

tumor features and thus knowledge about specific tumor vulnerabilities is essential to move the field 

forward. Since classical chemotherapeutic agents are widely available, inexpensive and well-

characterized in terms of dosage and toxicity, more effort should be made to unravel the full potential 

of these drugs and assess their benefit in clinical trials for patient subgroups characterized by 

particular genetic mutations. Furthermore, new drug combinations could be suggested when the 

impact of a genotype on drug response is better understood. 
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Given the advantages and limitations of the screening techniques, the chosen approach 

should be carefully evaluated. Screening output might depend more on experimental design than on 

the technology itself, as shown by a study comparing CRISPR/Cas9 with optimized RNAi screens 

concluding that both techniques perform equally well (Morgens et al., 2016). In general, the most 

comprehensive picture will be achieved by combining several approaches. Clinical data from patients 

remain essential to validate the findings and assess the predictive potential of identified gene-drug 

dependencies. Thus, studies would benefit from more than one approach to answer the same 

question and their combination into a therapy response map might promote the translation into 

clinically predictive markers and effective treatments with improved patient life quality and overall 

survival. 
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Figure legends 

Figure 1: Exemplary workflow to discover novel predictive biomarkers based on forward genetic 

screens. 

Figure 2: Simplified layouts of the screening technologies presented in the current review. A.: 

Screens in 2D cell lines using CRISPR/Cas9 or insertional mutagenesis to study genetic contributions 

to a phenotype of interest upon drug treatment. 2D cell lines are modified with either CRISPR/Cas9 or 

insertional mutagenesis before drug exposure. Depending on the research question of interest, the 

screen can be analyzed for enrichment (positive selection, potential drug resistance genes) or 

depletion of mutants (negative selection, potential drug hypersensitivity genes) or an intracellular 

phenotype by employing antibody- or reporter-based assays. B.: Mice bearing CRISPR/Cas9-

modified tumors can be treated with a drug of interest and efficiently analyzed to study complex 

phenotypes such as metastasis formation. C.: Patient-derived organoids can be modified with 

CRSIPR/Cas9 and used for both rapid in vivo testing of a gene panel of interest and identification of 

the tumor’s ‘essentialome’. 
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Table 1
Examples of screens performed to identify unknown factors of drug response, to suggest potential therapeutic strategies or to exploit novel screening concepts.

Selection Screening method Model Identified genes - 
proof of concept

Identified genes - novel 
findings

Proposed mechanism Remarks Reference

Trastuzumab (HER2-
targeting antibody)

shRNA screen (7,914 genes), 
positive selection

HER2-amplified breast cancer 
cell line BT474

PTEN Loss of PTEN activates PI3K/AKT 
signaling

PI3K pathway activation as predictive 
marker

(Berns et al., 
2007)

Vemurafenib (PLX4032, 
BRAF inhibitor)

Kinome shRNA screen (535 genes), 
positive selection

Colorectal cancer cell line 
WiDr

EGFR BRAF(V600E) inhibition activates EGFR 
and stimulates proliferation (feedback 
activation)

Melanoma cells express low levels of 
EGFR and are thus sensitive to BRAF 
inhibition; BRAF-mutant colon cancer 
might benefit from combination of BRAF 
and EGFR inhibitors

(Prahallad et al., 
2012)

Trastuzumab (HER2-
targeting antibody)

shRNA screen (7,914 genes), 
positive selection

HER2-amplified breast cancer 
cell lines BT474, SKBR3 and 
HCC1954

PTEN ARID1A ARID1A loss activates ANXA1 which in 
turn activates AKT and causes resistance

High ANXA1  expression suggested as 
predictive marker

(Berns et al., 
2016)

Vemurafenib (BRAF 
inhibitor)

Genome-wide CRISPR/Cas9 
(18,080 genes), positive selection 

BRAF(V600E)-mutated 
melanoma cell line A375

NF1, MED12 NF2, CUL3, TADA1, 
TADA2B

TADA1 and TADA2B (member of 
STAGA complex) recruit MED12 to c-
myc to activate proliferation; MED12 
activates TGF-βR signaling and 
MEK/ERK

(Shalem et al., 
2014)

Cytosine arabinoside 
(antimetabolite)

