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Abstract

Osteoporosis leads to hip fractures in aging populations and is diagnosed by modern medi-

cal imaging techniques such as quantitative computed tomography (QCT). Hip fracture

sites involve trabecular bone, whose strength is determined by volume fraction and orienta-

tion, known as fabric. However, bone fabric cannot be reliably assessed in clinical QCT

images of proximal femur. Accordingly, we propose a novel registration-based estimation of

bone fabric designed to preserve tensor properties of bone fabric and to map bone fabric by

a global and local decomposition of the gradient of a non-rigid image registration transforma-

tion. Furthermore, no comprehensive analysis on the critical components of this methodol-

ogy has been previously conducted. Hence, the aim of this work was to identify the best

registration-based strategy to assign bone fabric to the QCT image of a patient’s proximal

femur. The normalized correlation coefficient and curvature-based regularization were used

for image-based registration and the Frobenius norm of the stretch tensor of the local gradi-

ent was selected to quantify the distance among the proximal femora in the population.

Based on this distance, closest, farthest and mean femora with a distinction of sex were cho-

sen as alternative atlases to evaluate their influence on bone fabric prediction. Second, we

analyzed different tensor mapping schemes for bone fabric prediction: identity, rotation-

only, rotation and stretch tensor. Third, we investigated the use of a population average fab-

ric atlas. A leave one out (LOO) evaluation study was performed with a dual QCT and HR-

pQCT database of 36 pairs of human femora. The quality of the fabric prediction was

assessed with three metrics, the tensor norm (TN) error, the degree of anisotropy (DA) error

and the angular deviation of the principal tensor direction (PTD). The closest femur atlas

(CTP) with a full rotation (CR) for fabric mapping delivered the best results with a TN error of

7.3 ± 0.9%, a DA error of 6.6 ± 1.3% and a PTD error of 25 ± 2˚. The closest to the population

mean femur atlas (MTP) using the same mapping scheme yielded only slightly higher errors

than CTP for substantially less computing efforts. The population average fabric atlas

yielded substantially higher errors than the MTP with the CR mapping scheme. Accounting

for sex did not bring any significant improvements. The identified fabric mapping methodol-

ogy will be exploited in patient-specific QCT-based finite element analysis of the proximal

femur to improve the prediction of hip fracture risk.
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Introduction

Osteoporotic hip fractures represent a major clinical and public health problem in aging popu-

lations. Identifying individuals at higher fracture risk would enable targeted osteoporosis man-

agement and improve fracture prevention. Areal bone mineral density (aBMD) measured by

dual-energy x-ray absorptiometry (DXA) is routinely used as a surrogate of bone strength for

osteoporosis diagnosis and fracture risk assessment. Modern techniques such as finite element

(FE) analysis allow for a more accurate estimation of bone strength using the local distribution

of BMD provided by QCT, but do not account for the anisotropy of trabecular bone architec-

ture called fabric. Recent validation studies have demonstrated that the inclusion of bone fab-

ric (anisotropy) in FEA models is important and delivers an improved prediction of bone

strength [1–5]. However, measuring bone fabric requires high resolution peripheral QCT

(HRpQCT) images and presently, this resolution is not available clinically for the proximal

femur.

Consequently, computational approaches to accurately predict bone fabric directly from

clinical QCT images are receiving increasing interest. In this regard, machine learning

approaches have been recently used to predict bone fabric, where the statistical relationship

between clinical QCT imaging information, and its corresponding high-resolution peripheral

QCT (HRpQCT) was modelled, and then used to perform inference of bone fabric on

(unseen) clinical QCT images. Particularly, discriminative models that infer bone fabric from

computed features (i.e predictor variables) have been proposed. In [6], nodal displacements of

a template mesh registered to a patient-specific mesh are used as features for a non-linear

kernel partial least square (PLS) regression approach. In [7], morphology- and texture-based

features are used as features as part of a decision forest regression approach. While these statis-

tical approaches have showed promising results, they involve manual annotations of land-

marks for initial alignment, and their accuracy depends on the selected training data.

Another family of approaches for bone fabric estimation is based on image or mesh regis-

tration. In [3], the authors rely on a database of HRpQCT-based derived FE models of femurs

including bone density and fabric information. From the database, the most similar femur to

the target femur is selected by means of mesh-morphing and a bone-mineral-density similarity

metric computed across the database. Finally, the pre-computed fabric information of the

selected femur is mapped to the patient’s femur by rigidly correcting the local orientation of

the fabric information. It is noted, however, that this study did not perform a direct study on

clinical CT images. Recently, in [2, 8], the authors investigated intensity based registration

methods to derive fabric information. In their approach, rather than pre-computing fabric

information and then mapping the closest femur in the database to the patient’s femur, bone

fabric is inferred by registering a single QCT image to the patient’s image, and then it calcu-

lates fabric on the corresponding non-rigidly transformed HRpQCT image.

In these previous studies two issues are identified with respect to the chosen registration

approach and the degrees of freedom of the transformation model used to map fabric informa-

tion to the patient’s image. The study in [3] used a surface-based mesh morphing approach

(using eight sparsely located landmarks), and a rotation-based local correction to map fabric

information to the target image. It is first remarked that surface-based registration approaches

have been reported to be less accurate than intensity-based registration approaches for estab-

lishing anatomical point correspondences [9]. Secondly, the study in [3] uses a local correction

based on a rotation matrix, which is not proved to provide the best result in terms of fabric

matching to a patient’s image. Similarly, the approaches in [2, 8] employ an image-intensity

registration approach and the complete non-rigid transformation (i.e. no decomposition or

local correction of the transformation) to derive fabric information. In this regard, as

Prediction of trabecular bone fabric using a novel registration-based approach
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demonstrated in the present study, the degrees of freedom of the transformation model used

to map fabric information to the patient’s image plays an important role on the accuracy of

these methods.

