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SUMMARY

Many methods have recently been proposed for efficient analysis of case-control studies of
gene-environment interactions using a retrospective likelihood framework that exploits the nat-
ural assumption of gene-environment independence in the underlying population. However, for
polygenic modelling of gene-environment interactions, which is a topic of increasing scientific
interest, applications of retrospective methods have been limited due to a requirement in the lit-
erature for parametric modelling of the distribution of the genetic factors. We propose a general,
computationally simple, semiparametric method for analysis of case-control studies that allows
exploitation of the assumption of gene-environment independence without any further parametric
modelling assumptions about the marginal distributions of any of the two sets of factors. The
method relies on the key observation that an underlying efficient profile likelihood depends on
the distribution of genetic factors only through certain expectation terms that can be evaluated
empirically. We develop asymptotic inferential theory for the estimator and evaluate its numerical
performance via simulation studies. An application of the method is presented.

Some key words: Case-control study; Gene-environment interaction; Genetic epidemiology; Pseudolikelihood;
Retrospective study; Semiparametric method.
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1. INTRODUCTION

Recent genome-wide association studies indicate that complex diseases, such as cancers, dia-
betes and heart diseases, are in general extremely polygenic (Chatterjee et al., 2016; Fuchsberger
et al., 2016). Genetic predisposition to a single disease may involve thousands of genetic vari-
ants; each of these may have a very small effect individually, but in combination they can explain
substantial variation in risk in the underlying population. As discoveries from genome-wide
association studies continue to enhance understanding of complex diseases, in the future it will
be critical to elucidate how these genetic factors interact with environmental risk factors, in
order to better understand disease mechanisms and to develop public health strategies for disease
prevention.

Because of its sampling efficiency, the case-control design is widely popular for conducting
studies of genetic associations and gene-environment interactions. A variety of analytical meth-
ods have been proposed to increase the efficiency of analysis of case-control data for studies of
gene-environment interactions by exploiting an assumption of gene-environment independence
in the underlying population. It has been shown that under the assumptions of gene-environment
independence and rare disease, the interaction odds-ratio parameters of a logistic regression
model can be estimated efficiently based on cases alone (Piegorsch et al., 1994). A general logis-
tic regression model can be fitted to case-control data under the gene-environment independence
assumption using a log-linear modelling framework (Umbach & Weinberg, 1997) or a semipara-
metric retrospective profile likelihood framework (Chatterjee & Carroll, 2005). More recently,
the assumption of gene-environment independence has been exploited to propose a variety of
powerful hypothesis testing methods for conducting genome-wide scans of gene-environment
interactions (Mukherjee & Chatterjee, 2008; Murcray et al., 2009; Hsu et al., 2012; Mukherjee
et al., 2012; Gauderman et al., 2013; Han et al., 2015).

We consider developing methods for efficient analysis of case-control studies for modelling
gene-environment interactions that involve multiple genetic variants simultaneously. To develop
parsimonious models for joint effects, many studies have focused on developing models for
gene-environment interactions using underlying polygenic risk scores that could be defined by
all known genetic variants associated with the disease (Meigs et al., 2008; Wacholder et al., 2010;
Chatterjee et al., 2013; Dudbridge, 2013; Chatterjee et al., 2016). Further, to obtain improved
biological insights and to enhance statistical power for detection, one may often wish to model
gene-environment interactions using multiple variants within genomic regions and/or biologic
pathways (Chatterjee et al., 2006; Jiao et al., 2013; Lin et al., 2013, 2015). In standard prospec-
tive logistic regression analysis, which conditions on both the genetic and the environmental
risk factor status of the individuals, handling multiple genetic variants is relatively straightfor-
ward. In contrast, with so-called retrospective methods, which aim to exploit the assumption
of gene-environment independence, the task becomes complicated because all currently exist-
ing methods require parametric modelling of the distribution of the genetic or environmental
variables.

