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Abstract
Purpose  Childhood cancers are rare and little is known about their etiology. Potential risk factors include environmental 
exposures that might implicate spatial variation of cancer risk. Previous studies of spatial clustering have mainly focused on 
childhood leukemia. We investigated spatial clustering of different childhood cancers in Switzerland using exact geocodes 
of place of residence.
Methods  We included 6,034 cancer cases diagnosed at age 0–15 years during 1985–2015 from the Swiss Childhood Cancer 
Registry. Age and sex-matched controls (10 per case) were randomly sampled from the national censuses (1990, 2000, 2010). 
Geocodes of place of residence were available at birth and diagnosis for both cases and controls. We used the difference in 
k-functions and Cuzick–Edwards test to assess global clustering and Kulldorff’s circular scan to detect individual clusters. 
We also carefully adjusted for multiple testing.
Results  After adjusting for multiple testing, we found no evidence of spatial clustering of childhood cancers neither at birth 
(p = 0.43) nor diagnosis (p = 0.13). Disregarding multiple testing, results of individual tests indicated spatial clustering of all 
childhood cancers combined (p < 0.01), childhood lymphoma (p = 0.01), due to Hodgkin lymphoma (HL) (p = 0.02) at diag-
nosis, and embryonal tumors of the central nervous system (CNS) at birth and diagnosis, respectively (p = 0.05 and p = 0.02).
Conclusions  This study provides weak evidence of spatial clustering of childhood cancers. Evidence was strongest for HL 
and embryonal CNS tumors, adding to the current literature that these cancers cluster in space.

Keywords  Cancer registry · Cancer clusters · Hodgkin lymphoma · Primitive neuroectodermal tumors · Medulloblastoma

Introduction

Childhood cancers are rare and little is known about pos-
sible environmental risk factors. For leukemia and central 
nervous system (CNS) tumors, the two most common cancer 
types in childhood, ionizing radiation in high doses is the 
only established environmental risk factor [1–3]. Infection 
with Epstein–Barr is thought to play a role in the etiology of 
Burkitt’s lymphoma (BL) and Hodgkin lymphoma (HL) [4]. 
A number of other environmental exposures are suspected 
of causing cancer in children including low-dose ionizing 
radiation (e.g., natural background radiation or diagnostic 
radiology) [3], benzene [5, 6], traffic-related air pollution 
[7], and pesticides [8, 9]. However, despite numerous epide-
miological studies, no firm conclusions regarding a causative 
role of these factors can yet be drawn.

Spatial variation of exposure to environmental factors 
may result in local aggregations of cancer cases. Such spatial 
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aggregation might appear as distinct local clusters or as a 
general tendency of cases to occur closer to each other than 
would be expected if cases were homogenously distributed 
across the population (global clustering). Detecting spatial 
clustering or individual clusters could thus provide hints 
about underlying risk factors. Furthermore, the timing of 
spatial clustering might provide clues about age windows of 
susceptibility and latent periods. If the causative exposure 
occurs in utero or in early life, clustering would more likely 
be detected around time of birth (using address at birth). If 
on the other hand, the relevant exposure is closer to the time 
of diagnosis and latent periods are short, clustering would 
more likely be detected around the time of diagnosis (using 
address at diagnosis). Moreover, while etiologies, and thus 
clustering patterns, are likely to differ between diagnostic 
groups, some carcinogens such as ionizing radiation may 
increase the risk of multiple cancer types. It is thus also 
of interest to investigate spatial clustering of the combined 
group of all childhood cancers in addition to individual diag-
nostic groups.