Consequently, and differently from previous approaches, we propose a novel registration-

based estimation of bone fabric directly from clinical QCT image. It is designed to preserve

tensor properties of bone fabric and to map bone fabric by a global and local decomposition of

the gradient of a non-rigid image registration transformation. Another issue investigated in

this study comes from the fact that the role of utilising a database of femoral atlases, from

which fabric information is mapped to a patient’s image, is not known and inconclusive from

the state of the art. The conclusions presented in [2, 8] contradict with those of [3], on the fact

that a single femur atlas might suffice to estimate femur fabric from a QCT patient image.

These contradictory results might be amplified by the fact that these studies were tested on a

very limited set of ten cases. In this study we therefore present a thorough leave-one-out analy-

sis on the importance of atlas selection for bone fabric estimation on a dataset comprising 36

pairs of QCT and HRpQCT human femora. Using a deformation-based distance metric, we

evaluate six different atlases that span different degrees of similarity to the target image, and

are population-wide or sex-specific. In addition, beyond bone shape and image atlases, we

evaluate and report on the ability of a single population-, and sex-specific atlases of bone fabric

used within the proposed registration-based fabric estimation approach.

Methods

In this section the proposed image registration based fabric prediction is presented, followed

by the methodology and metrics proposed to select a femur atlas from a given population. The

section continues then with the proposed methodology to decompose the image transforma-

tion and apply it to the precomputed fabric of the chosen atlas. The section finishes with the

scheme and metrics used to evaluate the quality of the proposed fabric prediction approach.

The complete overview of the registration approach in bone fabric prediction is presented

in Fig 1 and is described in detail below.

Image registration

Image registration is the process of aligning two images into a common coordinate system.

Given a pair of images, a fixed image IF(x) and a moving image IM(x) are defined on their own

spatial domain: OF � R
3 and OM � R

3, and here x = {x1, x2, x3} denotes the voxel location.

Image registration is the task of finding a coordinate transform T : R3 ! R3 that spatially

aligns the two images such that a given similarity metric between IF(x) and IM(T(x)) is opti-

mized [10]. Image registration can be formulated as an optimization problem:

bT ¼ argmin CðT; IF; IMÞ ¼ argminð� CsimilarityðT; IF; IMÞ þ gCsmoothðTÞÞ: ð1Þ

The cost function C defines the quality of alignment, which is separated into a similarity

measure Csimilarity and a regularization term Csmooth. In this work, normalized correlation coef-

ficient [10] is used as the similarity measure because of its ability to handle mono-modal image

registration. Curvature regularization [11] is used as regularization term to cope with the ill-

posedness of the non-rigid image registration. It acts on the deformation field computed on

Prediction of trabecular bone fabric using a novel registration-based approach
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the B-Spline grid nodes. The parameter γ weighs regularity against similarity.

CsimilarityðT; IF; IMÞ ¼
X

x2O

ðIFðxÞ � �IF ÞðIMðTðxÞÞ � �IM Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðIFðxÞ � �IF Þ
2
ðIMðTðxÞÞ � �IM Þ

2

q ; ð2Þ

CsmoothðTÞ ¼k DxTk2 ð3Þ

In the present study the image registration process is performed in two stages. First, an

affine registration is performed to get a coarse global alignment of the entire anatomy. Second,

a cubic B-Spline registration is used to yield a fine local alignment based on a grid of J control

points. The transformations are combined by composition, as follows

TðxÞ ¼ TBðTAðxÞÞÞ; ð4Þ

where TA is the affine transform and TB is the B-spline transform.

Parameter tuning of the registration was performed heuristically and based on the quality

of the registration. To this end, we computed the Dice coefficient between image masks, which

are obtained via semi-manual segmentation of the HRpQCT images for which a simple image

thresholding is feasible. The Dice coefficient is then calculated on image masks transformed

(i.e. Eq (4)) and resampled to the QCT image space by nearest-neighbor interpolation. The

accuracy of the image registration in terms of Dice coefficient [12, 13] was in average of

94±3%, and hence considered satisfactory for the rest of the analyses. Furthermore, changing

the order of operation (i.e. HRpQCT masks were first resampled and then transformed for

Dice coefficient calculation) did not significantly affect the accuracy of the transformation

(p>0.05).

Fig 1. Overview of the image registration approach for predicting the bone fabric is presented. Different femur atlases (CTP,CSP,

FTP,FSP,MTP,MSP) are used in the registration process and a detailed analysis is done for choosing the optimal femur atlas. Similarly, four

different tensor mapping methods (CD,CR,AD,AR) are analyzed for mapping fabric tensor from the femur atlas to the patient’s femur QCT

image. Alternatively, a fabric atlas (femur atlas model with mean fabric) is used for mapping bone fabric to patient’s femur QCT image and its

impact is analyzed only for CR mapping method. Acronyms: CTP—Closest to patient femur in the Total Population, CSP—Closest to patient

femur in the Sex-specific Population, FTP—Farthest to patient femur in the Total Population, FSP—Farthest to patient femur in the Sex-

specific Population, MTP—Mean femur of the Total Population, MSP—Mean femur of the Sex-specific Population, NR—No rotation, AR—

Affine Rotation, AD—Affine Deformation, CR—Complete Rotation, CD—Complete Deformation.

https://doi.org/10.1371/journal.pone.0187874.g001
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Selecting a femur atlas. A femur atlas is a QCT image chosen from the population. Since

there are various possible candidate femur atlases available in the population, we propose a

strategy for choosing it. In principle, a good atlas is such having minimal image deformation

needed to warp the atlas image to each fixed image in the population. Inspired from the Fre-

chet mean and related works proposed in computational anatomy [14–16], a distance metric

DM is proposed herein to measure the extent of deformation. In the proposed image registra-

tion process (Fig 1), IF corresponds to the patient’s femur QCT image, while IM corresponds to

the femur atlas QCT image.

