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Abstract At least twelve plant families contain

species that synthesize cardiac glycosides as defense

against herbivory. These inhibitors of animal Na+,

K+-ATPases also have medical uses in treating

congestive heart failure and other diseases. However,

despite extensive ecological research and centuries of

use in both traditional and modern medicine, the

complete cardiac glycoside biosynthesis pathway has

yet to be elucidated in any plant species. To a large

extent, this research deficit results from the fact that

cardiac glycosides are produced exclusively by non-

model plant species such as Digitalis that have not

been amenable to the development of mutagenesis,

cloning, and genetic mapping approaches. Recent

advances in genome sequencing, transcript profiling,

plant transformation, transient expression assays, and

plant metabolite analysis have provided new oppor-

tunities for the investigation and elucidation of

cardiac glycoside biosynthesis pathways. The genetic

tools that have been developed for Brassicaceae, in

particular Arabidopsis thaliana, may be directly

applicable to Erysimum, a Brassicaceae genus that

characteristically produces cardiac glycosides as

defensive metabolites. We propose that Erysimum
cheiranthoides (wormseed wallflower), a rapid-cy-

cling, self-pollinating species with a relatively small,

diploid genome, would be a suitable model system to

advance research on the biosynthesis of cardiac

glycosides in plants.
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Introduction

Cardiac glycosides are a diverse group of natural

products that act as allosteric inhibitors of Na+, K+-

ATPase, an essential membrane ion transporter that is

found in almost all animal cells. Broadly, cardiac

glycosides can be categorized as cardenolides and

bufadienolides, which have a common steroid core

(5β,14β-androstane-3β14-diol) and differ according

to the presence of a five- or six-membered lactone

ring. This steroid-lactone core structure is highly

conserved among cardiac glycosides and mediates the

specific binding of cardiac glycosides to Na+, K+-

ATPase (Dzimiri et al. 1987). While some cardeno-

lides and bufadienolides naturally occur as aglycones

(genins), most are linked to one or several sugar

moieties in a linear chain, resulting in a glycoside

‘tail’ that significantly increases the binding affinity

and inhibitory effect of these compounds (Dzimiri
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et al. 1987). Several hundred cardenolide and bufa-

dienolide structures, which differ by substitutions to

functional groups on the steroid core, stereoisomeric

conformation, or the incorporation of different types

of sugars in the glycoside tail, have been described

(Kreis and Müller-Uri 2010; Melero et al. 2000;

Singh and Rastogi 1970). Although most cardiac

glycosides have been identified and isolated from

plants, they are also found in certain insects and toads

(hence the name bufadienolide). Cardiac glycosides

have no known function in the core metabolism of the

plants that produce them, and thus likely act primarily

in defense against insects and other herbivores.

The ability to produce cardiac glycosides is

scattered across the plant phylogenetic tree, with at

least a dozen plant families (Apocynaceae, Aspara-

gaceae, Brassicaceae, Celastraceae, Crassulaceae,

Euphorbiaceae, Fabaceae, Malvaceae, Moraceae,

Plantaginaceae, Ranunculaceae, and Zingiberaceae)

containing cardiac glycoside-producing species

(Agrawal et al. 2012; Melero et al. 2000; Steyn and

van Heerden 1998). In the Apocynaceae, cardiac

glycosides are the predominant secondary metabo-

lites in most species and likely represent an ancestral

trait of this family. In the other plant families, there

are only sporadic occurrences of cardiac glycoside in

subclades or single known species, which likely

represent cases of relatively recent, repeated pathway

evolution. Such convergent evolution of plant toxins

with highly similar inhibitory effects on animal Na+,

K+-ATPases suggests both a strong selective pressure

for plant defense against herbivory and a common

metabolic origin that facilitates repeated evolution of

similar or identical molecular structures.

