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Monotonicity of facet numbers
of random convex hulls

Gilles Bonnet*, Julian Grote!, Daniel Temesvari?,
Christoph Thale’, Nicola TurchiYand Florian WespiH

Abstract

Let Xj,..., X, be independent random points that are distributed according to
a probability measure on R? and let P, be the random convex hull generated by
X1,...,Xu (n > d + 1). For natural classes of probability distributions and by means
of Blaschke-Petkantschin formulae from integral geometry it is shown that the mean
facet number of P, is strictly monotonically increasing in n.
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1 Introduction and main result

Fix a space dimension d > 2. For an integer n > d + 1, let Xj,..., X, be independ-
ent random points that are chosen according to an absolutely continuous probability
distribution on R?. By P,_; and P, we denote the random convex hulls generated by
Xy,...,Xy—1 and Xj, ..., Xy, respectively. In our present text we are interested in the
mean number of facets Ef; 1(P,_1) and Ef;_1(P,) of P,_1 and P,. More specifically,
we ask the following monotonicity question:

Isit true that Efy 1 (Py—1) < Efs_1(Py)?

This question has been put forward and answered positively by Devillers, Glisse, Goa-
oc, Moroz and Reitzner [7] for random points that are uniformly distributed in a convex
body K C R¥ifd = 2and, ifd > 3, under the additional assumptions that the boundary
of K is twice differentiable with strictly positive Gaussian curvature and that 7 is suf-
ficiently large, that is, n > n(K), where n(K) is a constant depending on K. Moreover,
an affirmative answer was obtained by Beermann [4] if the random points are chosen
with respect to the standard Gaussian distribution on R? or according to the uniform
distribution in the d-dimensional unit ball for all 4 > 2. Beermann’s proof essentially
relies on a Blaschke-Petkantschin formula, a well known change-of-variables formula
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in integral geometry. Our aim in this text is to generalize her approach to other and
more general probability distributions on R?. In fact, we will be able to characterize
all absolutely continuous rotationally symmetric distributions on R? whose densities
satisfy a natural scaling property (see (9) below), to which the methodology based on
the Blaschke-Petkantschin formula can be applied and for which we can answer posit-
ively the monotonicity question posed above for any of these distributions. Moreover,
we will apply our results to study similar monotonicity questions for a class of spher-
ical convex hulls generated by random points on a half-sphere, which comprises as a
special case the model recently studied by Barany, Hug, Reitzner and Schneider [3].

To present our main result formally, we introduce four classes of probability measures:

G is the class of centred Gaussian distributions on R? with density proportional to

||x||2>
202 )’

x»—>exp<— oc>0,

H is the class of heavy-tailed distributions on R¥ with density proportional to

2\ -p
xH(l—l—%), B>d/2,0>0,

B is the class of beta-type distributions on the d-dimensional centred ball BZ of
radius o with density proportional to

2\B
xH(l—”j!), g>—-1,0>0,

U comprises the uniform distributions on the (d — 1)-dimensional centred spheres
S4=1 with radius o > 0.

It will turn out that the classes G, H, B and U contain precisely the absolutely continu-
ous rotationally symmetric probability distributions on IRY, whose densities satisfy the
natural scaling property (9) below, for which monotonicity of the mean facet number
of the associated random convex hulls can be shown by means of arguments based on
a Blaschke-Petkantschin formula, see the discussion at the end of Section 4 for further
details. In fact, our result shows that even the stronger strict monotonicity holds.

Theorem 1 Let X1,...,X, € RE, n > d+1, be independent and identically distributed
according to a probability measure belonging to one of the classes G, H, B or U. Then,

Efi—1(Pn) > Efg_1(Pu-1).

It should be emphasized that strict monotonicity of n — f;_1(P,) cannot hold pathwise
(except for the trivial case n = d 4 1), since the addition of a further random point
can reduce the facet number arbitrarily as the additional point might ‘see” much more
than d vertices of the already constructed random convex hull. For this reason, the
expectation in Theorem 1 is essential.