The distance metric DM is calculated using the stretch tensor jGV, which is computed on

the grid of control points {j = 1,. . .J} spanned over the entire registered image. The computa-

tion of the stretch jGV involves the combined transformation of affine and B-spline transforms.

We use jGV� V for simplicity in the rest of the paper.

The deformation gradient F is computed, which is the gradient of the transformation or the

Jacobian matrix of the mapping

F ¼ rxT: ð5Þ

Performing VR decomposition

F ¼ VR; ð6Þ

V ¼ ðFFTÞ
1=2
; ð7Þ

The distance metric DM is defined as

DM ¼
XJ

j¼1

k logðjVÞ k¼
XJ

j¼1

k logðjVB
jVAÞ k; ð8Þ

where VA and VB denotes the principal stretch of the affine and B-spline transforms,

respectively.

The distance metric DM is then used to select different atlases featuring different degrees of

similarity to the target fixed image. Six different and representative femur atlases were chosen

to evaluate the importance of selecting an appropriate femur atlas (see Fig 2). For concision,

they are henceforth referred to as:

1. Closest to the patient femur in the population (CTP,CSP): This atlas image corresponds to

the femur image yielding the minimum distance metric (hence referred as closest to the

patient’s femur). If N represents the total number of femurs in the population, then the

Closest to the patient’s femur in the Total Population, termed here CTP, is

CTP ¼ minð
XN

q¼1

DMðpatientIF;
qIMÞÞ: ð9Þ

Similarly, if Nsex represents the total number of femurs in the sex-specific population, then

the Closest to the patient’s femur in the Sex-specific Population, termed here CSP, is

CSP ¼ minð
XNsex

q¼1

DMðpatientIF;
qIMÞÞ: ð10Þ

Prediction of trabecular bone fabric using a novel registration-based approach
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2. Farthest to the patient femur in the population (FTP,FSP): The femur image yielding the

maximum distance metric is considered to be the farthest to the patient’s femur. If N repre-

sents total number of femurs in the population, then the Farthest to the patient’s femur in

the Total Population, termed here FTP, is

FTP ¼ maxð
XN

q¼1

DMðpatientIF;
qIMÞÞ: ð11Þ

Similarly, if Nsex represents the total number of femurs in the sex-specific population, then

the Farthest to the patient’s femur in the Sex-specific Population, termed here FSP, is

FSP ¼ maxð
XNsex

q¼1

DMðpatientIF;
qIMÞÞ: ð12Þ

We note that inclusion of this femur as potential atlas is meant to provide a worst-case sce-

nario, where the atlas and the patient’s femur are considerably geometrically different.

3. Mean femur of the population (MTP,MSP): Generally, the mean femur of the population is a

synthetic image produced through arithmetic computation [17]. However, such synthetic

images are prone to present blurred intensity patterns of the femur fabric, stemming from

the averaging process. Hence, we chose as mean femur atlas, the real femur image yielding

the minimum accumulated distance metric across the population. If N represents the total

Fig 2. Femur atlas selection strategy. Top: Selection of different femur atlases from a population for

registration with the patient’s femur. The selection was based on distance metric (DM). Bottom: Example—

Coronal view of different selected femur atlases for a test case. Acronyms: CTP—Closest to patient femur in

the Total Population, CSP—Closest to patient femur in the Sex-specific Population, FTP—Farthest to patient

femur in the Total Population, FSP—Farthest to patient femur in the Sex-specific Population, MTP—Mean

femur of the Total Population, MSP—Mean femur of the Sex-specific Population.

https://doi.org/10.1371/journal.pone.0187874.g002

Prediction of trabecular bone fabric using a novel registration-based approach
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number of femurs in the population, then the Mean femur of the Total Population, termed

here MTP, is

MTP ¼ minð
XN

p¼1

XN

q ¼ 1

p 6¼ q

DMðpIF;
qIMÞÞ:

ð13Þ

Similarly, if Nsex represents the total number of femurs in the Sex-specific population, then

Mean femur of the Sex-specific Population, termed here MSP, is

MSP ¼ minð
XNsex

p¼1

XNsex

q ¼ 1

p 6¼ q

DMðpIF;
qIMÞÞ: ð14Þ

Bone fabric extraction

In this section we briefly describe the step of extracting and modeling fabric information.

Bone fabric describes the preferential alignment and structural anisotropy of bone trabecular

micro-architecture. It is computed using the MIL method [18], which measures the average

distances of bone-marrow interfaces in multiple orientations on a segmented image. In sum-

mary, a Laplace Hamming filter is first applied to sharpen the HRpQCT image, which is then

normalized, and segmented based on image thresholding [19]. On the segmented image, a

cubic volume of interest (VOI) with a side length of 5.3mm is extracted, at each corresponding

control point IM(T−1(jx)), from the trabecular region, and fabric tensor jM is computed using

the MIL method.

The resulting spatial distribution can be described with a second-order fabric tensor

M 2 R3X3 with eigenvalues mi and normalized eigenvectors mi.

M ¼
X3

i¼1

miðmi 
miÞ ð15Þ

where m1�m2�m3. The fabric tensor M is normalized by dividing it by its trace and multi-

plying it by a factor of 3 such that

trðMÞ ¼ 3: ð16Þ

The shape of the fabric tensor can be visualized as an ellipsoid with magnitude of eigenval-

ues providing the indication of the extent to which the structure is preferentially aligned. An

elongated ellipsoid represents an anisotropic structure (high degree of anisotropy) whereas a

sphere represents an isotropic structure (absence of anisotropy).

