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Sum rules across the unpolarized Compton processes involving generalized
polarizabilities and moments of nucleon structure functions
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We derive two new sum rules for the unpolarized doubly virtual Compton scattering process on a
nucleon, which establish novel low-Q2 relations involving the nucleon’s generalized polarizabilities and
moments of the nucleon’s unpolarized structure functions F1ðx;Q2Þ and F2ðx;Q2Þ. These relations
facilitate the determination of some structure constants which can only be accessed in off-forward doubly
virtual Compton scattering, not experimentally accessible at present. We perform an empirical determi-
nation for the proton and compare our results with a next-to-leading-order chiral perturbation theory
prediction. We also show how these relations may be useful for a model-independent determination of the
low-Q2 subtraction function in the Compton amplitude, which enters the two-photon-exchange con-
tribution to the Lamb shift of (muonic) hydrogen. An explicit calculation of the Δð1232Þ-resonance
contribution to the muonic-hydrogen 2P − 2S Lamb shift yields −1� 1 μeV, confirming the previously
conjectured smallness of this effect.

DOI: 10.1103/PhysRevD.97.074012

I. INTRODUCTION

Besides the charge and magnetization distributions in a
nucleon, accessed in the elastic lepton-nucleon scattering
process, the low-energy nucleon structure is furthermore
characterized by its polarizability distributions, which are
accessed in Compton scattering (CS) processes with real
and virtual photons; see Refs. [1–5] for some reviews.
The CS process is the starting point for deriving sum

rules for various electromagnetic structure quantities [6].
For example, the Baldin sum rule for the sum of the dipole
polarizabilities [7] and the Gerasimov-Drell-Hearn (GDH)
sum rule for the anomalous magnetic moment [8,9] are
derived by considering the real Compton scattering (RCS)
process. These sum rules all relate a measured low-energy
observable to an integral over a photoabsorption cross
section on the nucleon and are thus model-independent

relations. The Burkhardt-Cottingham sum rule [10] has
been derived for the forward doubly virtual Compton
scattering (VVCS) process, implying that the sum of elastic
and inelastic parts of the nucleon’s spin structure function
g2 integrate to zero for arbitrary photon virtualities. Further
sum rules involving the spin structure functions were
derived by Schwinger [11]. Another important relation
by Cottingham [12] connects the unpolarized VVCS with
the electromagnetic correction to the proton-neutron mass
difference. It can be used to evaluate the electromagnetic
part of the proton-neutron mass difference [13,14].
Moreover, further assumption that the high-energy behav-
ior of the VVCS amplitude can be parametrized in terms of
Reggeon exchanges leads to separate sum rules for each of
the two dipole polarizabilities individually [14].
Recently, we have presented two sum rules [15,16]

which extend the GDH, Burkhard-Cottingham, and
Schwinger family of sum rules. These new sum rules
allow us to connect the moments of the nucleon’s low-Q2

spin-dependent structure functions g1;2, respectively, as
measured in inclusive electron scattering [17,18], to low-
energy electromagnetic structure quantities of the nucleon.
The latter can be independently obtained in different
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experiments: the nucleon’s Pauli radius, two of its four
lowest-order spin polarizabilities accessed in RCS [19], and
the slopes of two of its four lowest-order generalized
polarizabilities (GPs), accessed in the virtual Compton
scattering (VCS) process [20–23].
In the present work, we extend such sum-rule relations to

the spin-independent VVCS process at low Q2. We shall
thus derive two new sum rules relating the low-Q2 slopes of
the second (first) moments of the nucleon’s unpolarized
structure functions F1 (F2) to structure constants such as
the low-Q2 slope of the nucleon’s electric and magnetic
GPs and the quadrupole polarizabilities. We will also show
how such relations may be useful for a model-independent
determination of the low-Q2 “subtraction function” in the
forward VVCS amplitude T1, which affects prominently
the two-photon-exchange (TPE) contribution to the Lamb
shift of (muonic) hydrogen.
The paper is organized as follows. In Sec. II, the general

formalism for the spin-independent VVCS, i.e., CS with
virtual photons in both the initial and final states, and
arbitrary kinematics, is introduced. We discuss the Born
contributions as well as the low-energy expansions of the
non-Born amplitudes. For the latter, we deduce the limits of
RCS (Appendix A), VCS (where the incoming photon is
virtual and the outgoing photon is real) (Appendix B), and
forward VVCS. In Sec. II E, two new sum rules connecting
RCS, VCS, and (forward) VVCS quantities are derived,
which are verified in Sec. III with a next-to-leading-order
baryon chiral perturbation theory (BChPT) calculation of
the CS polarizabilities. Furthermore, Sec. II E introduces a
new analyticity constraint on the second derivative of the
T1ð0; Q2Þ subtraction function, which is verified and
studied in Sec. IV in view of the proton radius puzzle.
Empirical and next-to-leading-order (NLO) BChPT pre-
dictions for the low-energy coefficients b3;0, b4;1, and b19;0
are derived based on the newly introduced relations and
presented in Secs. III and IV, respectively. In Sec. IV, the
effect of the Δð1232Þ excitation on the Lamb shift in
muonic hydrogen (μH) from TPE is evaluated. The paper
finishes with a summary and conclusions (Sec. V).

II. DOUBLY VIRTUAL COMPTON SCATTERING:
SPIN-INDEPENDENT AMPLITUDE

The main subject of this work is the Compton scattering
process shown in Fig. 1, where the photons are, in general,
virtual. The spin of the target particle will not play much
role in what follows since we will be focusing on the spin-
independent observables. Nonetheless, the way the static
polarizabilities are defined (in the rest frame of the target),
the recoil corrections may bring the dependence on the spin
polarizabilities, and hence for those effects, the spin needs
to be specified. Keeping in mind the possible applications
of this formalism, we take the nucleon as the target particle
and hence limit ourselves to the spin-1=2 case. We

therefore consider the doubly virtual Compton scattering
process on the nucleon,

γ�ðq; λÞ þ Nðp; sÞ → γ�ðq0; λ0Þ þ Nðp0; s0Þ; ð1Þ

where λ and λ0 denote the photon helicities (0;�1) and s
and s0 are the nucleon helicities (�1=2).

A. Tensor decomposition

The VVCS tensor Tμν can be Lorentz decomposed into
18 invariant amplitudes as (in the notation of Ref. [24])

Mμν ¼
X
i∈J

Biðq2; q02; q · q0; q · PÞTμν
i ;

J ¼ f1;…; 21gnf5; 15; 16g; ð2Þ

with P ¼ 1
2
ðpþ p0Þ. The 18 independent tensors Tμν

i in
Eq. (2) are constructed to be gauge invariant [25]. Note that
in themost general case one has to use the basis consisting of
all 21 tensor amplitudes introduced in Ref. [24] in order to
avoid kinematic constraints; however, as long as only the
non-Born part of theVVCS amplitude is important (which is
the case in the present work, as detailed below), one can use
the minimal decomposition of Eq. (2); see Refs. [24,25].
The invariant amplitudes Bi depend in general on four

kinematic invariants. The incoming (outgoing) photon
virtualities are denoted by q2 (q02), respectively. We also
define the usual virtualities Q2 ¼ −q2 and Q02 ¼ −q02 that
are positive for spacelike virtual photons. These two defi-
nitions of a photon’s virtuality can be used interchangeably,
multiplying the appropriate sign factors where needed.
Furthermore, the variable q·q0¼ðq2þq02−tÞ=2 is related
with the momentum transfer to the nucleon, t≡ ðp0 − pÞ2.
The crossing symmetric variable q · P≡Mν, with M the
nucleon mass, can be expressed in terms of the Mandelstam
variables s and u: Mν≡ ðs − uÞ=4.
As mentioned, we are only interested in the spin-

independent case, which is described by five independent
tensors,

Mμνjspin indep ¼ B1T
μν
1 þB2T

μν
2 þB3T

μν
3 þB4T

μν
4 þB19T

μν
19;

ð3Þ

FIG. 1. Diagram of the Compton scattering process showing
the 4-momenta of the particles.
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where the tensors Tμν
i are symmetric under exchange of the two virtual photons and are given by

Tμν
1 ¼ −q · q0gμν þ q0μqν;

Tμν
2 ¼ ð2MνÞ2

�
−gμν þ q0μqν

q · q0

�
− 4q · q0

�
Pμ −

q · P
q · q0

q0μ
��

Pν −
q · P
q · q0

qν
�
;

Tμν
3 ¼ q2q02gμν þ q · q0qμq0ν − q2q0μq0ν − q02qμqν;

Tμν
4 ¼ ð2MνÞðq2 þ q02Þ

�
gμν −

q0μqν

q · q0

�
þ 2

�
Pμ −

q · P
q · q0

q0μ
�
ð−q02qν þ q · q0q0νÞ þ 2ð−q2q0μ þ q · q0qμÞ

�
Pν −

q · P
q · q0

qν
�
;

Tμν
19 ¼ 4q2q02

�
Pμ −

q · P
q2

qμ
��

Pν −
q · P
q02

q0ν
�
: ð4Þ

The invariant amplitudes Bi have definite transformation properties with respect to photon crossing, as well as nucleon
crossing combined with charge conjugation [24]. Using the tensors of Eq. (4), the photon crossing symmetry of the whole
amplitude (μ ↔ ν, q ↔ −q0) leads to the following relations for the invariant amplitudes:

Biðq2; q02; q · q0; q · PÞ ¼ þBiðq02; q2; q · q0;−q · PÞ; ði ¼ 1; 2; 3; 19Þ;
Biðq2; q02; q · q0; q · PÞ ¼ −Biðq02; q2; q · q0;−q · PÞ; ði ¼ 4Þ: ð5Þ

Furthermore, nucleon crossing combined with charge conjugation (P ↔ −P) leads to the relations

Biðq2; q02; q · q0; q · PÞ ¼ þBiðq2; q02; q · q0;−q · PÞ; ði ¼ 1; 2; 3; 19Þ;
Biðq2; q02; q · q0; q · PÞ ¼ −Biðq2; q02; q · q0;−q · PÞ; ði ¼ 4Þ: ð6Þ