The discovery of the metabolic pathways involved

in cardiac glycoside synthesis has been limited by the

fact that these compounds are not found in traditional

genetic model species. The elucidation of the biosyn-

thetic pathways of other important plant metabolites

such as glucosinolates, benzoxazinoids, and flavo-

noids was greatly facilitated by the genomic and

molecular resources available for model plants such

as Arabidopsis thaliana, Zea mays, Oryza sativa,
Solanum lycopersicum, and Medicago truncatula.
Even though the biosynthesis of cardiac glycosides

has been studied extensively in Digitalis spp. (fox-

glove; Kreis 2017; Luckner and Wichtl 2000), the

relatively large plant size, complex pollination

requirement, and long, often biennial life cycle of

this genus has significantly hindered progress in

unravelling the full cardiac glycoside metabolic

pathway. In contrast, the cardenolide-producing

Brassicaceae genus Erysimum is closely related to

A. thaliana (Huang et al. 2016), and has been

proposed as a more suitable model for investigating

the molecular biology of cardiac glycoside biosyn-

thesis (Munkert et al. 2011). Within this genus,

Erysimum cheiranthoides (wormseed wallflower;

Fig. 1), a rapid-cycling diploid species with a

relatively small genome size, would provide an

excellent model system for the use of genetic and

genomic approaches to investigate the biosynthesis,

ecological function, and evolutionary origins of

cardiac glycoside biosynthesis. Here, we provide an

overview of currently known steps in cardiac gly-

coside synthesis in general, and in Erysimum in

particular. Additionally, we review chemical, eco-

logical, evolutionary, and ethnobotanical literature on

Erysimum to highlight its relevance as a model

system in diverse research areas, and conclude by

outlining a set of research methods that would be

required for developing E. cheiranthoides as a new

plant genetic and genomic model system.

Biosynthesis of cardiac glycosides

Production of cardenolides and bufadienolides likely

evolved from pathways for the biosynthesis of

phytosterols (24 alkyl sterols) and endogenous plant

steroid hormones, e.g. brassinosteroids. Early isotope

labeling studies suggested that cardiac glycosides are

synthesized from cholesterol with progesterone as an

intermediate (Kreis et al. 1998; Theurer et al. 1994).

However, despite decades of research with Digitalis,
only a relatively small number of enzymes in the

cardenolide biosynthesis pathway have been identi-

fied. Progesterone 5β-reductase, which catalyzes the

conversion of progesterone to 5β-pregnane-3,20-
dione (Fig. 2), was first cloned from Digitalis
purpurea (Gärtner et al. 1994) and is expressed in

all tested Digitalis species (Kreis 2017). Two other

early steps in cardenolide biosynthesis, dehydrogena-

tion of pregnenolone to isoprogesterone and

reduction of 5β-pregnane-3,20-dione (Fig. 2), are

both catalyzed by 3β-hydroxysteroid dehydrogenases.
After their initial identification in Digitalis lanata
(Finsterbusch et al. 1999; Herl et al. 2006), 3β-
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hydroxysteroid dehydrogenases have been identified

and cloned from several other Digitalis species.

Given the relatively broad substrate specificities of

the identified progesterone 5β-reductase and 3β-
hydroxysteroid dehydrogenase enzymes, it is quite

possible that their in vivo substrates are not those that

are postulated in Fig. 2, but rather other endogenous

plant steroids. Malonyl coenzyme A:21-hydroxypreg-

nane 21-O-malonyltransferase, which is required for

the synthesis of the cardenolide lactone ring (Fig. 2),

has been characterized enzymatically in D. purpurea
(Kuate et al. 2008). Other enzymes of cardiac

glycoside biosynthesis, including those catalyzing

the addition of sugar side chains and those modifying

the aglycone functional groups, remain to be

identified.

