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Summary 20

Many methods have been recently proposed for efficient analysis of case–control studies
of gene-environment interactions using a retrospective likelihood framework that exploits
the natural assumption of gene-environment independence in the underlying population.
However, for polygenic modeling of gene-environment interactions, a topic of increas-
ing scientific interest, applications of retrospective methods have been limited due to 25

a requirement in the literature for parametric modeling of the distribution of the ge-
netic factors. We propose a general, computationally simple, semiparametric method
for analysis of case–control studies that allows exploitation of the assumption of gene–
environment independence without any further parametric modeling assumptions about
the marginal distributions of any of the two sets of factors. The method relies on the 30

key observation that an underlying efficient profile likelihood depends on the distribution
of genetic factors only through certain expectation terms that can be evaluated empiri-
cally. We develop asymptotic inferential theory for the estimator and evaluate numerical
performance using simulation studies. An application of the method is presented.
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1. Introduction

Recent genome-wide association studies indicate that complex diseases, such as can-
cers, diabetes and heart diseases, are in general extremely polygenic (Chatterjee et al.,
2016; Fuchsberger et al., 2016). Genetic predisposition to a single disease may involve40

thousands of genetic variants, each of which may have a very small effect individually, but
in combination they can explain substantial variation in risk in the underlying population.
As discoveries from genome-wide association studies continue to enhance understanding
of complex diseases, in the future, it will be critical to understand how these genetic fac-
tors interact with environmental risk factors for both understanding disease mechanisms45

and developing public health strategies for disease prevention.
Because of its sampling efficiency, the case–control design is widely popular for con-

ducting studies of genetic associations and gene–environment interactions. A variety of
analytic methods have been proposed to increase the efficiency of analysis of case–control
data for studies of gene–environment interactions by exploiting an assumption of gene–50

environment independence in the underlying population. It has been shown that under
the assumptions of gene–environment independence and rare disease, the interaction
odds-ratio parameters of a logistic regression model can efficiently be estimated based on
cases alone (Piegorsch et al., 1994). A general logistic regression model can be fit to case–
control data under the gene–environment independence assumption using a log-linear55

modeling framework (Umbach & Weinberg, 1997) or a semiparametric retrospective pro-
file likelihood framework (Chatterjee & Carroll, 2005). More recently, the assumption
of gene–environment independence has been exploited to propose a variety of powerful
hypothesis testing methods for conducting genome-wide scans of gene–environment inter-
actions (Murcray et al., 2009; Mukherjee & Chatterjee, 2008; Han et al., 2015; Mukherjee60

et al., 2012; Gauderman et al., 2013; Hsu et al., 2012).
We consider developing methods for efficient analysis of case–control studies for mod-

eling gene–environment interactions involving multiple genetic variants simultaneously.
To develop parsimonious models for joint effects, many studies have recently focused
on developing models for gene–environment interactions using underlying polygenic risk65

scores that could be defined by all known genetic variants associated with the diseases
(Meigs et al., 2008; Wacholder et al., 2010; Dudbridge, 2013; Chatterjee et al., 2013,
2016). Further, for obtaining improved biological insights and for enhancing statistical
power for detection, it may often be desired to model gene–environment interactions
using multiple variants within genomic regions or/and biologic pathways (Chatterjee70

et al., 2006; Jiao et al., 2013; Lin et al., 2013, 2015). In standard prospective logistic
regression analysis, which conditions on both the genetic and environmental risk factor
status of the individuals, handling multiple genetic variants is relatively straightforward.
In contrast, with retrospective methods, which aim to exploit the assumption of gene–
environment independence, the task becomes complicated because all currently existing75

methods require parametric modeling of the distribution of the genetic or environmental
variables.

We propose computationally simple methodology for fitting general logistic regression
models to case–control data under the assumption of gene–environment independence,
but without requiring any further modeling assumptions about the distributions of the80

genetic or environmental variables. We extend the Chatterjee–Carroll profile likelihood
framework, which originally considered modeling gene–environment interactions using
single genetic variants for which genotype status could be specified using parametric
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multinomial models. The new method relies on the observation that the profile likelihood
itself can be estimated based on an empirical genotype distribution that is estimable 85

from a case–control sample. We develop the asymptotic theory of the resulting estimator
under a semiparametric inferential framework. Simulations and an example illustrate the
properties of the new methodology.