B. Born contribution

An important contribution to the nucleon Compton
amplitude at low energies corresponds with a nucleon
intermediate state in the blob of Fig. 1, referred to as the
Born term. This contribution is, by definition, not affected
by structure-dependent constants, such as polarizabilities.
The Born term is defined by using the electro-
magnetic vertex for the transition γ�ðqÞþNðpÞ→NðpþqÞ
given as

Γμ ¼ FDðq2Þγμ þ FPðq2Þiσμν
qν
2M

; ð7Þ

with FD and FP the Dirac and Pauli form factors of nucleon
N, normalized as FDð0Þ ¼ eN and FPð0Þ ¼ κN , where eN
is the charge in units of the proton charge e (eN ¼ 0 for the
neutron) and κN is the anomalous magnetic moment in units
of the nuclear magneton e=2M; σμν ¼ ði=2Þ½γμ; γν�. With
this choice, the Born contribution to the spin-independent
VVCS amplitudes is given by

BBorn
1 ¼ 1

4M3
FPðq2ÞFPðq02Þ −

νB
2M2

1

ν2 − ν2B þ iε

�
GMðq2ÞGMðq02Þ − FDðq2ÞFDðq02Þ þ

q · q0

4M2
FPðq2ÞFPðq02Þ

�
;

BBorn
2 ¼ 1

4M3

1

ν2 − ν2B þ iε

�
FDðq2ÞFDðq02Þ −

q · q0

4M2
FPðq2ÞFPðq02Þ

�
;

BBorn
3 ¼ BBorn

4 ¼ BBorn
19 ¼ 0; ð8Þ

where νB ≡ −q · q0=ð2MÞ, and we introduced the Sachs magnetic form factor, GM ¼ FD þ FP.
The Born contribution of Eq. (8) can be split into pole and nonpole contributions. The pole contributions (also called

elastic contributions) are singular at ν ¼ νB. The only nonpole piece in Eq. (8) is obviously the first term, i.e.,
Bnp
1 ¼ FPðq2ÞFPðq02Þ=4M3. The rest of the Born terms are the pole contributions.

C. Low-energy expansions

The non-Born part of the VVCS amplitudes (denoted as B̄i) can be expanded for small values of q2, q02; q · q0, and ν, with
the expansion coefficients given by polarizabilities. We use the low-energy expansions (LEXs) in k ¼ fq; q0g established in
Ref. [24],
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B̄i ¼ bi;0 þ bi;2aq · q0 þ bi;2bðq2 þ q02Þ
þ bi;2cð2MνÞ2 þOðk4Þ; ði ¼ 1; 2; 3; 19Þ; ð9aÞ

B̄i ¼ 2Mνfbi;1 þ bi;3aq · q0 þ bi;3bðq2 þ q02Þ
þ bi;3cð2MνÞ2 þOðk4Þg; ði ¼ 4Þ; ð9bÞ

where the parameters bi;x are structure constants. We notice
that in order to fully specify the low-energy structure of the
spin-independent doubly virtual Compton amplitude one
requires two constants at the lowest order (b1;0 and b2;0)
and nine additional constants when going to the next order:
six coefficients arising from higher-order terms in B̄1 and
B̄2 and the three lowest-order coefficients in the amplitudes
B̄3; B̄4, and B̄19, which are the amplitudes which are acco-
mpanied by tensor structures of higher order in k ¼ fq; q0g.
The RCS process, corresponding with q2 ¼ q02 ¼ 0,

allows one to constrain the two lowest-order coefficients
in B̄1 and B̄2 as well as four of the next-order coefficients in
B̄1 and B̄2. We detail the connection between these
coefficients and the polarizabilities, accessible through
RCS, in Appendix A. These relations are given by (with
the fine-structure constant αem ≡ e2=4π ≃ 1=137):

b1;0 ¼
1

αem
βM1; ð10aÞ

b1;2a ¼ −
1

αem

1

6
βM2; ð10bÞ

b1;2c ¼
1

αem

1

ð2MÞ2
�
βM1;ν þ

1

12
ð2βM2 − αE2Þ

þ 1

M
ðγM1M1 þ γE1M2Þ

�
; ð10cÞ

b2;0 ¼ −
1

αem

1

ð2MÞ2 ðαE1 þ βM1Þ; ð10dÞ

b2;2a ¼
1

αem

1

ð2MÞ2
�
1

6
ðαE2 þ βM2Þ

−
1

M
ðγE1M2 þ γM1E2Þ þ

1

2M2
ðαE1 þ βM1Þ

�
; ð10eÞ

b2;2c ¼ −
1

αem

1

ð2MÞ4
�
αE1;ν þ βM1;ν þ

1

12
ðαE2 þ βM2Þ

�
:

ð10fÞ

Besides the electric (magnetic) dipole polarizabilities
αE1 (βM1), the above relations involve the corresponding
electric (magnetic) dispersive polarizabilities αE1;ν (βM1;ν)
and the electric (magnetic) quadrupole polarizabilities αE2
(βM2). Furthermore, there are recoil terms (proportional to
1=M relative to the quadrupole polarizability terms), which

involve the lowest-order nucleon spin polarizabilities
γM1M1, γE1M2, and γM1E2, as well as recoil terms (propor-
tional to 1=M2), which involve the scalar polarizabilities
αE1 and βM1.
In Appendix B, we show that the nonforward VCS

process, corresponding with an outgoing real photon, i.e.,
q02 ¼ 0, and an initial spacelike virtual photon with
virtuality q2, provides a second limit for the doubly virtual
Compton scattering. Its measurement allows us to constrain
two more of the next-order coefficients in B̄1 and B̄2 as

b1;2b ¼ −
1

αem

�
β0M1 þ

1

8M2
βM1

�
; ð11aÞ

b2;2b¼
1

αem

1

ð2MÞ2
�
α0E1þβ0M1−

1

2M
ðδLTþγE1E1−γE1M2Þ

−
1

8M2
ðαE1þβM1Þ

�
; ð11bÞ

which involve the slopes at Q2 ¼ 0 of the magnetic
(β0M1) and electric (α0E1) GPs, defined through Eqs. (B7a)
and (B7b). Furthermore, the recoil terms (proportional to
1=M and 1=M2 relative to β0M1 or α

0
E1) involve, besides αE1

and βM1, also the RCS spin polarizabilities γE1E1, γE1M2, as
well as the longitudinal-transverse spin polarizability δLT at
Q2 ¼ 0, which is accessed from a moment of the nucleon
spin-dependent structure functions g1 and g2.
We note that all quantities entering the rhs of

Eqs. (10a)–(10f) andEqs. (11a)–(11b) are observableswhich
are accessed either through the RCS process, VCS process,
or forward structure functions.

D. Forward limit

Besides the low-energy RCS and VCS processes, we can
consider as another limit of the doubly virtual Compton
process of Eq. (1) the forward VVCS limit, which corre-
sponds with q0 ¼ q and p0 ¼ p. Notice that for this process
q2 ¼ q02 ¼ q · q0 ¼ −Q2 < 0. The helicity averaged for-
ward VVCS process is described by two invariant ampli-
tudes, denoted by T1 and T2, which are functions of two
kinematic invariants: Q2 and ν. Its covariant tensor struc-
ture can be written as

αemMμνðVVCSÞjspin indep

≡
�
gμν −

qμqν

q2

�
T1ðν; Q2Þ

−
1

M2

�
pμ −

p · q
q2

qμ
��

pν −
p · q
q2

qν
�
T2ðν; Q2Þ;

ð12Þ

where αem is conventionally introduced in defining the
forward amplitudes T1 and T2. The optical theorem relates
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the imaginary parts of T1 and T2 to the two unpolarized
structure functions of inclusive electron-nucleon scat-
tering as

ImT1ðν; Q2Þ ¼ e2

4M
F1ðx;Q2Þ;

ImT2ðν; Q2Þ ¼ e2

4ν
F2ðx;Q2Þ; ð13Þ

where x≡Q2=2Mν and where F1 and F2 are the conven-
tionally defined structure functions parametrizing inclusive
electron-nucleon scattering. The imaginary parts of the
forward scattering amplitudes, Eq. (13), get contributions
from both elastic scattering at ν ¼ νB ≡Q2=ð2MÞ, or
equivalently x ¼ 1, as well as from inelastic processes
above the pion production threshold, corresponding with
ν > ν0 ≡mπ þ ðQ2 þm2

πÞ=ð2MÞ with mπ the pion mass,
or equivalently x < x0 ≡Q2=ð2Mν0Þ.
Expressing the doubly virtual Compton tensors of

Eq. (4) in the forward limit, the VVCS amplitudes T1

and T2 can be readily expressed in terms of the Bi
amplitudes of Eq. (3) as

T1ðν;Q2Þ ¼ αemfQ2B1 − 4M2ν2B2 þQ4B3 − 4MνQ2B4g;
ð14Þ

T2ðν; Q2Þ ¼ αem4M2Q2f−B2 −Q2B19g; ð15Þ

where the amplitudes Bi also depend on ν and Q2 for
forward kinematics.
Using Eq. (8), we can express the Born contributions in

the forward limit as

TBorn
1 ¼−

αem
M

�
F2
Dðq2Þþ

ν2B
ν2−ν2Bþ iε

G2
Mðq2Þ

�
;

TBorn
2 ¼−

αem
M

Q2

ν2−ν2Bþ iε

�
F2
Dðq2Þþ

Q2

4M2
F2
Pðq2Þ

�
; ð16Þ

and the corresponding pole parts as

ReTpole
1 ¼−

αem
M

ν2B
ν2−ν2B

G2
Mðq2Þ;

ReTpole
2 ¼−

αem
M

Q2

ν2−ν2B

�
F2
Dðq2Þþ

Q2

4M2
F2
Pðq2Þ

�
: ð17Þ

Using the LEXs of the non-Born amplitudes B̄i, given in
Eqs. (9a) and (9b), we can obtain from Eqs. (14) and (15)
LEXs for the non-Born parts T̄1;2 of the amplitudes T1;2.
Up to fourth order in k ¼ fν; Qg, these LEXs are given by