We propose a computationally simple method for fitting general logistic regression models to
case-control data under the assumption of gene-environment independence, but without requir-
ing any further modelling assumptions about the distributions of the genetic or environmental
variables. We extend the Chatterjee–Carroll profile likelihood framework, which originally con-
sidered modelling gene-environment interactions using single genetic variants for which genotype
status could be specified using parametric multinomial models. The new method relies on the
observation that the profile likelihood itself can be estimated based on an empirical genotype dis-
tribution that is estimable from a case-control sample. We develop the asymptotic theory of the
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resulting estimator under a semiparametric inferential framework. Simulations and an example
illustrate the properties of the new method.

2. MODEL, METHOD AND THEORY

2·1. Background, model and method

In the following, we use notation similar to that in Chatterjee & Carroll (2005). We will denote
disease status, genetic information and environmental risk factors by D, G and X , respectively.
Here G may correspond to a complex multivariate genotype associated with multiple genetic
variants or to a continuous polygenic risk score that is defined a priori based on known associations
of the genetic variants with the disease. We assume that the risk of the disease given genetic and
environmental factors in the underlying population can be specified using a model of the form

pr(D = 1 | G, X ) = H {α0 + m(G, X , β)}, (1)

where H (x) = {1+ exp(−x)}−1 is the logistic distribution function and m(G, X , β) is a paramet-
rically specified function that defines a model for the joint effect of G and X on the logistic-risk
scale. The goal of the gene-environment interaction study is to make inference on the parameters
β in (1), including interaction parameters.

Let F(G, X ) denote the joint distribution of G and X in the underlying population. The key
assumption that genetic factors, G, and environmental factors, X , are independently distributed
in the underlying population can be mathematically stated as

dF(G, X ) = dFG(G) × dFX (X ),

where FG and FX denote the underlying marginal distributions of G and X , respectively. In the
Supplementary Material we discuss how to weaken this assumption by suitable conditioning on
additional stratification factors. In contrast to the existing literature, here we assume that the
marginal distributions FG(G) and FX (X ) are both completely unspecified.

We consider a population-based case-control study, in which (G, X ) are sampled independently
from individuals with the disease, called cases, and those without the disease, called controls.
Suppose there are n1 cases and n0 controls. Standard prospective logistic regression analysis,
which is equivalent to maximum likelihood estimation when F(G, X ) is allowed to be completely
unspecified, yields consistent estimates of β (Prentice & Pyke, 1979).

The retrospective likelihood is the probability of observing the genetic and environmental vari-
ables, given the subject’s disease status. Under gene-environment independence in the underlying
population, the retrospective likelihood is

pr(G = g, X = x | D = d) = pr(D = d | G = g, X = x) pr(G = g) pr(X = x)/pr(D = d).

Let fG(·) and fX (·) represent the density or mass functions of G and X , respectively. The
retrospective likelihood is

fG(g)fX (x) exp[d{α0 + m(g, x, β)}]/[1 + exp{α0 + m(g, x, β)}]∫
fG(u)fX (v) exp[d{α0 + m(u, v, β)}]/[1 + exp{α0 + m(u, v, β)}] du dv

. (2)

Chatterjee & Carroll (2005) profiled out fX (·) by treating it as discrete on the set of distinct
observed values (x1, . . . , xm) of X with probabilities δi = pr(X = xi), and then maximizing
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804 O. STALDER ET AL.

(2) over (δ1, . . . , δm), leading eventually to the semiparametric profile likelihood described as
follows. Define κ = α0 + log(n1/n0) − log(π1/π0), where π1 = 1 − π0 = pr(D = 1) is defined
as the probability of the disease in the underlying population. Define � = (κ , βT)T. Also let

S(d, g, x, �) = exp[d{κ + m(g, x, β)}]
1 + exp{κ + log(π1/π0) − log(n1/n0) + m(g, x, β)} .