2. Model, Method and Theory

2·1. Background, model and method 90

In the following, we use notation similar to that of Chatterjee & Carroll (2005). We will
denote disease status, genetic information and environmental risk factors by D, G and
X, respectively. Here G may correspond to a complex multivariate genotype associated
with multiple genetic variants or a continuous polygenic risk score that is defined a priori
based on known associations of the genetic variants with the disease. We assume the risk 95

of the disease given genetic and environmental factors in the underlying population can
be specified using a model of the form

pr(D = 1 | G,X) = H{α0 +m(G,X, β)}, (1)

where H(x) = {1 + exp(−x)}−1 is the logistic distribution function and m(G,X, β) is a
parametrically specified function that defines a model for the joint effect of G and X
on the logistic-risk scale. The goal of the gene–environment interaction study is to make 100

inference on the parameters β in (1), including interaction parameters.
Let F (G,X) denote the joint distribution of G and X in the underlying population.

The key assumption that genetic, G, and environmental factors, X, are independently
distributed in the underlying population can be mathematically stated as

dF (G,X) = dFG(G)× dFX(X),

where FG and FX denote the underlying marginal distributions of G and X, respectively. 105

In the Supplementary Material we discuss how to weaken this assumption by suitable
conditioning on additional stratification factors. In contrast to the existing literature,
here we assume that the marginal distributions FG(G) and FX(X) are both completely
unspecified.

We consider a population-based case–control study, in which (G,X) are sampled in- 110

dependently from those with the disease, called cases, and those without the disease,
called controls. Suppose there are n1 cases and n0 controls. Standard prospective logistic
regression analysis, which is equivalent to maximum-likelihood estimation when F (G,X)
is allowed to be completely unspecified, yields consistent estimates of β (Prentice & Pyke,
1979). 115

The retrospective likelihood is the probability of observing the genetic and environmen-
tal variables, given the subject’s disease status. Under gene–environment independence
in the underlying population, the retrospective likelihood is

pr(G = g,X = x|D = d) = pr(D = d|G = g,X = x)pr(G = g)pr(X = x)/pr(D = d).

Let fG(·) and fX(·) represent the density/mass functions of G and X, respectively. The
retrospective likelihood is 120

fG(g)fX(x) exp[d{α0 +m(g, x, β)}]/[1 + exp{α0 +m(g, x, β)}]∫
fG(u)fX(v) exp[d{α0 +m(u, v, β)}]/[1 + exp{α0 +m(u, v, β)}]dudv

. (2)
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Chatterjee & Carroll (2005) profiled out fX(·) by treating it as discrete on the set of
distinct observed values (x1, . . . , xm) of X with probabilities δi = pr(X = xi), and then
maximized (2) over (δ1, . . . , δm), leading eventually to the semiparametric profile likeli-
hood described as follows. Define κ = α0 + log(n1/n0)− log(π1/π0), where π1 = 1− π0 =
pr(D = 1) is defined as the probability of the disease in the underlying population. Define125

Ω = (κ,βT)T. Also define

S(d, g, x,Ω) =
exp[d{κ+m(g, x, β)}]

1 + exp{κ+ log(π1/π0)− log(n1/n0) +m(g, x, β)}
.

Then, with this notation, the semiparametric profile likelihood is

L(D,G,X,Ω, fG) = fG(G)
S(D,G,X,Ω)∑1

d=0

∫
fG(v)S(d, v,X,Ω)dv

. (3)

While the representation in (3) does not involve the unknown density of X, it does
involve the unknown density of G. This is a major reason that the current literature
specifies a parametric distribution for G. Our task in this paper is to dispense with the130

need to give a parametric form for the distribution function of G, so that analysis can
be performed with respect to potentially complex multivariate genotype data for which
parametric modeling can be difficult and cumbersome.

Here is our key insight, which we discuss first in the context that π1 is known or at least
can be estimated well. For case–control studies that are conducted within well defined135

populations, relevant probabilities of the disease can be ascertained based on population-
based disease registries. When case–control studies are conducted by sampling of subjects
within a larger cohort study, the probability of the disease in the underlying population
can be estimated using the disease incidence rate observed in the cohort.

Our key insight in treating the distribution of G as nonparametric concerns the term140

in the denominator of (3), defined as

R(x,Ω) =
∑1

r=0

∫
fG(v)S(r, v, x,Ω)dv.