T̄1ðν; Q2Þ ¼ αemfQ2b1;0 − 4M2ν2b2;0

þQ4½−b1;2a − 2b1;2b þ b3;0� − ð2MνÞ4b2;2c
þ ð2MνÞ2Q2½b1;2c þ b2;2a þ 2b2;2b − 2b4;1�g
þOðk6Þ; ð18Þ

T̄2ðν;Q2Þ¼−αem4M2Q2fb2;0þQ2½−b2;2a−2b2;2bþb19;0�
þð2MνÞ2b2;2cgþOðk6Þ: ð19Þ

Besides the low-energy coefficients constrained from RCS
and VCS, as given in Eqs. (10a)–(10f) and Eqs. (11a) and
(11b), the knowledge of the amplitudes T̄1 and T̄2 to fourth
order requires in addition the knowledge of the constants
b3;0, b4;1, and b19;0, which we will discuss in the next
section.
In the following, we will also be interested in the

amplitude T̄1 at zero energy (ν ¼ 0), which plays the role
of a subtraction function in a dispersive framework for the
VVCS amplitude. From Eq. (18), we see that its LEX can
be expressed as

T̄1ð0; Q2Þ ¼ αemfQ2b1;0 þQ4½−b1;2a − 2b1;2b þ b3;0�g
þOðQ6Þ: ð20Þ

E. Sum rules

Using the RCS constraints of Eqs. (10a)–(10f) and the
VCS constraints of Eqs. (11a) and (11b) on the low-energy
coefficients, we can express the spin-independent VVCS
amplitudes of Eqs. (18) and (19) including all terms up to
fourth order in either Q or ν as

T̄1ðν; Q2Þ ¼ Q2βM1 þ ν2ðαE1 þ βM1Þ þ ν4
�
αE1;ν þ βM1;ν þ

1

12
ðαE2 þ βM2Þ

�

þQ2ν2
�
βM1;ν þ

1

12
ð4βM2 þ αE2Þ þ 2ðα0E1 þ β0M1Þ − 2αemð2MÞ2b4;1

þ 1

M
ð−δLT þ γM1M1 − γE1E1 − γM1E2 þ γE1M2Þ þ

1

ð2MÞ2 ðαE1 þ βM1Þ
�

þQ4

�
1

6
βM2 þ 2β0M1 þ αemb3;0 þ

1

ð2MÞ2 βM1

�
þOðk6Þ; ð21Þ
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T̄2ðν; Q2Þ ¼ Q2ðαE1 þ βM1Þ þQ2ν2
�
αE1;ν þ βM1;ν þ

1

12
ðαE2 þ βM2Þ

�
þQ4

�
1

6
ðαE2 þ βM2Þ þ 2ðα0E1 þ β0M1Þ

− αemð2MÞ2b19;0 −
1

M
ðδLT þ γE1E1 þ γM1E2Þ þ

1

ð2MÞ2 ðαE1 þ βM1Þ
�
þOðk6Þ: ð22Þ

We notice that the quadratic terms are fully determined by
the proton electric (αE1) and magnetic (βM1) dipole polar-
izabilities. The terms of order ν4 in T̄1 and of order Q2ν2 in
T̄2 are also fully determined by the electric and magnetic
dispersive and quadrupole polarizabilities which are ob-
servables in RCS. The term of order Q2ν2 in T̄1 involves in
addition the slopes at Q2 ¼ 0 of the electric and magnetic
GPs, as well as the RCS spin polarizabilities and the
longitudinal-transverse spin polarizability δLT, all of which
are also observable quantities either through RCS, VCS, or
using moments of spin structure functions. The only
unknown in this Q2ν2 term arises from the low-energy
coefficientb4;1. This term could in principle also be accessed
from the VCS process through the LEX of the amplitude f3,
as given by Eq. (B1c), using the LEX of Eq. (9b) as

b4;1 ¼
1

2M
d
dν

f̄3ð0; 0;MνÞjν¼0; ð23Þ

by using, e.g., a BChPT calculation for the VCS process
[26]. However, it will be difficult to extract this constant
empirically as it would involve higher-orderGPswhich have
not been quantified so far. In the following, we will show,
however, that a forward sum rule will allow us to fix this
term.
Finally, we notice that the quartic terms of order Q4

involve the unknown low-energy coefficients b3;0 for T̄1

and b19;0 for T̄2. These coefficients cannot be obtained from
RCS or VCS because the corresponding tensors vanish
when one or both photons are real. In this section, we will
show that b19;0 can also be determined from a forward sum
rule, involving the longitudinal electroabsorption cross
section on a proton. The only unknown parameter which
remains then is b3;0. Its determination will require an
observable from the doubly virtual Compton process.
Having established the LEXs of the non-Born parts of

the forward VVCS amplitudes T1 and T2, we are ready to
use the analyticity in ν, for fixed spacelike momentum
transfer q2 ¼ −Q2 ≤ 0. Both amplitudes are even functions
of ν. We will present the relations for the nonpole parts
of the amplitudes, Tnp

1 ðν; Q2Þ ¼ T1ðν; Q2Þ − Tpole
1 ðν; Q2Þ;

i.e., the well-known pole amplitudes given by Eq. (17) are
subtracted from the full amplitudes.

1. Spin-independent amplitude T1

The dispersion relation (DR) for T1 requires one sub-
traction, which we take at ν ¼ 0, in order to ensure high-
energy convergence,

ReTnp
1 ðν; Q2Þ ¼ Tnp

1 ð0; Q2Þ þ ν2

2π
P
Z

∞

ν0

dν0
1

ν0ðν02 − ν2Þ

×
e2

M
F1ðx0; Q2Þ; ð24Þ

with x0 ≡Q2=ð2Mν0Þ. Because the nonpole amplitudes are
analytic functions of ν, they can be expanded in a Taylor
series around ν ¼ 0 with a convergence radius determined
by the lowest singularity, the threshold of pion production
at ν ¼ ν0. Analogous to the low-energy expansion of RCS,
the series in ν, at fixed value of Q2, for forward VVCS
takes the following form [2],

ReTnp
1 ðν; Q2Þ ¼ Tnp

1 ð0; Q2Þ þMð2Þ
1 ðQ2Þν2

þMð4Þ
1 ðQ2Þν4 þOðν6Þ; ð25Þ

where Mð2Þ
1 ðQ2Þ and Mð4Þ

1 ðQ2Þ can, respectively, be
expressed through the second and fourth moments of the
unpolarized nucleon structure function F1 as

Mð2Þ
1 ðQ2Þ ¼ e2ð2MÞ

πQ4

Z
x0

0

dx0x0F1ðx0; Q2Þ

¼ 1

2π2

Z
∞

ν0

dν0

ν02
K
ν0
σTðν0; Q2Þ; ð26Þ

Mð4Þ
1 ðQ2Þ ¼ e2ð2MÞ3

πQ8

Z
x0

0

dx0x03F1ðx0; Q2Þ

¼ 1

2π2

Z
∞

ν0

dν0

ν04
K
ν0
σTðν0; Q2Þ: ð27Þ

Furthermore, in the second equalities of Eqs. (26) and (27),
we introduced the transverse electro-absorption cross
section (σT) on a nucleon through

KσTðν0; Q2Þ ¼ e2π
M

F1ðx0; Q2Þ; ð28Þ

where K is a conveniently defined virtual photon flux
factor; e.g., in the definition by Hand [27], it is given
by K ¼ ν0ð1 − x0Þ.
To obtain the low-energy expansion of the nonpole part

Tnp
1 entering Eq. (24), we also need to account for the

difference between the Born and pole parts, which can be
easily read off Eq. (16) as
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TBorn
1 ðν; Q2Þ − Tpole

1 ðν; Q2Þ
¼ −

αem
M

F2
D

¼ −
αem
M

þ αem
3M

hr21iQ2 −
αem
M

�
1

36
hr21i2 þ F00

Dð0Þ
�
Q4

þOðQ6Þ; ð29Þ
where hr21i is the squared Dirac radius of the proton and
where the Q4 term involves the curvature of the Dirac form
factor at Q2 ¼ 0, defined as

F00
Dð0Þ≡ d2FDðQ2Þ

dðQ2Þ2
����
Q2¼0

: ð30Þ

As the difference between the Born and pole term con-
tributions to T1 is independent of ν, it can be fully absorbed
in the subtraction function. The non-Born part of the
subtraction function T̄1ð0; Q2Þ can be read off Eq. (21) as

T̄1ð0; Q2Þ ¼ βM1Q2 þ
�
1

6
βM2 þ 2β0M1 þ αemb3;0

þ 1

ð2MÞ2 βM1

�
Q4 þOðQ6Þ: ð31Þ

Apart from the well-known fact that the expansion of
T̄1ð0; Q2Þ in powers of Q2 starts from the term βM1Q2, this
relation constrains the next term in the expansion, propor-
tional to Q4:

1

2

d2T̄1ð0; Q2Þ
dðQ2Þ2

����
Q2¼0

≡ 1

2
T̄ 00
1ð0Þ

¼ 1

6
βM2 þ 2β0M1 þ αemb3;0

þ 1

ð2MÞ2 βM1: ð32Þ

Combining Eqs. (29) and (31), the subtraction function
Tnp
1 ð0; Q2Þ entering the DRs of Eq. (24), including terms up

to order OðQ4Þ, is given by

Tnp
1 ð0; Q2Þ ¼ −

αem
M

þ
�
βM þ αem

3M
hr21i

�
Q2

þ
�
1

6
βM2 þ 2β0M1 þ αemb3;0 þ

1

ð2MÞ2 βM1

−
αem
M

�
1

36
hr21i2 þ F00

Dð0Þ
��

Q4 þOðQ6Þ:

ð33Þ
In order to completely fix the term of OðQ4Þ in the
subtraction function, one needs to determine the low-
energy coefficient b3;0:

b3;0¼
1

αem

�
1

2
T̄ 00
1ð0Þ−

1

6
βM2−2β0M1−

1

ð2MÞ2βM1

�
: ð34Þ

Its determination requires a measurement of the doubly
virtual Compton process with a spacelike initial and time-
like final photon.
The ν-dependent terms in the expansion of Eq. (25) can

all be determined from sum rules in terms of electro-
absorption cross sections on a nucleon, as given, e.g., by
Eqs. (26) and (27). For Q2 ¼ 0, one can use the LEX of
Eq. (21) to obtain the Baldin sum rule [7] and a higher-
order generalization thereof as