Fabric tensor mapping. Computing the fabric tensor directly on the atlas image, which is

transformed to the patient’s image via registration (e.g. as in [2, 8]) might result in loss of infor-

mation as the registration process, involving local image deformations, tends to alter the bone

fabric pattern. Contrarily, rather than computing fabric tensors on a transformed atlas image,

we propose to map fabric information from the atlas to the patient image by transforming its

tensorial representation instead. This is inspired by similar strategies followed in neuroimag-

ing, for DTI image registration [20], where structural MRI is used for an initial registration and

then diffusion tensor information is mapped based on the resulting transformation. This is

mainly performed to reduce shape variance and to maintain direction consistency.

Prediction of trabecular bone fabric using a novel registration-based approach
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Consequently, fabric tensor mapping is modeled as the coordinate transform

T : R3X3 ! R3X3 involved in transforming the fabric tensor M from the space of the femur

atlas image to the space of the patient’s femur image. The image registration process

involves global and local deformations, which can be decomposed into stretch and rotation

components. Understanding the impact of different components of deformations on tensor

mapping becomes essential. In this regard, we have chosen five different tensor mapping

schemes reflecting different degrees of freedom of the transformation used for fabric tensor

mapping. For concision, they are henceforth referred to as:

1. No Rotation (NR): Fabric tensor mapping involves only translation, which is a direct

mapping from the femur atlas to the patient’s image. After image registration, point corre-

spondences are established between patient femur and femur atlas. If M represents the com-

puted fabric tensor from the femur atlas HRpQCT image, then tensor mapping based on

No Rotation, termed here NR, is

M0 ¼ IMIT ¼ M: ð17Þ

We note that inclusion of this mapping method is meant to show the impact of tensor map-

ping and its advantages.

2. Affine Rotation (AR): Fabric tensor mapping involves affine rotation, which is a global

transformation. After image registration between the patient image and the atlas image, the

affine rotation matrix RA is derived from the deformation gradient F. If M represents the

computed fabric tensor from the femur atlas HRpQCT image, then tensor mapping based

on Affine Rotation, termed here AR, is

M0 ¼ RAMRT
A: ð18Þ

We note that tensor mapping by AR will not alter the eigen-values mi but only eigen-vector

mi of M.

3. Affine Deformation (AD): Fabric tensor mapping involves affine deformation, which is a

combination of an affine rotation matrix and an affine stretch tensor, and it is a global

transformation. After image registration between the patient image and the atlas image, the

affine rotation matrix RA and affine stretch tensor VA is derived from the deformation gra-

dient F. Then, the affine deformation gradient FA = VARA is computed. If M represents the

computed tensor from the femur atlas HRpQCT image, then tensor mapping based on

Affine Deformation, termed here AD, is

M0 ¼ FAMF� 1

A : ð19Þ

4. Complete Rotation (CR): Fabric tensor mapping involves complete rotation, which is a com-

bination of an affine rotation matrix and a B-spline rotation matrix. This is a local transfor-

mation. After image registration between the patient image and the atlas image, the affine

rotation matrix RA and B-spline rotation matrix jRB is derived from the deformation gradi-

ent jF. Then, the complete rotation matrix jR = jRB � RA is computed. If jM represents the

computed tensor from the femur atlas HRpQCT image, then tensor mapping based on

Complete Rotation, termed here CR, is

jM0 ¼ jRjMjRT : ð20Þ

Prediction of trabecular bone fabric using a novel registration-based approach
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We note that tensor mapping by CR will not alter the eigen-values mi but only eigen-vector

mi of M.

5. Complete Deformation (CD): Fabric tensor mapping involves complete deformation, which

is a combination of the complete rotation matrix and the complete stretch tensor. It is also

a local transformation. After image registration between the patient image and the atlas

image, the deformation gradient or complete deformation gradient jF is computed. If jM
represents the computed tensor from the femur atlas HRpQCT image, then tensor mapping

based on Complete Deformation, termed here CD, is

jM0 ¼ jF jMjF� 1: ð21Þ

Fabric atlas. In this section we present the methodology employed to construct a popula-

tion-based atlas of fabric information. Differently from the diverse femur atlases described in

section, a fabric atlas refers to a femur atlas model with a mean fabric tensor distribution. The

overview of the construction of fabric atlas is presented in Fig 3. We follow a similar strategy as

in cardiac DTI imaging for statistical analysis of cardiac fibres [21, 22]. Initially, a femur atlas

HRpQCT image is chosen from the population. Image registration is performed between the

femur atlas HRpQCT image IF and another femur HRpQCT image of the population IM. For

each control point j of the femur atlas, the corresponding control point IM(T−1(j x)) is found,

and fabric tensor jM is computed following the procedure described in previous section. The

computed fabric tensors from all control points are then mapped to the femur atlas HRpQCT

image. Mapping is performed by CR tensor mapping method, as it yielded best results com-

pared to other tensor mapping methods (see result section). The same procedure is repeated

for the rest of the femur HRpQCT images IM1, IM2, . . .IMN of the population and the respective

Fig 3. Overview of the construction of fabric atlas (femur atlas model with mean fabric) is presented. A HRpQCT femur image of the

population is registered to the femur atlas HRpQCT image and point correspondence is established. Based on the inverse transform, fabric

tensor is computed using MIL method. The computed fabric tensor is then mapped to the atlas femur HRpQCT image by CR tensor

mapping method. The process is repeated for all the femurs of the population. Fabric atlas is constructed by averaging all the mapped fabric

from each femur of the population.

https://doi.org/10.1371/journal.pone.0187874.g003
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fabric tensors jM1, jM2, . . ..jMN are computed. Then, the mean fabric tensor at each control

point j is computed by averaging

jM¼ 1
N

XN

n¼1

ðjRjMjRTÞ: ð22Þ

The resulting mean fabric tensor is an arithmetic synthetic fabric tensor distribution that is

mapped on the femur atlas HRpQCT image (MTP) being closest to the synthetic average

femur, as described in previous section. Along with the other femur atlases presented in previ-

ous section, the resulting fabric atlas will be evaluated for prediction of patient femur fabric

information, using the evaluation metrics presented in the next section.

