
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
1
4
9
8
5

|

d
o
w
n
l
o
a
d
e
d
:

1
9
.
4
.
2
0
2
4

Logic Programs for Primitive Recursive
Sets

URS-MARTIN KtlNZI, Institutfur Informatik und angewandte Mathematik,
Universitdt Bern, Ldnggassstr. 51, 3012 Bern, Switzerland.
E-mail: kuenzi@iam.unibe.ch

Abstract
Meyer and Ritchie have previously given a description of primitive recursive functions by loop-programs In this paper
a class of logic programs is described which computes the primitive recursive sets on Herbrand universes Furthermore,
an internal description of primitive recursive functions and sets on Herbrand universes is given

Keywords. Logic programming, Prolog, primitive recursive sets

1 Introduction

Let L be a finite set of constants and function symbols, containing at least one constant and one
function symbol, and let f) be the Herbrand structure of L (the L-structure with the set of closed
Z/-terms as underlying set H; this set is the Herbrand universe of L). A subset of Hn is primitive
recursive iff its characteristic function is primitive recursive with respect to a fixed Godelization
of H. In the next section, an intrinsic description of primitive recursive predicates is given (that
does not depend on a Godelization). An L-program is a definite program P [3, Chapter 2],
containing only constants and function symbols from L, together with a distinguished predicate
p. The set computed by P is the set { (t i , . . . , tn) € Hn \ P h p (t i , . . . , £ „) } . In this article we
describe syntactically a class of L-programs, computing precisely the primitive recursive subsets
ofHn.

A program clause is called closed iff its body contains only variables also contained in its
head. For an L-term t with variables X i , . . . ,Xn we define \t\ to be the linear polynomial
with coefficients in N and with variables | X i | , . . . , |Xn |, recursively defined by \c\ := 1 for all

constants and | / (t i , . . . , £ n) | := 1 + |£i| H 1- | t n | . If t is a variable-free term, then \t\ is the
number of constants and function symbols contained in t. We order the polynomials by means of

/(X) < s(X) :*=* Vtfi e (N x {0})n /(m) < g(m) (1.1)

and

/(X) < y(X) :*=* Vm € (N \ {0})n f(fh) < g(m) (1.2)

So given /(X) := a + bi|Xi| + • • • + 6n|Xn| and g(%) := c + di|Xi| + • • • + dn|Xn|, we have

/(X) < g(t) <=> Vt(6, < d.) A a + h + • • • + bn < c + di + •• • + dn (1.3)

and

/ (X) < g(%) < = > V t (6 , < d t) A a + b 1 + - - + b n < c + d i + - - - + d n (1.4)

J Logic Convwol. Vol. 3 No 4. pp 401-415 1993 © Oifocd Untrrrwy PICT

402 Logic Programs for Primitive Recursive Sets

Given terms s(Xi, . . . ,Xn) and t(Xi, . . . ,Xn) we have \s\ < \t\ (respectively \s\ < \t\) iff for all
tupels of variable-free terms (u i , . . . ,u n) it holds | s (u i , . . . ,un)\ < \t(ui,... ,un)\ (respec-
tively \s(ui,... , u n) | < \t(ui,... ,un)\). n-tupels of terms are ordered (lexicographically)
by

A .L-program P is called tame iff it satisfies the following conditions.

(i) All clauses of P are closed,
(ii) The predicates of P can be linearly ordered in such a way that p is the greatest predicate, and

for every clause of P, the predicate of its head is greater than or equal to every predicate of
its body,

(iii) If a clause of P with headr (t i , . . . , tn) contains in its body the formula r (s i , . . . , s n) , then

We now choose a fixed order satisfying (ii) Then we can order atomic formulas by

3 < r or ,, ,,

This is a well-founded ordering of the variable-free atomic formulas. If we resolve a variable-free
atomic formula 3> with a clause of a tame program, the resolvent consists of variable-free atoms
smaller than $. It follows that tame programs, applied to variable-free atomic formulas, always
stop.

We shall show that the tame programs compute primitive recursive sets and that every primitive
recursive set is computed by a tame program. We do not claim that the class of tame programs is
adequate for practical purposes. Condition (1) is very restrictive. Our aim was to find a class of
programs with a structure as simple as possible, but strong enough to compute primitive recursive
sets. (A more practice-oriented approach is done by Stroetmann in [6] and [7], see also Section 7).
Natural tame programs exist, e.g. for list operations like membership, concatenation, inversion
etc., but the following program, expressing that one list is a permutation of another one, seems
already to be a little artificial (we use the Prolog notation with square brackets for lists):

perm(X

permhUXlY^ZjXlU]

permh(Y, Z, [X|U]

permhtYjOJ.O

permh(Q,V,0,

, V) <•

> v) <•

, V) <•

0)-

- permh(X,0,Y,0).
- pennh(Y,[[]],U,V).

- pennh(Y,Z,U,[X|V]).

- permh(Y,0,V,0).

(1.7)
(1.8)

(1.9)
(1.10)

(1.11)

2 Primitive recursion on a Herbrand universe
Before we continue our investigations on tame programs, we want to give an internal description
of primitive recursion on Herbrand universes. This approach follows [2]. With respect to the
fixed language L, let PRL be the smallest set of functions Hn -* H (for all n e IN) satisfying
the following conditions.

(iv) Every function t : Hn -t H : (o i , . . . ,on) <-¥ t (o i , . . . ,On), with t(Xi,... ,Xn) an
arbitrary L-term, is in

Logic Programs for Primitive Recursive Sets 403

(v) PRi is closed under compositions of functions, i.e. if <p(xi, .. ,xn) andxpt(y) are in PRi,
then <p(tpi(y), • • -,rpn(y)) is also in PRL.