αE1 þ βM1 ¼ Mð2Þ
1 ð0Þ ¼ 1

2π2

Z
∞

ν0

dν0
σTðν0Þ
ν02

; ð35Þ

αE1;ν þ βM1;ν þ
1

12
ðαE2 þ βM2Þ

¼ Mð4Þ
1 ð0Þ ¼ 1

2π2

Z
∞

ν0

dν0
σTðν0Þ
ν04

; ð36Þ

where σTðν0Þ is the total photoabsorption cross section
on a proton.
We can next write down a new generalized Baldin sum

rule for the term proportional to Q2ν2 in the LEX of
Eq. (21):

dMð2Þ
1 ðQ2Þ
dQ2

����
Q2¼0

≡Mð2Þ0
1 ð0Þ

¼ βM1;νþ
1

12
ð4βM2þαE2Þþ 2ðα0E1þ β0M1Þ

− 2αemð2MÞ2b4;1þ
1

M
ð−δLT þ γM1M1

− γE1E1− γM1E2þ γE1M2Þ

þ 1

ð2MÞ2 ðαE1þ βM1Þ: ð37Þ

The structure function moment Mð2Þ
1 ðQ2Þ is an observable

and has been measured at Jefferson Laboratory (JLab) [28].
If one could determine the low-energy coefficient b4;1 from
the VCS process using Eq. (23), the sum rule of Eq. (37)
provides an exact nonperturbative relation which relates
observables in RCS, VCS, and VVCS. A direct determi-
nation of b4;1, however, involves higher-order GPs, which
may be quite complicated to extract from experiment. In
practice, one can use the measured value on the lhs of the
sum rule of Eq. (37) in order to determine the low-energy
coefficient b4;1 as

b4;1 ¼
1

αem8M2

�
−Mð2Þ0

1 ð0Þ þ βM1;ν þ
1

12
ð4βM2 þ αE2Þ

þ 2ðα0E1 þ β0M1Þ þ
1

M
ð−δLT þ γM1M1 − γE1E1

− γM1E2 þ γE1M2Þ þ
1

ð2MÞ2 ðαE1 þ βM1Þ
�
: ð38Þ
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2. Spin-independent amplitude T2

For the amplitude T2, which is even in ν, one can write
down an unsubtracted DR in ν:

ReTnp
2 ðν;Q2Þ¼ 1

2π
P
Z

∞

ν0

dν0
1

ν02−ν2
e2F2ðx0;Q2Þ: ð39Þ

For the amplitude T2, there is no difference between the
Born and pole contributions, as seen from Eq. (16). The
expansion of the amplitude Tnp

2 at small k ¼ fν; Qg can
therefore be directly read off Eq. (22). By evaluating
Eq. (39) at ν ¼ 0, taking its derivative with respect to
Q2 at Q2 ¼ 0, and using the relation

�
1

Q2
F2ðx;Q2Þ

�
Q2¼0

¼
�
1

Q2
2xF1ðx;Q2Þ

�
Q2¼0

¼ 1

πe2
σT;

ð40Þ

one recovers from the Q2 term in T̄2 the Baldin sum rule of
Eq. (35) and from the Q2ν2 term in T̄2 the higher Baldin
sum rule of Eq. (36).
Furthermore, Eq. (39) allows us to express T̄2ð0; Q2Þ for

general Q2 as

T̄2ð0; Q2Þ ¼ Q2Mð1Þ
2 ðQ2Þ; ð41Þ

with Mð1Þ
2 ðQ2Þ the first moment of the structure

function F2,

Mð1Þ
2 ðQ2Þ ¼ e2ð2MÞ

2πQ4

Z
x0

0

dx0F2ðx0; Q2Þ

¼ 1

2π2

Z
∞

ν0

dν0

ν02
1

ð1þ Q2

ν02Þ
K
ν0

× ½σTðν0; Q2Þ þ σLðν0; Q2Þ�; ð42Þ

where the second identity in Eq. (42) has been obtained by
expressing F2 through the sum of transverse (σT) and
longitudinal (σL) electroabsorption cross sections on a
proton as

K
ν0
½σTðν0; Q2Þ þ σLðν0; Q2Þ�

¼ e2π

�
1þQ2

ν02

�
1

Q2
F2ðx0; Q2Þ: ð43Þ

We can then express the low-energy expansion of T̄2

including all terms up to fourth order in k ¼ fν; Qg as1

T̄2ðν; Q2Þ ¼ Q2Mð2Þ
1 ð0Þ þQ2ν2Mð4Þ

1 ð0Þ
þQ4Mð1Þ0

2 ð0Þ þOðk6Þ; ð44Þ

whereMð2Þ
1 ð0Þ andMð4Þ

1 ð0Þ are given by Eqs. (35) and (36),
respectively. The term of order OðQ4Þ involves the first
derivative at Q2 ¼ 0 of Eq. (42) and can be obtained
through a sum-rule relation from Eq. (22) as

dMð1Þ
2 ðQ2Þ
dQ2

����
Q2¼0

≡Mð1Þ0
2 ð0Þ ¼ 1

6
ðαE2 þ βM2Þ þ 2ðα0E1 þ β0M1Þ

− αemð2MÞ2b19;0 −
1

M
ðδLT þ γE1E1 þ γM1E2Þ

þ 1

ð2MÞ2 ðαE1 þ βM1Þ: ð45Þ

As the slope Mð1Þ0
2 ð0Þ is also an observable, the knowledge

of it therefore allows us to determine the low-energy
coefficient b19;0 as

b19;0¼
1

αem4M2

�
−Mð1Þ0

2 ð0Þþ1

6
ðαE2þβM2Þþ2ðα0E1þβ0M1Þ

−
1

M
ðδLTþγE1E1þγM1E2Þþ

1

ð2MÞ2ðαE1þβM1Þ
�
:

ð46Þ

Let us note that it is also of interest to use the following
combination of structure functions,

T̄Lðν; Q2Þ≡ −T̄1ðν; Q2Þ þ ν2 þQ2

Q2
T̄2ðν; Q2Þ; ð47Þ

as its absorptive part can be related to the longitudinal
electroabsorption cross section on a nucleon as

ImT̄Lðν; Q2Þ ¼ K
4π

σLðν; Q2Þ: ð48Þ

Its low-energy expansion, obtained by substituting T̄1

and T̄2 from Eqs. (21) and (22) into the above definition,
goes as

T̄Lðν; Q2Þ ¼ Q2αE1 þQ2ν2αL þQ4α0E þOðk6Þ; ð49Þ

with1Note that Mð2Þ
1 ð0Þ ¼ Mð1Þ

2 ð0Þ.
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αL ¼ Mð1Þ0
2 ð0Þ −Mð2Þ0

1 ð0Þ þMð4Þ
1 ð0Þ

¼ αE1;ν þ
1

12
ð2αE2 − βM2Þ

þ αem4M2ð2b4;1 − b19;0Þ

−
1

M
ðγM1M1 þ γE1M2Þ; ð50Þ

where the last line has been obtained by using Eqs. (36),
(37), and (45). On the other hand, we recognize that αL is
the value atQ2 ¼ 0 of the usual αLðQ2Þ. It satisfies the sum
rule in Eq. (5.36) of Hagelstein et al. [5], which at Q2 ¼ 0
corresponds with the first line in Eq. (50). Furthermore, the
term of order OðQ4Þ in Eq. (49) is given by

α0E ¼ Mð1Þ0
2 ð0Þ − 1

2
T̄ 00
1ð0Þ ¼

1

6
αE2 þ 2α0E1 − αemð4M2b19;0 þ b3;0Þ −

1

M
ðδLT þ γE1E1 þ γM1E2Þ þ

1

ð2MÞ2 αE1: ð51Þ

To conclude this section, we would like to note that in Refs. [13,14] a different choice of basis was used for the purpose of
evaluating the Cottingham formula for the proton-neutron mass difference. The basis (denoted here by the superscript GL)
used in that work is related to ours as

TGL
1 ðν; Q2Þ ¼ −

M
αemQ2

�
T1ðν; Q2Þ − ν2

Q2
T2ðν; Q4Þ

�
; TGL

2 ðν; Q2Þ ¼ M
αemQ2

T2ðν; Q4Þ: ð52Þ

The LEX of the corresponding non-Born amplitudes T̄GL
1 ðν; Q2Þ and T̄GL

2 ðν; Q2Þ reads
αem
M

T̄GL
1 ðν; Q2Þ ¼ −βM1 − ν2

�
βM1;ν þ

1

12
ð2βM2 − αE2Þ − αem4M2ð2b4;1 − b19;0Þ þ

1

M
ðγM1M1 þ γE1M2Þ

�

−Q2

�
1

6
βM2 þ 2β0M1 þ αemb3;0 þ

1

ð2MÞ2 βM1

�
þOðk4Þ; ð53Þ

αem
M

T̄GL
2 ðν; Q2Þ ¼ ðαE1 þ βM1Þ þ ν2

�
αE1;ν þ βM1;ν þ

1

12
ðαE2 þ βM2Þ

�

þQ2

�
1

6
ðαE2 þ βM2Þ þ 2ðα0E1 þ β0M1Þ − αemð2MÞ2b19;0

−
1

M
ðδLT þ γE1E1 þ γM1E2Þ þ

1

ð2MÞ2 ðαE1 þ βM1Þ
�
þOðk4Þ: ð54Þ

To obtain the total amplitudes TGL
1 and TGL

2 , one needs to add the Born terms, which read

TGL;Born
1 ¼ −

F2
Pðq2Þ
4M2

þ 1

ν2 − ν2B þ iε
Q2

Q2 þ 4M2

�
G2

Mðq2Þ −G2
Eðq2Þ

�
;

TGL;Born
2 ¼ −

1

ν2 − ν2B þ iε

�
F2
Dðq2Þ þ

Q2

4M2
F2
Pðq2Þ

�
: ð55Þ

The use of amplitudes TGL
1 and TGL

2 is equivalent to that of
T1 and T2 as far as the quartic constraints derived in this
work are concerned. Indeed, the ν2-dependent term in TGL

1

and theQ2-dependent term in TGL
2 lead to the two new sum

rules of Eqs. (37) and (45), respectively.