Materials and experiments

Datasource

The study was performed on a database of pairs of QCT and HRpQCT images of human proxi-

mal femora. The database comprises 36 pairs (17 males, 19 females with age 76±12 years,

range 46–96 years) and were obtained from a previous study [4]. In summary, each femur

was scanned with a calibration phantom (BDC Phantom, QMR Gmbh, Germany) in a clinical

QCT (Brillance64, Phillips, Germany, intensity: 100 mA, voltage: 120 kV, voxel size: 0.33 ×
0.33 × 1.00 mm3), and HRpQCT (Xtreme CT, Scanco, Switzerland, intensity: 900 μA, voltage:

60 kVp, voxel size: 0.082 × 0.082 × 0.082 mm3). The QCT images were rescaled to an isotropic

voxel spacing (0.33 × 0.33 × 0.33 mm3) and were rigidly registered to the corresponding

HRpQCT images. From the HRpQCT images, the cortical bone was masked out according to

the procedure reported in [23].

Femur morphology. In order to assess how representative the selected database is with

respect to the shape variability of the femur anatomy, a femur morphology study was first per-

formed. To this end, an implicit coordinate system of the femur was constructed as shown in

Fig 4. First, the femoral head center is defined by a mass center of a spherical region with maxi-

mal cross-section area. The neck axis is then computed by following the procedure reported by

Fig 4. Implicit coordinate system of the human femur. Left: Coronal view. Right: Sagittal view. The red

dots indicates the key points found on the femur. The green line indicates the constructed implicit coordinate

system. Labels in blue color are used for morphology study.

https://doi.org/10.1371/journal.pone.0187874.g004
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Kang et al. [24, 25]. In short, the radius of the spherical region of the femoral head is enlarged

by 25%, and an initial neck center is defined. Using Powell’s optimization [26], the femoral

neck center is computed, and the neck axis is defined as the line between femoral head center

and femoral neck center (see Fig 4). The intersection point between the neck axis and the lat-

eral surface of the femur is defined as the neck-axis-end-point. Then, the mass center of slices

distal to this point are computed, followed by RANSAC fitting [27] to define the shaft axis.

Generally, as the neck and shaft axes do not intersect, a mid point is defined as the shortest dis-

tance between the neck and shaft axes. The most distal point of the shaft axis is chosen as

shaft-axis-distal-point. An implicit coordinate system is constructed by connecting femoral

head center, mid point and shaft-axis-distal-point. As morphological parameters we calculated

known shape descriptors of the femur, such as the caput-collum-diaphyseal angle (CCD), fem-

oral head diameter, and distances describing the femoral neck anatomy. Femur morphology

was computed for the total and sex-specific populations, and are summarized in Table 1.

Between the Sex-specific populations, the morphology of the femurs were not found to be sta-

tistically significant(p>0.05).

Image pre-processing. Image pre-processing was performed on femur images to correct

its shaft length, as the acquired images have varying shaft length. This step was also performed

to ensure that the image registration step is not affected by differences in the anatomy. The

shaft region of the femur was chopped such that the ratio between the distance femoral head

center and mid point, and mid point and shaft-axis-distal-point (see Fig 4) equals 0.7, which

was found empirically in order to yield an stable image registration. All the femurs were rigidly

aligned with mid point as center.

Experimental design

We designed two experiments to answer the three open questions in registration-based bone

fabric prediction, summarized below:

1. Impact of femur atlas selection and sex considerations.

2. Impact of the fabric mapping transformation on fabric prediction accuracy

3. Potential of population-wide and sex-specific mean fabric atlases

In the first experiment, we combined in the evaluation the analysis of using different femur

atlases (section) as well as different fabric tensor mapping transformations (section). In the

second experiment, we evaluated the accuracy of predicting femur fabric by means of a femur

atlas featuring a synthetically generated mean fabric (section) or its corresponding fabric ten-

sor, as extracted from its HRpQCT image pair.

Evaluation scheme and metrics. For numerical evaluation a leave-one-out (LOO) strat-

egy was followed. Specifically, a femur is chosen from the population as the patient’s femur

and its counterpart (left or right) is removed from the population to remove bias in the analy-

sis. At each control point j, the predicted fabric tensor for the patient’s femur QCT image is

Table 1. Morphology of the femur population.

Population Total Male Female

CCD(˚) 128±7 129.5±8 126.5±6

Distance Femoral Head Center—Neck Center(mm) 26.7±3.8 27.6±3.8 26±3.7

Distance Femoral Head Center—Mid Point(mm) 47.7±5.9 47.6±6.4 47.9±5.4

Femoral Head Diameter(mm) 46.4±4.0 47.4±3.5 45.5±4.2

https://doi.org/10.1371/journal.pone.0187874.t001
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represented as bM with eigenvalues cm3 , cm2 , cm1 and eigenvectors cm3 , cm2 , cm1 and the corre-

sponding ground truth fabric tensor is computed from the patient’s femur HRpQCT image

and is represented as M with eigenvalues m3, m2, m1 and eigenvectors m3, m2, m1. The process

is repeated for each image in the database (N = 72 images), for each femur atlas (N = 6, sec-

tion), and for each fabric mapping transformation (N = 5, section), leading to 50040 (72 × 70)

image registrations.