This is simply the expectation, in the source population, of
∑1

r=0 S(r,G, x,Ω). That

is, R(x,Ω) = Epop{
∑1

r=0 S(r,G, x,Ω)}, where the subscript pop emphasizes that the
expectation is in the source population, not the case–control study. However, crucially,

R(x,Ω) = π1E{
∑1

r=0S(r,G, x,Ω) | D = 1}+ π0E{
∑1

r=0S(r,G, x,Ω) | D = 0}. (4)

Of course, R(x,Ω) is unknown, but we estimate it unbiasedly and nonparametrically by145

R̂(x,Ω) =
∑n

j=1

∑1
r=0

∑1
d=0(πd/nd)I(Dj = d)S(r,Gj , x,Ω). (5)

In the Supplementary Material, we show that R̂(x,Ω) is an unbiased estimate of R(x,Ω),
that is n1/2-consistent, and that it is asymptotically normally distributed.

Ignoring the leading term fG(G) in (3), which is not estimated, and taking logarithms,
leads us to an estimated loglikelihood in Ω across the data as

L(Ω) =
∑n

i=1logS(Di, Gi, Xi,Ω)−
∑n

i=1logR̂(Xi,Ω). (6)
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Define SΩ(d, g, x,Ω) = ∂S(d, g, x,Ω)/∂Ω and similarly for R̂Ω(x,Ω). Then the estimated 150

score function, a type of estimated estimating equation, is

Ŝn(Ω) = n−1/2
n∑

i=1

{
SΩ(Di, Gi, Xi,Ω)

S(Di, Gi, Xi,Ω)
− R̂Ω(Xi,Ω)

R̂(Xi,Ω)

}
. (7)

Define

Sn(Ω) = n−1/2
n∑

i=1

{
SΩ(Di, Gi, Xi,Ω)

S(Di, Gi, Xi,Ω)
− RΩ(Xi,Ω)

R(Xi,Ω)

}
,

which is the profile loglikelihood score function when the distribution of G is known.
Since the profile loglikelihood score of Chatterjee & Carroll (2005) would have mean zero
if the distribution of G were known, it follows that 155

E {Sn(Ω)} = 0, (8)

where the expectation in (8) is taken in the case–control study, not in the source popula-

tion. Thus, since R̂(x,Ω) and R̂Ω(x,Ω) converge in probability to R(x,Ω) and RΩ(x,Ω),

respectively, a consistent estimate of Ω can be obtained by solving Ŝn(Ω) = 0. This es-

timate Ω̂, which maximizes the semiparametric pseudolikelihood (6), will be referred to
as the semiparametric pseudolikelihood estimator. 160

2·2. Rare diseases when π1 is unknown

When the probability of disease in the source population is unknown, one can in-
voke a rare disease assumption which is often reasonable for case–control studies
(Piegorsch et al., 1994; Modan et al., 2001; Epstein & Satten, 2003; Lin & Zeng, 2006;
Kwee et al., 2007; Zhao et al., 2003). If we assume that π1 ≈ 0, then S(d, g, x,Ω) ≈ 165

exp[d{κ+m(g, x, β}], and the expectation involved in calculation of R(X,Ω) can be
evaluated based on the sample of controls, with D = 0, only. In this case, the estimates
of Ω converge not to Ω itself, but instead to Ω∗, the solution to (8) with π1 = 0. Typically,
except when the sample size is very large and hence standard errors are unusually small,
the small possible bias of the rare disease approximation is of little consequence and 170

coverage probabilities of confidence intervals remain near nominal, see §3 for examples.
The asymptotic theory of §2·3 below is then unchanged.

In the Supplementary Material, we show that the score and the Hessian take on simple
forms in this case, and that the Hessian is negative semidefinite. Computation is thus
very efficient. 175

2·3. Asymptotic theory

To state the asymptotic results, we first make the definitions

Γ1 =
∑1

d=0(nd/n)E

{
∂SΩ(D,G,X,Ω)/S(D,G,X,Ω)

∂ΩT

∣∣∣∣D = d

}
;

Γ2 =
∑1

d=0(nd/n)E

{
∂RΩ(X,Ω)/R(X,Ω)

∂ΩT

∣∣∣∣D = d

}
.

In addition, define cd = nd/n, Zi = (Di, Gi, Xi), P1(Xi,Ω) = 1/R(Xi,Ω) and
P2(Xi,Ω) = RΩ(Xi,Ω)/R

2(Xi,Ω).
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We use the notational convention that for arbitrary functions (P, T ), TE(r, d, x) =180

E{T (r,G, x) | D = d}. Also, we use the convention that

E [P (X) {T (r, gi, X)− TE(r, d,X)} | D = t]

= E [P (X) {T (r, g,X)− TE(r, d,X)} | D = t]g=Gi
.