(vi) For every constant c and for every n-ary function symbol / , let <pc(y) and <pj(xi,..., xn,
z\ i • • •, Zn, y) be functions of PRL. Then the function <p, defined by

ip(c,y) := <pc(y) (2.1)

ip{f(xu...,xn),y) := Vf(xi,...,xn,(p(xi,y),...,ip(xn,y),y), (2.2)

is in PRL.

By (iv), PRL contains all projection functions (take i(Xi, . . . ,Xn) := X,), so the recursion
schema (vi) holds for all arguments (and not only for the first one).

Let 7 : H -* N be a primitive recursive Gtidelization of H, i.e. an injection with the following
properties.

(vii) 7 is increasing, i.e. if s is a subterm oft then 7(3) < f(t).

(viii) If / is a function symbol with arity n / then there is a primitive recursive function 7/ :
N"' -)• N such that 7 (/ (* i , . . . , tn,)) = 7/(7(^1), • • •, 7(*»,)) f°r all U.

(ix) Let / 1 , . . . , / r be an enumeration of the function symbols and constants of L (where the
constants are thought of as 0-ary function symbols), and let n, be the arity of / , . Then the
map TTO : N -» N, defined by 7i"o(7(/,(ti,..., tn,))) '•= t and TTO(X) := 0 if x $. Im(7), is
primitive recursive.

(x) For any natural number t > 0 which does not exceed all arities of function symbols of L, the
map7r, : N ->• N, defined by 7r,(7(/,(ti , . . . ,tn>))) := 7(t t) if i < nj,else7r,(a;) := 0, is
primitive recursive.

We remark that (ix) and (x) are consequences of the other conditions. Let G C N be the image of
7 ,andle t7 X n : Hn -> Gn be the map with (ti,...,tn) *-> (l{h),... ,y(tn)). Then to any
map %j) : Hn —> H corresponds a unique map ip* : Gn —> G for which the following diagram
commutes:

H

The function <p : Hn -> H is called primitive recursive iff <p* is the restriction of a primitive
recursive function; a subset U C Hn is called primitive recursive iff 7xn(C/) is a primitive
recursive set. Exploiting (viii) it is easy to see by course-of-values-recursion that the functions
of PRi are primitive recursive. We show that the contrary is also true.

Now for the whole paper we fix a constant 0 and a 1-ary function-symbol'; if there is no 1-ary
function-symbol in L, then we take x' to be an abbreviation for g(x, 0 , . . . , 0), where g is a fixed
function-symbol. Then 1: N -> H, defined by t(0) := 0 and t(n -I-1) := t(n)', is an injection.
Let TV be the image of 1. Again given any function (f : N -> N, there is a unique function

404 Logic Programs for Primitive Recursive Sets

(p° : Nn -4 AT, for which the following diagram commutes:

It follows immediately from the definitions that if tp is primitive recursive, then tp° is the restriction
of a function of PRL- Let f(t\, .., tn) be a term. Then

so that the bijection 17 : H —> N is in PRL- In order to show that the inverse of this bijection is
the restriction of a map from PRL we need a lemma:

LEMMA 2.1 (Definition by cases)
Let £1 , . . . ,tm-i be distinct terms and let <pi(y),... ,tpm-i(y) and <pm(x,y) be functions of
PRL- Then the function tp, defined by

tP(x,y):=\ ^ f'(JJ 1 ^ = * ' (2-3)

is also in PRL-

PROOF. We may assume that m = 2. (The general case follows by an obvious induction.)
It follows by (vi), that in PRL there is a function \{z^x^v) w'th x(O>x>t/) = fiiV) and
x(0' ,x,y) = tp2(x,y). Now let p : N -* N be the restriction of a function of PRL with
p(t7(ti)) := 0 andp(x) := 0' forx 6 ./Vand x ^ t7(<i). We get tp(x,y) =
so that >̂ is in PRL-

LEMMA 2.2

There is a function rj : H —¥ H in PRL such that r\\N is the inverse of 17.

PROOF. First we assume that L contains a function symbol q with arity greater than 1. Then
we may assume that there is a 2-ary function symbol p; (otherwise we consider p(x, y) :=
q(x, y, 0 , . . . , 0) as an abbreviation). We can use p to encode lists: p(s, t) encodes the list with
head s and tail t. There is a 2-ary function [x], in PRL with [p(x, y)]o := x and [p(x, y)],< :=
[y]t. Let / , , 7r, and n, be as in (ix) and (x). Define s — t to be the difference between s and t
when they are both in N and s > t, and s — t := 0 otherwise. Then — is in PiE{,. By Lemma
2.1, the function A (t , x i , . . . , x n , a, Z) := / , ([/] o _ S l , •• •, [']o-xn .) i s i n PRL- Now there is a
function n in PRL with n(0) := 0and/i(x') := p(A(7ro(x),7ri(x),... Tvn(x),x,n(x)),n(x)).
If x is in N, then n(x) can be considered to be the list ((i7) - 1(x - 1) , . . . , (i"r)~1{0)), so we
may set r){x) := [/i(x')]0 and the lemma is proved for this case.