More than 50 studies have investigated spatial cluster-
ing of childhood cancers, the majority of which focused on 
childhood leukemia [10, 11], including a previous study by 
the authors [12]. Fewer studies have investigated spatial 
clustering of other childhood cancers and these have focused 
on place of diagnosis, except for two studies that investigated 
residential locations at birth [13, 14]. A study from the UK 
reported evidence of spatial clustering of all cancers com-
bined [15]. Based on cluster detection methods, childhood 
cancer clusters (all diagnostic groups combined) have been 
reported in Florida, Palestine, and Canada [16–18]. Studies 
from San Francisco and the UK have reported evidence of 
spatial clustering of HL, both supporting an association with 
Epstein–Barr virus (EBV) through correlation with depriva-
tion [19, 20], whereas a study in Spain reported clustering of 
HL and non-Hodgkin lymphoma (NHL) in certain regions 
[21]. A study in Kenya reported spatial clustering of BL 
[22], further supporting the already established infectious 
etiology [23]. The aforementioned study from Palestine 
reported a cluster of childhood lymphoma [17]. The majority 
of studies investigating CNS tumors have not found evidence 
of spatial clustering [15, 21, 24–26], however, only few 
studies have investigated specific subtypes of CNS tumors. 
Evidence of spatial clustering was previously reported for 
medulloblastoma [24, 26].

Several methodological shortcomings limit the interpret-
ability of these studies. Often only count data aggregated to 
administrative areal units (e.g., census tracts) were available, 
reducing the statistical power to detect clustering [27–29]. 
Results of spatial analyses using regional count data may 
vary considerably depending on the areal unit selected (mod-
ifiable areal unit problem) [30]. To our knowledge only one 
study has used precise geocodes [21]. Furthermore, most 

studies performed different statistical tests for different diag-
nostic or age groups without adjusting for the multiple tests 
performed [15, 18].

Following our previous analysis of spatial clustering of 
childhood leukemia [12], we aimed to investigate the spa-
tial distribution of other childhood cancers in Switzerland 
including lymphomas, HL, NHL, CNS tumors, astrocytoma, 
intracranial and intraspinal embryonal tumors, other CNS 
tumors, neuroblastoma, nephroblastoma, malignant bone 
tumors, and soft tissue sarcomas. We also examined the 
combined group of all childhood cancers. We investigated 
spatial clustering at birth and diagnosis using geocoded 
places of residence, paying particular attention to appropri-
ate correction for multiple testing.

Methods

Population

We included childhood cancer cases diagnosed at age 
0–15 years in Switzerland during 1985–2015 from the Swiss 
Childhood Cancer Registry (SCCR). The SCCR is a national 
population-based cancer registry for children and adoles-
cents in Switzerland with an estimated completeness of 
91% since 1985 and 95% since 1995 [31]. The SCCR tracks 
residential address histories from diagnosis back to birth 
by contacting municipal population registers. Geocodes 
were obtained using the geo-referenced building addresses 
from the Swiss postal system (GeoPost) or manually local-
izing the buildings on the geoportal of the Federal Office 
of Topography (swisstopo; http://map.geo.admin​.ch). For 
approximately 94% of the cases, we could geocode resi-
dential addresses with a margin of error < 100 m. For the 
remaining 6% we used a midpoint of the street, when the 
street name was available or a central residential location 
within the postal code area when only the postal code was 
known. Lastly, in order to avoid any influence of familial 
aggregation due to genetic factors, we included only one 
case from pairs of sibling cases.

Data for the population at risk were available from 
the Swiss National Cohort study [32] which includes the 
Swiss resident population at time of previous decennial 
questionnaire-based national censuses (1990, 2000) and the 
annual register-based censuses beginning in 2010. The data 
include geocoded place of residence at the time of censuses. 
Using a two-step weighted sampling procedure described 
in detail previously [33], we sampled 10 controls per case 
from this dataset matching on sex and timing of clustering. 
Thus for analyses of clustering at birth, we selected children 
aged < 1 year from the censuses closest in time to a case’s 
birth, and for clustering at diagnosis we selected children 
matched for age at diagnosis from the censuses closest in 

http://map.geo.admin.ch
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time to a case’s diagnosis. The sampling procedure adjusts 
for regional population shifts between decennial censuses at 
the municipal level [33].

