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Abstract: In sub-Saharan Africa, the high demand for wood-based cooking fuels calls for urgent
policy action to steer the cooking energy sector towards more sustainability. While the subnational
scale is growing in importance for policy planning, current energy assessments still only consider
individual entities without taking into account resource flows. Ignoring flows of biomass cooking
fuels in supply–demand assessments is a system boundary problem that can lead to misleading policy
recommendations. In this paper, we tackle the boundary problem in subnational supply–demand
assessments and provide a tool to support knowledge-based decision-making on the management of
biomass cooking fuels in sub-Saharan Africa. Using Kitui County as a case study, we developed and
tested an approach consisting of a supply model, local demand model, balance model, availability
model, and adjusted balance model. The balance model only considers local fuel supplies and
demand, whereas the adjusted balance model also considers external demand, which reduces
the locally available supply of fuel. The results show that fuel demand and supply are spatially
heterogeneous and vary between wood-based and non-woody fuels, and that the transport distance
of fuels strongly affects local fuel availability and determines whether the supply–demand balance
is positive or negative. We conclude that subnational energy policies should consider geographical
distribution of supply and demand, aim to increase the fuel mix, consider external demand in
supply–demand assessments, and differentiate between fuels for self-consumption and the market.

Keywords: biomass; energy; cooking fuels; Kenya; spatial modelling; supply–demand balance;
boundary problem

1. Introduction

1.1. The Energy Policy Challenge

In sub-Saharan Africa, wood-based fuels are the primary source of energy for cooking. About 90%
of rural and low-income urban households use mainly firewood or charcoal [1–3]. Wood-based cooking
fuels are renewable, often available locally, and constitute an important income opportunity, notably
for poor households in rural areas [4–8]. However, the sourcing, production, and use of these fuels is
mainly unsustainable. Charcoal production has a substantial carbon footprint, contributing to climate
change [9]; unsustainable cutting of wood is an important driver of environmental degradation [10–12];
charcoal emits high amounts of carbon monoxide; and the combustion of firewood releases fine
particles both leading to indoor air pollution and the premature death of millions every year [13,14].

Urgent policy actions are needed to steer the current and future cooking energy sector towards
more sustainability. Wood-based fuels will remain important in the next few decades, as the number
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of consumers is expected to increase [1]. It is estimated that in sub-Saharan Africa, almost 920 million
people will use wood-based fuels by 2030, compared to approximately 750 million today [15]. In order
to reduce the risk of a looming supply–demand mismatch, appropriate resource management strategies
must be developed based on an accurate assessment of the current energy situation at the local
scale [16].

The local governance scale is growing in importance, since, in major parts of East Africa,
policymaking is increasingly devolved to the subnational level [17–19], a process that entails
opportunities and challenges. Local authorities tend to have a better understanding than national
authorities of the local energy situation, which is key to effective planning [20–22]. However,
the subnational energy sector is not a closed system. Cooking fuels such as charcoal are traded from
supply areas to consumer markets, sometimes over long distances. Such movements can substantially
affect the supply–demand balance at local level. Therefore, local governments should include resource
flows across administrative boundaries into their strategies and development plans.

To our best knowledge, current studies fail to provide policy advice to local and national
governments while accounting explicitly for spatial flows of biomass. This shortcoming is particularly
evident in the case of cooking fuels and big urban centres, as cities often generate massive demand,
especially for charcoal, and considerably impact distant supply areas. Hence, to effectively support
subnational energy planning, studies are needed that help integrate external demands into the
assessment of energy situations.

1.2. The Boundary Problem

The challenge described above is also known as the system boundary problem (or edge effect) [23,24].
It refers to the fact that geographical study areas are bounded but spatial processes are not [23].
Ignoring this fact can produce misleading results in supply–demand assessments. In spatial analyses and
statistics, several different strategies for coping with this problem are applied: ignoring, torus mapping,
empirical buffer zones, artificial buffer zones, extrapolation into buffer zones, and correction factors [24].
Approaches have been developed, but none have been able to solve the problem entirely. The boundary
problem therefore remains a challenge for spatial analysts but also for decision-makers concerned with
the planning of energy supply or natural resource management in general.

Some conceptual approaches do tackle the boundary problem implicitly, in the context of natural
resource management at a subnational scale. Documenting and taking into account transboundary
flows is the most commonly applied approach on national level. National governments usually
keep well-documented statistics on the import and export of natural resources. This allows planners
to gain an overview of the current resource situation, considering external demands and supplies.
At a subnational level, the concept of urban metabolism [25] is a well-known approach for analysing
flows of energy and materials. An alternative concept is the Energyscape developed by [26] and
defined as “the complex spatial and temporal combination of the supply, demand and infrastructure
for energy within a landscape”. However, data availability on flows of natural resources is a major
challenge in both the concepts of urban metabolism and Energyscape.

A way of bypassing the boundary problem is to extend the study area to a higher geographical
scale, i.e., to include the areas surrounding the main area of interest. Transboundary natural
resource management, for instance, is the process of collaboration across boundaries, with the aim
of increasing the effectiveness of natural resource management [27] and addressing the boundary
problem. Similarly, the management of natural resources at national rather than subnational level
can defuse the boundary problem at a lower geographical scale. While imperatively this requires the
collaboration of neighbouring areas, it has been argued that managing resources independently from
neighbours might be more effective [27]. Furthermore, scaling up from the subnational to the national
level in this way does imply an additional workload and additional demand for data covering the
entire country rather than only a part of it.



Resources 2018, 7, 11 3 of 32

A widely used approach is the definition of management (or analysis) boundaries based
on the main resource flows. Water resource management based on watersheds rather than
administrative boundaries has become a common practice [28,29]. In analogy to the watershed
approach, Drigo et al. [30] created the concept of urban woodshed to visualize, define, and map
the territory required for the sustainable supply of the woody biomass needed in cities. However,
this approach has two main disadvantages. First, the urban woodshed is a result of the analysis
rather than a pre-defined delimitation of a study area. Second, the concept is suitable for isolated
areas, but does not provide solutions on how to handle potentially overlapping urban woodsheds,
for example in the case of adjacent urban centres.

In conclusion and to the best of our knowledge, no approach exists that allows assessment of
the supply–demand balance of wood-based cooking fuels at a subnational level, while accounting
adequately for the boundary problem. This methodological gap needs to be filled, since the risk of
supply–demand mismatches is a dominant issue for energy policies [31], with assessment of demand
and supply a prerequisite for optimizing these policies [32].

1.3. Objectives

Against this background, the overall goal of this research is to develop a method to tackle the
boundary problem in the context of a subnational supply–demand balance, and thus to provide
a tool to support knowledge-based decision-making on the management of biomass cooking fuels in
sub-Saharan Africa. To achieve this overall goal, we address two specific objectives:

1. To develop an approach to model the supply–demand balance of biomass cooking fuels,
considering not only demand originating inside, but also outside a specific planning area.

2. To provide spatially explicit estimates of the potential and current demand for biomass cooking
fuels, the potential supply of currently used and alternative biomass cooking fuels, and the
resulting supply–demand balance.

The outputs of this research have a twofold practical relevance. On the one hand, we aim to
develop a generic approach that can be used for supply–demand assessment of different natural
resources. On the other, we will provide specific recommendations for cooking fuel-related energy
policies in a selected case study area (cf. Section 2.1.1).

