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ABSTRACT  

SO2 oxidation has been proposed as an alternative pathway for the electrochemical generation of 

H2 as it requires lower potentials than water splitting and at the same time consumes an 

atmospheric pollutant. Theoretical predictions suggest that gold and platinum are the most active 

catalysts for this reaction. This work presents experimental evidence that, contrary to the 

predictions, SO2 oxidation starts at less positive potentials on Au electrodes (ca. 0.60 V (vs. RHE)) 

than on Pt. It is found further that the observed current densities on Au are one order of magnitude 

higher than on Pt.  In addition, the SO2 oxidation mechanism depends on the chemical nature of 

the electrolyte used: a kosmotropic anion (HSO4
-) results in lower currents than a chaotropic one 

(ClO4
-) and the latter displays oscillatory reaction rates under both potentiostatic and galvanostatic 

regimes. 
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INTRODUCTION 

The hybrid sulfur cycle (HyS)1, proposed during the 1970’s 2, is a process in which SO2 is oxidized 

to H2SO4, and as a counter reaction, water is reduced to H2 (Scheme 1).  

 

SO2 + 2 H2O  H2SO4 + 2 H+ + 2 e- 

2 H+ + 2 e-  H2 

Scheme 1. Overall SO2 oxidation reaction 

 

The standard thermodynamic potential of this process is 0.158 VRHE and thus significantly lower 

than the corresponding thermodynamic potential in water electrolysis (1.229 VRHE  3). Therefore 

SO2 oxidation could be a cheaper, cleaner and more environmental friendly pathway to produce 

H2, since it utilizes an atmospheric pollutant to produce a clean fuel. However, the need of a 

suitable catalyst for this reaction that provides a low kinetic barrier is challenging and the main 

motivation for studies in this field1–13. Recent reports9 indicate that Au and Pt should be the most 

electroactive catalysts (with the order in activity Pt > Au). This mechanism is in disagreement with 

proposed by previous experimental reports11–13. The goal of the present work was to provide 

experimental data of the electrochemical oxidation process on both electrodes and to confront both 

mechanisms. 

MATERIALS AND METHODS 

 A two-compartment H shape electrochemical cell was used, with Pt or Au disk (d= 0.50 

cm) as working electrodes, a Pt mesh and a RHE as counter and reference, respectively. The 

supporting electrolytes were HClO4 and H2SO4 Suprapur™ 0.5 mol L-1solutions, prepared with 
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Milli-Q™ water. N2 was bubbled into the solution and after 20 min, the gas was changed to SO2 

(Air Liquide) and the solution was saturated for 25 min. 

 The electrochemical area of the electrodes was measured by Hupd, in the case of Pt 

electrode, and Cuupd, in case of Au electrode. The CuSO4 solution was 0.10 mol L-1, in H2SO4 0.50 

mol L-1 and the deposition of a Cu monolayer is in agreement with the one proposed in the 

literature14,15. 

 All experiments were performed at room temperature and controlled by an Autolab 

potentiostat/ galvanostat (AUT85732). 

RESULTS AND DISCUSSION 

To determine the potential region where the electrochemical reaction takes place, cyclic 

voltammograms on Au and Pt electrodes were recorded in sulfuric acid electrolyte solutions 

saturated with Ar and SO2, respectively, see Figure 1. 

 

Figure 1. j/E potentiodynamic profiles of polycrystalline Pt (A) and Au (B) electrodes in the 
absence (black dashed lines) and in the presence (full blue line) of SO2. Electrolytic solution: 
H2SO4 0.5 mol L-1. Scan rate: 0.1 V s-1, scan direction indicated by the arrows. 
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Figure 1A indicates that the highest Pt catalytic activity takes place in the same potential region 

where oxide formation occurs, a strong evidence that the catalytic species are indeed related to 

those suggested previously by theoretical calculations by Kriek et al.9, Scheme 2.

A 

M + SO2(aq) M-SO2(ads) 

M + H2O(l)  M- H2O(ads) 

M-H2O(ads)  M-OH(ads) + H+
(aq) + e- 

M-SO2(ads) + M-OH(ads) M-HSO3(ads) + M 

M-HSO3(ads) +M-OH(ads) 2M + H2SO4(aq) 

 

B 

M + SO2(aq)  M-SO2(ads) 

M + H2O(l)    M-H2O (ads) 

M-H2O(ads)    M-OH(ads) + H+
(aq) + e- 

M-OH(ads)    M-O(ads) + H+
(aq) + e- 

M-SO2(ads) + M-O(ads)    M-SO3(ads) + M 

M-SO3(ads) + H2O(l)   M + H2SO4(aq) 

Scheme 2. Calculated9 possible pathways for the SO2 oxidation on noble metal surfaces. A. Metal 
hydroxides considered as catalytic species. B. Metal oxides as catalyst. 