III. SUM-RULE VERIFICATIONS IN BARYON
CHIRAL PERTURBATION THEORY

AND EMPIRICAL ESTIMATES FOR THE
LOW-ENERGY COEFFICIENTS

In this section, we verify the sum rules derived in
Eqs. (37) and (45). For this purpose, we will use a covariant

next-to-leading-order BChPT calculation of the non-Born
part of the CS process. Furthermore, we will provide
empirical estimates for the low-energy coefficients entering
the sum rules.
In several previous works, we have provided next-to-

leading-order BChPT results for moments of nucleon
structure functions [29], nucleon polarizabilities entering
the RCS process [30,31], and generalized polarizabilities
entering the VCS process [26]. Such calculation is fully
predictive at orders Oðp3Þ and Oðp4=ΔÞ. The Oðp3Þ
leading-order (LO) contribution to the polarizabilities
and the moments of structure functions comes from the
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pion-nucleon (πN) loops, and the Oðp4=ΔÞ NLO contri-
bution comes from the Delta-exchange (Δ) graph and the
pion-Delta (πΔ) loops. Here, we estimate the Δð1232Þ
effects in the so-called δ counting [32], with the Delta-
nucleon mass difference Δ ¼ MΔ −M counted as an
intermediate scale, mπ ≪ Δ ≪ M, so that in the δ counting
mπ=Δ ∼ Δ=M ∼ δ.
The quoted field-theory calculations give predictions for

all terms entering Eqs. (32), (37), and (45), with the
exception of b3;0 and b19;0. The covariant BChPT thus

allows us to exactly verify the sum rule (37) forMð2Þ0
1 ð0Þ by

calculating all entries therein separately. The sum rule (45)

for Mð1Þ0
2 ð0Þ and the constraint (32) for T 00

1ð0Þ, on the other
hand, can be used in order to obtain covariant BChPT
predictions for the unknown coefficients b3;0 and b19;0.
A detailed discussion of Eq. (32) is postponed to Sec. IV.
The latter two coefficients can be obtained directly from

a calculation of the VVCS process in the off-forward
regime. We performed such a calculation for the Delta-
exchange graph, extending the CS calculation of that graph
to the most general VVCS kinematics, obtaining the
respective contributions to b3;0 and b19;0. This allows us
to verify Eqs. (32) and (45), too, albeit only for the Delta-
exchange graph contribution at Oðp4=ΔÞ.
An additional remark is in order regarding our calcu-

lation of the Delta-exchange graph. As explained in
Ref. [33], the magnetic γNΔ coupling gM is complemented
by the dipole form factor, inferred from vector meson
dominance considerations, and needed phenomenologi-
cally for a satisfactory description of electromagnetic
nucleon-Delta transitions,

gM →
gM

½1þQ2=Λ2�2 ; ð56Þ

with the dipole mass Λ2 ¼ 0.71 GeV2. The form factor
changes the slopes of the VCS GPs and the VVCS structure
function moments which enter the sum rules and the
analyticity constraint, specifically, the values of β0M1,

Mð2Þ0
1 ð0Þ, Mð1Þ0

2 ð0Þ, and T̄ 00
1ð0Þ.2 However, the sum rules

and the analyticity constraint are not affected. This can be
seen explicitly from the expressions for the respective
Delta-exchange contributions. In general, we checked that
it is possible to add an arbitrary Q2 dependence to the
couplings, e.g., by including form factors, without violating
the spin-independent sum rules considered herein, or the
constraint on the derivative of the subtraction function
T̄ 00
1ð0Þ, as discussed in Sec. IV.
We show the BChPT estimates for all terms entering the

sum rule (37) for Mð2Þ0
1 ð0Þ in Table I and the sum rule (45)

for Mð1Þ0
2 ð0Þ in Table II. The values in both tables include

the contribution of the dipole form factor in the Delta-
exchange graph; values without those contributions can
be obtained by adding 4βΔM1=Λ2 ¼ 1.57 × 10−4 fm5 where
appropriate. Remember that b4;1 was known from BChPT
before [26], while the coefficient b19;0 was previously
unknown. For the Delta-exchange contribution, b19;0 has
been calculated directly from the off-forward VVCS
process, whereas the πN- and πΔ-loop contributions were
deduced from the sum rule and the BChPT predictions for
the remaining quantities in Eq. (45).
Having verified the sum rules, we can provide empirical

estimates of the low-energy coefficients. The left-hand
sides of both Eqs. (37) and (45) can be estimated from the
measured moments of proton structure functions. We show
the empirical Bosted-Christy (BC) fit [34] for the moments

Mð2Þ
1 and Mð1Þ

2 in the low-Q2 region in Figs. 2 and 3,
respectively. Their slopes at Q2 ¼ 0 are listed in Tables I
and II. Furthermore, we use the dispersive estimates of
Ref. [35] for the higher-order real Compton polarizabilities
and of Refs. [2,36] for the GPs. We use the phenomeno-
logical MAID2007 fit [37] as input for the πN-channel
contribution in the DRs. The recoil terms on the right-
hand sides of Eqs. (37) and (45), which are proportional to

TABLE I. Values of the low-energy coefficients entering the sum rule (37) forMð2Þ0
1 ð0Þ, all in units of 10−4 fm5. The first four rows are

different contributions in BChPT: all columns are calculated independently in BChPT, verifying the sum rule. Errors are estimated as
detailed in Ref. [31]. The last row corresponds with empirical extractions either through the experimental Bosted-Christy (BC) fit [34],
dispersive (DR), or sum rule (SR) estimates as described in the text. The value of b4;1 in the last row is the sum rule [Eq. (38)] extraction
using the other values in that row as input.

Source Mð2Þ0
1 ð0Þ −αem8M2b4;1 βM1;ν ð4βM2 þ αE2Þ=12 2ðα0E1 þ β0M1Þ 1=M recoil 1=M2 recoil

πN loops −0.74 2.34 1.78 −1.67 −3.53 0.29 0.06
πΔ loops −0.20 0.40 0.63 −0.62 −0.56 −0.09 0.03
Δ exchange 1.00 −1.58 4.72 −1.44 −1.41 0.63 0.08

Total BChPT 0.07� 0.4 1.17� 0.6 7.14� 2.5 −3.74� 1.0 −5.50� 1.2 0.83� 0.3 0.17� 0.01

Empirical −1.71 1.62 9.37 −5.77 −7.86 0.77 0.16
BC fit [34] SR extraction DR [35] DR [35] DR [2,36] DR [2,37] SR [5]

2Note that the quantities which enter the spin-dependent sum
rules considered in our previous work [15,16] are not affected by
these form factors.
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1=M and 1=M2, depend on the lowest-order spin and scalar
polarizabilities, respectively. To estimate these terms, we
use the empirical values listed in Table III. Using the sum

rules forMð2Þ0
1 ð0Þ and Mð1Þ0

2 ð0Þ, we are then able to provide
empirical estimates for the low-energy coefficients b4;1 and
b19;0, as shown in Tables I and II.
One can see from Tables I and II that there is a reasonable

agreement between the BChPT values and the empirical
ones for most terms entering Eqs. (37) and (45). We see

differences for Mð2Þ0
1 ð0Þ, which is close to zero in BChPT

but is negative in the empirical fit, as well as for b19;0,
which is very small in the empirical extraction. As both
of these quantities yield relatively small contributions
to the respective sum rules shown in Tables I and II, the
differences can partly be attributed to cancellations between
different terms in these relations. Figures 2 and 3 also

demonstrate that there is qualitative agreement between the

BChPTand the BC fit results forMð2Þ
1 ðQ2Þ andMð1Þ

2 ðQ2Þ—
most of the difference is just due to the different static
values of αE1 þ βM1 in the two calculations. Apart from
that, the BChPT curves agree, within their (rather wide)
error bands, with the BC fit results.
The uncertainty bands on the BChPT curves are calcu-

lated as detailed in Ref. [26] and represent a conservative
estimate of corrections due to higher orders in the chiral
expansion. On the other hand, one can see that the use of
the form factor in the γNΔ vertex is an important part of the
presented result. To estimate the uncertainty due to the form
factor, one notes that empirical data on electromagnetic
nucleon-Delta transitions at lowQ2 allow one to extract the
form factor with a precision of the order of 2%; see, e.g.,
Ref. [38]. Varying the form factor within this range would

result in changes of Mð2Þ
1 ðQ2Þ and Mð1Þ

2 ðQ2Þ at least an

TABLE II. Values of the low-energy coefficients entering the sum rule (45) forMð1Þ0
2 ð0Þ, all in units of 10−4 fm5. The first four rows are

different contributions in BChPT: theΔ-exchange contributions serve as a verification of the sum rule. Errors are estimated as detailed in
Ref. [31]. The last row corresponds with empirical extractions either through the experimental BC [34], DR, or SR estimates as
described in the text. The value of b19;0 in the last row is the sum rule [Eq. (46)] extraction using the other values in that row as input.

