Delorme, P.; Schmidt, T.; Bonnefoy, M.; Desidera, S.; Ginski, C.; Charnay, B.; Lazzoni, C.; Christiaens, V.; Messina, S.; D’Orazi, V.; Milli, J.; Schlieder, J. E.; Gratton, R.; Rodet, L.; Lagrange, A.-M.; Absil, O.; Vigan, A.; Galicher, R.; Hagelberg, J.; Bonavita, M.; ... (2017). In-depth study of moderately young but extremely red, very dusty substellar companion HD 206893B. Astronomy and astrophysics, 608(A79), A79. EDP Sciences 10.1051/0004-6361/201731145
|
Text
Mordasini_In-depth study of moderately young but extremely red, very dusty.pdf - Accepted Version Available under License Publisher holds Copyright. Download (3MB) | Preview |
Context. The substellar companion HD206893b has recently been discovered by direct imaging of its disc-bearing host star with the SPHERE instrument.
Aims. We investigate the atypical properties of the companion, which has the reddest near-infrared colours among all known substellar objects, either orbiting a star or isolated, and we provide a comprehensive characterisation of the host star-disc-companion system. We conducted a follow-up of the companion with adaptive optics imaging and spectro-imaging with SPHERE, and a multiinstrument follow-up of its host star. We obtain a R=30 spectrum from 0.95 to 1.64 μm of the companion and additional photometry at 2.11 and 2.25 μm. We carried out extensive atmosphere model fitting for the companions and the host star in order to derive their age, mass, and metallicity.
Results. We found no additional companion in the system in spite of exquisite observing conditions resulting in sensitivity to 6MJup (2MJup) at 0.5" for an age of 300 Myr (50 Myr). We detect orbital motion over more than one year and characterise the possible Keplerian orbits. We constrain the age of the system to a minimum of 50 Myr and a maximum of 700 Myr, and determine that the host-star metallicity is nearly solar. The comparison of the companion spectrum and photometry to model atmospheres indicates that the companion is an extremely dusty late L dwarf, with an intermediate gravity (log g ~4.5--5.0) which is compatible with the independent age estimate of the system.
Conclusions. Though our best fit corresponds to a brown dwarf of 15-30 MJup aged 100-300 Myr, our analysis is also compatible with a range of masses and ages going from a 50 Myr 12MJup planetary-mass object to a 50 MJup Hyades-age brown dwarfs. We also find that the detected companion cannot shape the observed outer debris disc, hinting that one or several additional planetary mass objects in the system might be necessary to explain the position of the disc inner edge.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
08 Faculty of Science > Physics Institute > Space Research and Planetary Sciences > Theoretical Astrophysics and Planetary Science (TAPS) 08 Faculty of Science > Physics Institute > Space Research and Planetary Sciences 08 Faculty of Science > Physics Institute 08 Faculty of Science > Physics Institute > NCCR PlanetS |
UniBE Contributor: |
Mordasini, Christoph |
Subjects: |
500 Science > 520 Astronomy 600 Technology > 620 Engineering 500 Science 500 Science > 530 Physics |
ISSN: |
0004-6361 |
Publisher: |
EDP Sciences |
Language: |
English |
Submitter: |
Janine Jungo |
Date Deposited: |
18 Apr 2018 13:53 |
Last Modified: |
05 Dec 2022 15:11 |
Publisher DOI: |
10.1051/0004-6361/201731145 |
BORIS DOI: |
10.7892/boris.112380 |
URI: |
https://boris.unibe.ch/id/eprint/112380 |