Genome-wide CRISPR/Cas9 
(18,080 genes), positive selection

Acute myeloid leukemia cell 
line U937

DCK SLC29A associated with nucleotide salvage 
pathway and required for the uptake and 
activation of Ara-C

(Kurata et al., 
2016)

6-thioguanine 
(antimetabolite)

Genome-wide CRISPR/Cas9 
(19,150 genes), positive selection

Male mouse ES (JM8) cells Mismatch repair 
genes (Mlh1, Msh2, 
Msh6, Pms2 )

Hprt, GM15293, 
Letmd1, Olfr815, 
Prkg1, Tmem8c

Unknown candidate genes did not validate 
in subsequent in vitro  experiments

(Koike-Yusa et 
al., 2014)

6-thioguanine 
(antimetabolite)

Genome-wide CRISPR/Cas9 (7,114 
genes), positive selection

Human near-haploid chronic 
myeloid leukemia cell line 
KBM7

Mismatch repair 
genes (MSH2, 
MSH6, MLH1, 
PMS2 )

(Wang et al., 
2014b)

Etoposide (DNA 
topoisomerase II inhibitor)

Genome-wide CRISPR/Cas9 (7,114 
genes), positive selection

Human pseudo-diploid 
leukemic HL60 and near-
haploid KBM7 cell lines

TOP2A CDK6 G1-cyclin dependent kinase involved in 
etoposide cytotoxicity

(Wang et al., 
2014b)

ATR inhibitor Genome-wide CRISPR/Cas9 
(19,150 genes), positive selection

Mouse ES cells (KH2) CDC25A CDC25A prevents cells from premature 
entry into mitosis

CDC25A  levels could serve as criterion 
for patients more likely to respond; 
rationale to combine ATR and WEE1 
inhibitor treatment

(Ruiz et al., 
2016)

Phenotypic selection Genome-wide (18,543 human and 
18,986 mouse genes) and focused 
(132 Ras-associated genes) 
CRISPR/Cas9 library, negative 
selection

12 acute myeloid leukemia cell 
lines and NRAS-engineered 
mouse CGN Ba/F3 cell line

Several genes involved 
in Ras maturation or 
downstream of MAPK 
signaling pathway

Cancers driven by oncogenic Ras require 
Rac/PAK signaling to activate MAPK 
signaling

PAK inhibition as potential synthetic 
lethal therapeutic strategy in Ras-driven 
cancers

(Wang et al., 
2017)

Phenotypic selection Genome-wide CRISPR/Cas9 
(18,080 genes), negative selection

Glioblastoma stem-like and 
neural stem/progenitor cell 
lines

PKMYT1 PKMYT1 essential to inhibit cyclin B-
CDK1 activity is lost in glioblastoma

PKMYT1 inhibition as potential synthetic 
lethal therapeutic strategy in glioblastoma

(Toledo et al., 
2015)

Phenotypic selection Genome-wide CRISPR/Cas9 screen 
( 17,232 genes), negative selection

RNF43-mutant pancreatic 
ductal adenocarcinoma cell 
line

components of Wnt 
pathway

FZD5 FZD5 encodes the main receptor for Wnt-
β-catenin signaling in this context

FDZ5 inhibiton as a potential synthetic 
lethal therapeutic strategy in RNF43-
mutated pancreatic cancer

(Steinhart et al., 
2017)

Phenotypic selection Genome-wide (18,360 genes)  and 
mini-pool (300 genes) CRISPR/Cas9 
screen, quantitiative protein 
measurement of SQSTM1 
modulators

Human neuroglioma H4 cell 
line

MTOR complex 1 
and canonical 
macroautophagy 
components

ufmylation components Ufmylation induces SQSTM1 expression (DeJesus et al., 
2016)



Lipopolysaccharide Genome-wide CRISPR/Cas9 screen 
(21,786 genes), quantitative 
measurement of Tnf expression

Mouse bone-marrow derived 
dendritic cells

Tlr4, Myd88  (signal 
high), Zfp36  (signal 
low)

components of OST 
complex,  ER 
translocation pathway, 
PAF complex

(Parnas et al., 
2015)

Doxorubicin (DNA 
topoisomerase II inhibitor)