2. Methods

2.1. Scope

2.1.1. Case Study Area

We selected Kitui County in Eastern Kenya as our case study area. Kenya’s new constitution,
which took effect in 2010, includes the devolution of governance to the subnational level, thus giving
counties more legislative power than before. In parallel, the national “Sustainable energy for
All (SE4All) Kenya Action Agenda” [33] aims to facilitate the development and planning of sustainable
energy policies from 2015 to 2030. It advocates the establishment of an integrated approach, taking into
consideration devolution of governance. At the national level, the Ministry of Energy and Petroleum
supports the establishment of a SE4All County technical committee to oversee implementation in
counties and to provide a link with the national government. Counties are encouraged to develop
energy planning documents that include the status of energy use and demand, as well as the energy
resource potential. Furthermore, the agenda suggests the development of a strategy to promote
alternative cooking fuels (bioethanol, biogas, solar cookers, vegetable oils, briquettes, and agricultural
waste), with clear goals and targets.

Within Kenya, we selected Kitui County because of its national importance as a charcoal supply
area [34], particularly for Nairobi due to its proximity, and its vast woodlands and bushlands.
The county covers an area of 30,496 km2, including 6369 km2 occupied by Tsavo East National
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park (cf. Figure 1), and has a population of approximately 1 million [35]. Most inhabitants are engaged
in small-scale and subsistence farming. Firewood is the main cooking fuel for most households [35],
but charcoal production for the Nairobi market is widespread and constitutes an important income
opportunity, notably for poor households in rural areas [36,37]. The county government has designed
and adopted a Charcoal Management Act [38], aiming to regulate and manage production, use,
and trade. Furthermore, adequate and effective communication mechanisms between county and
national governments have been identified as critical for effective implementation of the act [33].
However, the current County Integrated Development Plan (2013–2017) does not include an alternative
cooking fuel strategy as proposed by the SE4All agenda.
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Figure 1. Overview map of Kenya (left) and the case study area Kitui County (right).

For the above reasons, Kitui County is an interesting case study area. Many areas in sub-Saharan
Africa face similar challenges and opportunities. This study will therefore provide results that are
relevant for Kitui’s decision-makers but that may also be generalized and transferred to other regions.
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2.1.2. Fuels

We selected five biomass fuels: firewood, charcoal, biogas, jatropha seeds, and maize cobs.
This selection covers the cooking fuels that are currently used at household level but also others that
are used only marginally or not at all. It also covers fuels that can be transported and traded over long
distances, and fuels that cannot be transported due to technical barriers or economic constraints.

Firewood is wood that is used for cooking without prior processing and it is the most widely
used cooking fuel in rural areas of sub-Saharan Africa [1]. Households collect firewood mostly in
their immediate surroundings [39–41], but it is also a commodity sold on local markets. In contrast,
its transport to distant markets is hardly profitable due to its low energy density [5,42]. In this study,
we consider the annual supply of harvestable deadwood [43] a sustainable source for firewood.

Charcoal is a solid residue obtained through the pyrolysis of wood. It is currently the dominant
cooking fuel in low-income urban households in sub-Saharan Africa [44–46]. It is preferred over
firewood due to its high energy density, lower emissions of particulate matter, and lower transport
costs. In order to supply urban areas with charcoal, the fuel is sometimes transported over hundreds
of kilometres [47–50]. Its production and trade is an important source of income for hundreds of
thousands of people in both urban and rural areas [51,52].

Biogas is a mixture of methane and carbon dioxide obtained from the anaerobic digestion of
organic matter. The digestate, a co-product of this process, can be spread on the fields to improve soil
fertility. Therefore, we assume that using cow dung for biogas production does not result in utilization
trade-offs. Biogas is frequently promoted as an alternative source of cooking energy, but technical,
economic, sociocultural, and institutional barriers have limited its dissemination [53–56]. In our
analysis, we calculate supply potential based on the availability of animal dung and water, which is
essential for biogas production. Technical solutions to transport biogas exist, but are currently not well
known. Therefore, production and consumption of biogas usually take place on the same site.

Jatropha curcas (jatropha) seeds contain a high percentage of oil that is used for lighting, cooking,
fuelling engines, or producing soap. The seeds can also be used directly as a cooking fuel without prior
processing [57]. In order to avoid competition for land with food crop production, we only consider
jatropha cultivated as hedges around plots [58,59]. Jatropha seeds have a high energy density [60]
and transport over long distances to reach commercial markets might be viable. However, in recent
years, jatropha production was not profitable in East Africa, leading to the failure of most commercial
investments [61–64]. Using jatropha seeds as a by-product of hedges might be an option, thanks to
a lack of opportunity costs and the multifunctionality of this land use [65].

Maize cobs are residues that can be used as cooking fuel. They can be dried and burned directly,
or dried, ground, and subsequently pressed into briquettes [66–69]. Maize cobs can be used as litter
for animals and as mulch and soil conditioner [70]. To our knowledge, they have no major importance
in agricultural practices and we therefore consider that maize cobs in their entirety are available for
cooking purposes. Maize cobs are frequently used as supplementary fuel for cooking [71]. Due to their
low energy density, we do not consider maize cobs an economically viable product and hence their
transport over long distances is very unlikely.

2.2. Framework and Components

2.2.1. Framework

The conceptual framework consists of five components: Supply model, Local demand model,
Balance model, Availability model, and Adjusted balance model. Each component provides relevant
results for energy policy planning and uses different input data. A main objective of the conceptual
framework was to minimize the data requirements. The availability model depends on data
(i.e., the number of households) covering the entire country; the supply model and local demand
model depend only on data for Kitui County; and the balance model and adjusted model depend
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only on the results of the other models as inputs. An overview of the framework structure is given in
Figure 2 and its components are explained in detail thereafter.
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2.2.2. Supply Model

The Supply model estimates the potential fuel supply in Kitui County according to the different
types of fuel (Fuel potential) and in total (Supply potential). We calculated the fuel potential of each
cooking fuel in five steps following a simplified supply chain [72]: (1) Identifying and quantifying the
biomass source; (2) calculating the annual biomass supply based on its current volume and productivity;
(3) estimating the biomass feedstock by subtracting alternative uses; and (4) estimating the amount of
biomass fuel by including a conversion factor from raw biomass to final fuel. In an additional step;
(5) we converted the supply potential of each fuel into household equivalents (Fuel potential).

For firewood, we calculated the potential fuel supply as a share [43] of the existing wood stock
(biomass source) [73]. The firewood demand per household was taken from the Kenya Integrated
Household Budget Survey (KIHBS) 2005/06 [74] (cf. Appendix A).

For charcoal, we calculated the mean annual increment of woody biomass (biomass supply)
as a function [75] of the existing wood stock [73] and subtracted the biomass located in exclusion
areas (i.e., national parks and reserves, and forest reserves). We then reduced the supply to the share
of biomass that can actually be used for charcoal production (biomass feedstock), by factoring in
alternative uses such as construction material [76], firewood [43], and various other uses (assumptions).
The charcoal demand per household was taken from the KIHBS 2005/06 [74] (cf. Appendix B).

For biogas, we considered three biomass sources: exotic cattle, indigenous cattle, and pigs.
For each, we estimated the annual dung supply (biomass supply) based on daily production figures by
Orskov et al. [77]. Since indigenous cattle are often grazed outside [78] and dung collection is only
possible when cattle are stabled overnight, we halved its biomass supply (assumption). As dung must
be mixed with the same amount of water [79] to obtain slurry (biomass feedstock), we only considered
households with a less than 10-min walk to the next source of water [79,80]. We subsequently estimated
the annual biogas supply (biomass fuel) using a gas production rate [77] for the dung of each category
of animal. The biogas demand per household was taken from Kossmann et al. [81] (cf. Appendix C).