We would also like to remark that monotonicity questions related to the volume of
random convex hulls have recently attracted some interest in convex geometry because
of their connection to the famous slicing problem. Namely, if K and L are two compact
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convex sets in RY with interior points, let Vx and V be the volume of the convex hull of
d 4 1 independent random points uniformly distributed in K and L, respectively. One is
interested in the question whether the set inclusion K C L implies the inequality EVx <
EVy. In particular, the work of Rademacher [11] shows that this is false in general
whenever d > 4. Higher moments were treated by Reichenwallner and Reitzner [12],
and we refer to the discussion therein for further details and background material.

Our text is structured as follows. In Section 2 we recall the necessary background ma-
terial from integral geometry and introduce some more notation. Moreover, in Section
3 we develop several auxiliary results that prepare for the proof of Theorem 1, which is
presented in Section 4. We also discuss in Section 4 the limitations and possible exten-
sions of the method we use. The final Section 5 contains the application of Theorem 1
to random convex hulls on a half-sphere.

2 Background material from integral geometry

2.1 General notation

We denote by A(d,q) the Grassmannian of all g-dimensional affine subspaces of R,
where g € {0,1,...,d}. Itis a locally compact, homogeneous space with respect to the
group of Euclidean motions in R?. The corresponding locally finite, motion invariant
measure is denoted by y,, which is normalized in such a way that

Ho({H € A(d,q) s HOB' # 0}) = x, .

see [14]. Here, B is the centred d-dimensional unit ball, Ki—g = rﬁ':j,’/; ) is the (d — q)-
e

dimensional volume of B9 and T'( - ) indicates the Gamma function. Moreover, the
Beta function is given by

1 T(a)T(b)

o a—1¢1 _ \b—1 _
B(a,b).—/os (1—s)"""ds Tath) a,b > 0.

We shall denote by $%~! the (d — 1)-dimensional unit sphere and abbreviate by wy =
dr its total spherical Lebesgue measure. For a subspace H € A(d,q), we let Ay be the
Lebesgue measure on H.

For a set K C IRY, we shall write H} for the g-dimensional Hausdorff measure on K.
The operators conv( - ) and span( - ) denote the convex and linear hull of the argument.
We will use the notation A;_1(x1, ..., x;) to indicate the (d — 1)-dimensional volume of
the convex hull of d points x, ..., x,.

2.2 Blaschke-Petkantschin formulae

Our proof of Theorem 1 heavily relies on Blaschke-Petkantschin formulae from integral
geometry. First, we rephrase a special case of the affine Blaschke-Petkantschin formula
in R, which appears as Theorem 7.2.7 in [14].



Proposition 2 Let f : (RY)¥ — R be a non-negative measurable function. Then,

/ f(xl,...,xd)d(xl,...,xd)

wy

==t [ [ fexdaaGae . x) MidGa, %) g (dH).

A(dd—1) Hd

Besides the affine Blaschke-Petkantschin formula in IRY we need its spherical counter-
part, which is a special case of Theorem 1 in [15] and can also be found as Theorem 4 in
[10].

Proposition 3 Let f : (5771)? — R be a non-negative measurable function. Then,

/ fxl, o, X ég 11))(d(x1,...,xd) / / fxl, o, X )
Sd 1 dd 1 HﬁSd 1
d
X Ag_1(x1, ..., x)(1—h?)~ 2 Hfgm;dll)d(d(xl, oo, xa)) Ha_1(dH),

where h denotes the distance from H to the origin.

2.3 Aslice integration formula

Finally, we will make use of the following special case of the spherical slice integration
formula taken from Theorem A.4 in [2].