Then, with this notation, the semiparametric profile likelihood is

L(D, G, X , �, fG) = fG(G)
S(D, G, X , �)∑1

d=0

∫
fG(v)S(d, v, X , �) dv

. (3)

While the representation in (3) does not involve the unknown density of X , it does involve the
unknown density of G. This is a major reason that methods in the current literature specify
a parametric distribution for G. Our aim in this paper is to dispense with the need to give a
parametric form for the distribution function of G, so that analysis can be performed with respect
to potentially complex multivariate genotype data for which parametric modelling can be difficult
and cumbersome.

Here is our key insight, which we discuss first in the context that π1 is known or at least can
be estimated well. For case-control studies that are conducted within well-defined populations,
relevant probabilities of the disease can be ascertained using population-based disease registries.
When case-control studies are conducted by the sampling of subjects within a larger cohort study,
the probability of the disease in the underlying population can be estimated using the disease
incidence rate observed in the cohort.

Our key insight in treating the distribution of G as nonparametric concerns the term in the
denominator of (3), defined as

R(x, �) =
1∑

r=0

∫
fG(v)S(r, v, x, �) dv.

This is simply the expectation, in the source population, of
∑1

r=0 S(r, G, x, �); that is, R(x, �) =
Epop{∑1

r=0 S(r, G, x, �)}, where the subscript pop emphasizes that the expectation is in the source
population, not in the case-control study. However, crucially,

R(x, �) = π1E

{
1∑

r=0

S(r, G, x, �)

∣∣∣∣ D = 1

}
+ π0E

{
1∑

r=0

S(r, G, x, �)

∣∣∣∣ D = 0

}
. (4)

Of course, R(x, �) is unknown, but we estimate it unbiasedly and nonparametrically by

R̂(x, �) =
n∑

j=1

1∑
r=0

1∑
d=0

(πd/nd)I (Dj = d)S(r, Gj, x, �). (5)

In the Supplementary Material, we show that R̂(x, �) is an unbiased estimate of R(x, �) which
is n1/2-consistent, and that it is asymptotically normally distributed.
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Ignoring the leading term fG(G) in (3), which is not estimated, and taking logarithms leads us
to an estimated loglikelihood in � across the data as

L(�) =
n∑

i=1

log S(Di, Gi, Xi, �) −
n∑

i=1

log R̂(Xi, �). (6)

Define S�(d, g, x, �) = ∂S(d, g, x, �)/∂� and similarly for R̂�(x, �). Then the estimated score
function, a type of estimated estimating equation, is

Ŝn(�) = n−1/2
n∑

i=1

{
S�(Di, Gi, Xi, �)

S(Di, Gi, Xi, �)
− R̂�(Xi, �)

R̂(Xi, �)

}
. (7)

Define

Sn(�) = n−1/2
n∑

i=1

{
S�(Di, Gi, Xi, �)

S(Di, Gi, Xi, �)
− R�(Xi, �)

R(Xi, �)

}
,

which is the profile loglikelihood score function when the distribution of G is known. Since the
profile loglikelihood score of Chatterjee & Carroll (2005) would have mean zero if the distribution
of G were known, it follows that

E{Sn(�)} = 0, (8)

where the expectation in (8) is taken in the case-control study, not in the source population.
Thus, since R̂(x, �) and R̂�(x, �) converge in probability to R(x, �) and R�(x, �), respectively,
a consistent estimate of � can be obtained by solving Ŝn(�) = 0. This estimate �̂, which
maximizes the semiparametric pseudolikelihood (6), will be referred to as the semiparametric
pseudolikelihood estimator.

