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Abstract Volcanic ash (tephra) provides unique time markers (isochrons) that are often used as an inde-
pendent age-control tool for stratigraphic correlations of paleoclimate archives from ice cores. However, lit-
tle credence has been given to the notion of finding tephra in ice cores collected in the European Alps
because of the relatively large distance from volcanic sources and the presumed nature of regional atmo-
spheric circulation patterns. We filtered particles from melted ice core drilling chips gathered roughly every
meter during a 2013 drilling operation at Colle Gnifetti glacier in the Swiss-Italian Alps (45855.740N,
7852.580E, 4450 m asl). One filter, preliminarily dated to the nineteenth century by annual layer counting,
contained a group of six visually similar tephra particles. Analyzing their chemistry using a scanning electron
microscope equipped with an energy-dispersive x-ray spectrometer established that the six particles were
volcanic in origin and are very similar in composition (a distinctive geochemical signature), pointing to a sin-
gle volcanic eruption source. We proposed that one of several massive nineteenth century Eastern Icelandic
eruptions is a potential source given eruption timing, size, tephra dispersion area, and similarities in chemi-
cal composition. This first finding of tephra in an Alpine ice core contributes to a regional tephrochronologi-
cal framework that can be adapted for future correlation among different paleoclimate sequences.

1. Introduction

Volcanic ash (tephra) from large, explosive volcanic eruptions very rapidly spreads over large areas and cre-
ates a unique time marker that can be used to synchronize and inform stratigraphic time series (Lowe,
2011). Through a careful study of composition and chemistry, identified tephra (see foundation of tephro-
chronological method in Thorarinsson, 1981a, 1981b) allow regional paleoclimate archives to be indepen-
dently correlated (Wulf et al., 2016). Tephrochronology is a tool often used to verify constructed time scales
of ice core time series and other paleoclimate reconstructions by providing absolute dating tie-points which
are independent of derived ice core ages.

Located in the Swiss-Italian Alps, the Colle Gnifetti glacier (Figure 1) is one of the small number of ice core drilling
sites in the European Alps offering preserved paleoclimate records over the last millennium and potentially
beyond (More et al., 2017; Schwikowski, 2004; Wagenbach et al., 2012). A recent drilling expedition to Colle Gni-
fetti yielded an ice core from this glacier, which is the focus of another study that connected ice core based
reconstructions of climate with historical archives (More et al., 2017). Developing a robust time scale that uses
several independent dating methods for increased accuracy is crucial for future studies with this ice core.

Due to the low and irregular net snow accumulation and rapid layer thinning, employing traditional dating
methods such as annual layer counting in cm-resolution impurity profiles is typically limited to a few hun-
dred years at Colle Gnifetti (Bohleber et al., 2013). Age constraints for Colle Gnifetti ice cores can also come
from three-dimensional ice flow modeling (L€uthi & Funk, 2000; Wagner, 1996) combined with radiocarbon
dating (Hoffmann, 2016; Jenk et al., 2009; May, 2009).

Identification of compounds from volcanic eruptions of known ages is often accomplished using sulfate or
other volcanically produced chemical species preserved in the ice core chemistry record. This technique is
employed successfully on polar ice cores (e.g., Hammer, 1977), but is fundamentally hampered at Colle
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Gnifetti due to frequent influxes of Saharan dust that contribute substantially to overall sulfate background
concentrations (Wagenbach & Geis, 1989; Wagenbach et al., 1996), confounding any potential sulfate increases
due to volcanic sources. Potentially less ambiguous in this respect would be the direct detection of tephra.

Some skepticism regarding the possibility of finding tephra in European Alpine ice cores exists because of
assumptions concerning regional atmospheric circulation patterns and the relatively large distance from
active volcanic sources to, in our case, the Colle Gnifetti site. Out of the almost dozen ice cores collected in
the European Alps, not a single tephra layer has been identified. However, there are many documented
instances of tephra, especially from Iceland, reaching mainland Europe throughout the last 10,000 years
(Barber et al., 2008; Carey et al., 2010; Dugmore, 1989; Dugmore et al., 1995; Lane et al., 2011; Lind &
Wastegård, 2011; Mohn, 1878; Persson, 1971; Stevenson et al., 2012; Wastegård, 2002, 2005; Wastegård &
Davies, 2009; Wulf et al., 2013, 2016). The last volcanic cloud from Iceland reached Europe as recently as
2010 (Stevenson et al., 2012), but tephra from this moderate volcanic event didn’t create a distinct depositional
layer. Considering the abundance of Icelandic tephra and crypotephra discovered in proximity to the study
area, we hypothesize that very fine-grained insoluble material from at least the largest Icelandic eruptions
(labeled ‘cryptotephra’ by Lowe & Hunt, 2001) could be transported to Colle Gnifetti under rapid direct atmo-
spheric transport scenarios. Supporting information Table S1 lists the largest volcanic eruptions of the nine-
teenth century, those with a Volcanic Explosivity Index (VEI)� 4 (data compiled by the Smithsonian Institution
Global Volcanism Project (Global Volcanism Program, 2013) using criteria developed by Newhall & Self, 1982).