Proposition 4 Let f : $%~1 — R be a non-negative measurable function. Then,

1

| remitan = [a-&% [ ft /1=y niAay)
—1

gd—1 gd—2

3 Auxiliary results

3.1 An estimate for integrals of concave functions

A version of the next lemma was already stated in [4], but without proof. For the sake
of completeness we include here the short argument.

Lemma 5 Let h : R — R be a non-negative measurable function which is strictly positive on
a set of positive Lebesgue measure. Further, let g : R — R be an affine function with negative
slope and root s* € [0,1]. Moreover, let L : R — R be positive and strictly concave on [0, 1].
Then,

1
/ h(s s)4-1ds > / h(s)g(s)e(s)* 1 ds, (1)
0

where £(s) = X&),

S*



Proof. We start by exploiting the positivity and strict concavity of L. For s € [0,s*), it
implies that

5 * i kS
L(s) =L (S—*s ) > ZL(s"), 2)
while for s € (s, 1], it gives
L(s) < S%L(s*). 3)
Since g has a negative slope, it is positive on [0, s*) and negative on (s*,1]. Splitting the

integral on the left hand side of (1) at the point s* and using (2) and (3), respectively,
yields

s* 1

~ [HE)ELE)"  ds+ [ h(s)g(s)Ls)" ds
0 s*
y s i1 ' s i1

>/h(s)g( )(S—*L(s*)> ds—i—/h(s)g(s) (S—*L(s*)> ds
0 s*
1

— / h(s)g(s)£(s) ds.
0

This completes the argument. O

3.2 Computation of marginal densities

Recall the definitions of the distribution classes H, B and U (since random convex hulls
of Gaussian points have already been treated in [4], we concentrate on the classes H, B
and U). It will turn out that it suffices to consider the cases where the scale parameters
o are equal to 1. From now on we restrict to these cases and denote the density of a
distribution in H by

prp(x) = ”_mr(;(—f)ﬂ +IxIH P, xeR!,p>d/2, (4)

that of a distribution in B by

[NSIESW
~—

_aplG+B+1)

fpn I, xeB g,

pep(x) =7
and note that the uniform distribution on S~ has density

pu(x) = —, x e g1,

with respect to the spherical Lebesgue measure. The next lemma provides formulas for
the densities of the one-dimensional marginals of these distributions and shows that
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the classes B and H are in some sense closed under one-dimensional projections. Since
all distributions we consider are rotationally symmetric, it is sufficient to consider pro-
jections onto the first coordinate. We would like to emphasize that the proof of Lemma
6 uses in an essential way the scaling property (9) below of the involved densities.

Lemma 6 LetIT:R? — R, (xy,...,x;) — x1 be the projection onto the first coordinate.

(i) Let P € H be a distribution with density py g for some p > d/2. Then, the image measure
of P under I1 has density

d—1

frp(x) = ﬂl/zrfé—?))(l +) TP xeR

(ii) Let P € B be a distribution with density pg g for some B > —1. Then, the image measure
of IP under I1 has density

fB,ﬁ(x) =T

(iii) Let P € U be the uniform distribution on S%~'. Then, the image measure of P under T1
has density

d
fulx) = ﬂl/zﬁ(l — xz)d%, x € [-1,1].

Proof. To prove (i) we put x = (x1,...,%5) € R% y := (x2,...,x4) and also define

o —d/2__T(p)
CHdp =TT /zr(ﬁ—/il/z)' Then,

—B
[ etap (14 11) " dzar . xa)
R4-1

2\ B
_ 2\~ [l
= / cadp(1+x7) P <1+1+x%> dy

R4-1
_ —P -1
=+ P [ emap (11217) T (14D dz
R4-1
d-1_g CH4, —p
= (1 —|—x%) 2 'BC p / CH,d—l,ﬁ (1 + HZH2> dz
Ha-1p o,
= I (1 4 2y5p,
CH,d—-1,8

where we used the substitution z = y/4/1+ x2. Plugging in the constants yields the
desired result.