Viral gene-trap haploid screen, 
positive selection

Human haploid cell line HAP1 ABCB1, Keap1 SWI/SNF subunits, 
C9orf82, Eif4a1

SWI/SNF regulates Topoisomerase II 
activity, C9orf82 negatively regulates 
DNA repair 

Patients with low SWI/SNF expression 
should not be treated with doxorubicin but 
rather aclarubicin or topotecan

(Wijdeven et al., 
2015)

Carboplatin (platinum 
drugs)

Viral gene-trap haploid screen, 
positive selection

Human near-haploid  chronic 
myeloid leukemia cell line 
KBM7 

Components of volume-
regulated anion channel 
(LRRC8D/LRRC8A )

50% of cellular platinum drug uptake 
mediated via LRRC8A/D channels

Downregulation of LRRC8 subunits could 
have an impact on platinum resistance

(Planells-Cases et 
al., 2015)

6-thioguanine 
(antimetabolite)

piggyBac transposon haploid screen, 
positive selection

Mouse haploid ES cells Proof of concept: 
DNA mismatch 
repair pathway 
genes (Msh2, Msh6, 
Mlh1 )

Validation of loss-of-function screen (Pettitt et al., 
2013)

Olaparib (PARP inhibitor) piggyBac transposon haploid screen, 
positive selection

Mouse haploid ES cells Parp1 Parp1 is a drug target and required for 
drug toxicity

Inhibited PAPR1 enzyme forms a toxic 
DNA lesion

(Pettitt et al., 
2013)

6-thioguanine 
(antimetabolite)

Viral gene-trap haploid screen, 
positive selection

Human near-haploid chronic 
myeloid leukemia cell line 
KBM7

HPRT Enzyme converting 6-thioguanine to a 
toxic metabolite

(Carette et al., 
2009)

Imatinib (tyrosine-kinase 
inhibitor)

Viral gene-trap haploid screen, 
positive selection

Human near-haploid chronic 
myeloid leukemia cell line 
KBM7

NF1, PTPN1 PTPN12 Tyrosine phosphatase negatively regulates 
c-abl

(Carette et al., 
2009)

Formaldehyde Viral gene-trap haploid screen, 
positive selection

Human near-haploid chronic 
myeloid leukemia cell line 
KBM7

12 candidate genes 6 out of 12 candidates validated (Shen et al., 
2016)

Imatinib (tyrosine-kinase 
inhibitor)

Viral gene-trap haploid screen, 
positive selection

Human near-haploid chronic 
myeloid leukemia cell line 
KBM7

CASP10, CUX1, NF1, 
LYRM9, ZPBP, 
CEBPG

Only LYRM9  validated; only NF1  was 
also identified by Carette et al., 2009

(Shen et al., 
2016)

MK-1775 (Wee1 inhibitor) Viral gene-trap haploid screen, 
positive selection

Human near-haploid chronic 
myeloid leukemia cell line 
KBM7

SKP2,CUL1, CDK2 
(among others)

Inactivation of S-phase can overcome 
Wee1 inhibitor resistance

Activity of DNA replication machinery 
could serve as selection criterion for 
Wee1 inhibitor treatment

(Heijink et al., 
2015)

Talazoparib (PARP 
inhibitor)

piggyBac transposon haploid screen, 
negative selection

Brca2-mutated mouse haploid 
ES cells (H129.2)

Ewsr1 (Pettitt et al., 
2017)

Phenotypic selection Viral gene-trap haploid screen, 
quantitative protein measurement of 
AKT signaling 

Human haploid cell line HAP1 KCTD5; GNB1  and 
other genes encoding 
Gβγ subunits

KCTD5 negatively regulates GPCR 
signaling by triggering proteolysis of 
dissociated  Gβγ subunits

(Brockmann et 
al., 2017)

Phenotypic selection Viral gene-trap haploid screen, 
quantitative protein measurement of 
WNT signaling

Human haploid cell line HAP1 
with 7TG-WNT reporter

several known 
regulators

genes linked to WNT 
receptor complex, 
CTNNB1 destruction 
complex and others

Other processes than CTNNB1 protein 
levels , e.g. truncation of domains, might 
regulate WNT signaling

(Lebensohn et al., 
2016)