2·2. Rare diseases when π1 is unknown

When the probability of disease in the source population is unknown, one can invoke a rare
disease assumption which is often reasonable for case-control studies (Piegorsch et al., 1994;
Modan et al., 2001; Epstein & Satten, 2003; Zhao et al., 2003; Lin & Zeng, 2006; Kwee et al.,
2007). If we assume that π1 ≈ 0, then S(d, g, x, �) ≈ exp[d{κ +m(g, x, β}], and the expectation
involved in the calculation of R(X , �) can be evaluated based on only the sample of controls,
with D = 0. In this case, the estimates of � converge not to � itself but to �∗, the solution to (8)
with π1 = 0. Typically, except when the sample size is very large and hence standard errors are
unusually small, the small possible bias of the rare disease approximation is of little consequence
and coverage probabilities of confidence intervals remain near nominal; see § 3 for examples.
The asymptotic theory of § 2·3 below is then unchanged.

In the Supplementary Material, we show that the score and the Hessian take simple forms in
this case, and that the Hessian is negative semidefinite. Computation is thus very efficient.
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2·3. Asymptotic theory

To state the asymptotic results, we first make the definitions

	1 =
1∑

d=0

(nd/n)E

{
∂S�(D, G, X , �)/S(D, G, X , �)

∂�T

∣∣∣∣ D = d

}
,

	2 =
1∑

d=0

(nd/n)E

{
∂R�(X , �)/R(X , �)

∂�T

∣∣∣∣ D = d

}
.

In addition, define cd = nd/n, Zi = (Di, Gi, Xi), P1(Xi, �) = 1/R(Xi, �) and P2(Xi, �) =
R�(Xi, �)/R2(Xi, �).

We use the notational convention that for arbitrary functions (P, T ), TE(r, d, x) =
E{T (r, G, x) | D = d}. Also, we use the convention that

E
[
P(X ){T (r, gi, X ) − TE(r, d, X )} | D = t

]
= E

[
P(X ){T (r, g, X ) − TE(r, d, X )} | D = t

]
g=Gi

.

Define

ζ(Zi, �) = S�(Zi, �)

S(Zi, �)
− R�(Xi, �)

R(Xi, �)

−
1∑

d=0

1∑
r=0

cdπdi

cdi

E
[{P1(X , �)S�(r, gi, X ) − P2(X , �)S(r, gi, X )} | D = d

]
.

Finally, define ζ∗(Zi, �) = ζ(Zi, �) − E{ζ(Z , �) | D = Di}.

THEOREM 1. Suppose that nd/n → cd , where 0 < cd < ∞, and that π1 is known. Then

n1/2(�̂ − �) = −(	1 − 	2)
−1n−1/2

n∑
i=1

ζ∗(Zi, �) + op(1).

Therefore, since the Zi are independent and E{ζ∗(Z , �) | Di} = 0, as n → ∞,

n1/2(�̂ − �) → N
[
0, (	1 − 	2)

−1�{(	1 − 	2)
−1}T

]
in distribution, where

� =
1∑

d=0

(nd/n) cov{ζ∗(D, X , G, �) | D = d} =
1∑

d=0

(nd/n) cov{ζ(D, X , G, �) | D = d}.

In § 2·2, when π1 is unknown and the disease is relatively rare, the same result holds upon
setting π1 = 0.
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3. SIMULATIONS

3·1. Overview

In our simulations, m(G, X , β) = GTβG + X βX + (GX )TβGX and the value of X is binary
with population frequency 0·5. There are either three or five correlated single nucleotide poly-
morphisms within a region; we report on the latter case, but the results for the former case are
similar. Each single nucleotide polymorphism takes on the values 0, 1 or 2 following a trinomial
distribution that follows the Hardy–Weinberg equilibrium, i.e., the jth component of G equals 0,
1, 2 with probabilities {(1−pj)

2, 2pj(1−pj), p2
j }, respectively. The values of the pj are described

below.
To generate correlation among the single nucleotide polymorphisms, we first generated a 3-

or 5-variate multivariate normal variate, with mean 0 and standard deviation 1, and a correlation
matrix with correlation between the jth and kth components being ρ|j−k|, where ρ = 0·7. After
generating these random variables, we trichotomized them with appropriate thresholds so that the
frequencies of 0, 1 and 2 matched those specified by the allele frequency pj and Hardy–Weinberg
equilibrium.