Source Mð1Þ0
2 ð0Þ −αem4M2b19;0 ðαE2 þ βM2Þ=6 2ðα0E1 þ β0M1Þ 1=M recoil 1=M2 recoil

πN loops −1.47 0.95 0.86 −3.53 0.20 0.06
πΔ loops −0.26 0.23 0.08 −0.56 −0.05 0.03
Δ exchange −1.94 0.01 −0.65 −1.41 0.03 0.08

Total BChPT −3.68� 1.1 1.19� 0.3 0.29� 0.3 −5.50� 1.2 0.17� 0.04 0.17� 0.01

Empirical −6.63 0.14 0.75 −7.86 0.18 0.16
BC fit [34] SR extraction DR [35] DR [2,36] DR [2,37] SR [5]

BChPT

BChPT with  FF

E1 + M1, Baldin SR

JLab/HallC data
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FIG. 2. Q2 dependence of the proton structure moment Mð2Þ
1

according to the empirical BC fit (black solid curve) [34], in
comparison with the πN þ Δþ πΔ BChPT calculation. For the
latter, we also show the result when an additional form factor
dependence is included in the Δ-exchange contribution as given
by Eq. (56); blue dashed (magenta dashed-dotted) curves show
the results with (without) the form factor. The blue band shows
the uncertainty of the BChPT result with the form factor,
estimated as in Ref. [26]. At the real photon point, the observable
yields the Baldin sum-rule value for αE1 þ βM1 [5]. The data
point at Q2 ¼ 0.3 GeV2 is from JLab/HallC [28].
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FIG. 3. Q2 dependence of the proton structure moment Mð1Þ
2

according to the empirical BC fit (black solid curve) [34], in
comparison with the πN þ Δþ πΔ BChPT calculation. For the
latter, we also show the result when an additional form factor
dependence is included in the Δ-exchange contribution as given
by Eq. (56); blue dashed (magenta dashed-dotted) curves show
the results with (without) the form factor. The blue band shows
the uncertainty of the BChPT result with the form factor,
estimated as in Ref. [26]. At the real photon point, the observable
yields the Baldin sum-rule value for αE1 þ βM1 [5].
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order of magnitude smaller than the shown uncertainty
bands. We thus neglect the uncertainty due to this source,
expecting that any form factor that describes electromag-
netic nucleon-Delta transitions reasonably well should give
results close to those presented here.
The arguments concerning the uncertainty estimate also

apply to the subtraction function T̄1ð0; Q2Þ; see a more
detailed discussion thereof in Sec. IV.
Finally, we can also extract an empirical estimate for the

longitudinal polarizability in Eq. (50). For the term

Mð4Þ
1 ð0Þ, we use the empirical sum-rule evaluation of

Eq. (36) yielding [39]: Mð4Þ
1 ð0Þ ¼ 6.0 × 10−4 fm5. Using

the BC fit values forMð2Þ0
1 ð0Þ andMð1Þ0

2 ð0Þ, listed in Tables I
and II, we then obtain an empirical estimate for αL:

αL ≃ 1.1 × 10−4 fm5: ð57Þ

This polarizability has been calculated in BChPT at NLO
[29]: αL ≃ 2.3 × 10−4 fm5. We have checked that the same
value is obtained by evaluating the separate BChPT
contributions in Eq. (50).

IV. LOW-Q BEHAVIOR OF THE
SUBTRACTION FUNCTION

In this section, we study the Q2 dependence of
the subtraction function, T̄1ð0; Q2Þ, which is of interest
for the (muonic) hydrogen Lamb shift calculations. It is the

part of the TPE correction in the lepton-proton system
noncalculable through the sum rules. In what follows, we
will verify the analyticity constraint derived in Eq. (32) and
give estimates for the low-energy coefficient b3;0. As a
result, one constrains the subtraction contribution to the
Lamb shift.
The LEX given in Eq. (32) relates the second derivative

of the subtraction function, T̄ 00
1ð0Þ, to scalar and spin

polarizabilites known from RCS, the GP slope β0M1 known
from VCS, and the low-energy coefficient b3;0.
Analogously to Sec. III, we verify Eq. (32) with the
Delta-exchange graph contribution at Oðp4=ΔÞ in
BChPT. As explained earlier, the validity of the constraint
is not affected by adding a dipole form factor dependence to
the magnetic coupling gM or, in general, by the inclusion of
an arbitraryQ2 dependence of the γNΔ couplings. Once the
constraint is verified, it can be used to make a prediction for
b3;0 at NLO in BChPT. As before, we rely on the results
previously derived in Refs. [26,29–31]. The corresponding
BChPT values [again, with the use of the form factor in the
Delta pole, as given by Eq. (56)], as well as empirical and
dispersive estimates of all quantities entering Eq. (32), are
given in Table IV.
It is interesting to note that the value of b3;0 obtained in

BChPT turns out to be rather small compared to other
quantities entering Eq. (32) and is driven by the Delta-
exchange graph, with πN and πΔ loops giving negligible
contributions. The smallness of the πN- and πΔ-loop terms
in b3;0 could be considered accidental, given that it results
from very efficient cancellations between the different
terms in Eq. (32).
Let us now compare the behavior of the subtraction

function in different approaches. In Fig. 4, we show
T̄1ð0; Q2Þ=Q2 as obtained in BChPT and heavy-baryon
chiral perturbation theory (HBChPT) [42] (note that the
latter calculation uses a dipole form factor (with the slope
matched to the HBChPT expansion at lowQ2) to model the
large-Q2 behavior of the subtraction function) and an
estimate from the superconvergence relation [40]. At the
real photon point, T̄1ð0; Q2Þ=Q2 is given by the magnetic

TABLE III. Empirical values for the polarizabilities used in
estimating the recoil terms in Eqs. (37) and (45).

Value Source

αE1 þ βM1 14.0� 0.2 (10−4 fm3) Baldin SR [5]
γE1E1 −4.3 (10−4 fm4) DR [35]
γM1M1 2.9 (10−4 fm4) DR [35]
γE1M2 −0.1 (10−4 fm4) DR [35]
γM1E2 2.1 (10−4 fm4) DR [35]
δLT 1.34 (10−4 fm4) MAID2007 [37]

TABLE IV. Values of the low-energy coefficients entering theQ4 term of the subtraction function T̄1ð0; Q2Þ, given
by Eq. (32). All quantities are given in units of 10−4 fm5. The first four rows are different contributions in BChPT:
the Δ-exchange contributions serve as a verification of the LEX constraint. Errors are estimated as detailed in
Ref. [31]. The last row corresponds with empirical results either from DR estimates or the Particle Data Group
(PDG). The value of b3;0 in the last row is obtained from Eq. (34) by using the other values in that row as input.

Source 1
2
T̄ 00
1ð0Þ αemb3;0 βM2=6 2β0M1 1=M2 recoil

πN loops −0.06 0.001 −1.40 1.36 −0.02
πΔ loops −0.10 −0.005 −0.44 0.37 −0.02
Δ exchange −1.98 0.11 −0.75 −1.42 0.08

Total −2.14� 0.98 0.11� 0.05 −2.59� 0.59 0.31� 0.50 0.04� 0.01

Empirical −0.47 3.96 −4.10 −0.36 0.03
estimate [40] Eq. (34) DR [35] DR [36,37] PDG 2016 [41]
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dipole polarizability βM1, cf. Eq. (31). The figure shows that
the BChPT curve with no γNΔ form factor is close to the
HBChPTone; note that the static value in the latter curvewas
fixed to the PDG value of βM1 ¼ ð2.5� 0.4Þ × 10−4 fm3

[41] rather than the larger value βM1 ¼ ð3.15� 0.50Þ ×
10−4 fm3 (which is typical of modern HBChPT [43] and
BChPT [44] fits), used in Ref. [42]. The form factor on the

magnetic γNΔ coupling increases the (negative) slope of the
subtraction function atQ2 ¼ 0, as can be seen fromTable IV
by comparing the BChPT result (with form factor) with the
empirical estimate. It suppresses the Delta-exchange con-
tribution to the subtraction function at nonzeroQ2, and since
the πN- and πΔ- loop contributions are negative, the result
with the form factor shows a zero crossing in the broad Q2

range between 0.05 and 0.25 GeV2.
Let us now turn to the contribution of the subtraction

term in the TPE correction to the Lamb shift in μH and in
particular to the effect of the Δð1232Þ excitation, shown in
Fig. 5. As seen in Fig. 4, the subtraction function changes a
lot depending on the treatment of the Delta-exchange
contribution. However, as argued in Ref. [45], the total
contribution of the Delta exchange to the Lamb shift in μH
turns out to be rather small due to cancellations between the
subtraction and inelastic terms. This picture as well as the
value of the total Delta-exchange contribution only very
weakly depend on the parametrization of the γNΔ tran-
sition. We will demonstrate it in detail below; for this
purpose, we briefly recall the TPE formalism (see, e.g.,
Ref. [46]). The nth S-level shift in the (muonic) hydrogen
spectrum due to forward TPE is related to the spin-
independent forward VVCS amplitudes,

ΔETPEðnSÞ ¼ 8πe2mϕ2
n
1

i

Z
∞

−∞

dν
2π

Z
dq

ð2πÞ3
ðQ2 − 2ν2ÞT1ðν; Q2Þ − ðQ2 þ ν2ÞT2ðν; Q2Þ

Q4ðQ4 − 4m2ν2Þ ; ð58Þ

wherem is the lepton mass, ϕ2
n ¼ 1=ðπn3a3Þ is the wave function at the origin, a−1 ¼ αemmr is the inverse Bohr radius, and

mr is the reduced mass of the lepton-proton system. Recall also that the Lamb shift is the difference between the shifts of the
2P and 2S levels; the TPE contribution to the former is negligible, and the TPE contribution to the Lamb shift is thus just
−ΔETPEð2SÞ. Obviously, the polarizability effect on the hydrogen spectrum is described by the non-Born amplitudes T̄1 and
T̄2. This effect can be split into the contribution of the subtraction function T̄1ð0; Q2Þ,

ΔEsubtrðnSÞ ¼ 2e2mϕ2
n

π

Z
∞

0

dQ
Q3

vl þ 2

ð1þ vlÞ2
T̄1ð0; Q2Þ; ð59Þ

with vl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2=Q2

p
, and contributions of the inelastic structure functions (Ref. [5], Sec. 6):

ΔEinelðnSÞ ¼ −32α2emMmϕ2
n

Z
∞

0

dQ
Q5

Z
x0

0

dx
1

ð1þ vlÞð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2τ−1

p
Þ ×

��
1þ vl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2τ−1

p

vl þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2τ−1

p
�
F2ðx;Q2Þ

þ 2x

ð1þ vlÞð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2τ−1

p
Þ

�
2þ 3þ vl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2τ−1

p

vl þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2τ−1

p
�
F1ðx;Q2Þ

�
; ð60Þ
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FIG. 4. The low-Q2 behavior of the non-Born piece of the
subtraction function. Shown are the HBChPT calculation [42]
(dark yellow band), the BChPT calculation of this work (blue
dashed and magenta dashed-dotted curves show the results with
and without the form factor, respectively; the wider blue band
shows the uncertainty of the BChPT result with the form factor,
estimated in Ref. [26]), and the empirical superconvergence
relation estimate of Ref. [40] (black solid curve). At the real
photon point, the PDG 2016 value of βM1 ¼ ð2.5� 0.4Þ ×
10−4 fm3 [41] is shown. Note that the HBChPT curve is shifted
to reproduce that value, whereas Ref. [42] uses a larger value
βM1 ¼ ð3.15� 0.50Þ × 10−4 fm3 found in the most recent
HBChPT fit [43].