Outcomes

The SCCR codes diagnoses according to the International 
Classification of Childhood Cancer, third edition [34]. We 
investigated the following diagnostic groups: all cancers 
combined (groups I–XII), childhood lymphoma (II), HL 
(IIa), NHL (IIb, IIc, IId, IIe), CNS tumors (III), astrocy-
toma (IIIb), intracranial and intraspinal embryonal tumors 
(IIIc, here referred to as embryonal CNS tumors), other CNS 
tumors (IIIa, IIId, IIIe, IIIf), neuroblastoma (IV), nephro-
blastoma (VIa), malignant bone tumors (VIII), and soft tis-
sues sarcomas (IX). These outcomes were chosen because 
the number of cases available at diagnosis exceeded the arbi-
trary threshold of 250 cases.

Statistical analysis

We used difference in k-functions [35] and Cuzick–Edwards 
test [36] to assess global clustering and Kulldorff’s circu-
lar scan to detect local clusters [37]. Global clustering tests 
assess the preponderance of other cases over controls in the 
proximity of cases using different distance metrics: Euclid-
ean distance (d) for difference in k-functions and the num-
ber of nearest neighbors (NN) for Cuzick–Edwards test. We 
selected a wide range of values for d (100, 250, 450, 600, 
1,000, 1,500, 2,000, 3,000, 4,000, and 5,000 m) and cor-
responding values of NN based on the expected number of 
nearest neighbors within these distances given the number of 
cases and controls of each diagnostic group (see Supplemen-
tary Table S1). For Kulldorff’s circular scan, the upper limit 
for the radii was set such that the resulting circles included 
half of the total number of case and control locations. The 
tests and their implementation are described in more detail 
elsewhere [12].

As in our previous investigation of childhood leukemia 
[12], we used Monte Carlo simulation to calculate p val-
ues for the tests (Supplementary Text S1) and to adjust for 
multiple testing at three levels (Supplementary Text S2). At 
a first level of adjustment, we calculated test statistics that 
accounted for the multiple input values used in each test, 
namely, the standardized maximum difference for k-func-
tions [35], the minimum profile p value in Cuzick–Edwards 
test [36], and the maximum likelihood ratio for Kulldorff’s 
circular scan [37]. We then generated 999 Monte Carlo sam-
ples by randomly permuting case and control labels given 
the locations, calculating the same statistics for each sample. 
We then calculated p values for the test statistics by rank-
ing the empirical value of the test statistic among the cor-
responding values of the Monte Carlo samples and dividing 

the obtained rank by 1,000. Finally, we calculated the mini-
mum of the p values from the first-level adjustment over the 
three statistical tests performed for each diagnostic subgroup 
(second-level adjustment) and minimum over all statistical 
tests and diagnostic groups (third-level adjustment) again 
obtaining p values by ranking these among corresponding 
values form the 999 Monte Carlo samples (see Supplemen-
tary Text S2 for more details). This correction for multiple 
testing is less conservative than a Bonferroni adjustment 
because it accounts for correlations between tests.

For residence at diagnosis, we ran a sensitivity analy-
sis excluding the less precise geocodes (margin of 
error > 100 m).

Results

Study population

We identified 6,057 eligible cases of childhood cancer in the 
SCCR (Fig. 1). After excluding cases with missing geoco-
des and one record of each sibling pair, we included 6,034 
cases for the analysis of spatial clustering at diagnosis. For 
the analysis at birth, we additionally excluded those born 
abroad or with uncertain place of birth and those born before 
1985, leaving 4,078 cases available for analysis (Fig. 1). The 
age and sex distribution of included cancer cases follows 
the general pattern seen for different diagnostic groups in 
the SCCR and registries of neighboring countries (Table 1) 
[38, 39].