We now assume that every function-symbols of L is 1-ary. There is a primitive recursive
function p : N* -»• N with p(i,-y(fm, •• /m ,(/mo))) := m t if i < mv and p(t,x) := 0
otherwise. Now use Lemma 2.1 to define £ : H2 -t H by £(0, r) := /P(o,r) and ^(t ' ,r) :=

r)) if p(i ' ,r) #0and£(i ' , r) := f(i,r) otherwise. WesetT?(r)':= e(r,r) . I

Logic Programs for Primitive Recursive Sets 405

We now obtain the desired internal description of primitive recursive functions and sets:

THEOREM 2.3

A function ip : Hn -> H is primitive recursive iff it is in PRL, A subset U C Hn is a primitive
recursive set iff there is a function f : Hn -4 H in PRL such that U = {x e H | f (x) = 0}.

PROOF. We have already mentioned that every function of PRL is primitive recursive. We now
assume that <p* is the restriction of a primitive recursive function. Then, by Lemma 2.2, we get
that ip = 7~V*7 = 7~1t~V*°<'7 = TTP*°(I.J) is in PRL. The second part of the theorem
follows immediately from the first part. I

3 Ackermann predicates

In this section L consists of the constant 0 and the 1-ary function-symbol'. We identify N and
N with L, so that H = N = N. The programs A m consists of the following clauses.

a m (X m , . . . ,X2 ,Xi,Z) 4- a m (X m , . . . ,X 2 ,Xi ,Z ') . (3.1)

a m (X m , . . ,X 3 ,X i ,0 ,Z) '<- a m (X m , . . . , X 3 , X 2 , Z ' , Z ') . (3.2)

a m (X m , . . . , X t , Z ' , 0 , . . . , 0 , Z ') . (3.3)

a m (X ;
m , 0 , . . . , 0 , Z) <- a m (X m , Z ' , 0 , . . . , 0 , Z ') . (3.4)

These programs are tame. For every variable-free tuple (i m , . . . ,to) there is precisely one
variable-free term u with A m h a m (< m , ...,to) •«- a m (0 , . . . , 0 , u) . We define a m (£ m , . . .,*o) :
u. The functions a m satisfy the following equations.

a m (0 , . . . , 0 , x) = x (3.5)

am(xm,...,x2,x1 +l,z) = a m (x m , . . . , a ; 2 , a ; i , z + l) (3.6)

a m (x m , . . . , x 3 , X 2 + l , Q , z) = a m (x m , . . . , X 3 , x 2 , z + l , z + l) (3 . 7)

a m (i m , . . . , a ; t + i , a r , + l , 0 , . . . , 0 , z) = am(xm,... ,x,,z + 1 ,0, . . .,0,z + 1) (3.8)

a m (x m + l , 0 , . . . , 0 , 2) = a m (i m , « + l , 0 , . . . l O , z + l) . (3.9)

The functions am are uniquely defined by these equations. It follows that they are strictly
increasing in all arguments. The following equations also hold:

ai(x,y) = x + y (3.10)

a2{x,y,z) = 2x(y + z + 2)-2 (3.11)

OCm{0,Xm-i,. . . ,X0) = a m - l (l m - l r - ' ^ o) (3.12)

am(xm,...,x0) = a m (x m , . . . , x , + i , 0 , . . . , 0 , a , (z , , . . . ,z0))- (3-13)

The equation (3.13) follows by transfinite induction over the lexicographic ordering -< on the
tupels (x , , . . . ,Xj) (defined as in (1.5)): If x, = . . . = xx = 0 then there is nothing to

406 Logic Programs for Primitive Recursive Sets

prove. Otherwise there is a j G {1 , . . . , :} with x3 / 0 and x^_i — ... = X\ = 0 . We get
a m (x m , . . . , x 0) = a m (i m , . . . , i ; + 1 , i , - l ,x o + l,O, . . . ,O,x o + l) = cem(xm,... ,x,+i
0, . . . , 0 , 0 , (1 , , . . . , Xj+uij - l . i o + l .O, . . . , O.io + l)) = a m (x m , . . . , i , + i , 0 , . . . , 0 ,
a , (x t , . . . ,XQ)) (the first and the third equalitiy follow by (3.8), the second follows from the
induction hypothesis).

Let 0m(x,y) := a m (x , 0 , . . . ,0,y) = a m (x , 0 , . . . ,0,y,0). Then

0i(x,y) = x + y (3.14)

An(0,y) = V (3.15)
0m(x+l,y) = /?m(x,/?m_1(y+l,j/+l)) (3.16)

If we set (J (y) : = ^ m _ 1 (y + l , y + l),then (3.16) becomes ̂ m (x + l,y)=/3m(x,(5(y)),hence
Pm(x,y) = 8x(y). It follows that the functions 0m are primitive recursive. It follows from
ttm(im,.. .,Xo) = 0m(xm,am-i(xm-i,.. .,xo)) that the am are primitive recursive too.

/?m(x, y) is a variant of the Ackermann function. In fact it majorizes the Ackermann function.
So given any primitive recursive function ip : N -»• N there is an m with @m(l,x) > <p(x)
for every x e N. Also, for any primitive recursive function tp : N™ ->• N there is an m with
a r n (l , 0 , . . . , 0 , x i , . . . , x n) > tp(xi,...,xn).