Next, we consider the distribution with density pgg. For x = (x1,...,%3) € B, we

~d/2T (3 +B+1)

put again y := (x2,...,%x;) and abbreviate cg 45 := 7 T(B-+1)

. Then, similarly as
above, we compute

p
[ enap (1= 1x17)" dexa, - x)

Bd-1

v (1 lvl?
= /CB,d,ﬁ(l_xl) 1_1—x% dy

Bd-1
p i1
= (=f [ epap (1-120P) (1 —xD) a2
Bi-1

2,415 CBdp 2\ P

= (- TP [y (1= 2)7) dz

CB,d—1,/sIBd71
CB,d d-1

b 1—x3)z TP,

CBd 1B

where we used the substitution z = y//1 — x3. Again, simplification of the constants
yields the desired result.

Finally, we consider the case of the uniform distribution on $?~1. We denote by F the
distribution function of the image measure of P = w, 1Hsd 1 under the orthogonal

projection map ITand let x; € [—1, 1]. Using the slice integration formula from Propos-
ition 4, we obtain

F(x1) = —’HSd ! ({u eSi 1 TI(u) € [—1,x1]}>

1 _
- / L{TI(u) € [=1,x1]} HE (du)
Sd—l
1 2
:%/ (1—19) / Hsd 2
gd—2
X1

_ Wi /(1 — )7 d.
Wy
—1

Differentiation with respect to x;, together with the definitions of w; and w,;_1, com-
plete the proof. O

In what follows, we shall denote by Fy g, Fg g and Fy the distribution functions corres-
ponding to the densities fy g, f,4 and fy computed in Lemma 6, respectively.

4 Proof of Theorem 1 and discussion

4.1 Proof of Theorem 1

Based on the results from the two previous sections we are now able to present the
proof of our main result. In what follows, we denote all constants by c. Unless other-
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wise stated, they only depend on the space dimension d and the parameter 8 of the un-
derlying probability distribution. Their value might change from instance to instance.

Proof of Theorem 1. For the classes G, H, B and U it is sufficient to consider the case
that the scale parameter ¢ is equal to 1, since the mean facet number is invariant under
rescalings.

For the distributions from class G the result is known from [4, Theorem 5.3.1].

Next, we consider the heavy-tailed distributions on RY with density py g(x) = cH,a,p(1+
|x[|*) =P, where B > d/2 and cggap = 72+ NG (i)/z) We follow the ideas from [4] and
start with the equality

Efs 1(Py) =E Z I{conv(Xj,...,X;,) is a facet of P, }

1§i1<...<id§71

(@)
= <Z) P(conv(Xy,...,X,)is a facet of P),

which holds due to the fact that the random points Xj, ..., X, are independent and
identically distributed. Let us denote by H € A(d,d — 1) the affine hull of the (d — 1)-
dimensional simplex P; spanned by Xj,..., X;. In the case that P; is a facet of Py,
all the remaining points X;1,..., X, have to lie in one of the (open) half-spaces de-
termined by H. If we denote by ITy the orthogonal projection onto H*, the ortho-
gonal complement of H, we observe that P; is a facet of P, if and only if the point
I1y(Py) is not contained in the interior of the interval [Ty (P,) on H*. Therefore, using
Lemma 6, the affine Blaschke-Petkantschin formula from Proposition 2 and the abbre-
viation F* = Fy g(I1g(P;)), we get for the probability that P, is a facet of Py,

P(conv(X3,..., X,) is a facet of P;)

:/(]Rd)d]P( X1,+4.,X HPH'B xl X1,...,xd)

_ / (= Fy=d 4 (P d)l‘[cﬂdﬁ 1+ [|x]*) P d(xy, ..., xg)

(RA)

d
i=1

A(dd-1) Hd
x A4 (d(x1,...,x4)) pta_1(dH),

where E(x1, ..., x;) stands for the event that all remaining random points X1, ..., X,
are located in the same open half-space determined by H. Next, we use the theorem
of Pythagoras to decompose, for each i € {1,...,d}, the norm ||x;||. Namely, writing
|| - || for the Euclidean norm in H € A(d,d — 1) and & for the distance from H to the
origin in RY, we have that
lll® = Il + 2.