For jatropha seeds, we first calculated the average maize cultivation area in each sublocation
based on the Kitui agricultural statistics [37] and the land use/land cover map for the county [82].
We calculated the total length of plot boundaries based on an average plot size of 0.52 ha [37] and
the assumption of square-shaped plot geometries. We reduced the potential hedge length for seed
production to 40% of the total length to factor in alternative hedge uses and adjacent plots that
share boundaries. We calculated the amount of jatropha seeds (biomass feedstock/biomass fuel)
by multiplying the hedge length with the seed productivity of hedges per metre [83]. The seed demand
per household was taken from City Stove Works [57] (cf. Appendix D).

For maize cobs, we first estimated the annual maize yield per sublocation, based on
the Kitui County yield statistics [38], and the land use/land cover map for the county [82].
We considered only maize cobs and disregarded stalks and leaves, in order to avoid competition
with alternative uses such as mulching and fodder, and therefore considered only 15% of plant weight
(biomass feedstock/biomass fuel) [84]. We estimated the demand for maize cobs per household by
conducting a water boiling test (fuel needed to boil 5 L of water, allowing it to simmer for 45 min) [85]
and assuming an average number of 2.5 hot meals per household per day (cf. Appendix E).

2.2.3. Local Demand Model

The Local demand model calculates the two different types of potential fuel demand.
Current demand, on the one hand, is defined as the amount of each type of fuel that is currently
consumed each year within a specific area. It was calculated from the number of households [86],
their main type of cooking fuel [86], and the fuel consumption per household [74]. Potential demand,
on the other hand, is defined as the number of potential consumer households irrespective of the
type of cooking fuel they are currently using, and equals the total number of households residing in
a specific area. We used current demand to obtain an overview of the actual biomass resource demand
and potential demand to calculate the supply–demand balance of biomass cooking fuels.
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2.2.4. Availability Model

The Availability model estimates the impact of external demand, i.e., how much demand originating
from outside Kitui County reduces the fuel supply available for consumption in Kitui County.
We quantified this impact using an Availability share that we defined as the share of the supply potential
that remains for on-site consumption.

We used the demand pressure as the underlying concept to calculate the availability share.
Based on the Steward model [87,88], we defined the demand pressure as a stock of potential consumer
households weighted by travel distance between the sublocations as follows:

Ai =
n

∑
j=1

Oj f
(
dij

)
(1)

where Ai is the demand pressure in sublocation i, Oj is the actual number of households in sublocation j,
and f (dij) is a negative function of the travel time between sublocation i and sublocation j (distance decay).
In other words, the demand pressure in a specific sublocation is the number of households within that
location and the sum of the households in the other sublocations, reduced by a specific distance decay
function and their specific travel time distances to that specific sublocation. All related calculations were
done using the R package SpatialPosition [89].

The distance decay used in the above formula describes how the distant demand of
one sublocation on another sublocation decreases as a function of the travel time distance between
these two sublocations. We used a negative, exponential function [90–94] defined as follows:

Oij = Oje
−αd2

ij (2)

where Oij is the demand pressure in the sublocation i originating from sublocation j, Oj is the potential
demand (number of households) in sublocation j, dij is the travel time distance between sublocation
i and sublocation j, and α is a rate parameter of distance decay computed from the parameter span as
follows:

α =
log(2)
span2 (3)

We can depict this distance decay function also as the probability function of the transport
distances of cooking fuels.

Span is a key parameter in the distance decay and defined as the travel time distance at
which demand pressure has decreased to 50% of its initial value. For example, sublocation A has
10,000 households, the decay function shows a span of 90 min, and sublocation B is at a travel distance
of 90 min from Sublocation A. This means that sublocation B would receive demand pressure of
5000 households from sublocation A. As we did not have any empirical data of the transport distance
of biomass cooking fuels, we were not able to calibrate the distance decay function. Instead, we used
multiple spans, i.e., assumptions about the transport distances of biomass cooking fuels, between 0 and
210 min to run our model and to show their impact on the model outcomes.

The travel time distance between sublocations was calculated with R’s gDistance package [95].
As inputs, we used OpenStreetMap data [96] for the road network and waterways, the SRTMv4.1
digital elevation model [97] for deriving slope values in the terrain, and Africover data [82] for the
land cover. The detailed specification of all the model parameters are listed in Appendix F.

In order to obtain the availability share, we differentiated between three types of demand pressure
(Figure 3): national demand pressure, external demand pressure, and internal demand pressure.
National demand pressure considers all sublocations in Kenya, and equals the sum of the internal
demand pressure and external demand pressure. In contrast, internal demand pressure considers all
sublocations in Kitui County, and external demand pressure all sublocations outside Kitui. For each
sublocation, we subsequently derived national demand pressure and internal demand pressure,
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providing us with import share. The ratio between the internal demand pressure and national demand
pressure in the sublocation in Kitui County provided us with the export share, i.e., share of supply
potential that will remain in the county.
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Furthermore, we estimated an import correction factor to take into account that fuels are possibly
imported to Kitui County from surrounding areas. We calculate this factor as the ratio between the
internal demand pressure and national demand pressure for all sublocations outside Kitui County.
In order to obtain the final availability share, we subtracted the import correction factor from the
import share. This correction is not spatially disaggregated. However, we tried to keep the model as
simple as possible, as we assume that imports of biomass cooking fuels are marginal and will therefore
only slightly affect the result.

2.2.5. Balance and Adjusted Balance

The balance model and the adjusted balance model provide us with a supply–demand balance while
accounting differently for external demands. The Balance is the difference between potential demand
and supply potential. It takes into consideration demand and supply originating only from within
Kitui County. By contrast, the Adjusted balance is the difference between potential demand and adjusted
supply potential. The underlying assumption of the adjusted supply potential is that some part of the
supply potential is not available for local consumption, but exported to sublocations outside Kitui County.
We therefore calculate the adjusted supply potential by reducing the supply potential using the availability
share. In both cases—the balance and the adjusted balance—positive values indicate a supply surplus,
whereas negative values indicate a supply deficit.

2.3. Computation

2.3.1. Unit of Analysis

We use sublocations as spatial units of analysis, as provided by the Kenya National Bureau
of Statistics (KNBS). They are the lowest administrative level for which boundary geometries, linked
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with socio-economic data from the Population and Housing Census, are available in digital format [35].
All raster data were aggregated to the sublocation level. All data available at country or district
level were downscaled to that level, weighting the data by population [35] or agricultural area [82].
The related R scripts can be found in the Supplementary Material.

2.3.2. Result Aggregation

In order to aggregate the results to the county level, we had to distinguish between transportable
and non-transportable fuels. The reason for this is that the distant demand only impacts transportable
fuels. We considered charcoal and jatropha seeds to be transportable, and maize cobs, biogas,
and firewood to be non-transportable due to economic or technical considerations.

As a result, we can distinguish between four types of supply potential: locally consumed supply
potential, potential supply surplus, exported supply, and untapped supply potential. Locally consumed
supply potential is the supply potential that is consumed in the same sublocation as it originates. It does
not exceed the availability share unless the fuels are non-transportable, and it is limited to the potential
demand within the sublocation. Potential supply surplus is the supply potential of transportable fuels
that exceed potential demand within a sublocation and are not exported to areas outside Kitui County.
Therefore, this surplus can be used to compensate deficit balances of sublocations in Kitui County,
and contributes positively to the supply–demand balance of the county. Exported supply is any supply
potential of transportable fuels exported to areas outside Kitui County. Untapped supply potential is
supply potential that exceeds the potential demand within a sublocation but remains untapped as the
fuels cannot be transported. The underlying assumption of this classification is that non-transportable
fuels are given priority in local consumption.