FIG. 5. Two-photon-exchange diagram with intermediate
Δð1232Þ excitation.
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where τ ¼ Q2=ð4M2Þ. The Δð1232Þ-exchange contribu-
tion to the T̄1ð0; Q2Þ subtraction function reads [47]

T̄1ð0;Q2Þ¼ αemQ4

MΔMþωþ

�
g2M
Q2

þ gMgE
MMþ

−
g2EΔ

M2Mþ
þ gMgC
MMþ

þ2gEgCðMΔþQ2Þ
M2MΔMþ

−
g2CΔðM2−Q2Þ
M2M2

ΔMþ

�
; ð61Þ

with Mþ ¼ MΔ þM and ωþ ¼ ðM2
Δ −M2 þQ2Þ=2MΔ.

Here, the second row contains terms proportional to the
subleading Coulomb coupling gC.
In Table V, we show the effect of TPE with intermediate

Δð1232Þ excitation on the 2S level in μH.3 As mentioned
above, the magnetic coupling can be multiplied by a dipole
form factor in order to model a vector-meson type of
dependence; the use of the form factor is specified in the
table. For the prediction in the last row, the γNΔ couplings
were replaced by the Jones-Scadron nucleon-to-Delta
transition form factors (see Ref. [47] for the details of
the calculation). These transition form factors were related
to nucleon form factors by the finite-momentum transfer
extension of their large-Nc limit [48]. The nucleon form
factors were in turn described by an empirical parametri-
zation [49]. As one can see from the table, the relatively
large contribution of the subtraction function, T̄1ð0; Q2Þ
(second column), is largely cancelled by the contributions
of the inelastic structure functions, F1 and F2 (third and
fifth columns). The total effect of the Δð1232Þ resonance
on the shift of the 2S state in μH is small [47] (quoting the
calculation with the Jones-Scadron form factors),

ΔEhΔ-excitipolð2S; μHÞ ¼ 0.95� 0.95 μeV; ð62Þ
compared to the leading effect of chiral dynamics [45],

ΔEhLOipolð2S; μHÞ ¼ −8.2þ1.2
−2.5 μeV: ð63Þ

At the same time, a calculation of the TPE with Δð1232Þ
excitation, employing again Jones-Scadron form factors,
allows for a meaningful prediction of the contribution of
the subtraction term (i.e., a prediction independent from its
combination with the inelastic contribution into the polar-
izability contribution, cf. the discussion in Ref. [45],
Sec. III) to the shift of the 2S state at LO plus Δ in BChPT,

ΔEhLOþΔisubtrð2S; μHÞ ¼ 4.6þ2.3
−2.4 μeV; ð64Þ

which is in good agreement with dispersive predictions
[42,46]. Table VI shows a comparison of separate con-
tributions to ΔETPEð2SÞ in different frameworks.4

To conclude this section, we note that ChPT here is an
example which satisfies the sum rules. However, the hope is
that the sum rules will provide a data-driven evaluation,
independent of ChPT. For that, one would need to have an
experimental determination of the constant b3;0, which can
become possible in future doubly virtual Compton scatter-
ing measurements.

V. CONCLUSIONS

The main result of this work is given by the VVCS sum
rules in Eqs. (37) and (45) and the LEX constraint in
Eq. (32). For the derivation, the known CS formalism,
reviewed in the beginning of Sec. II, was used. At second
order in energy (ν2) or momentum transfer (Q2), the
unpolarized nucleon response in the CS process is fully
described in terms of electric and magnetic dipole polari-
zabilities. In this work, we have fully quantified the
response of the double virtual CS to fourth order, including
terms in ν4, ν2Q2, and Q4. The new forward sum rules we
have derived establish relations between RCS, VCS, and
VVCS observables at this order. In particular, they give
access to the VVCS low-energy coefficients b4;1 and b19;0
through moments of the nucleon structure functions, VCS

TABLE V. Contribution of the Δð1232Þ excitation to the 2S-level shift in μH. All values are given in μeV. For the dipole form factor
(FF), we use Λ2 ¼ 0.71 GeV2. In the last row, we use the empirical parametrization [49].

ΔEð2SÞ from: T̄1ð0;Q2Þ Eq. (59) F1ðx;Q2Þ Eq. (60) T̄1ðν;Q2Þ Eq. (58) T̄2ðν;Q2Þ Eq. (58) Total Eq. (58)

gM (without dipole FF) 13.19 −4.31 8.88 −7.38 1.50
gM (with dipole FF) 8.01 −1.99 6.02 −5.10 0.92
G�

M;G
�
E; G

�
C (Jones-Scadron FFs) 7.58 −1.82 5.76 −4.82 0.95

TABLE VI. ΔETPEð2SÞ contributions in different calculations,
all given in μeV. The last line is the sum of inelastic (inel) and
subtraction (subtr) contributions.

DR/HBChPT
BChPT
(LO) [45]

BChPT
(LOþ Δ)

ΔEinelð2SÞ −12.7� 0.5 [46] −5.2 −11.8þ2.1
−2.5

ΔEsubtrð2SÞ 4.2� 1.0 [42] −3.0 4.6þ2.3
−2.4

ΔEpolð2SÞ −8.5� 1.1 [51] −8.2þ1.2
−2.5 −7.3þ1.5

−2.7

3Note that the structure functions not only contain
the Δ production, i.e., terms proportional to δðx − xΔÞ with
xΔ ¼ ½Q2=ðM2

Δ −M2 þQ2Þ�, but also contain terms proportional
to δðxÞ.

4A different HBChPT prediction of the subtraction term that
does not use form factors to model the high-Q2 dependence and
includes the leading and subleading πN and πΔ loops, respec-
tively, can be found in Ref. [50].
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GPs, and static scalar and spin polarizabilities; see Eqs. (38)
and (46), respectively. From a practical point of view, this is
an important result because b19;0 does not appear in RCS or
VCS experiments, and an empirical extraction of b4;1 from
VCS would be difficult due to higher-order GPs. The sum
rule involving the low-energy coefficient b4;1 was verified
with the full NLO BChPT calculation, where all quantities
entering Eq. (37) were calculated independently from the
different CS processes. The other sum rule and the LEX
constraint were verified with the Δ-exchange graph con-
tribution at Oðp4=ΔÞ in BChPT. The theoretical and
empirical results for the moments of proton structure

functions Mð2Þ
1 and Mð1Þ

2 , cf. Figs. 2 and 3, and for most
low-energy constants entering the two newly established
sum rules, cf. Tables I and II, were found to be in
reasonable good agreement.
The remaining unknown in the doubly virtual CS process

at order Q4 results from the low-energy coefficient b3;0,
which enters the VVCS subtraction function T̄1ð0; Q2Þ.
The latter is also the main hadronic uncertainty in the
estimate of the TPE correction to the muonic-hydrogen
Lamb shift. Our NLO BChPT calculation yields a very
small value for b3;0. We have shown that this result
originates predominantly from the Δ-pole contribution.
The corresponding NLO BChPT prediction of the sub-
traction function displays a sign change induced by the
form factor dependence of the Δ-exchange graph. The LO
plus Δ BChPT prediction for the polarizability contribution
(subtraction term and inelastic term) to the μH Lamb shift is
found to be in good agreement with dispersive calculations.
Studying in particular the TPE with intermediate Δ
excitation, we have shown that the sizeable contribution
of the subtraction term is largely cancelled by the inelastic
contribution, leading to a small polarizability effect of the
Δð1232Þ in the μH Lamb shift.
To check the smallness of the low-energy coefficient

b3;0, as predicted by our NLO BChPT calculation, we noted
that there is at present no direct experimental access to the
slope of the VVCS subtraction function. In order to have

some empirical guidance, we compared our BChPT result
with the estimate based on a superconvergence relation
[40]. The latter yields a much smaller value (in absolute
size) for the Q4 term in the subtraction function T̄1ð0; Q2Þ,
which then yields a significantly larger value for b3;0. The
superconvergence estimate of Ref. [40] at lower values of
Q2 ≲ 1 GeV2 is constrained by existing nucleon structure
function data in the resonance region (W < 3 GeV) as well
as by HERA data at high energies (W > 10 GeV). How-
ever, in the intermediate W region (3≲W ≲ 10 GeV) at
finite Q2, the empirical estimate is quite uncertain because
of the scarce data situation in that region. Forthcoming
structure function data from the JLab 12 GeV facility will
allow us to further improve such superconvergence relation
estimates for b3;0. It may also be very worthwhile to directly
access b3;0 through a low-energy doubly virtual CS experi-
ment. The formalism laid out in the present work provides
the unpolarized hadronic tensor entering the description of
such a process. We leave the study of the doubly virtual CS
observables necessary to measure the low-energy coeffi-
cient b3;0 as a topic for future work.
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APPENDIX A: RCS LIMIT

In this Appendix, we discuss, as special case of the
doubly virtual Compton process, the RCS limit, corre-
sponding with q2 ¼ q02 ¼ 0. The spin-independent part of
the RCS amplitude is described by

MμνðRCSÞjspin indep ¼
�
gμν −

q0μqν

q · q0

�
f−q · q0B1ð0; 0; q · q0;MνÞ − ð2MνÞ2B2ð0; 0; q · q0;MνÞg

− 4q · q0
�
Pμ −

Mν

q · q0
q0μ

��
Pν −

Mν

q · q0
qν
�
B2ð0; 0; q · q0;MνÞ; ðA1Þ

as the other three tensors in Eq. (4) do not contribute to the RCS limit.
Both a dispersive formulation as well as a LEX for RCS is conventionally described by an equivalent set of amplitudes