The investigation of cardenolide biosynthetic

enzymes in Erysimum is a direct extension of the

prior work that has been done with Digitalis.
Predicted progesterone 5β-reductase genes have been

A B

C D

Fig. 1 Erysimum cheiranthoides. a Natural growth in the

Lenzen-Elbtalaue (Elbe River floodplain) in Germany.

b Growth in a disturbed habitat near the Aare River in Bern,

Switzerland. c, d Plants after 2 and 6 weeks growth,

respectively, in a growth chamber with fluorescent lights
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amplified from ten Erysimum species, and His-tagged

versions of two Erysimum crepidifolium proteins were

purified after gene expression in Escherichia coli
(Munkert et al. 2011, 2015b). In vitro enzyme assays

demonstrated conversion of progesterone to 5β-
pregnane-3,20-dione by the two E. crepidifolium
enzymes, as well as reductase activity with additional

substrates (Munkert et al. 2011, 2015a, b). Functional

progesterone 5β-reductases are present in all tested

Brassicaceae, and there is no significant difference in

the utilization of progesterone as a substrate by

enzymes from species that do and do not produce

cardiac glycosides (Munkert et al. 2015a). Three

genes encoding 3β-hydroxysteroid dehydrogenases

have been cloned from E. crepidifolium (Munkert

et al. 2014), and in vitro enzyme assays demonstrated

dehydrogenation of pregnenolone and the 3-reduction

of 5α/β-pregnane-3,20-dione. As in the case of

progesterone 5β-reductase, genes encoding functional

3β-hydroxysteroid dehydrogenases are also present in

species that do not produce cardenolides (Rahier et al.

2006), indicating a broader role in plant steroid

metabolism. However, despite this evidence of

in vitro enzymatic activity, Erysimum mutant lines

or other reverse genetics approaches will be required

confirm the in vivo function of the identified

progesterone

pregnenolone

isoprogesterone

5β-pregnane-
3β-ol-20-one

5β-pregnane-
3,20-dione

3β-hydroxysteroid
dehydrogenase

3β-hydroxysteroid
dehydrogenase

progesterone
5β-reductase

Δ5- Δ4-ketosteroid
isomerase

digitoxigenin

plant steroid metabolism

other cardenolides

unknown

pregnane 14β-
hydroxylase

14β-hydroxypregnane
21β-hydroxylase

malonyl coenzyme A:21-
hydroxylpregnane 21-O-
malonyltransferase

5β-pregnane-
3β,14β-diol-20-one

5β-pregnane-3β,14β-
21-triiol-20-one

21-O-malonlyl5β-
pregnane-3β-14β-
diol-20-dione

Fig. 2 Biosynthesis of cardenolides. Predicted steps in the biosynthesis of the cardenolide aglycone, digitoxigenin. Enzymes for

which there is evidence of enzymatic function in Digitalis are marked in bold. Adapted from Kreis and Müller-Uri (2010)
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progesterone 5β-reductases and 3β-hydroxysteroid
dehydrogenases in cardenolide biosynthesis.

The diversity of cardiac glycosides found
in Erysimum

More than 50 different cardiac glycosides have been

isolated from various Erysimum species. Cardiac

glycosides are highly concentrated in seeds of

Erysimum, with total concentrations often reaching

10–50 mg g−1 of dry weight, while concentrations in

leaves more commonly range from 0.2 to 5 mg g−1

dry weight (Makarevich et al. 1994). In Erysimum, all
known cardiac glycosides belong to the cardenolides,

i.e. consisting of a steroid core linked to a five-

membered lactone ring (Rodman et al. 1982; Lei

et al. 1996, 1998, 2000, 2002; Makarevich and

Kolesnikov 1965; Makarevich et al. 1994; Sachdev-

Gupta et al. 1990, 1993). Cardenolides are further

distinguished as 5α- or 5β-based on the conformation

between the A and B rings of the steroid core

(Fig. 3a), with compounds in the 5β-conformation

being generally more abundant in Erysimum
(Makarevich et al. 1994; Nielsen 1978b). Cardeno-

lides of Erysimum accumulate either as aglycones or

as glycosides, the latter having one, two, or three

monosaccharides linked in a linear chain to the

steroid core. To date, 15 different aglycones have

been identified in Erysimum (Makarevich et al. 1994),

with glycosides of the four aglycones strophanthidin,

digitoxigenin, cannogenol, and bipindogenin being

the most common (Fig. 3a). At least 10 different

monosaccharides are incorporated into glycosides,

two of which are exclusively found within cardeno-

lides (Fig. 3b; Makarevich et al. 1994).