Clustering results

After adjusting for all tests performed (third-level adjust-
ment), we found no evidence of global clustering or local 
clusters neither at birth (overall p = 0.43) nor diagnosis 
(overall p = 0.13) (Table 2). However, at the second level 
of adjustment, i.e., ignoring the fact that multiple diagnos-
tic groups were investigated, our results were indicative 
of global clustering or clusters for the group of all cancers 
combined (p = 0.01) and childhood lymphoma (p = 0.04) at 
diagnosis and for embryonal CNS tumors at birth (p = 0.05) 
and diagnosis (p = 0.02). The evidence for lymphoma was 
stronger for HL (p = 0.06) than for NHL (p = 0.43).

In the analysis of all childhood cancers at diagnosis, the 
strongest evidence was obtained from k-functions at 4 km 
distances (adjusted p < 0.01, Table 2). Figure 2 shows that 
the evidence of clustering was strongest for distances larger 
than 500 m (top-left plot). The shaded area shows the typi-
cal range of values of the difference in k-functions in the 
absence of clustering (95% simulation envelopes under 
Monte Carlo sampling).
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In the analysis of childhood lymphoma, the strongest 
evidence for global clustering at diagnosis was observed 
for difference in k-functions at 3,000 m (adjusted p = 0.01, 
Table 2). The top-right plot in Fig. 2 indicates clustering 

for distances larger than 1,500 m. Strong evidence from 
the difference in k-functions was also observed for HL at a 
similar spatial scale (adjusted p = 0.02 at 3,000 m) but not 

Fig. 1   Flow chart of the study population

Table 1   Characteristics of 
the cases included in the 
analysis of spatial clustering 
using residence at birth and at 
diagnosis

HL Hodgkin lymphoma, NHL non-Hodgkin lymphoma, CNS central nervous system
a Includes childhood leukemia cases (n = 1,297 and 1,865 for birth and diagnosis, respectively) which were 
the subject of a separate investigation [12]

Birth Diagnosis

Number of cases Age at diagnosis Number of cases Age at diagnosis

Total Female n (%) Median Total Female n (%) Median

All cancersa 4,078 1,826 (44.8) 4.6 6,034 2,694 (44.6) 6.3
Lymphoma 419 144 (34.4) 10.1 760 275 (36.2) 11.5
 HL 165 71 (43.0) 13.3 317 149 (47.0) 13.7
 NHL 253 74 (29.2) 6.9 441 127 (28.8) 8.8

CNS tumors 840 390 (46.4) 5.8 1,240 575 (46.4) 7.0
 Astrocytoma 340 169 (49.7) 6.0 493 252 (51.1) 7.0
 Embryonal CNS 184 70 (38.0) 5.6 264 96 (36.4) 6.3
 Other CNS tumors 316 151 (47.8) 5.8 483 227 (47.0) 7.5

Neuroblastoma 307 154 (50.2) 1.0 372 183 (49.2) 1.3
Nephroblastoma 226 121 (53.5) 3.0 292 158 (54.1) 3.3
Malignant bone tumors 153 80 (52.3) 11.0 283 141 (49.8) 12.3
Soft tissue sarcomas 272 114 (41.9) 5.6 401 176 (43.9) 7.8
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for the NHL (adjusted p = 0.28 at 600 m) (Table 2; bottom 
plots in Fig. 2).

The strongest evidence for global clustering of embryo-
nal CNS tumors was observed using Cuzick–Edwards test 
at diagnosis using 2 NN (adjusted p = 0.01) (Table 2), cor-
responding to distances of up to 1,400 m on average (Sup-
plementary Table S1). The expected number of other cases 
among the 2 NN of a case was 47.79, whereas we observed 
73 cases (Supplementary Table S2). Kulldorff’s circular scan 
showed evidence of a cluster of embryonal CNS tumors at 

birth (adjusted p = 0.02, radius = 66,400 m) (Fig. 3). The 
cluster consisted of 66 cases, while the number of cases 
expected within this circle was 39.2, yielding a relative risk 
of 2.1. Weaker evidence was observed at diagnosis (adjusted 
p = 0.05, radius = 17,400 m) indicating a smaller cluster, 
nested in the above cluster (Fig. 3). The number of cases 
in this circle was 23 while 8.4 were expected, resulting a 
relative risk of 2.9.