4 'Tame' implies 'primitive recursive'

We first show that it suffices to consider programs with only one predicate. This is in fact
nothing else than a variant of the transitivity theorem for inductive definitions [4, theorem 1C.3].
Let P be a L-program with predicates p i , . . . , p , = p, where the predicates are ordered by
p, < pj :<=>• t < j . We choose a constant 0 6 L and variable-free terms / i , . . . , / „
with \h\ < •• • < \l,\. Let q be a new predicate whose arity is greater than all the arities
of the predicates of P. Given an atomic formula II = p , (t i , . . . , £„.) we construct a formula
ft := q(f,; t\,..., tni, 0 , . . . , 0). We attach to P a program P by replacing all atomic formulas
II contained in P by n . Then a tupel (ti,...,tn) £ Hn is in the set computed by P iff
(/,; t i , . . . , tn, 0 , . . . , 0) is in the set computed by P. If P is tame, P is tame also. So we get;

LEMMA 4.1

Every subset of Hn computed by a tame program is a section of a set computed by a tame
program containing only one predicate.

We really do need sections: If L = {0, '} , then the subsets of H = N computable by a tame
program with only one 1-ary predicate are the sets definable m the Pressburger arithmetic. Let $
be an atomic formula. A proof tree for $ (with respect to P) is a finite tree T with the following
properties.

(xi) The nodes of T are atomic formulas,

(xii) The root of T\%§.

(xiii) If * is a node of T and if 5 ^ , . . . , Er are its successors, then * <~ E\ A • • • A E r is a
substitution instance of a clause of P.

Let B be the set of all variable-free atomic formulas and T the finite set of all proof trees with
respect to P. The map 6 p : 8 x N - > VU{J), moving a pair (*, m) to the set of all proof trees
for * with a depth not greater than m, is primitive recursive (with respect to some coding).

Logic Programs for Primitive Recursive Sets 407

LEMMA 4.2

Tame programs compute primitive recursive sets.

PROOF. Let Q be a tame program. By Lemma 4.1, we may assume that Q contains only one
predicate q, because sections of primitive recursive sets are primitive recursive themselves.
Choose p € N such that for any term t occurring in the body of some clause of Q, every
coefficient of \t\ is smaller than p. Let n be the arity of q. Now for (*i , . . . ,*„) £ Hn, we set
| |* i , . . . , t n | | :=a2n+i(|<i | ,--- , | tn | , |<i | , . . . , |<n| ,P,0) e N. Let q (t i , . . . , tn) be a node of a
proof tree and q (s i , . . . , s n) a successor of this node. For each i, we have P+P^2"=l \tj\ > |s, |;
as Q is tame there is a m < n such that \t,\ > |s , | fort < mand \tm\ > \sm\. It follows that

|, • • •, | t n | , 0 , . . . ,0, J2 \tj\,p,0)
3=1

O 2 B + l (| * l | , - - • , | t n | , 0 , ...,0,

a 2 n + l (| « l | , . . . , | * m - l | , | « m | - l , (4-1)

J = l 3=1

J = l J = l

> Qr2n+i(|Si|, . . . , | s n | , |Si|, . . . , | s n | ,P ,0)

= | | S i , . . . , S n | | .

So the depth of a proof tree for q(*i , . . . , t n) is bounded by | | * i , . . . , i n | | , and hence

Q r - q (t i , . . . , t n) ^ ^ 3m<\\t1,...,tn\\{eQ(q(t1,...,tn),m)^9). (4.2)

The existential quantor in the formula above is bounded by a primitive recursive function, so the
set computed by Q is primitive recursive. • I

5 Computation power of tame programs

In this section we show that all pnmitive predicates can be computed by ume predicates. We
again embed the natural numbers in the Herbrand universe by means of t : N -* N C H (as in
the second section). iV can be computed by the following tame program:

nat(0). (5.1)

nat(X') <- nat(X). (5.2)

We show in the next two lemmas, that the graphs of some functions can be computed by tame
programs.

LEMMA 5.1

For every primitive recursive function tp : N71 ->• N there is a tame program, computing the
graph of (fi°.

408 Logic Programs for Primitive Recursive Sets

PROOF. The computability of the graph of a projection, of a constant function or of the successor
function is trivial

Before we treat the composition of function and the schema of primitive recursion, we consider
the Ackermann predicates again. Let A^ be the program we obtain from Am by replacing
a m (X m , . . . ,Xo) by a|^(Yi,.. ,Y r;Xm , . . ,Xo). The new parameters have no influence on a
computation.

Let tp : N ->• N and tp : N —¥ N be primitive recursive functions, and let F and P be tame
programs, computing the graphs of <p° and i/>°. There is an m 6 N such that t/>(x) < f3m(l,x)
for every i e N . Let K be the program containing F, P, A^ and the following clauses.

k(X,Z) <- <(X,Z;1,O,... ,O,X,O). (5.3)

a^(X,Z;Y ra,...1Y0) <- p(X, Yo) A f (Yo, Z). (5.4)

We may assume without loss of generality that the programs F and P neither have a predicate
in common nor does one of them contain aj ,ork (otherwise we must rename these predicates).
Then K is a tame program; we claim that K computes the graph oftporp. We apply this program
to k(x,z); this resolves first to a^(a;,z; 1,0,... ,0,x,0); then, 'running A^,', it resolves to
s^n{x,z\ t m , . . ,ti,ip(x)). So K h 1/L(X,Z) iff z = tpip(x). A similar proof works for functions
with several variables.