Cardenolides produced by E. cheiranthoides
include at least seven mono- and di-glycosides of

strophanthidin, cannogenol, and digitoxigenin (Fig. 4;

Makarevich and Kolesnikov 1965; Sachdev-Gupta

et al. 1990, 1993), with the three compounds

erysimoside, erychroside (both strophanthidin), and

erycordin (cannogenol) generally being the most

abundant. Total cardenolide concentrations in E.
cheiranthoides can reach up to 3 mg g−1, and there

is substantial qualitative and quantitative variation

among plants from different populations (Latowski

et al. 1979; Züst 2018, personal observations).

The evolutionary history of the genus Erysimum:
a role for cardenolides?

Plant–herbivore co-evolution is frequently likened to

a chemical arms race: A plant that produces a

chemical defense to protect its resources from

herbivores is frequently attacked by specialists that

have evolved tolerance strategies to cope with this

defense. In turn, this increases the selective pressure

for the evolution of additional defenses in the plant

(Ehrlich and Raven 1964; Fraenkel 1959). Many of

the several thousand metabolites that are found in any

given plant species (Bino et al. 2004) may have

evolved as defenses against herbivores and patho-

gens. Although the acquisition of novel chemical

defenses in evolutionary recent times is likely

widespread in the plant kingdom, this phenomenon

has been reported most commonly in the well-studied

Brassicaceae (Feeny 1977). For instance, the produc-

tion of saponins in Barbarea vulgaris (Shinoda et al.

2002), alkaloids in Cochlearia officinalis (Brock et al.

2006), and alliarinoside in Alliaria petiolata (Frisch

and Møller 2012) represent recently evolved chem-

ical defenses that allow these species to resist attack

from specialized herbivores that have evolved toler-

ance of glucosinolates, the most characteristic

chemical defenses of the Brassicaceae (Dimock

et al. 1991; Haribal and Renwick 2001; Nielsen

et al. 2010; Shinoda et al. 2002).

The accumulation of cardenolides by species in the

genus Erysimum is one of the longest- and best-

studied examples of the evolutionarily recent gain of

a novel chemical defense (Jaretzky and Wilcke 1932;

Makarevich et al. 1994; Nagata et al. 1957; Singh and

Rastogi 1970). Cardenolide biosynthesis is likely to

be present in all Erysimum species, while one of the

most closely-related sister genera, Malcolmia, lacks
these chemical defenses (Moazzeni et al. 2014;

Nagata et al. 1957). There are also reports of cardiac

glycoside occurrence in two more distantly related

Brassicaceae genera, Syrenia and Draba (Makarevich

et al. 1994; Munkert et al. 2015a), but these have

been studied less extensively.

A long-standing postulate in the ecological liter-

ature is that development of key adaptive traits, such

as a novel chemical defense that enable escape from

herbivory, allow expansion into new habitats and

rapid speciation (Weber and Agrawal 2014). Consis-

tent with this hypothesis, molecular analysis of the

Phytochem Rev (2018) 17:1239–1251 1243

123



Erysimum genus provides evidence for both recent

development of cardenolide biosynthesis and rapid

speciation in this genus. Phylogenetic studies based

on sequencing a ribosomal internal transcribed spacer

region from 128 Erysimum species indicate that the

genus began rapidly diversifying in Eurasia between

0.5 and 2 million years ago, and in North America

between 0.7 and 1.65 million years ago (Moazzeni

et al. 2014). In this relatively short time period, the

Erysimum genus has expanded into at least 150

known species (and perhaps many more, including

both diploid and polyploid species), has colonized a

range of habitats across the northern hemisphere, and

has developed diverse morphology, growth habits

(herbaceous annual or perennial, and woody peren-

nial), pollination strategies, and chemical defenses

(Al-Shehbaz 1988, 2010; Gomez et al. 2015;

Makarevich et al. 1994; Polatschek

Fig. 3 Cardiac glycosides in Erysimum. a Structures of the

four most common cardenolide aglycones of Erysimum. The
skeleton structure of a cardenolide is composed of the steroid

core (four fused rings, a–d), the lactone group at position 17,

and a glycoside binding site at C3. b Structures of the most

common monosaccharides that are incorporated into glycosy-

lated cardenolides. Monosaccharides exclusive to cardenolides

are indicated by asterisks
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2010, 2011, 2012; Polatschek and Snogerup 2002;

Zhou et al. 2001). In addition to its potential as a new

molecular model system, the genus Erysimum thus

also provides a unique opportunity to study the role

of defense evolution in a rapidly diversifying clade.