3. Results

3.1. Balance

3.1.1. Local Demand

Fuel demand in Kenya and Kitui County is spatially heterogeneous and there are clear differences
between wood-based and non-woody fuels. Figure 4 shows the distribution of potential demand in terms
of potential consumer households in Kenya (left) and Kitui (right). The potential demand for cooking fuels
at national scale is highest along the coast and between Lake Victoria and Kitui County, which is at the
eastern edge of the densely populated area between Nairobi and Mount Kenya. With 200,000 households,
it is home to only a small share of the national population (8.5 million households). In Kitui County,
households are concentrated in the western part of the county, which enjoys favourable agro-climatic
conditions, and steadily decrease towards the less accessible areas in the north, south, and east.
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Table 1 shows the current demand in Kitui County according to different types of fuel.
Current demand is strongly dominated by wood-based fuels. Around 303,500 t of firewood are
used by 89% of households. Charcoal is the second most important fuel (7.9% of the households;
9800 t annually). Fossil fuels such as paraffin and liquefied petroleum gas (LPG) are the main fuels in
only 3% of the households and other fuels (e.g., biogas, crop residues, and electricity) in less than 1%.
The dominance of wood-based fuels (96.9%) is above the national average (83%).

Table 1. Current fuel consumption in Kitui County (Based on KNBS 2005 and KNBS 2009).

Fuel Type
Share of Main

Fuels (%)
(KNBS 2009)

Number of
Households
(KNBS 2009)

Average Consumption Per
Day and Household

(KNBS 2005)

Current Demand
for Cooking Fuels

in Kitui County

Firewood 89.0 181,000 4.603 kg 303,500 t/year
Charcoal 7.9 16,000 1.644 kg 9800 t/year
Paraffin 2.0 4000 0.164 L 238 m3/year

LPG 0.5 1000 0.395 kg 148 t/year

Other 0.6 1300 Not applicable Not applicable

The fuel mix in the households of Kitui County is very low. Around 90% of the households in
Kitui use only one type of fuel and the remaining 10% use at most two different types. Diversity is
more pronounced at national level, with one-quarter of households using more than one type of fuel.
In most cases, households use only firewood, charcoal, or paraffin. In cases where households use
multiple fuels, the most common combinations are firewood with charcoal, or charcoal with paraffin.

3.1.2. Supply

The fuel potentials of biomass cooking fuels are distributed unevenly and there are clear
differences between wood-based fuels and non-woody fuels (Figure 5). In total, the supply potential of
the five fuels assessed in Kitui County would sustainably cover the demand of 537,000 households.
However, there is a strong divergence in fuel potential: firewood and charcoal provide 87% of the
supply potential, while biogas, jatropha, and maize share the remaining 13%.
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Figure 5. Geographical distribution of the potential supply of the different biomass cooking fuels
(biomass fuel) and number of households whose demand for cooking fuels can be satisfied with it (fuel
potentials).

The fuel supply potential is concentrated in the centre of the county, but there are clear differences
in the spatial distribution between the different fuels. The potential of firewood and charcoal is highest
in the hilly centre of Kitui County and to some degree in the south, in the area bordering Tsavo East
National Park. The highest potential for biogas is in the area around Kitui town, where the density of
both population and livestock are highest. The highest supply potentials for jatropha seeds and maize
cobs are in the main agricultural areas in the west and north-west of the county.

3.1.3. Balance

Most sublocations show a positive supply–demand balance, i.e., the potential supply of biomass
cooking fuels in a sublocation exceeds demand for those fuels in this sublocation (Figure 6).
Sublocations with a negative balance are located along the densely populated axis between Kitui town
and Mwingi. This area overlaps with the area where the potentials for biogas, maize, and jatropha are
highest. However, since the supply potential of these alternative fuels is rather moderate in absolute
terms, their supply is not sufficient to cover demand.
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Figure 6. Supply potential, potential demand, and balance of biomass cooking fuels.

At county level, the balance in Kitui is clearly positive (Figure 7). The county can supply firewood,
charcoal, biogas, jatropha seeds, and maize cobs to cover the cooking fuel needs of 537,000 households in
total. However, since we assume that several fuels (firewood, maize, and biogas) are not transportable,
a share of the surplus that is equivalent to the demand of 209,000 households cannot be used
(untapped supply potential). Still, the entire demand of the county’s 203,000 households can be covered
locally. Consumption of fuels in the same sublocation where they are sourced (locally consumed supply
potential) allows 87% of the fuel demand (176,000 households) to be covered. The remaining demand
(13%) can be covered by transporting the surplus supply of charcoal and jatropha to other sublocations
(potential supply surplus). The rest of this transportable surplus could cover the needs of 124,000 additional
households outside Kitui County.
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3.2. Adjusted Balance

3.2.1. Availability

The availability of cooking fuels substantially depends on external demand. Figure 8 shows
availability share as a function of different assumptions about the transport distance of biomass
cooking fuels (span). In other words, the figure shows how much of the cooking fuel supply could be
available for consumption within Kitui County compared to the exported supply.
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Figure 8. Span and availability share.

The result follows a negative, s-shaped curve. A span of zero minutes yields an availability share
of 100%, meaning that there is no external demand pressure and therefore no fuels would be exported.
In contrast, a span of 210 min yields an availability share of 11%, meaning that the external demand
pressure was substantially higher than the internal demand pressure, and that most of the supply potential
would probably be exported. Furthermore, differences in the span do not substantially affect the availability
share if we assume a small or large span, but strongly affect it if we assume a span of between 45 and
100 min. For instance, increasing the span from 0 to 15 min decreases the availability share by three
percentage points; increasing the span from 75 to 90 min decreases the supply by 15 percentage points; and
increasing the span from 195 to 210 min decreases the supply by one percentage point.

It has to be taken into account that no differentiation between transportable and non-transportable
has been made in this example. For instance, if all fuels would be non-transportable, the entire supply
potential would be locally available, despite the fact that the availability ratio could be low and
therefore indicate that only a small share of the fuels was available.

We used a span of 90 min to provide a visual example of the spatial differences. Figure 9 shows
the national demand pressure (left), the external demand pressure exerted on Kitui County (centre top),
the internal demand pressure (centre bottom), and the availability share within Kitui County (right) as
model results with the respective span.
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Figure 9. Demand pressure for the entire country (left); demand pressure with its source outside
Kitui (centre top) and inside Kitui (centre bottom); and the resulting availability share in Kitui County
(right), all based on a span of 90 min.

National demand pressure is the demand for cooking fuel in each sublocation considering the
demand originating in neighbouring and more distant sublocations. Compared to local demand
(cf. Section 3.1.1), national demand is more dispersed, amplified around Nairobi, and pronounced
along roads. The external demand pressure in Kitui is concentrated in the west and decreases towards
the north, south, and east. It originates in Nairobi and follows the main road (A3) into Kitui County.
Internal demand pressure has a similar pattern to local demand, but is amplified around Kitui town and
along the main transport ways. External demand clearly exceeds internal demand in the north-west of
the county. In contrast, internal demand is dominant in the main towns (Kitui and Mwingi) and in the
less accessible eastern parts.