Therefore and as already used in the proof of Lemma 6, the last term of the integrand
can be rewritten as

B
_ _ _ X
(14 602)F = (LI 4 ] ) = (14 42)F <1+‘1'+l”;§> ®
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Moreover, since each hyperplane H = H(u, h) is uniquely determined by its unit nor-
mal vector u € S?~! and its distance i € [0,00) to the origin, the integration over
A(d,d — 1) can be replaced by a twofold integral over S*~! and [0, o). Using the sub-
stitutions y; = x;/+v/1+ h2 with Ay(dx;) = (14 h?)@1/2)(dy;), the rotational in-
variance of the underlying probability measure, and writing F(h) for Fyy g(h) as well as
f(h) for fug(h), gives in view of Lemma 6 that

P(conv(Xy,...,Xy) is a facet of P)

d B
X /Adl(ylf---ryd)HCH,dl,ﬁ <1+||l/i!|12q> Mi(d(y, -, ya))
i=1
Hd

d—1

i Co/ (1= BG4 Fy=) (i) 0505

(1—F(h)"f(n)4(1+ )T dh,

=c

Slz\g

where we also used the fact that the integral over H is a finite constant given by Equa-
tion (72) in [10] and which only depends on the space dimension d and on .

Write now s = F(h) and L(s) = f (F~1(s)) v/1+ (F~1(s))? to obtain
1

P(conv(X3,...,Xy) is a facet of P,;) = C/(l _ S)”_dL(s)d—l ds.
0

Thus, combination of the above computation with (5) yields the representation

Efs 1(Pu) —Efg-1(Py-1)

— 0/1 K’;) (1-5)~ (” ) 1)} (1= o) 4 1L(s) 1 ds. )

In order to apply Lemma 5, we have to verify that L(s) is strictly concave on (0,1). We
prove this by showing that the second derivative of L(s) is negative. So, let cyp :=

d— _
1/ Zrﬁfﬁ_—_ﬁ;) and recall that f(x) = cyg(1 + xz)dTl_ﬁ from Lemma 6. Furthermore,
from the definition of F it follows that
! 1 1
Fl(s)) = = : 8
( (5)> FF1(s)) 1-p &

eng (14 (F1())%)
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We recall that

Hence, using (8), the first derivative of L(s) is
d _ B 1Y
L'(s) = crp (E - /3) (14 1©2) 7 P2 (F1o)
1
p

—2(5-6) (141 ©))

and, thus, for the second derivative we find that
v =2 (4-8) [(1+02) " (F6)
S (1 E02) 2 () ()]

“2(3-9) () [ ) - () ()]

=2 (3-8) (1 0?) T e @2 - 7]

oo
<0,

where the last inequality follows from the fact that p > d/2. As a consequence, we can
apply Lemma 5 to deduce that

where we used the well-known relation B(d,n —d + 1) = ”T_d B(d,n — d) for the beta
function.

As the next case we consider the class B of beta-type distribution on the unit ball B“
with density fp g for some f > —1. In this case the proof follows almost line by line the
proof for H, up to some minor modifications. In particular, (7) stays the same except
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that now L(s) = f (F'(s)) v/1— (F~(s))? where F(h) = Fg g(h) and f(h) = fgg(h).
Therefore, it follows that

v =2 (prg) (=)

where the constant cpg is cp g = T 12T(B+ 1+ %)1"(,8 + d%l)_l. Since F~1(s) €
(—1,1), we obtain L”(s) < 0 and can conclude as in the proof for the class H presented
above.