 

In contrast, the electrochemical behavior is completely different on Au surfaces. Figure 1B shows 

that the oxidation process starts at around 0.60 VRHE  with a peak maximum at around 0.80 VRHE , 

i.e. at significantly lower potentials than the 1.60 VRHE  predicted by the calculations9 following 

Scheme 2. Furthermore, the current density on the Au electrode is higher than on Pt. Another 

striking point is the shape of the j/E profile shown in Figure 1B, i.e. a sharp oxidation peak occurs 

at 1.35 VRHE during the negative going scan. Such a feature was already observed in previous work 

for high SO2 concentrations16, but is usually not seen at low SO2 concentration.17,18 During the 

positive going scan, the oxidation current drops to almost zero at around 1.50 VRHE , in the same 

region where the Au surface oxide formation takes place. This suggests that adsorbed SO2 is 

directly oxidized on a bare Au surface in a Langmuir-Hinshelwood step. Such reaction step is 
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completely different from those depicted in Scheme 2, where the presence of surface oxides is 

needed as the active species for SO2 oxidation. Similar conclusions were obtained by O’Brien et 

al.,  not only for Au electrodes13, but also for Pt electrodes11,13, when varying the electrolyte 

concentration and applying a pre-treatment. To investigate the reaction further and to determine 

the influence of a partial blocked surface (by anions) onto the SO2 oxidation, also suggested by 

previous works13, we compared the reaction in HClO4 and H2SO4 electrolyte solutions, see Figure 

2. 

 

Figure 2. j/E Profiles for SO2 in HClO4 (doted black line) and H2SO4 (full red line) 0.50 mol.L-1 
on Au, at 0.10 V.s-1. 

 

Comparing both voltammetric profiles shown in Figure 2, two main points must be highlighted: 

(i) the SO2 oxidation starts at less positive potentials in HClO4 than in H2SO4 and (ii) the current 
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density is significantly higher in HClO4 than in H2SO4. Evidently, anion adsorption is a key point 

for this whole process and, even though from the practical point of view the use of sulfuric acid is 

compulsory, some fundamental understanding can be reached by studies in the presence of ClO4
- 

anions, which only weakly interact with Au surfaces19.  

Despite the fact that the potential window and current intensity are different in both electrolytes, 

the j/E profiles are quite similar. In both electrolytes, regions of bi-stability can be found, i.e. two 

different states are stable and coexist in the same potential window (1.15 – 1.50 VRHE  for H2SO4 

and 1.00 – 1.30 VRHE  for HClO4). To investigate the reaction in these potential regions further, 

potential step techniques (Figure 3) were applied. It was found that in the presence of the 

chaothropic anion ClO4
- damped current oscillations occur when the potential was stepped from 

open circuit potential (OCP) to the bi-stable potential region (1.00 - 1.30 VRHE ); a phenomena 

which so far has not been reported for this process6–8,17,18,20. Stepping the potential to a value of 

1.00 VRHE, the current first oscillates and then adjusts to a fixed value. By comparison a potential 

step to 1.30 VRHE leads to a current drop to zero after a few seconds, see Figure 3A. This behaviour 

can be explained by the generation of species that poison the reaction by strongly bonding to the 

Au surface. On the other hand, in the presence of HSO4
-, a kosmothropic anion, only an irregular 

current behavior is observed, but no clear oscillations, see Figure 3B. 
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Figure 3. j/t current transients for oxidation of SO2 on Au surface in HClO4 0.50 mol L-1 (A) and 
H2SO4 0.50 mol.L-1(B). The electrode potential is stepped from open circuit potential (OCP) to the 
potentials indicated in the figure. 
 
Current oscillations of SO2 oxidation systems were reported previously by O’Brein et al.12,13, also 

observing an oscillatory behavior under potentiostatic mode for Pt electrodes modified with a thin 

layer of S atoms. The authors report that these oscillations are clearly observed in H2SO4 

supporting electrolyte, but only in high concentrations, indicating that the oscillatory behavior is 

related to the SO2-HSO4 interaction13.   