When we considered only first-level corrections for 
multiple testing (i.e., correcting only for the different input 

Table 2   Results of global clustering and cluster detection tests at birth or diagnosis

HL Hodgkin lymphoma, NHL non-Hodgkin lymphoma, CNS central nervous system, NN nearest neighbors
a Data are p values adjusted for the different input values d, k, and r of the test (First-level adjustment, see Electronic Supplementary Material). 
The parameter for which the lowest p value was found is reported in parenthesis. For Kulldorff’s circular scan, the latter represents the radius of 
the most likely cluster
b p value additionally adjusted for the different statistical tests performed in each diagnostic group
c Includes childhood leukemia cases (n = 1,297 and 1,865 for birth and diagnosis, respectively) which were the subject of a separate investigation 
[12].
d p value additionally adjusted for the different diagnostic groups considered including the all cancers combined group

Diagnostic group k-functions adjusted pa

(d in m)
Cuzick–Edwards 
adjusted pa

(k NN)

Kulldorff’s scan 
adjusted pa

(r in m)

Second-level adjusted pb

Birth

All cancersc 0.11 (100) 0.18 (3) 0.94 (137) 0.28
Lymphoma 0.51 (3,000) 0.65 (7) 0.30 (2,209) 0.62
 HL 0.31 (4,000) 0.51 (15) 0.73 (2,850) 0.58
 NHL 0.77 (1,000) 0.69 (2) 0.36 (2,556) 0.66

CNS tumors 0.44 (100) 0.81 (1) 0.45 (4,287) 0.76
 Astrocytoma 0.58 (1,000) 0.49 (11) 0.08 (3,598) 0.20
 Embryonal CNS 0.43 (3,000) 0.50 (15) 0.02 (66,350) 0.05
 Other CNS tumors 0.81 (4,000) 0.73 (15) 0.24 (8,640) 0.47

Neuroblastoma 0.62 (250) 0.76 (15) 0.47 (51,491) 0.75
Nephroblastoma 0.11 (1,000) 0.21 (15) 0.38 (12,291) 0.23
Malignant bone tumors 0.27 (600) 0.24 (3) 0.69 (2,620) 0.48
Soft tissue sarcomas 0.94 (3,000) 0.46 (11) 0.54 (4,275) 0.77

Overall pd = 0.43

Diagnosis

All cancersc < 0.01 (4,000) 0.08 (1) 0.17 (8,550) 0.01
Lymphoma 0.01 (3,000) 0.56 (6) 0.44 (6,262) 0.04
 HL 0.02 (3,000) 0.63 (2) 0.46 (4,582) 0.06
 NHL 0.28 (600) 0.25 (4) 0.26 (577) 0.43

CNS tumors 0.20 (4,000) 0.05 (10) 0.24 (461) 0.13
 Astrocytoma 0.21 (5,000) 0.16 (11) 0.30 (2,066) 0.37
 Embryonal CNS 0.03 (450) 0.01 (2) 0.05 (17,400) 0.02
 Other CNS tumors 0.63 (3,000) 0.12 (4) 0.10 (1,169) 0.24

Neuroblastoma 0.08 (5,000) 0.52 (1) 0.33 (61,818) 0.19
Nephroblastoma 0.89 (100) 0.61 (15) 0.05 (13,753) 0.13
Malignant bone tumors 0.39 (5,000) 0.59 (15) 0.89 (1,245) 0.68
Soft tissue sarcomas 0.82 (4,000) 0.33 (15) 0.10 (5,325) 0.24