2. Materials and Methods

In this study we relied on the so-called ‘‘drilling chips’’ collected roughly every meter during ice core recov-
ery. At the sampling interval discussed in this paper, a meter of the ice core corresponded roughly to five
decades. The ice core time scale was developed by counting annual layers represented in the sharp

Figure 1. Location of the Colle Gnifetti ice core (white dot), Askja & Hekla volcanoes (red triangles), and lake core/bog
sites (blue circles) where tephra from the 1875 C.E. Askja event has been identified (Bergman et al., 2004; Lind &
Wastegård, 2011; Pilcher et al., 2005; Stivrins et al., 2016; Watson et al., 2016; Wulf et al., 2016).
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summer-winter contrast of impurity concentrations. A sub-cm-resolution
of the ice chemistry profiles (including NH1

4 and Ca21) was achieved
from continuous melting of the ice core, and on an ultra-high resolution
LA-ICP-MS Ca-profile where annual layers are not resolved by the contin-
uous melting data due to the progressive thinning of the layers with
depth (Bohleber et al., 2013; Kaufmann et al., 2008; Sneed et al., 2015).
These measurements were combined with inline and discrete measure-
ments. All insoluble particles were filtered from the meltwater from the
chips of the respective drilling run. A 0.4 micron poly-carbonate mem-
brane filtering system offers a well-established technique successively
used for ice core tephra sampling (Dunbar et al., 2003; Palais et al., 1987).

We examined twenty filters at the University of Maine’s micro-beam
laboratory using a scanning electron microscope Tescan Vega-II XMU
variable pressure instrument equipped with an EDAX Pegasus inte-
grated energy-dispersive spectrometry (SEM-EDS). While scanning
and searching through the filters, we looked for particles typical of the
shape of volcanic glass (Figure 2). Due to the small size of the particles
(several microns across), the flat surface polishing required for
wavelength-dispersive x-ray spectrometry (WDS) was not a viable option.
Instead when a suspected cryptotephra particle was discovered, EDS

spectral data were collected on the particles captured on the surface of the filtering material (see method details
in Iverson et al., 2016).

3. Data

One filter, containing insoluble material gathered from the 2013 ice core at the depth of 41.575- 42.410 m and
dated (Bohleber et al., 2017) to the nineteenth century based on layer-counting, contained a group of six visually
similar candidate particles. The distinctive chemistry of the six particles examined (Table 1) allowed us to conclude
that the shared geochemical signature pointed to volcanic glass composition from a single volcanic source.

4. Results

Of the forty-five large (VEI� 4) nineteenth century volcanic eruptions listed in supporting information
Table S1, (Global Volcanism Program, 2013) forty eruptions did not occur in the same hemisphere as Colle

Figure 2. Image of one of the six cryptotephra particles from the 2013 ice core
at Colle Gnifetti captured by SEM-EDS.

Table 1
Chemistry of Six Cryptotephra Particles Collected From 2013 Colle Gnifetti Ice Core

Sample ID SiO2 Al2O3 FeO MnO MgO CaO Na2O K2O TiO2 P2O5

3.0A
Run 45-9

76.19 13.44 1.09 0.09 0.21 0.79 5.19 2.60 0.30 0.11

3.0A
Run 45-10

76.19 13.44 1.09 0.09 0.21 0.79 5.19 2.60 0.30 0.11

3.0A
Run 45-12

75.27 13.86 1.47 0.10 0.19 0.83 5.46 2.42 0.28 0.11

3.0A
Run 45-15

76.23 13.16 1.37 0.07 0.27 0.96 4.62 2.76 0.29 0.26

3.0A
Run 45-16

76.77 13.12 1.53 0.09 0.38 1.13 2.82 3.72 0.43 0.00

3.0A
Run 45-19

74.62 14.91 1.33 0.09 0.37 0.94 4.16 3.15 0.42 0.00

Mean 75.9 13.70 1.30 0.10 0.30 0.90 4.60 2.90 0.30 0.10
1 std. 0.80 0.70 0.20 0.01 0.10 0.10 1.00 0.50 0.10 0.10
Method Uncertainty (%)a 0.60 0.12 0.05 0.01 0.02 0.40 0.40 0.06 0.08 0.08