Define

ζ(Zi,Ω) =
SΩ(Zi,Ω)

S(Zi,Ω)
− RΩ(Xi,Ω)

R(Xi,Ω)

−
1∑

d=0

1∑
r=0

cdπdi
cdi

E [{P1(X,Ω)SΩ(r, gi, X)− P2(X,Ω)S(r, gi, X)} | D = d] .

Finally, define ζ∗(Zi,Ω) = ζ(Zi,Ω)− E{ζ(Z,Ω) | D = Di}.

Theorem 1. Suppose nd/n → cd, where 0 < cd < ∞, and that π1 is known. Then

n1/2(Ω̂− Ω) = −(Γ1 − Γ2)
−1n−1/2∑n

i=1ζ∗(Zi,Ω) + op(1). (9)

Thus, since the Zi are independent and E{ζ∗(Z,Ω) | Di} = 0,185

n1/2(Ω̂− Ω) → N
[
0, (Γ1 − Γ2)

−1Σ{(Γ1 − Γ2)
−1}T

]
;

Σ =
∑1

d=0(nd/n)cov{ζ∗(D,X,G,Ω) | D = d}
=

∑1
d=0(nd/n)cov{ζ(D,X,G,Ω) | D = d}.

In §2·2, when π1 is unknown and the disease is relatively rare, the same result holds
by setting π1 = 0.

3. Simulations

3·1. Overview

In our simulations, m(G,X, β) = GTβG +XβX + (GX)TβGX and the value of X is190

binary with population frequency 0.5. There are either three or five correlated single
nucleotide polymorphisms within a region: we report the latter case, but the results for
the former are similar. Each single nucleotide polymorphism takes on the values 0, 1 or 2
following a trinomial distribution that follows Hardy–Weinberg equilibrium, i.e., the jth
component of G equals 0, 1, 2 with probabilities {(1− pj)

2, 2pj(1− pj), p
2
j}. The values195

of the pj are described below.
To generate correlation among the single nucleotide polymorphisms, we first generated

a 3 or 5-variate multivariate normal variate, each with mean 0 and standard deviation 1,
and a correlation matrix with correlation between the jth and kth component = ρ|j−k|,
where ρ = 0.7. After generating these random variables, we trichotomized them with200

appropriate thresholds so that frequency of 0, 1 and 2 matched those specified by the
allele frequency pj and Hardy–Weinberg equilibrium.
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Table 1: Results of 1000 simulations as described in §3, with mean bias, coverage prob-
abilities of a 95% nominal confidence interval, and mean squared error efficiency of our
semiparametric pseudolikelihood estimator compared to ordinary logistic regression. The
simulations were performed with 1000 cases and 1000 controls.

βG1 βG2 βG3 βG4 βG5 βX βG1X βG2X βG3X βG4X βG5X

True 0.18 0.18 0.00 0.18 0.00 0.41 0.26 0.00 0.00 0.26 0.00

Logistic: 1000 cases
Bias 0.00 0.01 0.00 0.01 −0.01 0.01 0.01 −0.01 0.00 0.00 0.01
CI (%) 94.3 95.2 95.7 95.1 94.7 94.6 94.9 94.2 94.5 96.0 94.2

SPMLE, Rare: 1000 cases
Bias 0.01 0.00 0.00 0.02 −0.01 0.02 −0.02 −0.01 0.01 −0.02 0.01
CI (%) 95.2 95.4 96.4 95.8 95.3 95.1 95.4 94.8 96.1 95.5 94.9
Avg MSE Eff All G: 1.28 X: 1.26 All G ∗X: 2.18

SPMLE, π1 known: 1000 cases
Bias 0.00 0.00 0.00 0.01 −0.01 0.01 0.00 −0.01 0.01 −0.01 0.01
CI (%) 95.1 95.5 96.4 95.8 95.0 95.5 95.6 94.6 95.9 95.2 94.5
Avg MSE Eff All G: 1.28 All X: 1.28 All G ∗X: 2.07

Logistic is ordinary logistic regression; SPMLE, Rare is our estimator using the rare disease approximation
with unknown π1 (§2·2); SPMLE, π1 known is our estimator when π1 is known in the source population
(§2·1); CI (%) is the coverage in percent of a nominal 95% confidence interval (calculated using the
asymptotic standard error); Avg MSE Eff is the mean squared error efficiency of our method compared
to logistic regression averaged over G (All G), over X (All X) and over the G ∗X (All G ∗X) interactions.