It remains to prove that the graph of functions defined with primitive recursion can be repre-
sented. Let tp : IN3 -> N and ip : N -¥ N again primitive recursive functions, and let F and P
be programs computing the graphs of tp° and rp°. K is the function defined by n(x, 0) := xp(x)
and n(x,i + 1) := tp(x,n(x,i),i). Now choose m G N with n(x,t) < /?m(l,a; +1) for every
x, i G N. Let K be the program containing the programs F, P and a^ and the following clauses.

k(X,I,Z) <- a^(X,I ,Z; l ,0 , . . . ,0 ,X, I ,0) . (5.5)

a3
n(X,0,Z;YTn,...,Y0) <- p(X,Z). (5.6)

a^(X,l ' ,Z;Ym , . . . ,Y0) <- a^(X, I, Yo; 1,0,... ,0,X, 1,0) A f (X, Yo, I,Z). (5.7)

It is easy to see that K computes the graph of K. The recursion schema with parameters can be
handled in the same way. I

LEMMA 5.2

The graph of a primitive recursive function <p : Hn —>NC H is computable by a tame program.

PROOF. We first show that the graph of the map iy : H -t N is computable by a tame program.
For the function symbol / G L, the map 7/ : N"' -> N in (viii) is primitive recursive and hence
by Lemma 5.1, there are tame programs G/ computing the graphs of the functions 7^. Let n be
the maximum of all the arities of function symbols of L. Let G be the program containing the
following clauses.

g(X,Y) <- q(X,Y;Y,...,Y). (5.8)

n times

q(X,Y;Yi,Y2,...,Yn) <- q(X, Y; Yi, Y 2 , . . . , Yn). (5.9)

q(X,Y;Yi l...,Yn_i,Y'n) <- q(X, Y; Yx> . . . , YB_i, YB). (5.10)

Furthermore for any constant c G L there is a clause

q(c (t7(c);Yi,. . . ,Yn). (5.11)

Logic Programs for Primitive Recursive Sets 409

and for every function symbol / there is a clause

Y l;Y,,...,Y,). (5.12)
1 = 1

By (vii), 7 is increasing, so it is easy to see that G is a tame program, computing the graph of 17.
Now let ip : H -> N be a primitive recursive function. Then, by Lemma 2.2, the function

(fi* := tpr) : N -¥ N is primitive recursive, and so it follows by Lemma 5.1 that its graph is
computable by a tame program F. Because of <p = <p*cy we must construct a program K for the
composition of F and G; the construction is similar to the construction in the proof of Lemma 5.1.

Let t E H be a term. Then the depth 8(t) of t is defined recursively by 6(c) := 1 for constants
candS(f(ti,... ,£„)) := l + max(<J(£i),... y6(tn)). As 17 is primitive recursive, there exists
an m such that cy(t) < 0m(l,S(t)) for all £ £ H. K is the program, containing the programs F,
G, the program A^, defined in the proof of Lemma 5.1 and the following clauses.

k(X,Z) <- a^(X,Z,X,0';0,. . . ,0). (5.13)

, . . . ,U n ,) ,V;0 , . . . ,0) <- a^(X,Z,U,,V';0,...,0). (5.14)

<4(X,Z,c,V';0, . . ,0) <- aJ,(X,Z,0,0;l ,0, . . . ,0,V',0). (5.15)

g(Mo) Affo.Z) . (5.16)

(For each function symbol / and for each 1 < n / , there is a clause of the form (5.14), and for
every constant there is a clause of the form (5.15).) Again we may assume that k and a^, are
not contained in the programs F and G and we may assume that these two programs have no
common predicate. Then K is tame. If we apply this program to k(x, z) then it resolves first
to a^(a;, z, c, 6(x); 0 , . . . , 0) if resolving with the clause (5.14) the right 1 is always chosen.
Furthermore this resolve to a£i(z, z, 0,0; t m , . . . , to), where to can be any element from m with
*o < /?m(li<5(z)); so it resolves to a^(a ; ,z ,0 ,0 ; t m , . . . ,ti,i-y(x)), and so K resolves to true
iff 17(1) = z. For ip : Hn -> N, the proof is similar. I

Now we can prove the theorem announced:

THEOREM 5.3

Tame programs compute primitive recursive sets and every primitive recursive set is computed
by a tame program.

PROOF. Lemma 4.2 says that sets computed by tame programs are primitive recursive. So let
U C Hn be a primitive recursive set. Let f : Hn —> H be a primitive recursive function with
U = {x G H I £(x) = 0}. Then the graph of £ is computable by a tame program, and so U is
computable by a tame program too. 1

6 Complements

The class of primitive recursive sets is closed under Boolean operations. So it follows from
Theorem 5.3 that the class of sets computable by tame programs is also closed under Boolean
operations. Therefore we can include negation in the definition of tame programs without
changing the computation power of this class of programs. In this section we give a direct proof
of this fact without using Theorem 5.3. Given a tame program P, we shall construct a program
P computing the complement of the set computed by P.

410 Logic Programs for Primitive Recursive Sets

We start with the following program eq for equality containing a clause

eq(c, c). for every constant c and (6.1)

e q (/ (X i , . . . , X n) , / (¥ ! , . . . , ? „)) «- e q f r . Y i) A • • • A eq(XB) Yn). (6.2)

for every function symbol / . A tame program P is called free if the following hold:

(xiv) The variables in the head of a clause of P are all distinct.

(xv) If q(£i, . . ,£„) and q (s i , . . . , s n) are the heads of two clauses of P, then either there is an
i < n such that tt and s, are not unifiable, or the two heads are equal.

(xvi) If q is a predicate occurring in Pandi fq(£ i , . . . ,tn) is a variable-free atomic formula, then
there is a clause in P whose head is unifiable with q(t\,... ,tn).