Erysimum cardenolides provide an additional
defense against herbivory

Although both cardenolides and glucosinolates are

glycosylated defensive metabolites found in

Erysimum, their functions are quite different. In

contrast to cardenolides, glucosinolates are non-toxic

in their glycosylated form. Cleavage of the glucosi-

nolate sugar moiety by an activating glucosidase,

followed by further non-enzymatic breakdown, leads

to the formation of toxic and deterrent compounds

(Halkier and Gershenzon 2006). Several insect her-

bivores that are specialized for feeding on

Brassicaceae, including Pieris rapae (white cabbage

butterfly), Plutella xylostella (diamondback moth),

Brevicoryne brassicae (cabbage aphid), Phyllotreta
striolata (striped flea beetle), and Athalia rosae

Fig. 4 Cardenolides identified from Erysimum cheiranthoides.
Compounds are grouped by their respective aglycone: a three

di-glycosides of strophanthidin. b Two di-glycoside and one

mono-glycoside of digitoxigenin, and c a mono- and di-

glycoside each of cannogenol

Phytochem Rev (2018) 17:1239–1251 1245
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(turnip sawfly), have evolved strategies to prevent or

re-direct glucosinolate activation, and are therefore

well-adapted for consuming glucosinolate-containing

plants (Beran et al. 2014; Francis et al. 2002; Jones

et al. 2001; Müller and Wittstock 2005; Pontoppidan

et al. 2001; Ratzka et al. 2002; Wittstock et al. 2004).

Consistent with the “escape from herbivory”

hypothesis explaining the evolution of cardenolides

as a novel plant defense, several species of Brassi-

caceae-specialist herbivores refuse to oviposit on and/

or consume Erysimum. For example, adult Pieris
rapae do not deposit eggs on E. cheiranthoides and

larvae refuse to eat E. cheiranthoides leaves (Feeny

1977). Similarly, Pieris napi macdunnoughii (Pieris
marginalis, margined white butterfly) females do not

oviposit on Erysimum asperum (western wallflower),

nor do larvae consume this species (Chew

1975, 1977). Anthocharis cardamines (orange tip

butterfly), another pierid that uses almost all Brassi-

caceae species as host plants, avoids oviposition on E.
cheiranthoides (Wiklund and Ahrberg 1978). Two

specialist beetles Phaedon sp. and Phyllotreta sp.,

were deterred from feeding by strophanthidin glyco-

sides applied to a non-cardenolide host plant at

concentrations similar to those found in several

Erysimum species (Nielsen 1978a, b). However,

cardenolides do not provide universal defense, and

larvae of another specialist lepidopteran, P. xylostella,
are regularly observed feeding on E. cheiranthoides
in the field (Daan Mertens and Erik Poelman,

personal communication). The specialist Eurydema
oleracea (crucifer shield bug) and the mustard aphid

Lipaphis erysimi readily feed on Erysimum species in

the field (Züst 2018, personal observations). A

community of specialist seed-feeding herbivores also

consumes Erysimum, despite high levels of cardeno-

lides in the seeds (Gómez 2005).

A series of publications by Alan Renwick and co-

workers at the Boyce Thompson Institute not only

constitute some of the first structural identifications of

E. cheiranthoides cardiac glycosides, but also demon-

strate that these compounds deter oviposition and

feeding by P. rapae. Chemical separation of E.
cheiranthoides sprayed onto cabbage showed the

presence of both attractants and deterrents for P.
rapae oviposition (Renwick and Radke 1985, 1987).