3.2.2. Adjusted Supply Potential and Adjusted Balance

Based on potential demand, supply potential, and availability share, we calculated the adjusted
balance. Figure 10 shows fuel demand (dashed line); fuel supply available to the county, composed
of Locally consumed supply (blue) and Local surplus (green); and fuel supply not available to the
county, composed of Exported supply (yellow) and Untapped supply potential (orange), as a function
of increasing distance decay.

The fuel available for the county is decreasing significantly, due to the growing amount of exported
fuels (exported supply). Beyond a span of 70 min, the available fuel for the county falls below the
county’s demand. However, the deficit does not exceed 40,000 households, which is reached after
approximately 120 min. This levelling off is due to non-transportable fuels, which can cover fuel
demand in most sublocations and therefore constitute the main part of the locally consumed supply.
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Figure 10. Relation between the span and the supply–demand balance of biomass cooking fuels.

In contrast, the fuel not available to the county is increasing, due to the growing share of exported
fuels, which is reducing mostly the local surplus and to some small degree the locally consumed supply.
Furthermore, a supply potential equivalent to the needs of 209,000 households remains untapped
(untapped supply potential) since it exceeds local needs but is not exported, because the fuels forming
this potential (firewood, maize, and biogas) are not transportable.

3.2.3. Sensitivity to Modified Assumption

The balance changes fundamentally if firewood is considered a transportable fuel, a change
in assumption that cuts the share of non-transportable fuels from 69% to 8%. Figure 11 compares
the available supply of biomass cooking fuels in Kitui County as a function of the span for both
assumptions. The blue curve shows the available amount under the assumption that firewood
is a traded and therefore transported fuel; the red curve shows the available amount under the
assumption that firewood is a non-traded fuel and therefore not transported.
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Figure 11. Relation between the span and the supply–demand balance of biomass cooking fuels under
different assumptions about the transport of firewood.

The share of transportable fuels only moderately affects the change from a positive to a negative
supply–demand balance. The supply balance becomes negative with a span larger than approximately
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100 min under the assumption that firewood is transportable, compared to 70 min under the assumption
that it is non-transportable.

In contrast, the share of transportable fuel strongly affects the sensitivity of the supply–demand
balance to the distance decay. With a span of zero, the positive balance is more than twice as high
(320,000 instead of 120,000) if firewood is considered to be transportable, than when it is considered
non-transportable. In relative terms, the former corresponds to a supply of 164% of the demand,
whereas the latter corresponds to 261% of the demand. In contrast, using a decay parameter of 210 min
would result in a deficit of 134,000, under the assumption of firewood as a transportable fuel, compared
to a deficit of only 40,000 households under the assumption of firewood as a non-transportable
fuel. In relative terms, only 34% of the demand in Kitui County can be covered in the former case,
whereas 81% of the demand could be covered in the latter case.

These differences in sensitivity are due to the levelling effect of the non-transportable fuels. On the
one hand, a big share of non-transportable fuels reduces the amplitude of the positive balance as
losses, i.e., supplies in sublocations that exceed their demands are more likely. On the other hand,
however, it reduces the impact of the external demand and therefore mitigates potentially negative
supply–demand balances.

4. Discussion

4.1. Estimates of Potential Supply, Demand, Balance, and External Impact

4.1.1. Supply of Different Fuels

In order to develop sustainable cooking fuel strategies, the contribution of different fuels should be
assessed based on their supply potential, geographical distribution, and potential demand. The results
of the supply calculations show the clear dominance of wood-based fuels. The high supply potential of
charcoal and firewood exceeds demand in most areas. Therefore, they have a high theoretical potential
to supply remote and urban areas. Non-woody biomass fuels such as biogas, jatropha seeds, and maize
cobs play only a secondary role. Depending on the context, however, they might occupy niches and
contribute to diversifying the fuel mix of households, thereby securing the local cooking energy supply
and providing new income opportunities.

Biogas is promising for in situ consumption. Although its overall supply potential is rather modest,
households can cover their entire cooking energy needs with it given they have sufficient animals and
access to water. However, policies are required to tackle the technical and socio-economic hurdles
associated with this fuel, for example, by promoting simple and affordable solutions, and providing
loans or government assistance [53–55].

Maize cobs do not contribute substantially, but are easy-to-use fuel supplements for on-site
consumption. They are available in most agricultural households in large amounts, but their energetic
value is low, such that the average maize producing household in Kitui County would not be able the
cover its own demand using only maize cobs. Therefore, they are at best secondary fuels with low
market prospects in urban areas, due to high emissions of particulate matter.

Jatropha seeds have a moderate supply potential, but could theoretically be commercialized or
used on-site. They have a comparatively high energy density and can therefore be transported to other
areas for direct consumption or further processing. We recommend combusting jatropha seeds on site,
without further processing, as a complement to other cooking fuels, unless affordable and user-friendly
technologies are found for the combustion of jatropha oil, and a viable market for jatropha oil develops.

4.1.2. Fuel Mix

A more diversified fuel mix could considerably contribute to the energy security of local
households. The fuel mix in Kitui County is currently very low and dominated by wood-based fuels.
However, users are quite willing to diversity their cooking fuels [98], and broadening the range of
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available and accessible fuels could be an adequate strategy to alleviate energy poverty [99]. Therefore,
making available alternative cooking fuels such as jatropha seeds or biogas could have considerable
potential to improve the energy supply, despite their comparatively small supply potential.

4.1.3. Balance and External Impact

Our results confirm the known fact that Kitui County is an important charcoal supply area for
Nairobi. However, it is likely that the demand for biomass cooking fuels will increase in the future,
and therefore policies need to consider not only the local demand but also demand from outside
Kitui County. A strong external demand for biomass cooking fuels is a risk and an opportunity at the
same time. On the one hand, it could lead to a local supply deficit and to increased fuel prices, and thus
affect the energy security of local households. On the other, it could provide new income sources,
especially for rural households, which would otherwise not be available. Non-transportable fuels such
as biogas and maize are less affected by external demand for biomass cooking fuels and are therefore
in rather stable supply. However, promoting the supply beyond local demand would not make any
sense: these fuels cannot be sold on the market and do not provide any additional income opportunity.

Based on the above, one can state that energy policies and strategies should differentiate between
cooking fuels that are mainly used for self-consumption and those that are sold on local, subnational,
and national markets. They should help find ways of reducing exports or increasing the local
production of non-transportable fuels to secure local supply. Exports that are based on a local
demand–supply surplus and therefore do not impair the local fuel security are a substantial income
opportunity and should be promoted as much as possible.

4.1.4. Impacts of Assumptions on Results

The results need to be interpreted in light of our underlying assumptions. First, we used potential
demand instead of actual demand. In other words, the actual demand for biomass cooking fuels might
be lower, since some of the households use alternative cooking fuels such as paraffin or liquefied
petroleum gas (LPG). Thus, a negative supply–demand balance does not necessarily mean that there is
a supply–demand deficit. In the case of Kitui County however, such alternative fuels are little used
(3%), and hence their impact on the supply–demand balance is negligible.

Second, our selection of biomass resources does not include all available possibilities, such as
sawdust and char dust briquettes from other crop residues (e.g., sorghum, millet, beans, peas, or rice
husks). Investigating the supply potential of such additional resources would help to achieve a more
comprehensive assessment of biomass energy potentials.

Third, we assumed deadwood to be the only source of firewood, and allocated timber to the
production of charcoal. However, a different allocation of the two wood sources would influence the
results quite strongly. For example, avoiding pyrolysis, which is responsible for the loss of around
50% of the wood’s caloric value [100], and replacing charcoal with sawdust briquettes, wood chips,
or pellets, would lead to a substantial increase in the potential supply of energy from woody biomass.