Finally, we consider the case of the uniform distribution on $?~!. Here we get by ap-
plying the spherical Blaschke-Petkantschin formula from Proposition 3 and using the
abbreviations F(h) = Fy(h) and f(h) = fu(h),

P(conv(X3,...,Xy) is a facet of P;)

S R B GRS T IR o

A(dd—1) (HNs-1)

X Hl(ilgimszd)fl)d (d(x1, ..., xq)) pa-1(dH)

X / a1y Ya) Higaap (@A, va)),
(Sdfz)d

where the substitution x; = y;v/1 — h? with Hd g1 (dx;) = (1 - hz) Hd ed-1(dyi)
was used. In particular, this transforms the mtegratlon over (HN g4 1) mto a d-fold
integral over the unit sphere in H, which in turn has been identified with $9~2 due
to rotational invariance. Since the integral over ($9~2)? is a known positive constant
only depending on d (the precise value can be deduced from [14, Theorem 8.2.3], for
example), we get by rotational invariance of the underlying distribution that

P(conv(X3,...,Xy) is a facet of P;)

_d+F(h)”_d>( — )PP dn

I
(9}
~ O\H
VRS
—~
—_
|

1

—¢ /(1 —F(R)" () (1 — 1) dh,
1

As a consequence, also for the uniform distribution on 9~ we arrive at an expression

of the form (7), this time with L(s) = f(F~!(s))/1 — (F~1(s))2. From this point on, the
proof can be completed as in the case of the distribution class H or B. This completes
the argument. O
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4.2 Discussion

Let p : R? — [0,00) denote a probability density. By a careful inspection of the proof of
Theorem 1 we see that the following properties of the density p have been used there.
First of all, we used that p is spherically symmetric, that is, p(x) only depends on x =
(x1,...,x4) € R via ||x||. By abuse of notation, we shall write p(r) : (0,00) — [0, 00)
with 2 = x? + ... + x5 for the radial part of the density p. This was essential to apply
the Blaschke-Petkantschin formulae, which use the invariant hyperplane measure y;_1.
Moreover, given H € A(d,d — 1) with distance & to the origin, we have used that we
can find ¢(h),p(h) > 0 such that

PV ) = o) p(s) ©)

for all r > 0. For example, for the density pyg, f > d/2, the scaling property (9) is
satisfied with ¢(h) = (14 h?)~Pand ¢(h) = V/1 + h2, see (6). This scaling property was
essential when we separated what happens within H from the contribution that arises
from the distance of H to the origin. However, all rotationally symmetric densities with
(almost everywhere differentiable) radial part satisfying the scaling property (9) with
an (almost everywhere differentiable) function i have been classified by Miles [10] (see
p. 376 there) and Ruben and Miles [13]. They precisely correspond to the distributions
in the classes G, H, B as well as to the exceptional distributions in U, for which Theorem
1 is formulated.

On the other hand, this does not mean that G, H, B and U contain the only rotationally
symmetric distributions on IR for which such computations are possible. For example,
the density with radial part pg ;(r) = cg ;% /(1+7*)P,r >0, € {0,1,2,...} and p >
j+d/2, which does not belong to the class H whenever j > 0, satisfies the following
generalization of the scaling property (9):

j r
(/12 4+ Kh2) = h
e (VP2 1) = 3 o e (5m)

with

pr(h) = (Ifc)hﬂk—f)(uhz)—ﬁ (k=0,...,/) and  ¢(h) = V1+H2.

One can check that the 1-dimensional marginal density of pg ; equals

] ; . ,
i\X1) = —_—X 1+x 2 ,
fﬁ,J( 1) kE:O: (k) Chd1k 1 ( 1)

and that from here on the argument based on the affine Blaschke-Petkantschin formula
can be applied term-by-term. Unfortunately, the computations in such and similar situ-
ations become quite involved. Moreover, to classify all rotationally symmetric densities
on IR¥ for which these computations can be performed seems to be out of reach.