In both simulations, the logistic intercept α0 was chosen so that the population disease rate
π1 = 0·03. However additional simulations with π1 = 0·01 yielded very similar results in
terms of coverage, efficiency gains, and unbiasedness. See § 3·3 and the Supplementary Material
for a discussion of additional simulations. In the simulation reported here, (p1, p2, p3, p4, p5) =
(0·1, 0·3, 0·3, 0·3, 0·1), βX = log(1·5), βG = {log(1·2), log(1·2), 0·0, log(1·2), 0·0} and βGX =
{log(1·3), 0·0, 0·0, log(1·3), 0·0}. Here α0 = −4·14.

3·2. Results

The standard error estimators used in our simulation were based on the asymptotic theory
described in Theorem 1; we also used the bootstrap and obtained very similar results. The appro-
priate bootstrap in a case-control study is to resample the cases and controls separately, thus
maintaining the sample sizes for each.

The simulation results are presented in Table 1. Our semiparametric pseudolikelihood estimator
shows little bias and has coverage percentages near the nominal level. Both with a rare disease
approximation and with π1 known, our semiparametric pseudolikelihood estimator achieves
approximately a 25% increase in mean squared error efficiency over ordinary logistic regression
for the main effects in both G and X .

Strikingly, the mean squared error efficiency of our semiparametric pseudolikelihood estima-
tors compared to ordinary logistic regression is approximately 2·00 for all the interaction terms,
thus demonstrating that our methods, which do not model the distribution of either G or X ,
achieve numerically significant increases in efficiency.

3·3. Additional simulations

The Supplementary Material presents a series of additional simulations. These include the
results of a simulation to evaluate the robustness of our method with respect to misspecification
of the population disease rate; we found a surprising robustness with respect to disease rate
misspecification.Additionally, we performed simulations to examine the robustness of our method
with respect to violations of the gene-environment independence assumption. Those simulation
studies show that there will be bias in the estimates of gene-environment interaction parameters
for the specific single nucleotide polymorphisms that violate gene-environment independence, but
the average mean squared error for parameter estimates across all the different single nucleotide
polymorphisms could still be substantially lower than that obtained from prospective logistic
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808 O. STALDER ET AL.

Table 1. Results of 1000 simulations as described in § 3: mean bias, coverage probabilities of
a 95% nominal confidence interval, and mean squared error efficiency of our semiparametric
pseudolikelihood estimator compared with ordinary logistic regression; the simulations were

performed with 1000 cases and 1000 controls
βG1 βG2 βG3 βG4 βG5 βX βG1X βG2X βG3X βG4X βG5X

True 0·18 0·18 0·00 0·18 0·00 0·41 0·26 0·00 0·00 0·26 0·00

Logistic: 1000 cases
Bias 0·00 0·01 0·00 0·01 −0·01 0·01 0·01 −0·01 0·00 0·00 0·01
CI (%) 94·3 95·2 95·7 95·1 94·7 94·6 94·9 94·2 94·5 96·0 94·2

SPMLE Rare: 1000 cases
Bias 0·01 0·00 0·00 0·02 −0·01 0·02 −0·02 −0·01 0·01 −0·02 0·01
CI (%) 95·2 95·4 96·4 95·8 95·3 95·1 95·4 94·8 96·1 95·5 94·9
Avg MSE Eff All G: 1·28 X : 1·26 All G∗X : 2·18

SPMLE π1 known: 1000 cases
Bias 0·00 0·00 0·00 0·01 −0·01 0·01 0·00 −0·01 0·01 −0·01 0·01
CI (%) 95·1 95·5 96·4 95·8 95·0 95·5 95·6 94·6 95·9 95·2 94·5
Avg MSE Eff All G: 1·28 All X : 1·28 All G∗X : 2·07

