Image co-registration for triggered and non-triggered DTI of the human kidney: Reduced variability of diffusion parameter estimation

Maryam Seif1, Huanxiang Lai, Chris Boesch, Mauricio Reyes1, Peter Vermathen1
1 Depts Clinical Research and Radiology, University Bern, Bern, Switzerland
Institute for Surgical Technology and Biomechanics, University Bern, Bern, Switzerland

Introduction:
Generally abdominal DTI-scans are performed employing respiratory-triggering to reduce severe physiological motion artifacts caused by respiration. However, even in triggered scans residual motion remains, possibly increasing the variability of diffusion-parameters. This study aimed therefore at investigating the benefit of non-rigid image co-registration of individual echo planar (EP-) DTI-images of human kidneys in respiratory-triggered and also in non-triggered scans.

Methods:
Twenty healthy volunteers were examined on a 3T MR scanner (Siemens, Erlangen Germany). A DW single-shot-echo-planar imaging sequence was applied with ten different b-values (0-700s/mm²) in 6 non-collinear directions. The first group of 12 subjects was investigated employing respiratory-triggering only, in the second group of 8 subjects DTI was performed in addition without triggering.

Co-registration of individual images was performed using an in-house developed multimodal non-rigid registration software, based on point-wise mutual information [1]. Further data processing included bi-exponential fitting yielding ADC and the perfusion fraction Fp (representing microcirculation contributions), and calculation of the fractional anisotropy (FA).

The co-registered and original images were compared in two ways:
1) For each analyzed ROI the standard deviation (SD) was calculated from all pixels within the ROIs;
2) The deviation from diffusion-model fitting was determined comparing the root mean squared error (RMSE). RMSE was determined for fitting the signal only for b-values b<100 sec/mm² (RMSElow), for b-values b>100sec/mm² (RMSEhigh), and for fitting all b-values (RMSEtot).

Results:
Visualy the co-registered diffusion maps demonstrated less distortions (Fig. 1). Quantitative analysis of the triggered scans demonstrated: 1) The SDs were significantly lower in co-registered images (Table 1). The mean values of Fp, ADC and FA were also slightly but significantly different, possibly due to lower spurious inclusion of signals from other tissue; 2) All RMSEs were significantly lower in co-registered images (Fig.2).

Analysis of the non-triggered scans also demonstrated lower signal variations after co-registration compared to the original images. However the benefit was less pronounced and the variability compared to the triggered scans (with and without co-registration) was significantly higher.

Discussion:
The results clearly demonstrate the benefit of co-registration of individual EP-images in renal DTI. Although currently the co-registration method does not allow for omitting the respiration-triggering in DTI scans of native kidneys, the lower variation also in non-triggered scans suggests that other organs or transplanted kidneys, where respiration motion is less severe, may be measured without triggering.

References:

Acknowledgment:
Supported by SNF-320030-138150

<table>
<thead>
<tr>
<th></th>
<th>ADC mean {[10⁻³ mm²/sec]}</th>
<th>Fp [%]</th>
<th>FA mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>medulla</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>original</td>
<td>194</td>
<td>0.15</td>
<td>0.38</td>
<td>0.09</td>
</tr>
<tr>
<td>co-reg</td>
<td>198</td>
<td>0.13</td>
<td>0.35</td>
<td>0.07</td>
</tr>
<tr>
<td>p-value</td>
<td>>0.1</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>cortex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>original</td>
<td>203</td>
<td>0.17</td>
<td>0.23</td>
<td>0.06</td>
</tr>
<tr>
<td>co-reg</td>
<td>208</td>
<td>0.14</td>
<td>0.20</td>
<td>0.05</td>
</tr>
<tr>
<td>p-value</td>
<td><0.01</td>
<td><0.002</td>
<td><0.002</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Table 1: Comparison of ADC, Fp and FA in kidneys derived from original and co-registered images (triggered scans). SD denotes the mean standard deviation of parameters in ROIs, not between subjects.

Fig. 1: Comparison of ADC and SD maps from non-triggered DTI scans demonstrated less distortions in Co-registered images.

Fig. 2: Comparison of RMSEs in medulla and cortex between signals from original and co-registered images as a measure for signal variability (triggered scans)