Lastly, we assumed that firewood is not transported over long distances; even though the results
show that the question of transportability has a substantial impact on the balance and can therefore
not be ignored.

4.2. Approach

4.2.1. Informative Value and Generalizability

The approach used in this study has four main advantages: (1) it can handle the missing
information on transboundary flows; (2) it requires data on demand but none on supply outside
the area of interest; (3) it can handle diametric resource flows and overlapping resource supply
catchments; and (4) it can be applied to different types of natural resources (food, timber, soils, fossil
fuels, etc.). These advantages are crucial in enhancing the effectiveness of natural resource management
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in a subnational administrative entity independently from planning processes in neighbouring entities.
Of course, the approach cannot substitute collaboration and coordination beyond county boundaries,
which remains a vital aspect of planning.

4.2.2. Methodological Limitations

The used approach has some methodological limitations. Understanding these limitations is vital
in order to apply the approach and interpret the results correctly. First, our approach uses a span
for external demand, but assumes constant internal demand. As a result, the aggregation of the
supply–demand balance might overestimate the supply side, especially under the assumption of short
spans. In order to achieve consistency across the model, the distance decay should be applied to
internal demand too. However, adjusting the model accordingly would require the analysis of the
external pressure of every single sublocation within the county. We also assumed that imports of
biomass cooking fuels are negligible, and consequently adjusted the availability share uniformly.

Second, we assumed that imports of biomass cooking fuels are negligible, and consequently
adjusted the availability share uniformly. This simplification is reasonable in the case of Kitui County,
since the imports of fuel are expected to be marginal. However, it might not be transferable to other
case study sites without adjustments to the method. We therefore recommend the further development
of the model accordingly, before applying it in areas with a higher share of imported fuels.

Third, this study provides results for the current state, but not for possible future developments.
However, key aspects such as population growth and changes in fuel consumption patterns are
momentous in Kenya and most sub-Saharan countries and they are likely to affect considerably
the supply–demand balance of biomass cooking fuels. We therefore recommend developing model
scenarios that allow capturing possible future developments.

4.2.3. Data Demand

The proposed approach helps to reduce the demand for input data. In the case of Kitui, only the
demand and supply data within the county and the demand data outside the county are required,
whereas for the rest of the surrounding area (all of Kenya), the only data needed are on the demand
for cooking fuels. Nevertheless, results suggest that additional data would substantially increase
the model’s validity and accuracy. Empirical data would help to improve the parameterization
and calibration of the distance decay function. In the case of Kenya, charcoal movement permits,
introduced as part of the Forest Regulations of 2009 [53], would offer a promising opportunity to fill
this data gap, as they include information about the quantity, source, and destination of the transported
charcoal. This data would allow us to calibrate the decay function and determine the accuracy of our
supply–demand model.

Literature [39–41] and field visits suggest that firewood is mainly used locally. Therefore,
a substantial amount of the available biomass supply is not tapped as cooking fuel, as it exceeds
the local demand and because it is not transported elsewhere. At the same time, our results show
that the assumption about the transportability and trade of firewood can substantially affect the
supply–demand balance. Therefore, more evidence is needed on the likeliness and economic feasibility
of transporting and trading the different types of biomass cooking fuels.

5. Conclusions

We developed an approach to consider external demand in modelling the supply–demand balance
of biomass cooking fuels in a specific case study area, and we tested the model by estimating the
demand, potential supply, and supply–demand balance of five biomass cooking fuels in Kitui County,
Kenya. Our approach allows policymakers, planners, and researchers to assess the supply–demand
balance at a subnational level, while considering resource demands from outside their areas of
jurisdiction or research. The spatially explicit estimates for the different biomass fuels provide a sound
basis for recommendations on cooking-fuel-related energy policies in Kitui County. However, both the
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approach and the specific findings can be generalized and hence applied to different contexts and
other resources.

We argue that our approach is particularly suitable for most administrative areas at a subnational
decision-making level that have a resource management mandate and that are mainly resource
suppliers. The method is suitable for a wide range of different natural resources that are traded across
a country, as well as for resources that are not traded or non-transportable.

Our findings and recommendations are transferable to various geographic areas. Many sub-Saharan
African countries include regions with similar climatic, natural, and socio-economic conditions. In such
areas, cooking fuel diversification can contribute to alleviating pressure on the wood resources and
improving local energy security.

Nonetheless, the model could still be further improved and additional knowledge generated to
provide additional and more specific recommendations for policy planning in the cooking energy
sector. Above, we listed specific recommendations to conceptually improve the model and the data
inputs, to increase its reliability and improve its validity. We also recommend testing the model further
in different geographical contexts and developing model scenarios reflecting future developments of
key aspects such as population size and fuel consumption patterns.

Supplementary Materials: The following are available online at www.mdpi.com/2079-9276/7/1/11/s1. R
scripts of the supply models, the demand model, the demand pressure model (gravity), and the balance models.
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Figure A1. Overview of variables in the firewood supply model (Data inputs in white; intermediate
and final results in grey).

Table A1. Detailed description of the variables in the firewood supply model (Data inputs in white;
intermediate and final results in grey).

Variable Description Values Source/Assumption/Computation

Woodstock
Aboveground live woody
biomass estimations per
sublocation

County total: 27’488’903 t
(901 t/km2)

[73] Downloaded from:
http://www.globalforestwatch.org

Increment
rate

Relation of above-ground
woody biomass to mean annual
increment of woody biomass

Formula: Increment = 16.7 *
Woodstock−0.49 [75]

Mean annual
increment
(MAI)

Annual supply of woody
biomass per sublocation County total: 1,080,475 t Mean annual increment = 16.7 *

(Woodstock)−0.49

www.mdpi.com/2079-9276/7/1/11/s1
http://www.globalforestwatch.org
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Table A1. Cont.

Variable Description Values Source/Assumption/Computation

Exclusion
areas

National Parks, National
Reserves, and forest reserves

[101] Downloaded from:
http://www.wdpa.org/

Accessible
MAI

Annual supply of woody
biomass per sublocation outside
protected areas

County total: 818,323 t
Accessible MAI = Mean annual
increment − Mean annual
increment within Exclusion areas

Firewood
rate

Share of woodstock available for
firewood each year 1.7% [43]

Firewood Potential supply of firewood per
sublocation and year 556,460 t

Firewood = (Woodstock −
Woodstock in protected areas) *
Firewood rate

Firewood
demand

Firewood consumption per
household 4.6 kg per day (1.679 t per year)

[74] Downloaded from:
http://statistics.knbs.or.ke/nada/
index.php/catalog

Households

Number of household per
sublocation that could
potentially cover their cooking
energy demand with firewood

331,423 households Households = Firewood/Firewood
demand
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Figure A2. Overview of variables in charcoal supply model (Data inputs in white; intermediate and
final results in grey).

Table A2. Detailed description of the variables in the charcoal supply model (Data inputs in white;
intermediate and final results in grey).