The oviposition stimulants were found to be

3-methylsulfinylpropyl glucosinolate and 3-methyl-

sufonylpropyl glucosinolate (Dimock et al. 1991;

Huang et al. 1993), whereas oviposition deterrents

were identified as cardenolides (Renwick et al. 1989;

Sachdev-Gupta et al. 1990). Although erysimoside

and erychroside had strong deterrent effects, erycor-

din was inactive in this oviposition assay. Tarsal

sensilla of P. rapae responded to both glucosinolate-

and cardiac glycoside-containing leaf extracts, sug-

gesting that these toxins may be perceived by contact

with the leaf surface (Städler et al. 1995). Consistent

with the deterrent effects on oviposition, cardiac

glycosides from E. cheiranthoides also served as

feeding deterrents for P. rapae larvae (Dimock et al.

1991; Sachdev-Gupta et al. 1993). Another pierid

species, Pieris napi oleracea (mustard white butter-

fly), which is less sensitive to exogenously added

cardiac glucosides than P. rapae in oviposition

assays, also oviposits more readily on E. cheiran-
thoides foliage (Huang et al. 1993; Huang and

Renwick 1993).

Consistent with their role in plant defense, accu-

mulation of cardenolides in E. crepidifolium
(Munkert et al. 2014), E. cheiranthoides (Züst and

Mirzaei 2018, personal observations), and likely also

other Erysimum species is induced by exogenous

addition of methyl jasmonate, a well-studied plant

hormone that is required for anti-herbivore defense

induction in numerous plant species (Howe and

Jander 2008). Mirroring induction of cardenolides,

expression of one of the three known E. crepidifolium
3β-hydroxysteroid dehydrogenases was induced by

treatment with methyl jasmonate (Munkert et al.

2014), which is consistent with this enzyme’s func-

tion in cardenolide biosynthesis.

Ethnobotanical and medical uses of Erysimum

Matching the repeated gain of cardiac glycosides by a

wide range of plant species, native cultures in Europe

(Digitalis spp.), China (Erysimum spp.), North Amer-

ica (Asclepias spp.), and North Africa (Scilla spp.)

have independently developed the use of cardiac

glycoside-containing plants for treating a variety of

medical ailments (Araya et al. 2012; Luckner and

Wichtl 2000; Stoll 1937; Zhu 1989). The more

specific application of cardenolide-containing Digi-
talis extracts in the treatment of congestive heart

disease was first described in 1785 (Withering 1785).

Since this initial written report, hundreds of
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publications have been devoted to the investigation of

cardenolide target sites, method of action, functional

diversity, and applications in human medicine. As the

current and potential therapeutic uses of cardiac

glycosides have been summarized in several recent

reviews (e.g. Fürst et al. 2017; Gurel et al. 2017;

Kreis 2017; Patel 2016; Schneider et al. 2017), we

will not describe them here.

Although it is less well-known than Digitalis in

western medicine, Erysimum also has long history of

implementation as a medicinal plant. Likely due to its

cardiac glycoside content, E. cheiranthoides has been
used for centuries in traditional Chinese medicine to

treat a variety of ailments, including heart disease

(Zhu 1989). De Materia Medica (Dioscorides ~70),

the foremost European medical pharmacopeia for

more than 1500 years, describes Erysimum cheiri as a
medicinal herb. In Naturalis Historia (Pliny the Elder

77), Erysimum is classified as a medicinal rather than

a food plant. Leading medieval pharmacopeiae of

herbs and the medicines, including the Dispensato-
rium des Cordus (Cordus 1542), Bocks Kräuterbuch
(Bock 1577), and Tabermontanus’ Neuw Kreuterbuch
(Tabermontanus 1588) describe the medical uses of

E. cheiri. In the centuries after the Middle Ages, the

medical applications of Erysimum were largely

disused in Europe (Jaretzky and Wilcke 1932).

However, more recently, Erysimum diffusum, as well
as purified helveticoside and erysimoside, have been

applied in Ukrainian medical preparations (Makare-

vich et al. 1994).