Overall pd = 0.13
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Fig. 2   The difference in k-functions for residence at diagnosis for 
all cancers combined, lymphoma, Hodgkin’s lymphoma, and non-
Hodgkin’s lymphoma. The solid line shows the observed difference of 
the k-functions between cases and controls, whereas the dashed line 
indicates the mean difference observed in Monte Carlo samples in 

which the cases were randomly redistributed over locations (random 
labeling). The shaded area illustrates the 95% simulation envelopes 
(under random labeling) and values within it indicate no evidence of 
clustering. The inset plot in the top-left plot shows the difference in 
k-functions zoomed in on the smallest distances

Fig. 3   The most likely cluster identified by Kulldorff’s circular scan 
for embryonal CNS tumors for place of residence at birth (dashed cir-
cle) and at diagnosis (solid circle). The shading shows the population 

density per municipality in quintiles (Q), with darker colors indicat-
ing higher population density. (Color figure online)
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values), our results were also indicative of global clustering 
of neuroblastoma (k-functions adjusted p = 0.08, at 5,000 m, 
Supplementary Fig. S1) and a cluster of nephroblastoma at 
diagnosis. This cluster consisted of 13 cases in a circle of 
almost 14 km. Based on Monte Carlo samples, the expected 
number of cases on that circle was 3.18.

Sensitivity analysis

When we excluded 361 geocodes with a margin of 
error > 100 m at diagnosis, p values tended to be lower. The 
overall evidence was strong (overall p = 0.03, Supplemen-
tary Table S3). In particular, stronger evidence of spatial 
clustering was found for all cancers (second level adjusted 
p < 0.01), childhood lymphoma (second level adjusted 
p = 0.02), HL (second level adjusted p = 0.05), and embryo-
nal CNS tumors (second level adjusted p = 0.03) (Supple-
mentary Table S3). For the group of all cancers, Kulldorff’s 
scan statistic identified a cluster in the north-east of Switzer-
land (adjusted p = 0.01, radius = 23,199 m, Supplementary 
Table S3; Supplementary Fig. S4).

Post hoc analyses

In a post hoc analysis, we investigated the difference in 
k-functions for childhood lymphoma at diagnosis for dis-
tances up to 30 km, rather than up to 5 km only as in the 
main analysis. We observed evidence of clustering for dis-
tances up to 7 km (Supplementary Fig. S2).

We also investigated whether the clustering of lymphoma, 
embryonal CNS tumors, and neuroblastoma (based on the 
difference in k-functions results) accounted for the observed 
clustering of all cancers at diagnosis. We thus performed the 
difference in k-functions for the all cancers group excluding 
these diagnostic groups and observed no evidence of cluster-
ing (p k-functions = 0.16 at 5 km), (Supplementary Fig. S3).

Discussion

Summary of the results

This nationwide study investigated spatial clustering of 
childhood cancers in Switzerland during 1985–2015 using 
precise locations of residence. After correcting for the mul-
tiple testing resulting from investigating different diagnostic 
groups, we found no evidence of spatial clustering or of 
individual clusters, neither at birth nor at diagnosis. How-
ever, when considering diagnostic groups separately, we 
found evidence of clustering for the group of all cancers 
combined and for lymphoma at diagnosis, and for embryo-
nal CNS tumors at birth and diagnosis. The evidence was 
stronger for HL than for NHL. The difference in k-functions 

suggested excesses of cases occurring near other cases for 
distances of 2–5 km for HL and 500 m to 3 km for embryo-
nal CNS tumors. Kulldorff’s circular scan identified a cluster 
of cases with embryonal CNS tumors in the north-west of 
Switzerland at birth (radius 66 km) and at diagnosis (radius 
17 km). The evidence of clustering for the group of all can-
cers disappeared when lymphoma, embryonal CNS tumors, 
and neuroblastoma were excluded.