Note: Mean and one standard deviation uncertainty are also included. Analytical errors were determined from
repeated measurements of a Rhyolite NMNH 72854 VG-568 standard.

aCalculated from repeated analysis of standard glass during the same session as when analyses were performed.
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Gnifetti and so were disregarded as likely sources in this study. Two of the five remaining volcanic erup-
tions, the 1845 C.E. Hekla and 1875 C.E. Askja events, both in Eastern Iceland but with distinctively different
geochemical signatures, were large enough that ash fall was reported in continental Europe and tephra
from each eruption has been found in European lake and peat cores (Wastegård, 2002, 2005; Wastegård &
Davies, 2009; Wulf et al., 2013, 2016). Additionally, as cryptotephra studies developed, it became apparent
that even comparatively small scale silicic eruptions could spread cryptotephras over very long distances
(Boygle, 1998; Dugmore et al., 1996). We therefore focused on the 1845 C.E. Hekla and 1875 C.E. Askja erup-
tions as possible candidates for the source of the particles found in the Colle Gnifetti ice core.

A comparison of the chemistry of the six candidate particles with published Askja-S, 1875 C.E. Askja, and
1845 C.E. Hekla tephra chemistry gathered from WDS-equipped microprobe analyses (Bergman et al., 2004;
Lind & Wastegård, 2011; Macdonald et al., 1987; Sparks et al., 1981; Stivrins et al., 2016; Wastegård, 2002;
Wulf et al., 2016) shows reasonable concurrence (Figure 3) within the 6 2% uncertainty on the SEM-EDS
derived chemical composition. The comparison of data gathered by EDS with data gathered by WDS nor-
mally should not affect results and should allow for accurate comparison when samples are large (Gr€onvold
et al., 1995). In our case, however, small sample size could potentially greatly influence our results, but we
obtained compatible measurements on another tephra layer detected in an Antarctic ice core (Koffman
et al., 2017).

Figure 3. Composition of cryptotephra particles (red squares) from 41.575 to 42.41 m interval in 2013 Colle Gnifetti ice
core compared to tephra glass compositions from the early Holocene Askja-S (green triangles: Lind & Wastegård, 2011),
1875 C.E. Askja in lakes (blue crosses: Stivrins et al., 2016; Wulf et al., 2016), bogs (teal crosses: Bergman et al., 2004; Stivrins
et al., 2016), and at the Askja crater (pink diamonds: Macdonald et al., 1987; Sparks et al., 1981), and 1845 C.E. Hekla (black
circles: Wastegård, 2002). All analyses are normalized and recalculated to 100% for SiO2, Al2O3, FeO, Na2O, K2O, MnO,
MgO, CaO, Ti2O3, & P2O5 oxides.
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Previous studies, such as Dugmore et al. (1992), show that in the absence of absolute precision, chemistry
still provides compelling evidence for identification and correlation of cryptotephra, especially when used
in combination with other evidence. Considering the timeline inferred from the Colle Gnifetti ice core and
assuming a very conservative time scale uncertainty (6 25 years), the 1875 C.E. Askja eruption is the most
likely candidate of all potential tephra from Iceland or the Mediterranean with similarly high silica values
during this time frame. The only other possible eruption with such a high silica content is the Minoan erup-
tion of Thera in Santorini in the mid-second millennium B.C.E. (Eastwood et al., 1999). Additionally, the
1875 C.E. Askja eruption dispersed up to 0.3 km3 of tephra clouds into the atmosphere (Hartley et al., 2016),
and tephra deposits from this eruption were found in a number of neighboring sites (Figure 1).

5. Conclusions

Although a solely geochemistry-based match of the six particles in the ice core with the composition of the
1875 C.E. Askja eruption cannot be definitive due to large uncertainties (up to 2% in some elements) in the
employed EDS method as a result of the small particle sizes (Iverson et al., 2016), the close chemical compo-
sition and tephra presence in vicinity of the drill site cumulatively point to the fact that the six Colle Gnifetti
particles are tephra, likely from Eastern Iceland.

This pilot study also demonstrates the feasibility of finding cryptotephra that can be used to constrain an
annual layer depth/age chronology from Colle Gnifetti area ice cores. In future studies, we encourage inte-
grating tephra sampling with the ice core measurements and allocating sufficient ice volume for success in
sampling.
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