To evaluate the accuracy of the predicted femur fabric, we adopted the same evaluation met-

ric as described in [6]. Namely, tensor norm error (TNerror), degree of anisotropy error (DAerror)

and angular error of the principal tensor direction (PTDerror), are computed as follows:

TNerror ¼
k bM � Mk
kMk

; DAerror ¼
jcDA � DAj

DA
and PTDerror ¼ arccos ðcm3 ;m3Þ; ð23Þ

where the predicted, and ground-truth degree of anisotropy (DA) and (cDA), respectively, are

computed as

cDA ¼
cm3

cm1

and DA ¼
m3

m1

: ð24Þ

The average error for each evaluation metric was computed for all the control points J and

for all images in the LOO study, and were used as the base for comparison.

Results

Impact of femur atlas selection and sex considerations. We first present in Fig 5 overall

results for all three evaluation metrics, for each femur atlas and fabric tensor mapping transfor-

mation. Regarding the selection of the femur atlas, as expected the farthest femur atlases (FTP
and FSP) yielded the highest errors, followed by the mean femur atlases (MTP and MSP). We

remark that the selection of FTP and FSP was motivated to reflect a potential worst-case sce-

nario and to test the hypothesis that an atlas should be as similar as possible to the patient

image on which fabric is predicted. Results on all metrics showed that choosing the closest

femur atlases (CTP, CSP) yields the lowest errors, which verifies the importance of the femur

atlas selection.

Regarding sex, no statistically significant differences for all three metrics were found

(p>0.05) between choosing atlases from the total population (CTP, FTP, MTP) or sex-specific

ones (CSP, FSP, MSP). This results suggests that it might not be necessary to create sex-specific

femur atlases when predicting femur fabric.

Impact of the fabric mapping transformation on fabric prediction accuracy. Regarding

the impact of the fabric mapping transformation, results presented in Fig 5 show that fabric

tensor mapping methods involving only rotation components (CR,AR) produce lower errors

than tensor mapping methods involving both rotation and stretch components (CD,AD).

Among the methods relying only on rotation, fabric tensor mapping by CR yielded the lowest

error, followed by AR and NR. However, only the TNerror and PTDerror were found to be signifi-

cantly different, as shown in Fig 6. This is due to the fact that fabric tensor mapping methods

involving only a rotation component do not alter the eigenvalues, and hence DAerror remained

the same.

Relative to the selected femur atlas, using CR fabric tensor mapping in combination with

CTP yielded TNerror = 7.3±0.9%, DAerror = 6.6±1.3%, and PTDerror = 25±2˚). These results com-

pare favorably to those yielded when using MTP as femur atlas, with TNerror = 7.7±1.0%,

DAerror = 7.0±1.4%, and PTDerror = 25±2˚. Nonetheless, it is remarked that while CTP requires

Prediction of trabecular bone fabric using a novel registration-based approach
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image registration for each image of the database to calculate the distance metric DM, MTP is

computed only once and does not require further computations across the database. Fig 6

focuses on analyzing the performance for these two femur atlases (CTP,MTP), and fabric ten-

sor mapping methods based on a rotation component (NR, AR, CR). Statistically significant

Fig 5. Summary of prediction error for different sets of combination of tensor mapping methods and femur atlases. Rows

represents different tensor mapping methods. First Row: Tensor mapping by NR, Second Row: Tensor mapping by AR, Third Row: Tensor

mapping by AD, Fourth Row: Tensor mapping by CR, Fifth Row: Tensor mapping by CD for different femur atlases. Columns represents the

error metrics. First Column: TN Error, Second Column: DA error, Third Column: PTD error. Acronyms: CTP—Closest to patient femur in the

Total Population, CSP—Closest to patient femur in the Sex-specific Population, FTP—Farthest to patient femur in the Total Population, FSP

—Farthest to patient femur in the Sex-specific Population, MTP—Mean femur of the Total Population, MSP—Mean femur of the Sex-

specific Population, NR—No rotation, AR—Affine Rotation, AD—Affine Deformation, CR—Complete Rotation, CD—Complete Deformation.

https://doi.org/10.1371/journal.pone.0187874.g005
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Fig 6. Summary of prediction error for different sets of combination of fabric tensor mapping

methods involving only rotation component (NR, AR, CR) and femur atlases(CTP in blue, MTP in

pink). First row: TN Error, Second row: DA Error, Third row: PTD Error. The DA Error remains the same,

because the tensor mapping methods involves only rotation component and hence doesn’t alter the eigen

values. Acronyms: CTP—Closest to patient femur in the Total Population, MTP—Mean femur of the Total

Population, NR—No rotation, AR—Affine Rotation, CR—Complete Rotation (*—p < 0.05).

https://doi.org/10.1371/journal.pone.0187874.g006
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differences (p>0.05) were found between NR and CR, and between CR and AR, but not

between NR and AR, confirming the value of using CR as preferred fabric tensor mapping

transformation.

Potential of population-wide and sex-specific mean fabric atlases. Fig 7, shows fabric

prediction errors for all three evaluation metrics, when predicting femur fabric by means of a

femur atlas featuring a synthetically generated mean fabric or by its corresponding real fabric

tensor, as extracted from its HRpQCT image pair. In this experiment, MTP and CR were cho-

sen as femur atlas and fabric tensor mapping method, respectively. We found that using the

synthetically generated fabric atlas yielded higher error than using the real fabric from the cor-

responding HRpQCT fabric. A statistical difference was found (p< 0.05).