We remark that the program eq is free (in contrast to the usual way of defining equality by
equal(X, X).). We call two programs P, Q equivalent if they compute the same sets. We shall
show that an equivalent free tame program can be constructed for every tame program. We begin
with two lemmas:

LEMMA 6.1

For every tame program P, an equivalent tame program satisfying (xiv) of the definition above
can be constructed effectively.

PROOF. Let

i(t1,...,tn)*-/\r(t\,...tt
t
n)A* (6.3)

be a clause, where ^ is a formula not containing r , and assume that the variable X occurs in tu

and tv (with u / v). Let Y be a new variable. If in P we replace the clause above by

r (t i , . . . , *„_!,<„[j\,tv+i , . - . ,<„) <-eq(X, Y)A/\ r(<l , . . . ,*;,_!, J ^ , «„+ ! , . . . , tl
n) A*,

then we obtain a tame program computing the same set as P. (t [\] is the term we get from t by
substituting X by Y.)

By iterated application of the above argument, we may assume that in all clauses of P having
the form of (6.3) the terms tt and i_, do not have any variables in common (i ^ j). We now
assume that the variable X occurs v times in the term tk of (6.3). Then we replace these v
occurrences in tk by the new variables Xi , . . . ,TLV. If \tk\ > \fk\, then X occurs not more
than v times in t3

k\ in this case we replace all the occurrences of X in \iPk\ by different X,. All
occurrences of X in (6.3) not contained in such a t\ we replace by an arbitrary X,. Finally we add
eq(Xi, X2) A eq(Xi, X3) A • • • A eq(Xi, Xu) to the body of the modified clause (6.3). If we do
this for every k and every clause, then we get a tame program that computes the same set as P
and satisfies (xiv). I

LEMMA 6.2

Let t\ , - . . , £„ be terms. Assume that for every»the variables contained in tx are distinct. Then
there is a finite set of terms {si,..., sw} with the following properties.

(xvii) The variables in a s, are all distinct.

(xviii) Every closed term is unifiable with exactly one a,.

Logic Programs for Primitive Recursive Sets 411

(xix) Each s, is a substitution instance of a t}.

(xx) If s, and t-, are unifiable, then s, is substitution instance of t3.

PROOF. Let £o := {X, 11 £ N} be a set of variables. We define £ m +i recursively to be the sets
of all constants c £ L and all terms of the form f{t\ , . . . ,£„) where / e L and t, € £ m . Let
£ m be the subset of £ m consisting of the terms t with the following properties.

(xxi) The variables in £ are all distinct.

(xxii) If X, occurs in t and j < i then X_, occurs in t too. Furthermore, t3 stands on the left side
ofXt.

Then the sets t3 satisfy (xvii) and (xviii). If j is large enough for all t, to be contained in £ , ,
then { s i , . . . , sw} := C3 also satisfies (xx). I

We take a tame program P satisfying (xiv). Let E be a clause of P and t a term whose variables
are all distinct and not contained in E. If we substitute an arbitrary variable of E by t, we again
obtain a tame program satisfying (xiv). Now we are ready to prove the announced proposition:

PROPOSITION 6.3

An equivalent free tame program can be effectively constructed for any tame program P.

PROOF. By Lemma 6.1, we may assume that P satisfies (xiv). For every predicate q occurring in
P we add the clause q(Xi, . . . , Xn) «- f a l s e to P. Let q(t\,..., Vn) «- E1 be clauses of P,
where i = 1 , . . . , t>. We fix fc < n and choose Si,...,sw satisfying (xvii) to (xx) with respect
totl

k,...,t
v
k. We now replace a clause q (t j , . . . , t j j «- E l by all of its substitution instances

transforming Vk in a 5; and not changing the terms i* for j ^ k. We repeat this for every k. Then
these replacements lead to a free tame program equivalent to the original one. I

With this preparation, the construction of a program P computing the complement of the set
computed by P is easy:

PROPOSITION 6.4

If P is a tame program, then a tame program P computing the complement of the set computed
by P can be constructed effectively.

PROOF. By Proposition 6.3, we may assume that P is a free tame program. Let

* <-¥, , i A • • • A ¥,,„,, i = i , . . . , * (6.4)

be all the clauses of P with head $. Then we add to P the clauses

$<-*l,,r(l)A---A* f c > (T (f c) (6.5)

where <T runs over all maps {1, . . . , * } - > N\{0} without) < m,. By induction on the ordering
(1.6) denned in the first section and by de Morgan's laws it follows, that for a variable-free formula
q (t i , . . . ,tn) the following equivalence holds: P h q (t i , . . . , tn) ^=^ P \f q(<i , . . . , tn). I

7 Other classes of logic programs

In [1], Apt and Bezem investigate the class of acyclic programs. A normal program T is acyclic
iff there is a level-mapping E : C -¥ N (where £ is the set of all variable-free literals) with the
following properties:

412 Logic Programs for Primitive Recursive Sets

(xxiii) | $ | = |-i$| for all atomic formulas $ 6 £.

(xxiv) If $ «- *x A . . . A $>m is a variable-free instance of aclause from T, then | $ | > |* , | for
t = l , . . . , m .

Every total recursive function can be computed by an acyclic program (without negation). In the
contrary to the class of tame programs the class of acyclic programs is undecidable.