Aiðν; tÞ, for i ¼ 1;…; 6, free of kinematic singularities and constraints, see Refs. [52,53], which can be obtained as linear
combinations of the Bi amplitudes. We give here explicitly the relations between the amplitudes B1 and B2, which appear in
Eq. (A1), and the Ai amplitudes [36],

B1ð0; 0; q · q0;MνÞ ¼ 1

4παem

�
A1ðν; tÞ − A3ðν; tÞ − A6ðν; tÞ þ

t
4M2

A3ðν; tÞ −
ν2

M2
A4ðν; tÞ

�
; ðA2Þ
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B2ð0; 0; q · q0;MνÞ ¼ 1

4παem

1

2M2

�
A3ðν; tÞ þ A6ðν; tÞ −

t
4M2

A4ðν; tÞ
�
; ðA3Þ

with t ¼ −2q · q0 for the RCS process.
The LEX of the non-Born parts of the amplitudes Ai can

be written as [2,35,54]

Āiðν; tÞ ¼ ai þ ai;νν2 þ ai;ttþOðk4Þ; i ¼ 1;…; 6;

ðA4Þ

where k4 stands for higher-order terms either in ν4, ν2t, or
t2. The low-energy coefficients at zeroth order, ai, can be
expressed in terms of nucleon scalar dipole and lowest-
order spin polarizabilities, whereas the low-energy coef-
ficients at second order, ai;ν and ai;t, have been worked out
in terms of quadrupole, dispersive, or higher-order spin
polarizabilities [2,35,54]. For an example, we quote here

the expressions for the combinations of the lowest-order
coefficients which enter the LEXs for the amplitudes B1

and B2 of Eqs. (A2) and (A3),

a1 − a3 − a6 ¼ 4πβM1;

a3 þ a6 ¼ −2πðαE1 þ βM1Þ; ðA5Þ

in terms of the nucleon electric (αE1) and magnetic (βM1)
dipole polarizabilities. The detailed expressions for all
coefficients ai, ai;t, and ai;ν can be found in Ref. [35].
In terms of these low-energy coefficients, we can then
construct the LEXs of the non-Born parts of the amplitudes
B1 and B2 of Eqs. (A2) and (A3) in the RCS limit as

B̄1ð0; 0; q · q0;MνÞ ¼ 1

4παem

�
a1 − a3 − a6 − 2

�
a1;t − a3;t − a6;t þ

a3
4M2

�
q · q0

þ
�
a1;ν − a3;ν − a6;ν −

a4
M2

�
ν2
�
þOðk4Þ; ðA6Þ

B̄2ð0; 0; q · q0;MνÞ ¼ 1

4παem

1

2M2

�
a3 þ a6 − 2

�
a3;t þ a6;t −

a4
4M2

�
q · q0 þ ½a3;ν þ a6;ν�ν2

�
þOðk4Þ: ðA7Þ

By substituting the relations between the low-energy
coefficients ai, ai;t, and ai;ν and the polarizabilities, the
RCS process then allows us to determine the coefficients in
the low-energy expansion given by Eq. (9a) for the non-
Born amplitudes B̄1 and B̄2. The corresponding expressions
for these coefficients are given in Eqs. (10a)–(10f). Note
that the recoil terms (proportional to 1=M and 1=M2)
in Eqs. (10a)–(10f) arise due to the transformation from
the Breit frame, in which the polarizabilities such as
βM1; βM1;ν; βM2;…, are defined, and the LEX of the
Compton amplitude in terms of the A1;…; A6.

APPENDIX B: VCS LIMIT

Another special limit of the doubly virtual Compton
process is the nonforward VCS process, which corresponds
with an outgoing real photon, i.e., q02 ¼ 0, and an initial
spacelike virtual photon with virtuality q2 ¼ −Q2 < 0.
The VCS process can generally be parametrized in terms
of 12 independent amplitudes, fiðq2; q · q0; q · PÞ for
i ¼ 1;…; 12, as introduced in Ref. [24]. The nucleon
spin-independent VCS process is described by three
amplitudes, which are related to the doubly virtual
Compton amplitudes Bi entering Eq. (3) as

B1ðq2; 0; q · q0; q · PÞ ¼ f1ðq2; q · q0; q · PÞ; ðB1aÞ

B2ðq2; 0; q · q0; q · PÞ ¼ f2ðq2; q · q0; q · PÞ; ðB1bÞ

B4ðq2; 0; q · q0; q · PÞ ¼ f3ðq2; q · q0; q · PÞ: ðB1cÞ

Note that the remaining two amplitudes B3 and B19 which
are needed to fully specify the spin-independent doubly
virtual Compton amplitude of Eq. (3) cannot be accessed in
the VCS process, as the corresponding tensors decouple
when the outgoing photon is real (q02 ¼ 0).
The VCS experiments at low outgoing photon energies

can also be analyzed in terms of LEXs, as proposed in
Ref. [55]. For this purpose, the VCS tensor has been split in
Ref. [55] into a Born part, which is defined as the nucleon
intermediate state contribution using the γ�NN vertex of
Eq. (7), and a non-Born part. The latter describes the
response of the nucleon to the quasistatic electromagnetic
field, due to the nucleon’s internal structure. To obtain the
lowest-order nucleon structure terms, one considers the
response linear in the energy of the produced real photon.
This linear response of the non-Born VCS tensor, i.e., the
limit q0 → 0 at arbitrary virtuality Q2 of the initial photon,
can be parametrized by six independent GPs [55,56]. The
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GPs can be accessed in experiment through the eN → eNγ
process; see the reviews [1,2] for more details. At lowest
order in the outgoing photon energy, there are two spin-
independent GPs, denoted by PðL1;L1Þ0 and PðM1;M1Þ0, and
four spin GPs, denoted by PðL1;M2Þ1, PðM1;L2Þ1, PðL1;L1Þ1,
and PðM1;M1Þ1, which are all functions of Q2.5 In this
notation, L stands for the longitudinal (or electric) and M
stands for the magnetic nature of the transition, respec-
tively. One usually defines the electric and magnetic GPs as

βM1ðQ2Þ ¼ −αem

ffiffiffi
3

8

r
PðM1;M1Þ0ðQ2Þ; ðB2aÞ

αE1ðQ2Þ ¼ −αem

ffiffiffi
3

2

r
PðL1;L1Þ0ðQ2Þ; ðB2bÞ

which are related to the RCS static polarizabilities as

αE1ð0Þ ¼ αE1; βM1ð0Þ ¼ βM1: ðB3Þ

The GPs can be expressed in terms of the non-Born parts f̄i
of the invariant amplitudes fi. Using the shorthand notation

f̄iðQ2Þ≡ f̄iðq2 ¼ −Q2; 0; 0Þ; ðB4Þ

the spin-independent magnetic and electric GPs can be,
respectively, obtained as [56]

βM1ðQ2Þ ¼ αem

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ

1þ 2τ

r
f̄1ðQ2Þ; ðB5aÞ

αE1ðQ2Þ ¼ −αem

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ

1þ 2τ

r
½f̄1ðQ2Þ þ 4M2ð1þ τÞf̄2ðQ2Þ

þQ2ð2f̄6ðQ2Þ þ f̄9ðQ2Þ − f̄12ðQ2ÞÞ�: ðB5bÞ

At Q2 ¼ 0, these relations reduce to

f̄1ð0Þ ¼
1

αem
βM1; ðB6aÞ

f̄2ð0Þ ¼ −
1

αem

1

ð2MÞ2 ðαE1 þ βM1Þ: ðB6bÞ

Using the relations of Eqs. (B6a) and (B6b) as a limit of
Eqs. (B1a) and (B1b), one readily verifies the expressions
obtained before in Eqs. (10a) and (10d) for b1;0 and b2;0,
respectively. We can next consider the slopes at Q2 ¼ 0 of
the magnetic and electric GPs:

β0M1 ≡ d
dQ2

βM1ðQ2ÞjQ2¼0; ðB7aÞ

α0E1 ≡ d
dQ2

αE1ðQ2ÞjQ2¼0: ðB7bÞ

By taking the derivatives at Q2 ¼ 0 of Eqs. (B5a) and
(B5b), we obtain

β0M1 ¼ αem

�
f̄01ð0Þ −

1

8M2
f̄1ð0Þ

�
; ðB8aÞ

α0E1 ¼ −αem
�
f̄01ð0Þ þ 4M2f̄02ð0Þ −

1

8M2
f̄1ð0Þ

þ 1

2
f̄2ð0Þ þ 2f̄6ð0Þ þ f̄9ð0Þ − f̄12ð0Þ

�
: ðB8bÞ

The combination 2f̄6ð0Þ þ f̄9ð0Þ − f̄12ð0Þ in Eq. (B8b)
can be expressed in terms of spin GPs using the expres-
sions of Ref. [56]. It was shown recently that a forward
sum rule allows one to express this combination as
[15,16]

2f̄6ð0Þþ f̄9ð0Þ− f̄12ð0Þ¼
1

αem

1

2M
ð−δLT−γE1E1þγE1M2Þ;

ðB9Þ

in terms of the RCS spin polarizabilities γE1E1 and γE1M2, as
well as the longitudinal-transverse spin polarizability δLT at
Q2 ¼ 0, which is accessed from a moment of the nucleon
spin-dependent structure functions g1 and g2.
We can then determine two further low-energy coeffi-

cients as

b1;2b ¼ −f̄01ð0Þ; ðB10Þ

b2;2b ¼ −f̄02ð0Þ: ðB11Þ

When using Eqs. (B8a) and (B8b), we then obtain for the
coefficients b1;2b and b2;2b the expressions of Eqs. (11a)
and (11b).

5Equivalently, they can be considered as functions of the
3-momentum q̄ of the virtual photon, which is conveniently
defined in the c.m. system of the γ�N system, and given by
q̄2 ¼ Q2ð1þ τÞ; this definition is used in Ref. [55].
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