In both simulations, the logistic intercept α0 was chosen so that the population dis-
ease rate π1 = 0.03. However additional simulations with π1 = 0.01 yielded very sim-
ilar results with regards to coverage, efficiency gains, and unbiasedness. See also §3·3 205

for a discussion of additional simulations, and the Supplementary Material. In the
simulation reported here, (p1, p2, p3, p4, p5) = (0.1, 0.3, 0.3, 0.3, 0.1), βX = log(1.5), βG =
{log(1.2), log(1.2), 0.0, log(1.2), 0.0}, and βGX = {log(1.3), 0.0, 0.0, log(1.3), 0.0}. Here the
value of α0 = −4.14.

3·2. Results 210

The standard error estimators used in our simulation were based on the asymptotic
theory described in Theorem 1: we also used the bootstrap, with very similar results.
The appropriate bootstrap in a case–control study is to resample the cases and controls
separately, thus maintaining the sample sizes for each.

The simulation results are presented in Table 1. Our semiparametric pseudolikelihood 215

estimator has little bias and coverage percentages near the nominal level. Both with
a rare disease approximation and with π1 known, our semiparametric pseudolikelihood
estimator achieves approximately a 25% increase in mean squared error efficiency over
ordinary logistic regression for the main effects in both G and X.

Strikingly, the mean squared error efficiency of our semiparametric pseudolikelihood 220

estimators compared to ordinary logistic regression is approximately 2.00 for all the inter-
action terms, thus demonstrating that our methods, which do not model the distribution
of either G or X, achieve numerically significant increases in efficiency.
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3·3. Additional simulations

The Supplementary Material presents a series of additional simulations. These include225

the results of a simulation to evaluate the robustness of our method to misspecification
of the population disease rate, where we found a surprising robustness to disease rate
misspecification. Additionally, there are simulations to examine the robustness of our
method to violations of the gene–environment independence assumption. Those simu-
lation studies show that there will be bias in the estimate of gene–environment inter-230

action parameters for the specific single nucleotide polymorphisms under violation of
gene–environment independence, but average mean square error for parameter estimates
across all the different single nucleotide polymorphisms could be still substantially lower
than that obtained from prospective logistic regression analysis. We also show there how
to remove this bias when G and E are independent conditional on a discrete stratifi-235

cation variable. Mukherjee & Chatterjee (2008) and Chen et al. (2009) show how to
use empirical-Bayes methods to provide additional robustness to violations of the gene–
environment independence assumption.

4. Data Analysis

In this section, we apply our methodology to a case–control study for breast cancer240

arising from a large prospective cohort at the National Cancer Institute: the Prostate,
Lung, Colorectal and Ovarian cancer screening trial (Canzian et al., 2010). The design
of this study is described in detail by Prorok et al. (2000) and Hayes et al. (2000).
The cohort data consisted of 622, 449 women, of whom 3.56% developed breast cancer
(Pfeiffer et al., 2013). The case–control study analyzed here consists of 753 controls and245

658 cases. Although π1 is known in this population, we analyze the data both with π1
known and with π1 unknown but with a rare disease approximation.

We had data available on genotypes for 21 single nucleotide polymorphisms that have
been previously associated with breast cancer based on large genome-wide association
studies. The polygenic risk score was defined by a weighted combination of the geno-250

types, with the weights defined by log-odds-ratio coefficients reported in prior studies.
We examined the interaction of the polygenic risk score with age at menarche (X), a
known risk factor for breast cancer, defined as the binary indicator of whether the age at
menarche exceeds 13 or not. We also adjust the model for age as a continuous variable,
denoted here as Z, so that the model fitted is255

pr(D = 1) = H(β0 + βGG+ βXX + βGXGX + βZZ). (10)

Results in which age was categorized as < 35, 35-40, 40-45,. . . ,> 75 were similar.
We also performed analyses to check the gene–environment independence assumption.

Since X is binary, we ran a t-test of the polygenic risk score against the levels of X,
of course among the controls only. The p-value was 0.91, indicating almost no genetic
effect. We also ran chisquared tests for the 21 individual genes, finding no significant260

association after controlling the false discovery rate: the minimum q-value was 0.09. We
also checked for correlation, known as linkage disequilibrium, between the 21 loci used to
create the polygenic risk score and 32 loci that are known to influence age at menarche
(Elks et al., 2010). The data available to us do not have the necessary information to
analyze linkage disequilibrium between the two sets of loci.265
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Table 2: Results of the analysis of the Prostate, Lung, Colorectal and Ovarian cancer
screening trial data