Variable Description Values Source/Assumption/Computation

Woodstock Aboveground live woody
biomass estimations

County total: 27’488’903 t (901
t/km2)

[73] Downloaded from:
http://www.globalforestwatch.org

Increment
rate

Relation of above-ground
woody biomass to mean annual
increment of woody biomass

Formula: Increment = 16.7 *
Woodstock−0.49 [75]

Mean annual
increment
(MAI)

Annual supply of woody
biomass per sublocation County total: 1,080,475 t Mean annual increment = 16.7 *

(Woodstock)−0.49

Exclusion
areas

National Parks, National
Reserves, and forest reserves

[101] Downloaded from:
http://www.wdpa.org/

Accessible
MAI

Annual supply of woody
biomass per sublocation outside
protected areas

County total: 818,323 t
Accessible MAI = Mean annual
increment − Mean annual
increment within Exclusion areas

http://www.wdpa.org/
http://statistics.knbs.or.ke/nada/index.php/catalog
http://statistics.knbs.or.ke/nada/index.php/catalog
http://www.globalforestwatch.org
http://www.wdpa.org/
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Table A2. Cont.

Variable Description Values Source/Assumption/Computation

Alternative
demands

Construction material

19.2 kg of wood per person and
year in rural areas 12.4 kg of wood
per person and year in peri-urban
areas 5.4 kg of wood per person
and year in urban areas

[76]

Firewood 1.7% of woodstock for firewood [43]

Other demands 20% of MAI for diverse Assumption

Charcoal
feedstock

Potential supply of woody
biomass for charcoal production
per year and sublocation

County total: 554,884 t Charcoal feedstock = Accessible
MAI − Alternative demands

Kiln
efficiency

Conversion factors from wood
to charcoal 15% [102]

Charcoal Potential supply of charcoal per
sublocation and year County total: 83,232 t Charcoal = Charcoal feedstock *

Kiln efficiency

Charcoal
demand

Amount of charcoal required by
a household

0.602 t per household and year
(1.65 kg per household and day)

[74] Downloaded from:
http://statistics.knbs.or.ke/nada/
index.php/catalog

Households

Number of household per
sublocation that could
potentially cover their cooking
energy demand with charcoal

County total: 138,203 households Households = Charcoal/Charcoal
demand
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Table A3. Detailed description of the variables in the biogas supply model (Data inputs in white;
intermediate and final results in grey).

Variable Description Values Source/Assumption/Computation

Households Number of households per
sublocation Total: 203,264 households [86] Downloaded from: http://statistics.

knbs.or.ke/nada/index.php/catalog

Exotic cattle per
household

Average number of exotic
cattle per household and
sublocation

County average: 0.05 [86] Downloaded from: http://statistics.
knbs.or.ke/nada/index.php/catalog

Indigenous cattle
per household

Average number of
indigenous cattle per
household and sublocation

County average: 1.60 [86] Downloaded from: http://statistics.
knbs.or.ke/nada/index.php/catalog

Pigs per household Average number of pigs per
household and sublocation County average: 0.01 [86] Downloaded from: http://statistics.

knbs.or.ke/nada/index.php/catalog

Exotic cattle
Average number of exotic
cattle per household and
sublocation

County total: 9583 Exotic cattle = Exotic cattle per
household * Households

Indigenous cattle
Average number of
indigenous cattle per
household and sublocation

County total: 326,026 Indigenous cattle = Indigenous cattle per
household * Households

Pigs Average number of pigs per
household and sublocation County total: 1204 Pigs = Pigs per household * Households

Dung productivity
exotic cattle

Daily production of fresh
waste (kg) per exotic cow
breed

25.75 kg per head and day [77]

Dung productivity
indigenous cattle

Daily production of fresh
waste (kg) per indigenous
cow breed

9.98 kg per head and day [77]

Dung productivity
pigs

Daily production of fresh
waste (kg) per pig 2.3 kg per head and day [77]

Dung exotic cattle Dung production from
exotic cattle per sublocation County total: 90,076 t per year Dung exotic cattle = Exotic cattle × Dung

productivity exotic cattle * 365

Dung indigenous
cattle

Dung production from
indigenous cattle per
sublocation

County total: 1,187,614 t
per year

Dung indigenous cattle = Indigenous
cattle × Dung productivity indigenous
cattle * 365

Dung pigs Dung production from pigs
per sublocation County total: 1011 t per year Dung pigs = Pigs * Dung productivity

pigs * 365

Dung accessibility
exotic cattle

Share of exotic cattle dung
that can be collected 100% Assumption: Cattle is kept in

zero-grazing practice [78]

Dung accessibility
indigenous cattle

Share of indigenous cattle
dung that can be collected 50%

Assumption: Cattle is kept only
overnight in stables. Therefore, half of the
dung is not easy collectable [78]

Dung accessibility
pigs

Share of pig dung that can
be collected 100% Assumption: Pigs are kept in

zero-grazing practice [78]

Accessible dung
exotic cattle

Accessible dung from exotic
cattle per sublocation County total: 90,076 t per year

Accessible dung exotic cattle = Dung
exotic cattle * Dung accessibility exotic
cattle

Accessible dung
indigenous cattle

Accessible dung from
indigenous cattle per
sublocation

County total: 593,807 t per
year

Accessible dung indigenous
cattle = Dung indigenous cattle * Dung
accessibility indigenous cattle

Accessible dung
pigs

Accessible dung from pigs
per sublocation County total: 1011 t per year Accessible dung pigs = Dung

pigs × Dung accessibility pigs

Water availability

Share of household in Kitui
County with a less than 10
min of walking distance to
the next source of water for
drinking, bathing, cooking,
or livestock

70.7% [74] Downloaded from: http://statistics.
knbs.or.ke/nada/index.php/catalog

Water demand Share of dung in the slurry
compared to the water 0.5 [79]

Slurry exotic cattle
Potential supply of slurry
from exotic cattle per
sublocation

County total: 127,337 t per
year

Slurry exotic cattle = Accessible dung
exotic cattle * Water availability/Water
demand

http://statistics.knbs.or.ke/nada/index.php/catalog
http://statistics.knbs.or.ke/nada/index.php/catalog
http://statistics.knbs.or.ke/nada/index.php/catalog
http://statistics.knbs.or.ke/nada/index.php/catalog
http://statistics.knbs.or.ke/nada/index.php/catalog
http://statistics.knbs.or.ke/nada/index.php/catalog
http://statistics.knbs.or.ke/nada/index.php/catalog
http://statistics.knbs.or.ke/nada/index.php/catalog
http://statistics.knbs.or.ke/nada/index.php/catalog
http://statistics.knbs.or.ke/nada/index.php/catalog
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Table A3. Cont.

Variable Description Values Source/Assumption/Computation

Slurry indigenous
cattle

Potential supply of slurry
indigenous cattle per
sublocation

County total: 839,446 t per year
Slurry exotic cattle = Accessible dung
indigenous cattle * Water
availability/Water demand

Slurry pigs Potential supply of slurry
from pigs per sublocation County total: 1430 t per year Slurry exotic cattle = Accessible dung

pigs * Water availability/Water demand

Biogas productivity
exotic cattle

Amount of biogas produced
from exotic breed cattle
dung

100 m3 per t of exotic breed
cattle dung

[77]

Biogas productivity
indigenous cattle

Amount of biogas produced
from indigenous breed cattle
dung

32 m3 per t of exotic breed
cattle dung

[77]

Biogas productivity
pigs

Amount of biogas produced
from pig dung 81 m3 per t of pig dung [77]

Biogas exotic cattle
Potential supply of biogas
from exotic cattle per
sublocation

County total: 636,860 m3 per year
Biogas exotic cattle = Slurry exotic cattle *
Water demand * Biogas productivity
exotic cattle

Biogas indigenous
cattle

Potential supply of biogas
from indigenous cattle per
sublocation

County total: 1,3431,131 m3

per year

Biogas indigenous cattle = Slurry
indigenous cattle * Water demand *
Biogas productivity indigenous cattle

Biogas pigs Potential supply of biogas
from pigs per sublocation County total: 57,909 m3 per year

Biogas pigs = Slurry pigs * Water demand
* Biogas productivity pigs

Biogas demand Amount of biogas required
by a household 657 m3 per year (1800 L per day) [81]

Households

Number of household per
sublocation that could
potentially cover their
cooking energy demand
with biogas

County total: 30,222 households
Households = (Biogas exotic
cattle + Biogas indigenous cattle + Biogas
pigs)/Biogas demand
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Figure A4. Overview of variables in the jatropha seeds supply model (Data inputs in white;
intermediate and final results in grey).