Discussion in the context of other studies

To our knowledge, a recent analysis of five regions in Spain 
is the only other study of spatial clustering of childhood can-
cers other than leukemia using precise geocodes of residence 
[21]. That study included 714 CNS tumors, 92 HL, and 246 
NHL cases and 6 matched controls per case. The difference 
in k-function showed evidence of clustering for both HL and 
NHL in some regions, but not for CNS tumors. Kulldorff’s 
circular scan found little evidence of spatial clusters, with 
the lowest p value (0.074) observed for a small aggregation 
of NHL cases in Madrid.

Few studies have applied global clustering tests or cluster 
detection methods to the group of all cancers combined. A 
large study from the UK including over 30,000 childhood 
cancer cases aggregated to census wards found evidence of 
clustering at diagnosis, which remained significant after 
excluding cases of lymphoma and leukemia [15, 40]. Evi-
dence for local clusters of all cancers combined has been 
reported in studies from Florida [16], Palestine [17], and 
Canada [18]. The only other study that examined clustering 
of all cancers combined at birth was a study from the UK, 
which also found no evidence of clustering in agreement 
with our study [13].

The majority of studies investigating lymphoma as a 
group reported weak evidence of spatial clustering at diag-
nosis [15, 16, 21, 25]. One study reported evidence of a 
cluster of childhood lymphoma in Palestine [17], yet 53% 
of the included cases were BL. This result is not surpris-
ing since the geographical patterns of BL and its infectious 
etiology are known [22, 41]. In agreement with our study, 
other studies have also reported spatial clustering of HL at 
diagnosis [19–21, 42]—whereas the evidence from the men-
tioned, large UK study was weak [15]. A study in New Zea-
land found no evidence of global clustering of HL at birth 
[14]. Studies examining NHL have consistently reported no 
evidence of clustering [14, 15, 19].

Previous studies of spatial clustering of CNS tumors in 
children have, at most, found only weak evidence of global 
clustering or clusters [21, 24–26, 43]. In two studies that also 
examined major histologic subgroups, evidence of clustering 
was found for medulloblastoma [24] and the combined group 
of primitive neuroectodermal tumor (PNET) and medullo-
blastomas [26]. In our study, PNET and medulloblastomas 
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are the main tumor types subsumed as embryonal CNS 
tumors, for which we also found evidence of clustering. No 
evidence of spatial clustering has been reported for other 
CNS tumor types [24, 26, 43].

Few studies have assessed spatial clustering of other can-
cer diagnostic groups. Evidence for clustering was found 
in the UK for soft tissue sarcomas and Wilms tumors [15]. 
Studies investigating bone tumors separately or jointly with 
soft tissue sarcomas have reported weak evidence of cluster-
ing [15, 25].

Strengths and weaknesses

The main strength of our study is the use of precise loca-
tions of residence for both cases and representative controls. 
This avoids the modifiable areal unit problem and maximizes 
statistical power for detecting small-scale clustering [28, 30]. 
Cancer cases were obtained from a national registry with 
high coverage, and we were able to examine residence both 
at birth and at diagnosis. The use of different statistical tests 
made our analysis sensitive to different clustering patterns. 
Cuzick–Edwards test and the difference in k-functions are 
both sensitive to an overall tendency of cases to occur closer 
to each other than expected but use different proximity met-
rics (NN and Euclidean distance, respectively). Kulldorff’s 
circular scan on the other hand is more sensitive to the 
presence of distinct clusters. We paid considerable atten-
tion to the multiple testing problem. In a previous analysis 
of childhood leukemia, we also included Tango’s index as 
an additional test of global clustering but found that it was 
highly correlated with the difference in k-functions (see the 
Electronic Supplementary Material of our previous analysis 
[12]). We therefore decided not to use Tango’s index for 
this analysis in order to mitigate the multiple testing prob-
lem. Lastly, we implemented a multiple testing approach 
that accounts for the correlation between tests and is less 
conservative than a Bonferroni approach.