βZ βG βX βGX

Logistic
Estimate 0.018 0.297 -0.165 0.124
std err 0.054 0.064 0.132 0.068
p-value 7.45× 10−1 3.19× 10−6 2.10× 10−1 6.87× 10−2

SPMLE, Rare
Estimate 0.024 0.321 -0.175 0.138
std err (asymptotic) 0.054 0.067 0.134 0.055
p-value (asymptotic) 6.60× 10−1 1.62× 10−6 1.91× 10−1 1.16× 10−2

SPMLE, π1 known
Estimate 0.022 0.313 -0.174 0.141
std err (asymptotic) 0.054 0.065 0.133 0.055
p-value (asymptotic) 6.78× 10−1 1.64× 10−6 1.93× 10−1 1.13× 10−2

Logistic is ordinary logistic regression; SPMLE, Rare is our method using the rare
disease approximation with unknown π1; SPMLE, π1 known is our method when the
disease rate is known in the source population (π1 = 3.56%); std err is the asymptotic
standard error estimate; βZ is the main effect for age; βG and βX are the main effects
for the polygenic risk score (G) and the environmental variable X (age at menarche >
13), respectively; βGX is the gene–environment interaction.

Using phased haplotypes from subjects of European descent from 1000 Genomes (The
1000 Genomes Project Consortium, 2015) and HapMap (Gibbs et al., 2003), no evidence
of linkage disequilibrium was found: the maximum R2 was 0.1 and the minimum q-value
was 0.85. Finally, a 2014 study examined the relationship between age at menarche and
10 of the 21 SNPs used to create our polygenic risk score, none of which were found to 270

influence age at menarche (Andersen et al., 2014).
Table 2 presents the results for the cases that π1 is unknown and known, respectively: as

remarked upon previously, the results are very similar. To provide a basis for comparison
because of the very different scales of the variables, the variable age at baseline was
standardized to have mean zero and standard deviation one. In addition, we standardized 275

some of the coefficient estimates so that βG was multiplied by the standard deviation of
the polygenic risk score, and βGX was multiplied by the standard deviation of X times
the polygenic risk score.

As expected from the known association of the single nucleotide polymorphisms with
risk of breast cancer, the polygenic risk score was strongly associated with breast cancer 280

status of the women in the study. Standard logistic regression analysis reveals some
evidence for interaction of the polygenic risk score with age-at-menarche, but the result
was not statistically significant at the 0.05 level. When the analysis was done under the
gene–environment independence assumption, the evidence of interaction appeared to be
stronger. 285

The coefficient estimate for the interaction term is slightly larger for our semipara-
metric methods than that for logistic regression. Also, the asymptotic standard error
estimate of logistic regression is approximately 23% larger than our methods, indicating
a variance increase of ≈ 50%. Although not listed here, the balanced bootstrap men-
tioned in §3·2 has very similar standard error estimates. In that bootstrap, 33% of the 290
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time, the logistic interaction estimate was actually greater than that of the disease rate
known estimate.

5. Discussion and Extensions

We have proposed a general method for using retrospective likelihoods for studying
gene–environment interactions involving multiple markers, a method that does not re-295

quire any distributional assumption of the multivariate genotype distribution. Some-
times, one may consider modeling multi–marker gene–environment interactions using an
underlying polygenic risk score, which is a weighted combination of numerous genetic
markers where the weights are pre-determined from previous association studies. In such
situations, the polygenic risk score might be assumed to follow approximately a normal300

distribution in the underlying population and the profile likelihood method of Chatterjee
& Carroll (2005) can be used with appropriate modification by replacing the parametric
multinomial distribution for a single nucleotide polymorphism genotype by a parametric
normal distribution for the polygenic risk score, see also Chen et al. (2008) and Lin &
Zeng (2009). In general, however, when an investigator desires to explore complex models305

for multivariate gene–environment interactions retaining separate parameters for distinct
single nucleotide polymorphisms or for distinct genetic profiles defined by combinations
of correlated single nucleotide polymorphisms, then one cannot avoid dealing with com-
plex multivariate genotype distributions, something that is not easy to specify through
parametric models.310

Our methods are types of semiparametric plug-in estimators, and thus have certain
features in common with the work of Newey (1994), namely that the profile likelihood
has the nonparametric component R(x,Ω) in (4) that is estimated by (5). Generally,
however, such plug-in estimators are not semiparametric efficient. We believe it will be
possible to create an efficient semiparametric estimator by modifying the work of Ma315

(2010): we are exploring this and its computational aspects, which may be daunting.
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