One might also ask whether the method based on Blaschke-Petkantschin formulae
yields monotonicity of the mean facet number in such situations where the random
points Xj, ..., X, are independent with distributions belonging to one of the classes
G, H, B and U, but not necessarily the same (a so-called mixed case). That is, some
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of the X;’s are Gaussian, some distributed according to a distribution in H etc. (but
within each class we choose every time the same scale parameter o). Unfortunately, the
method breaks down. The reason is that each distribution class requires its individual
substitution, which is adapted to its respective scaling property (9). The resulting differ-
ent rescalings in the hyperplane H distort the relationship between the (d — 1)-volume
in H before and after the transformation, cf. [13].

5 Random convex hulls on a half-sphere

In this section we consider an application of Theorem 1 to convex hulls generated by
random points on a half-sphere. We fix d > 2, denote by S? the d-dimensional unit
sphere in R?*! and define the half-sphere

ST ={y= (- Yar1) €S : yap1 >0},

Furthermore, we let S be the class of probability distributions on S% that have density

psa(V) =csayiis,  ¥=1....¥ap1) €S, a>-—1,

with respect to the spherical Lebesgue measure on S . Here, cs, > 0 is a suitable nor-
malization constant. In particular, choosing a« = 0 shows that the uniform distribution
on S belongs to the class S.

For fixed « > —1and n > d+ 1 we let Xj,..., X, be independent random points
that are distributed on S% according to the density ps,. By S, we denote the spherical
convex hull of Xj, ..., X}, that is, the smallest spherically convex set in S‘i containing
the points Xj, ..., Xj,. For the special choice « = 0, this model has recently been studied
in [3]. In particular, it is shown in [3] that for this choice of & the mean number of
facets Ef;_1(S,) of the spherical random polytope S, converges to a finite constant
only depending on d, as n — oo (a similar result is in fact valid for all distributions in
S, see [1, 6, 8]). As a special case, our next result shows the somewhat surprising fact
that this limit is approached in a strictly monotone way.

Theorem 7 Let X1,...,Xy,, n > d+ 1, be independent and identically distributed according
to a probability measure belonging to the class S. Then,

Efg—1(Sn) > Efa_1(Sn-1)-
Proof. Let g: R? — S be the mapping defined as

<m ¢1+||x|| ¢1+||x|| )

-1 _ (N Yd
& W (}/d+1' ,}/d+1>

(this is known as the gnomonic projection). Let Dg be the Jacobian matrix of g and put
Jo(x) :== \/detDg(x)'Dg(x). Then, it holds that

with inverse given by

Jo(x) = (14 [|x|*) =%
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see [5, Proposition 4.2]. Moreover, for a measurable subset A C R and a measurable
function f: A — RR the area formula [9, Theorem 3.2.3] says that

[ fde= [ fos w)Ugos ) Mg (dy).

Next, we notice that 1+ ||¢g~ 1 (y)||* = yd_fl and apply the formula with f(x) = pug(x)
for some g > d/2:

2\— _ 2p—d=14,d
Jyemap ) Pax = | enmapifly" 1 (),

where cy 5 = 7=9/2T(B)/T(B — 4) is the normalization constant of the density PH,
defined in (4). As a result, we see that the density pss 41 on S‘i is the push-forward
of the density py g on R? under g. Note also that 28 —d —1 > —1 since § > d/2 and
that the uniform measure on the half-sphere corresponds to the choice § = (d +1)/2.
The above discussion shows the following. Let P, be the random convex hull in R“
generated by n independent points with density pyg. Then, the push-forward of Py,
has the same distribution as the spherical random polytope S, with « = 2 —d — 1.
Moreover, the facets of P, are in one-to-one correspondence with those of S;,. As a
consequence, the mean facet number of the spherical random polytope S, is the same
as the mean facet number of the random convex hull P,, i.e.,

Efs 1(Sn) = Efg_1(Pn).

Thus, the monotonicity follows from Theorem 1. O
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