While full address histories were known for cases, loca-
tion of residence of controls was only available at census 
time points. We could thus not select control locations that 
were perfectly representative of the population at risk at 
cases’ exact date of birth or diagnosis. However, we used a 
control sampling procedure that accounted for local popu-
lation shifts in the years between the censuses. In order to 
minimize the multiple testing issue, we only used one clus-
ter detection test, namely Kulldorff’s circular scan, which 
is the most widely used scan statistic. A drawback of this 
scan statistic is that it only considers circular shapes and 
may thus have been insensitive to possible clusters of irregu-
lar shapes or clusters occurring at the country border and 
extending into the neighboring country, for which we had 
no data. Moreover, despite high completeness of the regis-
try, our analyses missed a small proportion of cases, which 

may have reduced the statistical power of clustering tests. 
Lastly, geographical disparities in registration coverage may 
have affected our results. While the vast majority of child-
hood cancer cases are registered through specialized pediat-
ric oncology centers, a small minority is identified through 
general cantonal cancer registries. However, not all cantons 
have a general cancer registry possibly leading to underre-
porting in these cantons. Kulldorff’s scan compares the risk 
inside and outside defined circles. If there was systematic 
underreporting of cancer cases outside of certain circles, 
this could have led to spurious clusters. This is unlikely to 
have been the case for the clusters of embryonal CNS tumors 
identified in our analysis since the proportion of cases identi-
fied through cantonal registries was lower inside the clusters 
than outside: 0.02 against 0.06 for the cluster at birth and 
0.05 against 0.07 for the cluster at diagnosis. In contrast, this 
might be a possible explanation for the cluster of all cancers 
reported in the sensitivity analysis (proportion of cases from 
cantonal registry 0.14 inside the circle against 0.05 outside).

Interpretation of findings

The fact that no evidence of spatial clustering for the com-
bined group of all cancers remained when cases of lym-
phoma, embryonal CNS tumors, and neuroblastoma were 
excluded suggests that any spatial clustering of childhood 
cancers in Switzerland during the study period was mainly 
driven by these subgroups.

The clustering observed for lymphoma appears to be 
driven by HL. Spatial clustering of HL at diagnosis is con-
sistent with the literature with 4 out of 6 studies report-
ing such evidence. The absence of distinct clusters and of 
clustering at birth may imply a late etiologic exposure to 
a ubiquitous agent promoting carcinogenesis [20]. Animal 
and epidemiological studies suggest that exposure to EBV 
could be such a promotor [4]. Possible socioeconomic fac-
tors associated with transmission of EBV or prevalence of 
EBV infection such as overcrowding [4] might cause spatial 
heterogeneity in incidence rates of HL. Other agents such 
as benzene might also play a role. However, there is little 
evidence of an association between HL and occupational 
benzene exposure in adults [44].

Our finding of global clustering of embryonal CNS 
tumors but not for other CNS tumors is also in agreement 
with the two other studies that have assessed medullo-
blastoma or PNET [24, 26] and suggests an etiologic fac-
tor specific to this tumor group. Of the 264 embryonal 
CNS tumor cases included in our study, 198 and 46 were 
medulloblastomas and PNET, respectively. The evidence 
of clustering was stronger at diagnosis, again suggesting 
a late etiologic exposure. Unfortunately, etiologic studies 
of childhood CNS tumors still rarely distinguish histo-
logic subtypes. However, based on this literature, possible 
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etiological agents include insecticide use [45], N-nitroso 
compounds exposure [46], or traffic-related air pollution 
[47].

While adjustments for multiple testing indicate that our 
findings could be due to chance, the agreement with pre-
vious studies regarding HL and embryonal CNS tumors 
rather suggests that the observed clustering may have an 
environmental or infectious cause.

Conclusion

Our study adds further evidence that HL and embryonal 
CNS tumors in children tend to cluster in space due to 
post-natal environmental influences, which remain to be 
determined. Future etiological studies of childhood lym-
phoma and CNS tumors should stratify analyses by tumor 
subtypes and pool data to maximize power.
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