Spatial and bone mineral density based evaluation of femur fabric prediction. We per-

formed a spatial analysis of fabric prediction performance to analyze how the prediction errors

are spatially distributed. Fig 8, shows in three different planes, the prediction of bone fabric for

an example case using selected femur atlases CTP and MTP, and CR as fabric tensor mapping

method. It is observed that the TNerror varies widely across different regions of the femur. We

observed that lower error are observed across the main loading direction and in femoral head

regions. Higher errors were observed in the shaft and in lower trochanter regions.

Finally, as the registration process is driven by image intensity information we were inter-

ested to analyze whether there is a correlation between bone mineral density and fabric predic-

tion error. Fig 9 shows for each metric bone fabric prediction errors for different Bone

Volume over Total Volume (BVTV) bins. In this experiment, MTP and CR were chosen as

femur atlas and fabric tensor mapping method, respectively. We observed increasing errors for

TNerror and DAerror in regions of moderate to high BVTV, whereas lower PTDerror errors were

found for moderate to high BVTV regions.

Discussion

In this study we propose a novel registration-based estimation of bone fabric directly from

clinical QCT images. It is designed to preserve tensor properties of bone fabric and to map

bone fabric by a global and local decomposition of the gradient of a non-rigid image registra-

tion transformation. We analyzed the importance of the fabric tensor mapping transformation

as well as the femur atlas used to map the fabric information into a target QCT image. We fur-

ther evaluated and reported the performance of a population-, and sex-specific atlas of bone

fabric used within the proposed registration-based fabric estimation approach.

The entire study was performed on a database of 36 pairs of human proximal femora [4],

for which the results of the morphology analysis suggest that the femurs used in the present

study are representative of femurs from other studies [28].

Importance of femur atlas selection

Regarding different femur atlases, it becomes clear from Fig 5 that the farthest to the patient’s

femur, FTP and FSP, yielded rather poor results. Conversely, the closest to the patient’s femur,

CTP and CSP, yielded the best results, which allow us to conclude that bone fabric prediction

based on image registration is sensitive to the selected femur atlas. These results are in agree-

ment with the strategy presented in [3] where a femur database and selection scheme was

originally presented. From a physiological loading point of view, it is indeed expected that dif-

ferences in bone anatomy have an effect on the underlying bone fabric [29]. As reported in

Table 1 as well as in previous studies regarding bone femur morphology [28], such difference

in bone anatomy is observed through parameters such as the CCD angle and neck length.
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However, further FE simulations on a representative population are required to assess the

impact of femur atlas selection on bone strength prediction.

In addition, regarding sex considerations, results suggests that there is no major benefit in

employing sex-specific femur atlases for fabric prediction. The probable reason for this finding

Fig 7. Summary of prediction error, comparing bone fabric prediction by femur atlas with HRpQCT

fabric and fabric atlas. MTP was chosen femur atlas. The mapping of bone fabric was performed by CR

tensor mapping method. First row: TN Error, Second row: DA Error, Third row: PTD Error. Acronyms: MTP—

Mean femur of the Total Population, CR—Complete Rotation (*—p < 0.05).

https://doi.org/10.1371/journal.pone.0187874.g007
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is that the variability in femoral shape (in terms of DM) between sex-specific populations is

smaller than 3% of the population shape variability. Table 1 supports this statement where the

femurs’ morphological variables of females and males are in average similar (p>0.05).

Interestingly, results presented in Figs 5 and 6 suggest while the highest fabric prediction

accuracy is attained with CTP, followed by MTP, their differences in accuracy are often statisti-

cally significant, but quantitatively the results are rather close. In this regard, one important

practical limitation of using CTP involves computing the closest femur image (in terms of

DM) in the population. In practice, such computations are prohibitive for large databases. On

the contrary, MTP is computed once and if needed, it can be updated for an extended or differ-

ent population database.

Fig 8. Illustration of bone fabric prediction accuracy achieved on a test case femur. Left column: the lines indicate the principal

orientation of the tensors computed from the test case femur’s HRpQCT image. Middle column: the lines indicate the principal orientation of

the tensors mapped from the CTP femur atlas and CR tensor mapping method. Right column: the lines indicate the principal orientation of

the tensors mapped from the MTP femur atlas and CR tensor mapping method. The colors correspond to the TN error. Rows shows

different planes and the small femur image with red line shows the plane being visualized. Acronyms: CTP—Closest to patient femur in the

Total Population, MTP—Mean femur of the Total Population, CR—Complete Rotation.

https://doi.org/10.1371/journal.pone.0187874.g008
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Fig 9. Summary of prediction error comparing bone fabric prediction for different BVTV bins. MTP

was chosen as the femur atlas. The mapping of bone fabric was performed by CR tensor mapping method.

First row: TN Error, Second row: DA Error, Third row: PTD Error. Acronyms: MTP—Mean femur of the Total

Population, CR—Complete Rotation.

https://doi.org/10.1371/journal.pone.0187874.g009
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Impact of fabric tensor mapping

Looking at different fabric tensor mapping methods, results indicate that tensor mapping by

AR and CR performs better than CD and AD. The DA error clearly supports the conclusion

that the stretch component of CD and AD tends to alter the bone fabric excessively. The

importance of the tensor mapping method becomes also clear from Fig 6, where the tensor

mapping by NR does not improve fabric prediction in terms of TN and PTD (p<0.05). Con-

versely, fabric tensor mapping by AR does improve fabric prediction (p<0.05), and fabric ten-

sor mapping by CR yields the best fabric prediction accuracy (p<0.05).