In the present work neither any kind of pre-treatment was performed nor was the H2SO4 

concentration increased . The fact that no oscillations were observed in H2SO4
 solution is a strong 

indication that a different pathway must be involved, probably related to the nature of the electrode 

surface, endorsing the non-expected oscillatory behavior observed for gold/HClO4 system (Figure 

3A). 

For further investigation and characterization of this oscillatory behavior, galvanostatic 

experiments were carried out as well, see Figure 4. As result of the different current densities 

observed in the potentiostatic measurements (Figure 2), first the current densities have to be 

adjusted for both electrolytes. 
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Figure 4. E/t profiles for selected current densities (shown) for SO2 oxidation in HClO4 (A, B) 
and H2SO4 (C and D) 0.50 mol L-1.  

 

Figure 4A demonstrates that increasing the current density in 0.50 mol L-1 HClO4, the electrode 

potential remains stable until 0.64 A cm-2, whereas at 0.95 A cm-2 potential oscillations are 

observed, see Figure 4B. In this condition, the potential sharply increases from 1.00 VRHE to ca. 

2.5 VRHE diminishing steeply to 1.00 VRHE, starting a periodic oscillating behavior. The potential 

where the oscillations begin (1.00 VRHE) is less positive than the potential where Au oxidation 

takes place, but lies within the potential region where two states can coexist, as mentioned before 

and depicted in Figure 2. The j/E profile in Figure 2 shows a current increase at ca. 1.90 VRHE, due 

to the O2 evolution reaction; this indicates that the potential oscillations depicted in Figure 4B 

occur in the potential region between the generation of species that poison the reaction (Figures 2 

and 3A) and the O2 evolution. This observation indicates that the oscillatory behavior is caused by 

cycles of blocking-cleaning of the surface, i.e. the “poison” blocks the surface, decreasing the 

electrode activity and consequently the electrode potential sharply increases. This “poison” was 

suggested by O’Brien et al.12,13 as being the anion S2O6
2-, a non-electroactive species that should 

increase the electrode resistance. The authors discuss the anion as a possible explanation for the 

observed current oscillations, classified as a negative differential resistor (NDR) type12. This 

species is reported in the literature to be involved in other oscillatory behavior, such as chemical 

degradation of thiosulfate21, bisulfite22 and electrochemical degradation of thiosulfate23,24, all 

presenting oscillations. 

When the electrode reaches the potential for O2 evolution, the “poison” is removed and the surface 

is cleaned. This increases the activity and the electrode potential drops back to 1.00 VRHE, where 

the cycle restarts. Interestingly, no oscillations are observed in H2SO4, see Figures 4C – D. The 
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electrode potential stabilizes at values more positives than 1.15 VRHE in the potential window 

where the sharp peak is observed in the cyclic voltammogram of Figure 2. 

The NDR oscillatory behavior, suggested by O’Brien et al.12,13 would not explain the potential 

oscillations observed in Figure 4B, since this kind of behavior involves the presence of a single 

blocking species25,26. The presence of potential oscillations are related to a hidden negative 

differential resistor (HNDR)25 expecting the oscillations to be related not just to one but to two 

blocking species, as it was suggested for formic acid in alkaline conditions25.  Considering this, it 

is possible to infer that there are competing poisonous species for the adsorption sites of the 

electrode surface avoiding S2O6
2- to be assumed the only responsible for the oscillations. As a 

consequence, the differential equation to model the system should be much more complex. 

 

CONCLUSIONS 

Since SO2 adsorption has to occur in the first step of the oxidation mechanism, the competition 

for adsorption sites between the electroactive species and the kosmotropic anion (HSO4
-) must 

play an important role for avoiding the bifurcation to occur; the adsorbed anions probably block 

the surface not enabling the critical amount of intermediates to be reached. On the contrary, in the 

presence of the chaotropic anion (ClO4
-), which does not strongly adsorb at the surface, bifurcation 

conditions are reached leading to an oscillatory behavior.  

It is therefore concluded that the observed reaction mechanism on Au is significantly different 

than the one observed on Pt; not in agreement neither with predictions from theoretical 

calculations9 nor with other pathways suggested13. On Au, a much more complex mechanism is 

observed with bifurcation occurring in the presence of a chaothropic anion that lead to a larger 

number of sites available for SO2 adsorption. These oscillations can be also interesting from the 
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economical point of view, since they can avoid the poisoning of the electrode allowing the system 

to be used for longer time. 