Logistic, ordinary logistic regression; SPMLE Rare, our estimator using the rare disease approximation with unknown
π1 (§ 2·2); SPMLE π1 known, our estimator when π1 is known in the source population (§ 2·1); CI, coverage of a
nominal 95% confidence interval, calculated using the asymptotic standard error; Avg MSE Eff, mean squared error
efficiency of our method compared to logistic regression averaged over G (All G), over X (All X ) or over all G∗X
interactions (All G∗X ).

regression analysis. We also show in the Supplementary Material how to remove this bias when
G and X are independent conditional on a discrete stratification variable. Mukherjee & Chatterjee
(2008) and Chen et al. (2009) show how to use empirical Bayes methods to provide additional
robustness with respect to violations of the gene-environment independence assumption.

4. DATA ANALYSIS

In this section, we apply our method to a case-control study for breast cancer arising from
a large prospective cohort at the National Cancer Institute: the Prostate, Lung, Colorectal and
Ovarian cancer screening trial (Canzian et al., 2010). The design of this study is described in detail
by Prorok et al. (2000) and Hayes et al. (2000). The cohort data consisted of 622 449 women,
of whom 3·56% developed breast cancer (Pfeiffer et al., 2013). The case-control study analysed
here consists of 753 controls and 658 cases. Although π1 is known in this population, we analyse
the data both with π1 known and with π1 unknown but using a rare disease approximation.

We had data available on genotypes for 21 single nucleotide polymorphisms that have been
previously associated with breast cancer based on large genome-wide association studies. The
polygenic risk score was defined by a weighted combination of the genotypes, with the weights
defined by log-odds-ratio coefficients reported in prior studies. We examined the interaction of
the polygenic risk score with age at menarche, X , a known risk factor for breast cancer, defined as
the binary indicator of whether the age at menarche exceeds 13 or not. We also adjust the model
for age as a continuous variable, denoted here by Z , so that the model fitted is

pr(D = 1) = H (β0 + βGG + βX X + βGX GX + βZ Z).

Results when age was categorized as <35, 35–40, 40–45, . . . , >75 were similar.

Downloaded from https://academic.oup.com/biomet/article-abstract/104/4/801/4158788
by Universitaetsbibliothek Bern user
on 08 March 2018



Analysis of polygenic gene-environment interactions 809

Table 2. Results of the analysis of the Prostate, Lung, Colorectal and
Ovarian cancer screening trial data

βZ βG βX βGX

Logistic
Estimate 0·018 0·297 −0·165 0·124
Std err 0·054 0·064 0·132 0·068
p-value 7·45 × 10−1 3·19 × 10−6 2·10 × 10−1 6·87 × 10−2

SPMLE Rare
Estimate 0·024 0·321 −0·175 0·138
Std err (asymptotic) 0·054 0·067 0·134 0·055
p-value (asymptotic) 6·60 × 10−1 1·62 × 10−6 1·91 × 10−1 1·16 × 10−2

SPMLE π1 known
Estimate 0·022 0·313 −0·174 0·141
Std err (asymptotic) 0·054 0·065 0·133 0·055
p-value (asymptotic) 6·78 × 10−1 1·64 × 10−6 1·93 × 10−1 1·13 × 10−2

Logistic, ordinary logistic regression; SPMLE Rare, our method using the rare disease
approximation with unknown π1; SPMLE π1 known, our method when the disease rate
is known in the source population (π1 = 3·56%); Std err, the asymptotic standard error
estimate; βZ , the main effect for age; βG and βX , the main effects for the polygenic risk
score (G) and the environmental variable X (age at menarche >13), respectively; βGX ,
the gene-environment interaction.

We also performed analyses to check the gene-environment independence assumption. Since
X is binary, we ran a t-test of the polygenic risk score against the levels of X , of course among the
controls only. The p-value was 0·91, indicating almost no genetic effect. We also ran chi-squared
tests for the 21 individual genes, finding no significant association after controlling the false
discovery rate: the minimum q-value was 0·09. In addition, we checked for correlation, known
as linkage disequilibrium, between the 21 loci used to create the polygenic risk score and 32 loci
that are known to influence age at menarche (Elks et al., 2010). The data available to us do not
contain the necessary information to analyse linkage disequilibrium between the two sets of loci.