On the other hand, as rotation-only mapping approaches do not alter the eigenvalues of

fabric tensors, these approaches are not capable of predicting DA. These results suggest that

the degrees of freedom of the chosen transformation model plays an important role, and a

trade-off between accuracy of predicting fabric orientation and DA needs to be considered

when using rotation-only mapping schemes.

Turning to the concept of employing a synthetically generated fabric atlas, results presented

in Fig 7 suggests that bone fabric predictions are considerably less accurate than when using

the real fabric of the HRpQCT image. One possible reason of this is the fact that the femur

atlas stems from a real bone image, which is then combined with a computed (i.e synthetic)

mean fabric distribution. Such combination might not fully characterize the interplay between

bone morphology and fabric distribution, as naturally occurs for a real bone image, where

bone fabric and bone morphology are interrelated [29]. Although algorithms exist to compute

a mean femur atlas [30], our experiments yielded an over-smoothed synthetic image not pre-

serving the required image quality inherent of HRpQCT. Further research on atlas construc-

tion approaches specifically designed to deal with tensorial information, such as [21, 22],

might provide improvements to the creation of high resolution femur atlases.

Spatial and BVTV based analysis of fabric prediction accuracy

The spatial distribution of the tensor norm error in Fig 8 shows that the bone fabric prediction

accuracy varies widely across regions. In particular, the femoral head and the main loading tra-

jectory (which is of primary interest for FE analysis) present higher fabric prediction accuracy

than the inter-trochanteric region. This finding may be due to the inability of the image regis-

tration approach to handle properly regions of lower BV/TV. From a physiological point of

view, the higher BV/TV relates to bone micro-architecture oriented along the principal stresses

acting on the femur and forming characteristic trajectories [31]. To further clarify this issue,

the bone fabric prediction was analyzed with respect to BV/TV. Fig 9 indicates indeed better

predictions of the major fabric orientation in regions of high BV/TV.

Limitations of the present study

Some limitations of this study have to be mentioned. First, we use a distance metric (DM) for

selection of the femur atlas that does not not consider any anthropometric parameters or eth-

nic variation. Their inclusion in the analysis would be of great interest for patient-specific FE

analysis. However, such information was not available for the database used in this study.

Second, the processing time of the present approach for one femur takes 40 min. The time

was measured on a desktop with the application running single-threaded on a 3.20 GHz Intel

Core i7 processor. Such computation time is relatively high compared to other machine learn-

ing based approaches for bone fabric predictions [6, 7]. However, this is a major common dis-

advantage of all image-based registration approaches.

Third, the optimal mapping approach, CR, is not capable of improving the prediction of

DA. One of the possible way to address this problem would be the use of poly-affine registration
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[32, 33], where a set of affine transformations is employed to characterize spatial transforma-

tions with a low number of parameters. As described, our experiments suggest that a trade-off

between flexibility of the transformation model to morph the atlas image onto the patient

image, and preservation of bone fabric information exists. Similarly, the use of dedicated regis-

tration algorithms encoding specific properties linked to the anatomy or disease in study (e.g.

[34]), or registration approaches previously proposed for Diffusion Tensor Imaging (DTI) (e.g.

[21, 22]) might provide a better fabric prediction based on image-registration approaches.

Comparison to previous approaches

Although previous approaches have used different datasets and sample sizes (Taghizadeh et.al

[2] N = 10, Chandran et.al [7] N = 30, Lekadir et.al [6] N = 33), some quantitative comparisons

are worth mentioning. The present study yielded lower TN and PTD errors than the one of

[2], where a TN error of 14.8 ± 1.5% and a PTD error of 29.7 ± 3.3˚ were reported. On the

other hand, studies based on machine learning approaches, such as [7] reported a TN error of

6 ± 2%, and a PTD error of 19 ± 7˚, and [6] reported a TN error of 7 ± 1% and a PTD error of

15.6 ± 2.3˚, which are comparable for TN but lower for PTD compared to the registration-

based method explored in the present study. Regarding prediction of DA, the studies of [7]

and [6] reported DA error (6 ± 2% and of 7 ± 1% respectively), which are comparable to the

ones obtained with registration-based methods.

The present study lacks the experimental data to validate the role of predicted bone fabric

in computational models for calculation of bone strength. However, previously reported bone

fabric prediction accuracies [3, 6, 29, 35] are in the similar range of prediction accuracy

reported here. Hence, we expect corresponding improvements in bone strength predictions.

Conclusion

In conclusion, we proposed a novel image-registration based femur fabric prediction directly

from clinical QCT image. The methodology is robust and favorably compares to previous state

of the art registration-based method for femur fabric prediction. Furthermore, we present a

comprehensive analysis of key components of the registration-based approach for bone fabric

prediction in the proximal femur. From the results, we could answer three open questions.

First, compromising between accuracy and computing time, the optimal femur atlas corre-

sponds to the mean of the total population (MTP). Second, the best tensor mapping method is

provided by complete rotation (CR). Third, a population average fabric atlas produced higher

errors in fabric prediction than employing directly MTP and CR, and hence it is not recom-

mended. By employing MTP, registration with a whole database of femurs becomes unneces-

sary and reduces considerably computational time.

The reported findings are promising for a clinical implementation and exploitation for

patient-specific analysis as it is has potential to leverage bone architectural information directly

from standard clinical imaging. Moreover, while image registration algorithms are improving

we note on the importance of designing clinically- and task-oriented image registration pipe-

lines. In this sense, the set of recommendations generated from this study are expected to

guide the development of dedicated image based assessment methodologies of bone architec-

ture from clinical imaging. The impact of the identified image-registration methodology on

the prediction of hip strength by finite element analysis will be evaluated in future work.
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