It follows from the proofs of Lemmas 4.1 and 4.2 that tame programs are acyclic. So the class of
tame programs is a subclass of the class of definite acyclic programs having a weaker computation
power. The inclusion of the class of tame programs in the class of acyclic is not uniform in the
sense that there is a set of level-mappings corresponding to the tame programs: consider the
the tame program over the language L := {0, '} and with the two clauses a(X, Y') <- a(X, Y)
and a(X', 0) •«— a(X, X). Every level-function £ witnessing that this program is acyclic satisfies
t{x, y + 1) > t(x, y) and l(x + 1,0) > l(x, x). Then there is an m € N such that £(0, m) >
£(1,0). But^is a witness that the program consisting only of the clause b(0,0(m)) <- b(0',0)
is acyclic, and this program is not tame (0^ stands for a zero followed by m primes).

Another class of logic programs is described by Stroetmann in [6] and [7]. He uses a distinction
between input and output places of the predicates. Here we give a simplified version of this
approach without negation. Therefore all clauses and goals considered in the sequel are definite.
An l/O-specification for a program P is a map a from the set of predicate symbols of P to
{+, —}*, where for all q the arity of q is equal to the length of cr(q). tt is called input term in
q(* i , . . . ,tn) iff cr(q), = ' + '; if cr(q), = ' — ' then tx is an output term. Let FV(t) be the
variables of t; for an atomic formula q (t i , . . . , tn) we define

FV+(q(h,...,tn)) := \J{FV(tt) | <r(q), = +} (7.1)

FV-(q(h,...,tn)) := \J{FV(tt) | a(q), = - } . (7.2)

A clause $ <- ^i A . . . A * m is called a-allowed iff it satisfies the following two conditions:

(7.3)

J) (7.4)

A goal «- $! A . . . A "5m is called a-allowed iff it satisfies the following condition:

x e F V + (* ,) =» 3j e {i, . . . , * - i}(x e FV(*3)). (7.5)

Obviously, in an allowed goal FV+ of the leftmost atom is always empty. If $ is an allowed
goal and $ ' is derived from $ by an allowed clause, then $ ' is allowed, too.

For a term t let ln(t) be the number of occurrences of function symbols and constants contained
in t (so ln(X) = 0 for variables). (Here we made the second simplification: Stroetmann
defines In with respect to a weight function for constants and function symbols). For an atomic
formula q f o , . . . , * „) let l n (q (* i , . . . ,tn)) := 1 + E t l n (< .) and l n + f a f o , . . . , * „)) : = 1 +
E<T(Q),=+ ln(tt); for a goal $ let Ln($) and ln + ($) , respectively, be the sum of In (or ln+) of
the atomic formulas contained in $. A definite program T is a-ordered iff there is a map level
from the set of all predicates contained in P to the set of natural numbers such that for all clauses
$ < - $ i A . . . A * m of P the following conditions are satisfied:

(xxv)]eyel($) >leyel(*,)fort 6 {!,.. ,m} .

Logic Programs for Primitive Recursive Sets 413

(xxvi) If the set / := {i £ { 1 , . . . , m} | level($) = level($,)} is non-empty, then

(7.6)

(7.7)

(In (7.7) the sets FV"1" are considered as multisets; U stands for the union of multisets and Cmuiti
for multiset-inclusion.)

For short we call a cr-ordered program whose classes are a-allowed just a o-progmm.
Stroetmann proved that every primitive recursive function can be computed by a a-program.

On the other hand he proved that if P is a cr-program and if $ is a c-allowed goal then the
SLD-tree for P U {$} is finite, provided that the SLD-tree is built with respect to the computation
rule to select always the leftmost literal in a goal. With other computation rules infinite SLD-trees
can exist, so there are cr-programs that are not acyclic. In his proof Stroetmann used (infinite)
ordinals. The following proposition gives bounds for the size of SLD-trees for cr-programs.
From now we also fix the mentioned computation rule for SLD-resolution (choosing always the
leftmost atom).

PROPOSITION 7.1

Let Q be a cr-program. Then there is a primitive recursive function dp such that for every allowed
goal $ the depth of the SLD-tree for Q U {$} is less than dp(ln+($)).

PROOF. Let <- pi(<i, i , . . . <i,ni) A.. • Ap m (£ m i l , . . . ,tm)Tlm) be a goal. We call an occurrence
of a subterm u in i t | J to be inessential if t,tJ is an output term or if there are such k < i and /
that u occurs also in the output term tk,i- For a goal $ and for an occurrence t of a term in $ let
In* (t) be the number of all occurrences of constants and function symbols contained in t, but not
inside of an inessential subterm; furthermore we define In* ($) to be the sum of the number of
atomic subformulas of $ and of the number of all occurrences of constants and function symbols
contained in $, but not inside of an inessential subterm. Obviously, ln*($) < ln + ($) ; if $ is
an allowed goal and if $ ' is a substitution instance of $ then ln*($') < ln*($). We construct
a primitive recursive function v : N —> N with the following property:

(xxvii) If E is an allowed goal and if H' is a goal derived from E in one resolution step with a
clause from Q then ln*(E') < i/(ln#(E)).

As in the proof of Lemma 4.2 we choose p e N with the following properties:

(xxviii) For every clause $ of Q and for every input term t of the body of $ the following is true:
if the polynomial |t| = | t | (|Xi | , . . . , |Xr|; |Yi | , . . . , |Y5|) is defined as in section 1, Xi, . . ,Xr

are the variables contained in an input term of the head of $ and Y t , . . . , Ya are the other
variables, then p > | t | (l , . . . , 1; 0 , . . . , 0).

(xxix) p is greater than pap0, where pa is the maximum of all arities of function symbols and po

is greater than all ln(t), where t ranges over all output terms of the heads of the clauses of Q.