Properties that will make E. cheiranthoides
a tractable genetic model system

Within the Erysimum genus, E. cheiranthoides is

particularly attractive for the development of a new

genetic model system for studying cardenolide

biosynthesis and other ecologically relevant traits.

Although E. cheiranthoides inflorescences grow to

over 1 m in height and are therefore about three times

the size of A. thaliana, other properties are not that

different from this more established model system.

As a self-pollinating annual with a seed-to-seed

generation time that is as short as 10 weeks for some

isolates (Jander, personal observations), E. cheiran-
thoides can be cycled rapidly in the laboratory in

relatively small pots (Fig. 1c, d). Although some

isolates reportedly require cold stratification for

germination (Karlsson and Milberg 2002), E.
cheiranthoides isolates that we collected in Germany

and Switzerland germinated immediately after seed

harvest.

The E. cheiranthoides genome size is only about

200 Mbp across eight chromosomes (Bainard et al.

2012; Strickler, Mirzaei and Jander 2018, personal

observations), placing it at the lower end of typical

plant genome sizes. Genotyping and/or sequencing of

multiple E. cheiranthoides isolates will allow gen-

ome-wide association studies of biochemical traits,

using genetic mapping methods such as those that

have been applied to A. thaliana, Z. mays, O. sativa
and other species. The diploid genome of E.
cheiranthoides also will facilitate the identification

of mutants with altered cardiac glycoside content

after chemical mutagenesis, an approach that has

been used successfully to identify glucosinolate-

deficient mutants, as well as the corresponding

mutated genes, in A. thaliana (Haughn et al. 1991;

Kim et al. 2004; Kliebenstein et al. 2007).

In vivo confirmation of candidate gene function

will be essential for investigating the genetic basis of

cardenolide biosynthesis. Several approaches for

gene overexpression or expression silencing that are

effective in other species could be tested in E.
cheiranthoides. The “floral dip” Agrobacterium trans-

formation protocol developed for A. thaliana (Clough

and Bent 1998) has been applied successfully to

transform other Brassicaceae species, including

Camelina sativa (camelina; Liu et al. 2012), Thlaspi
arvense (pennycress; Sedbrook et al. 2014), and

Brassica rapa ssp. chinensis (pakchoi; Qing et al.

2000). Cotyledon explants from E. cheiranthoides
produce callus in tissue culture (Pidgeon and Jander

2018, personal observations), suggesting the possi-

bility of regenerating transformed plants using

in vitro methods. Virus vectors that allow transient

gene overexpression or gene expression silencing in

A. thaliana (Burch-Smith et al. 2006) might also be

effective for functional genomics assays in E.
cheiranthoides. Agrobacterium tumefaciens leaf infil-
tration (Johansen and Carrington 2001) or generation

of hairy roots using Agrobacterium rhizogenes (Henzi
et al. 2000; Puddephat et al. 2001) are other possible

approaches for engineering transient changes in gene

expression. Although not all of these established

methods will work equally well with E.
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cheiranthoides, it is very likely that enough of them

will be feasible to allow the functional analysis of

cardiac glycoside biosynthetic genes in vivo.

Future prospects

Establishment of a genetic model system for inves-

tigating cardenolide biosynthesis will open up many

new research opportunities. It is improbable that all

twelve plant families that produce cardiac glycosides

evolved the same metabolic pathways for these

compounds. Suitable transformation protocols would

not only allow investigation of endogenous E.
cheiranthoides pathways, but could also could be

used as a platform to investigate candidate genes

from other plant species. This approach would

involve either complementation of mutations in E.
cheiranthoides biosynthetic pathways or modifica-

tions of the core pathways that are present in E.
cheiranthoides by transformation with enzymes from

other plant species to produce novel cardiac gly-

coside profiles. These and other research approaches,

in conjunction with E. cheiranthoides as a genetically
tractable model system, will facilitate further inves-

tigation of the defensive properties of different

cardiac glycosides, as well as the purification of

novel compounds for medicinal research.
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