Interferon-γ Viral gene-trap haploid screen, 
quantitative protein measurement of 
PD-L1 abundance

Human haploid cell line HAP1 IFNγR-pathway, 
IRF1, CD274

CMTM6 CMTM6/4 enhances PD-L1-mediated T-
cell inhibition, stabilizes PD-L1 protein 
level

Novel potential target for immune-
suppressive cancer therapy

(Mezzadra et al., 
2017)

Phenotypic selection Comparison of genome-wide 
CRISPR/Cas9 (19,050 genes) and 
viral gene-trap haploid screen, 
quantitative protein measurement of 
ER-associated degradation of MHC 
class I molecules

Human near-haploid chronic 
myeloid leukemia cell line 
KBM7 with MHC-I-ERAD 
reporter

TXNDC11 TXNDC11 encodes an EDEM2/3-
associated disulphide reductase

(Timms et al., 
2016)



Phenotypic selection Genome-wide CRISPR/Cas9 screen 
(20,611 genes) , positive selection

mouse non-small-cell lung 
cancer cell line transplanted 
into immunocompromised 
mice

several candidate genes 
enriched in late primary 
tumors, high overlap of 
candidate genes in 
metastases

Enrichment of mutations in anti-apoptotic 
or other tumor suppressive pathways

(Chen et al., 
2015)

Monoclonal PD-1 antibody Focused CRISPR/Cas9 screen 
(2,368 genes), positive selection  

Mouse B16 melanoma cell 
line

CD47 Ptpn2 , and several 
genes involved in four 
distinct biological 
processes 

loss of Ptpn2 sensitize tumors to 
immunotherapy through increased antigen 
presentation and T-cell stimulation

Inhibition of Ptpn2 as a therapeutic 
strategy to increase the effect of anti-PD-1 
immunotherapy

(Manguso et al., 
2017)

Phenotypic selection Mini CRISPR/Cas9 screen (10 
genes), positive selection

3D mucociliary epithelial 
organoids from primary 
human basal cells

GRHL2 GRHL2 plays a key role in apical-basal 
cell polarity and epithelial morphogenesis

(Gao et al., 2015)



Table 2
Comparison of recent functional screening technologies.

Advantages Disadvantages
• Variety of cell lines or models can be used • Cell line-specific genetic pleomorphisms, adaptations or genetic 

alterations might impair screening results 
• Easy to study cancer-type- of cell lineage-specific genetic 
determinants

• Activity of DNA repair in the model impacts CRISPR/Cas9 
cleavage success

• Several distinct libraries and systems for various purposes • Dependence on representative library with efficient sgRNAs
• Ongoing developments of novel CRISPR systems for various 
applications

• Off-targets effects on unintendend genomic sites

• Publically available data analysis algorithms • In-frame mutations can mask the phenotypes
• Some consistency in data analysis between different laboratories • sgRNA abundance as indirect measurement of mutations

Advantages Disadvantages
• Application of principles of yeast genetics in mammalian cells • Limitation to few haploid cell lines, more challenging to study 

lineage-specific biology
• Every genetic region with good coverage can be studied • Integration bias of transposons or viruses
• Individual genomic mutations are directly measured • Few publically available data analysis algorithms
• High statistical power • Alternative splicing can maintain a functional transcript

Advantages Disadvantages
• Contribution of the host's microenvironment, tumor-stromal 
interactions and immune response to the phenotype of interest

• Large number of animals needed for complex libraries

• Closer to the situation in patients • Diversity of outgrown tumors
• Study of complex phenotypes such as metastasis formation or 
angiogenesis

• Interaction with microenvironment can mask effects of genetic 
manipulation
• Virus delivery or tumor outgrowth rate increases experimental 
variation
• Ethical concerns

Advantages Disadvantages
• Multilayered complex 3D organization • Loss of similarities with original tumor over time
• Resemble the original in vivo  organ • Growth factors supplemented in medium alter gene expression 

of organoids
• Heterogeneity resembles patients • Genetically less robust, poorly characterized
• Patient-derived material can be studied easily • Low statistical power

CRISPR/Cas9 in 2D cell lines

Haploid insertional mutagenesis

in vivo  screens

3D cancer organoids
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