Let E be the allowed goal <- $ i A . . . A $, and let 6 be a clause $ <— vti A . . . A * r

of Q E' is the goal obtained from E in one resolution step with the above clause, so S'
is <- * i A . . . A *i. A $2 A . . . A $',, where $', := $.0 and Wt := #,0, provided that
6 := mgu(<l>, $ i) . Let it be the maximum of 1 and of all ln*(t) for input terms t in E. Then

414 Logic Programs for Primitive Recursive Sets

k > \n*{t') for all terms f in the goal 5° := <- * i A . . . A 91,. If we replace 9[in E° by
* i A . . . A <$'r we get the goal H' and we claim that pk > In* (?) for all terms ? in E'.

Assume first that ? is in *(. Then ? = £(fi;u), where £ is the corresponding term in 6 ,
u = (u i , . . . , um) are terms substituted for variables contained in the input terms of 9 and t;
are terms substituted for the other variables. With (xxviii) we obtain \n*(?) < |f|(|u|;0) <
pmax{l , ln(u i) , . . . , ln(um)}. But the terms u, are contained in the input terms of 91, hence
also in the input terms of 3>i (the input terms of 91 and 9\ are identical, because E is allowed).
So it follows that ln#(t ') < pk.

Let ? be in 9[(t > 1). Then not every subterm u' of ? that is inessential with respect
to the goaJ E° remains inessential inside the goal E'. But ? contains at most kpa maximal
inessential subterms inside E°; furthermore, such a subterm contains at mostpo function symbols
and constants that are not contained in an inessential subterm with respect to E'. It follows
\n*(?) < k + {kpa)Po = k(l + papo) < pk. So the claim is proved.

There is a natural number p' such that making a resolution step the number of terms in the
derived goal is at most by p' greater than the number of terms in the original goal. Let kt be the
number of atomic formulas of E and let pt be the maximum of the anties of the predicates in
Q. Then it follows that In*(E') < (p' + kt) +pk(p' +pbkt) < (1 + pk)(jp' + pbkt) < (1 +
pln # (E))(p '+P6in # (E)) . We define i/(z) := (l+px)(p '+p 6 x) ,soln # (E ') < v(ha#(E)).
This v satisfies condition (xxvii).

Now we can begin to define the function dp. We define primitive recursive functions dp with

the property that the depth of the SLD-tree for Q U {$} is less than dp̂ (In* ($)) for all allowed
goals 9 whose predicates all have a level not greater than /. Then we define dp := dp^, where I
is the maximum of the levels of the predicates in Q.

We assume that the functions dr» exist (let dp_ := 0). For a goal 9 let lnj1"(9) be the sum

of all ln+ (\£), where * ranges over all atomic subformulas of 9 with level /. First we define a
function dp! so that for an allowed goal 9 the depth of the SLD-tree for Q U {9} is less than

), provided that the following condition is true:

(xxx) All predicates of 9 have a level not greater than / and there are no free variables in an input
term of a predicate of 9 with level /.

We can set dpj(x, 0) := d p ^ ^ x) . Now let 9 be a goal satisfying (xxx). We split 9 in two
subgoals#i and $2 so that 9\ does not contain a predicate symbol of level/, but the first predicate
symbol of $2 has exactly level /. We want to estimate the length of a branch of the SLD-tree for
9. The length of the branch corresponding to the subgoal $1 is less than da_ (ln#($)) . The
remaining subgoal $ 2 is a substitution instance of $2- Going further one resolution step we obtain
a goal $2 '; from (xxvi) it follows ln/"($2') < ln,+ (#2)- Furthermore, ln#($2 ') < i / (ln # ($)) ,
where i^(x) := IZ-^-J (I) , SO we can set

d p ^ x ^ + l ^ l + dp^to+dpjCi /OrJ .y) . (7.8)

In the next step we construct a primitive recursive function dpj' such that dpj'(ln*($), y)
gives a bound for the SLD-trees for 9 if the predicates of 9 have a level not greater than / and if
y is the number of atomic formulas in 9. This can be done by

dpj'(x,l) := dpjCx.x) (7.9)

dp"(x,i/ + l) := d p > , x) + dp>" (x) , y) (7.10)

Logic Programs for Primitive Recursive Sets 415

where v"{x) := v^x'x'{x). Now we are ready to define dp (x) :=dp /"(x,i). I

From the above proposition it follows immediately (as in Lemma 4.2) that all functions and
predicates computed by cr-programs are primitive recursive. (The generalization to Stroetmann's
class with negation and weight function is straightforward.)

References
[1] K R. Apt and M Bezem, Acyclic programs. New Generation Computing 9, 335-363, 1991
[2] S. Feferman, Rrutary inductively presented logics, in Logic Colloquium '88, North-Holland, Amsterdam, pp

191-220, 1989.
[3] J W Uoyd, Foundations of Logic Programming, Springer-Verlag, Heidelberg, 1987
[4] Y. N Moschovalos, Elementary Induction on Abstract Structures, North-Holland, Amsterdam, 1974
[5] A R. Meyer and D. M Ritchie, The complexity of loop programs In Proceedings of the ACM 22nd National

Conference, Thomson Book Co, Washington, DC, pp 465-469, 1967.
[6] K. Stroetmann, Vollstandige Resoluaonskalktlle fur PROLOG PhD dissertation, WestfShlische Wilhelms-

Uruversitfit MUnster, Germany, 1981
[7] K. Stroetmann, A completeness result for SLDNF-re.ro/unon. Preprint, 1992, to appear in Journal of Logic Pro-

gramming.

Received 10 February 1992

	1