 

AUTHOR INFORMATION 

*Susana I. Córdoba de Torresi: storresi@iq.usp.br 

**Matthias Arenz: matthias.arenz@dcb.unibe.ch  

 

ACKNOWLEDGMENTS 

The authors would like to thank the Fundação de Amparo a Pesquisa do Estado de São Paulo 

(FAPESP, Grants #2013/16930-7 and #2015/26308-7). AHBD and RLM also thank FAPESP 

(Grants #2013/25592-8, #2015/08300-9, and #2017/09346-8) for scholarships granted. HV  and 

SICT (Grant No. 304458/2013-9 and 302173/2016-1) acknowledge Conselho Nacional de 

Desenvolvimento Científico e Tecnológico (CNPq) for financial support 

REFERENCES 

(1)  O’Brien, J. A.; Hinkley, J. T.; Donne, S. W.; Lindquist, S. E. The Electrochemical Oxidation 

of Aqueous Sulfur Dioxide: A Critical Review of Work with Respect to the Hybrid Sulfur 

Cycle. Electrochim. Acta 2010, 55 (3), 573–591. 

(2)  Gorensek, M. B.; Summers, W. a. Hybrid Sulfur Flowsheets Using PEM Electrolysis and a 

Bayonet Decomposition Reactor. Int. J. Hydrogen Energy 2009, 34 (9), 4097–4114. 

(3)  Gorensek, M. B.; Staser, J. a.; Stanford, T. G.; Weidner, J. W. A Thermodynamic Analysis 

of the SO2/H2SO4 System in SO2-Depolarized Electrolysis. Int. J. Hydrogen Energy 2009, 

34 (15), 6089–6095. 

(4)  Colón-Mercado, H. R.; Hobbs, D. T. Catalyst Evaluation for a Sulfur Dioxide-Depolarized 

mailto:matthias.arenz@dcb.unibe.ch


 13 

Electrolyzer. Electrochem. commun. 2007, 9 (11), 2649–2653. 

(5)  Lee, J.; Langer, S. H. Electrochemical Sulphur Dioxide Oxidation with Platinum-

Aluminum Electrocatalysts. J. Appl. Electrochem. 1995, 25 (4), 353–357. 

(6)  Potgieter, M.; Parrondo, J.; Ramani, V. K.; Kriek, R. J. Evaluation of Polycrystalline 

Platinum and Rhodium Surfaces for the Electro-Oxidation of Aqueous Sulfur Dioxide. 

Electrocatalysis 2016, 7 (1), 50–59. 

(7)  Kriek, R. J.; Ravenswaay, J. P. Van; Potgieter, M.; Calitz, A.; Lates, V.; Björketun, M. E.; 

Siahrostami, S.; Rossmeisl, J. SO 2 – an Indirect Source of Energy. 2013, 113 (April), 3–4. 

(8)  Falch, A.; Lates, V. A.; Kotzé, H. S.; Kriek, R. J. The Effect of Rapid Thermal Annealing 

on Sputtered Pt and Pt3Pd2 Thin Film Electrocatalysts for Aqueous SO2 Electro-Oxidation. 

Electrocatalysis 2016, 7 (1), 33–41. 

(9)  Kriek, R. J.; Rossmeisl, J.; Siahrostami, S.; Björketun, M. E. H2 Production through 

Electro-Oxidation of SO2: Identifying the Fundamental Limitations. Phys. Chem. Chem. 

Phys. 2014, 16 (20), 9572. 

(10)  Loskyll, J.; Stöwe, K.; WF, M. Search for New Catalysts for the Oxidation of SO2. ACS 

Comb Sci 2013, 15 (9), 464–474. 

(11)  O’Brien, J. a.; Hinkley, J. T.; Donne, S. W. The Electrochemical Oxidation of Aqueous 

Sulfur Dioxide I. Experimental Parameter Influences on Electrode Behavior. J. 

Electrochem. Soc. 2010, 157 (9), F111–F115. 

(12)  O’Brien, J. A.; Hinkley, J. T.; Donne, S. W. Observed Electrochemical Oscillations during 

the Oxidation of Aqueous Sulfur Dioxide on a Sulfur Modified Platinum Electrode. 