Table A4. Detailed description of the variables in the jatropha seeds supply model (Data inputs in
white; intermediate and final results in grey).

Variable Description Values Source/Assumption/Computation

Agricultural
area

Agricultural areas in Kitui
county Raster map [82] Downloaded from: http://www.fao.org/

geonetwork/srv/en/main.home

Sublocation
boundaries

Boundaries of sublocations in
Kitui County Vector map Provided by Kenya National Bureau of

Statistics (KNBS)

Share of
agriculture

Share of the total agricultural
area per sublocation

Intersection of Agricultural area and
Sublocation boundaries

http://www.fao.org/geonetwork/srv/en/main.home
http://www.fao.org/geonetwork/srv/en/main.home
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Table A4. Cont.

Variable Description Values Source/Assumption/Computation

Total
agricultural
households )

Number of agricultural
households in Kitui County 180,570 households [86] Downloaded from: http://statistics.knbs.

or.ke/nada/index.php/catalog

Agricultural
household

Agricultural household per
sublocation

County total:
180,570 households

Agricultural household = Total agricultural
households * Share of agriculture

Maize plot
size

Average size of maize plot per
agricultural households 0.52 ha [37]

Plot geometry Relation between plot size and
the corresponding contour

Plots have the form
of squares Assumption

Plot
boundaries

Length of total boundaries per
sublocation 52,002 km Plot boundaries = (Maize plot size)(1/2) * 4 *

Agricultural household

Jatropha
cultivation

Share of the plot boundaries that
can be used for jatropha hedge
cultivation

40% Assumption The remaining 50% are used for
alternative hedge plants (e.g., for fodder)

Jatropha
hedges

Total length of potential jatropha
hedges per sublocation 20,800 km Jatropha hedges = Plot boundaries * Jatropha

cultivation

Seed
productivity

Amount of jatropha seeds
yielded per unit of jatropha
hedge length

1 kg of jatropha seeds per
meter of hedge and year [83]

Jatropha
seeds

Potential supply of jatropha
seeds per sublocation and year 20,800 t Jatropha seeds = Jatropha hedges * Seed

productivity

Seed demand Amount of jatropha seeds
required by a household

2.2 kg per household and
day (0.803 t per year) [57]

Households
Number of households that
could potentially be supplied
with jatropha

25,904 households Households = Jatropha seeds/Seed demand
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93,600 ha [37] 

Maize yield 
Amount of maize yielded 
per year and sublocation 

County total: 
46,716 t per year Maize yield = Maize plots * Share of agriculture 

Yield to cob 
ratio 

Share of the maize yield 
that is the maize cob (%) 
(values based on the year 
2012) 

15% [84] 

Maize cobs Potential supply of maize 
cobs per sublocation and year 

County total:  
7007 t per year 

Maize cobs = Maize yield * Yield to cob ratio 

Maize cob 
demand 

Number of maize cobs 
required by a household 

0.625 t per year 
and household 
(1.7125 kg per day 
and household) 

Own Water Boiling Test (i.e., demand for boiling 5 
L of water and simmering it 45 min) [101]: 800 g to 
930 g Assumption: 2.5 meals per day 

Households 

Number of household per 
sublocation that could 
potentially cover their 
cooking energy demand 
with maize cobs 

County total: 
11,200 households 

Households = Maize cobs * Cob demand 

Figure A5. Overview of variables in the maize cobs supply model (Data inputs in white; intermediate
and final results in grey).

Table A5. Detailed description of the variables in the maize cobs supply model (Data inputs in white;
intermediate and final results in grey).

Variable Description Values Source/Assumption/Computation

Agricultural
area

Agricultural areas in Kitui
county Geometries [82] Downloaded from: http://www.fao.org/

geonetwork/srv/en/main.home

Sublocation
boundaries

Boundaries of sublocations
in Kitui County Geometries Provided by Kenya National Bureau of Statistics

(KNBS)

Share of
agriculture

Share of the total agricultural
area per sublocation

Intersection of Agricultural area and Sublocation
boundaries

http://statistics.knbs.or.ke/nada/index.php/catalog
http://statistics.knbs.or.ke/nada/index.php/catalog
http://www.fao.org/geonetwork/srv/en/main.home
http://www.fao.org/geonetwork/srv/en/main.home
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Table A5. Cont.

Variable Description Values Source/Assumption/Computation

Maize plots
Area under maize
cultivation (values based on
the year 2012)

93,600 ha [37]

Maize yield Amount of maize yielded
per year and sublocation

County total: 46,716 t
per year Maize yield = Maize plots * Share of agriculture

Yield to cob
ratio

Share of the maize yield that
is the maize cob (%) (values
based on the year 2012)

15% [84]

Maize cobs
Potential supply of maize
cobs per sublocation and
year

County total: 7007 t
per year Maize cobs = Maize yield * Yield to cob ratio

Maize cob
demand

Number of maize cobs
required by a household

0.625 t per year and
household (1.7125 kg per
day and household)

Own Water Boiling Test (i.e., demand for boiling
5 L of water and simmering it 45 min) [101]: 800
g to 930 g Assumption: 2.5 meals per day

Households

Number of household per
sublocation that could
potentially cover their
cooking energy demand
with maize cobs

County total:
11,200 households Households = Maize cobs * Cob demand

Appendix F. Parameters of Travel Time Distance Model

Table A6. Travel speed by land cover type.

Land Cover Class Speed

Post-flooding or irrigated croplands 4 km/h

Rainfed croplands 4 km/h

Mosaic cropland (50–70%)/vegetation (20–50%) 4 km/h

Mosaic vegetation (50–70%)/cropland (20–50%) 4 km/h

Closed to open broadleaved evergreen or semi-deciduous forest 4 km/h

Closed broadleaved deciduous forest 4 km/h

Open broadleaved deciduous forest/woodland 3 km/h

Closed needleleaved evergreen forest 4 km/h

Open needleleaved deciduous or evergreen forest 3 km/h

Closed to open mixed broadleaved and needleleaved 4 km/h

Mosaic forest or shrubland (50–70%)/grassland 4 km/h

Mosaic grassland (50–70%)/forest or shrubland 4 km/h

Closed to open shrubland 4 km/h

Closed to open herbaceous vegetation 4 km/h

Sparse vegetation 4 km/h

Closed to open broadleaved forest (regularly flooded) 4 km/h

Closed to open grassland or woody vegetation 2 km/h

Artificial surfaces and associated areas 3 km/h

Bare areas 5 km/h

Water bodies 5 km/h

Permanent snow and ice 0 km/h
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Table A7. Travel speed by road type.

Road Class Speed

Trunk 80 km/h
Primary 60 km/h

Secondary 50 km/h
Tertiary 30 km/h

Road 30 km/h
Unclassified 30 km/h
Residential 30 km/h

Track 30 km/h

Table A8. Travel speed by waterway type.

Waterway Class Speed

River 0.5 km/h
Stream 0.5 km/h
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