Using phased haplotypes from subjects of European descent from the 1000 Genomes Project
(The 1000 Genomes Project Consortium, 2015) and HapMap (Gibbs et al., 2003), no evidence
of linkage disequilibrium was found: the maximum R2 was 0·1 and the minimum q-value was
0·85. Finally, a 2014 study examined the relationship between age at menarche and 10 of the 21
single nucleotide polymorphisms used to create our polygenic risk score, none of which were
found to influence age at menarche (Andersen et al., 2014).

Table 2 presents the results for the cases where π1 is unknown and known; as remarked upon
previously, the results are very similar. Because of the very different scales of the variables, to
provide a basis for comparison the variable age at baseline was standardized to have mean zero
and standard deviation one. In addition, we standardized some of the coefficient estimates so that
βG was multiplied by the standard deviation of the polygenic risk score, and βGX was multiplied
by the standard deviation of X times the polygenic risk score.

As expected from the known association of the single nucleotide polymorphisms with risk of
breast cancer, the polygenic risk score was strongly associated with breast cancer status of the
women in the study. Standard logistic regression analysis reveals some evidence for interaction of
the polygenic risk score with age at menarche, but the result was not statistically significant at the
0·05 level. When the analysis was done under the gene-environment independence assumption,
the evidence for interaction appeared to be stronger.
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The coefficient estimate for the interaction term is slightly larger for our semiparametric
methods than for logistic regression. Also, the asymptotic standard error estimate of logistic
regression is approximately 23% larger than that for our methods, indicating a variance increase
of approximately 50%. Although not listed here, the bootstrap mentioned in § 3·2 has very similar
standard error estimates. In that bootstrap, 33% of the time the logistic interaction estimate was
actually greater than that of the disease-rate-known estimate.

5. DISCUSSION AND EXTENSIONS

We have proposed a general method for using retrospective likelihoods to study gene-
environment interactions involving multiple markers, an approach that does not require any
distributional assumption on the multivariate genotype distribution. Sometimes, one may con-
sider modelling multimarker gene-environment interactions using an underlying polygenic risk
score, which is a weighted combination of numerous genetic markers where the weights are
predetermined from previous association studies. In such situations, the polygenic risk score
might be assumed to follow approximately a normal distribution in the underlying population,
and the profile likelihood method of Chatterjee & Carroll (2005) can be used with appropriate
modification by replacing the parametric multinomial distribution for a single nucleotide poly-
morphism genotype with a parametric normal distribution for the polygenic risk score; see also
Chen et al. (2008) and Lin & Zeng (2009). In general, however, if one wishes to explore complex
models for multivariate gene-environment interactions retaining separate parameters for distinct
single nucleotide polymorphisms or for distinct genetic profiles defined by combinations of corre-
lated single nucleotide polymorphisms, then one cannot avoid dealing with complex multivariate
genotype distributions, something that is not easy to specify through parametric models.

Our methods are types of semiparametric plug-in estimators, and thus have certain features in
common with the work of Newey (1994), namely that the profile likelihood has the nonparametric
component R(x, �) in (4) that is estimated by (5). Generally, however, such plug-in estimators are
not semiparametric efficient. We believe it will be possible to create an efficient semiparametric
estimator by modifying the work of Ma (2010); we are exploring this and its computational
aspects, which may be daunting.
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SUPPLEMENTARY MATERIAL

Supplementary Material available at Biometrika online contains proofs, skewness and kurtosis
and Q-Q plots for the simulation in Table 1, a discussion of how to modify our methods to account
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for strata, results of additional simulations, and software written in R. The data used in § 4 are
available from the National Cancer Institute via a data transfer agreement.
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