Electrochim. Acta 2011, 56 (11), 4224–4230. 

(13)  O’Brien, J. a.; Hinkley, J. T.; Donne, S. W. Electrochemical Oxidation of Aqueous Sulfur 



 14 

Dioxide II. Comparative Studies on Platinum and Gold Electrodes. J. Electrochem. Soc. 

2012, 159 (9), F585–F593. 

(14)  Rouya, E.; Cattarin, S.; Reed, M. L.; Kelly, R. G.; Zangari, G. Electrochemical 

Characterization of the Surface Are of Nanoporous Gold Films. J. Electrochem. Soc. 2012, 

159 (4), K97–K102. 

(15)  Brankovic, S. R.; Wang, J. X.; Adžić, R. R. Metal Monolayer Deposition by Replacement 

of Metal Adlayers on Electrode Surfaces. Surf. Sci. 2001, 474 (1–3). 

(16)  Quijada, C.; Morallón, E.; Vázquez, J. L.; Berlouis, L. E. A. Electrochemical Behaviour of 

Aqueous SO2 at Polycrystalline Gold Electrodes in Acidic Media. A Voltammetric and in-

Situ Vibrational Study. Part II. Oxidation of SO2 on Bare and Sulphur-Modified Electrodes. 

Electrochim. Acta 2001, 46 (5), 651–659. 

(17)  Samec, Z.; Weber, J. Study of the Oxidation of SO2 Dissolved in 0·5 M H2SO4 on a Gold 

electrode—II. A Rotating Disc Electrode. Electrochim. Acta 1975, 20 (6–7), 413–419. 

(18)  Samec, Z.; Weber, J. Study of the Oxidation of SO2 Dissolved in 0·5 M H2SO4 on a Gold 

electrode—I. Stationary Electrode. Electrochim. Acta 1975, 20, 403–412. 

(19)  Shi, Z.; Lipkowski, J.; Gamboa, M.; Zelenay, P.; Wieckowski, A. Investigations of SO42- 

Adsorption at the Au(111) Electrode by Chronocoulometry and Radiochemistry. J. 

Electroanal. Chem. 1994, 366 (1–2), 317–326. 

(20)  Quijada, C.; Huerta, F. J.; Morallón, E.; Vázquez, J. L.; Berlouis, L. E. A. Electrochemical 

Behaviour of Aqueous SO2 at Polycrystalline Gold Electrodes in Acidic Media: A 

Voltammetric and in Situ Vibrational Study. Part 1. Reduction of SO2: Deposition of 

Monomeric and Polymeric Sulphur. Electrochim. Acta 2000, 45 (11), 1847–1862. 

(21)  Yuan, L.; Gao, Q.; Zhao, Y.; Tang, X.; Epstein, I. R. Temperature-Induced Bifurcations in 



 15 

the Cu(II)-Catalyzed and Catalyst-Free Hydrogen Peroxide-Thiosulfate Oscillating 

Reaction. J. Phys. Chem. A 2010, 114 (26), 7014–7020. 

(22)  Wang, Z.; Gao, Q.; Pan, C.; Zhao, Y.; Horváth, A. K. Bisulfite-Driven Autocatalysis in the 

Bromate–Thiosulfate Reaction in a Slightly Acidic Medium. Inorg. Chem. 2012, 51 (22), 

12062–12064. 

(23)  Du, Z.; Gao, Q.; Feng, J.; Lu, Y.; Wang, J. Dynamic Instabilities and Mechanism of the 

Electrochemical Oxidation of Thiosulfate. J. Phys. Chem. B 2006, 110 (51), 26098–26104. 

(24)  Bi, W.; He, Y.; Cabral, M. F.; Varela, H.; Yang, J.; Jiang, R.; Gao, Q. Electrochimica Acta 

Oscillatory Electro-Oxidation of Thiosulfate on Gold. Electrochim. Acta 2014, 133, 308–

315. 

(25)  Koper, M. T. M. Non-Linear Phenomena in Electrochemical Systems. J. Chem. Soc. 

Faraday Trans. 1998, 94 (10), 1369–1378. 

(26)  Strasser, P.; Eiswirth, M.; Koper, M. T. M. Mechanistic Classification of Electrochemical 

Oscillators — an Operational Experimental Strategy. J. Electroanal. Chem. 1999, 478 (1–

2), 50–66. 

 


	1

