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DogMap: An International Collaboration
Toward a Low-Resolution Canine Genetic
Marker Map
DogMap Consortium

DogMap is an international collaboration
of 42 laboratories from 20 different coun-
tries working toward a low-resolution ca-
nine genetic marker map. The collabora-
tion is placed under the auspices of the
International Society for Animal Genetics
( ISAG). The main activities focus on ge-
netic mapping in a panel of reference fam-
ilies comprising 129 animals in five full-sib
and three half-sib families (87 beagle and
42 German shepherd), physical mapping
by FISH to anchor the linkage groups on
chromosomes, and development of a da-
tabase to collect, manage, and display the
mapping data. The mapping is restricted
to markers amenable to PCR. At the end
of 1996 our map comprised 105 markers,
of which 43 were assigned to 16 linkage
groups. Two of those were assigned to
chromosomes (L16 on CFA 18 and L13 on
CFA 20). The DogMap database is still un-
der construction. It has a two-tier struc-
ture with unpublished data, accessible to
the DogMap participants, and published
data, accessible to the general public.
Presently the database can only be ac-
cessed using a character or graphical user
interface. A major effort will be made to
make the DogMap database accessible on
the World Wide Web sometime in 1998.
The members of the DogMap consortium
are listed under “labs” at our DogMap site
(http://www.cx.unibe.ch/itz/dogmap.html).

Toward the end of the 1980s genetic
mapping in domestic animals made a big
step forward thanks to the development of
markers amenable to the PCR technique.
Progress was especially remarkable in cat-
tle and pig, economically the two most im-
portant livestock species. But the econom-
ic aspect was not the only factor respon-
sible for this progress; equally important
was the efficient collaboration between
the interested laboratories. In this latter
aspect the European Community (EC)
played a key role by supporting PiGMaP
(http://www.ri.bbsrc.ac.uk/pigmap/) and

BovMap (http://locus.jouy.inra.fr/cgi-bin/
bovmap/intro2.pl), genome mapping pro-
grams in swine and cattle, respectively.
The major incentive for collaboration was
not only common funding but the en-
hanced chances to secure local support
based on the EC endorsement. From the
beginning the participants of these two
projects sought active collaboration out-
side the EC which led to truly global map-
ping programs in these two species. In
other domestic species the development
of genetic marker maps could not keep
pace with these two collaborative efforts
for reasons connected with economic im-
portance and also specific for the species
concerned.

Several factors can be made responsible
for keeping the development of a canine
genetic marker map on the ground up to
the early 1990s. Among them the paucity
of laboratories interested in this topic and
the lack of loci amenable to mapping were
the most prominent factors. Another ma-
jor factor hampering the development of
a canine genetic marker map was the lack
of a standard karyotype due to the diffi-
culty of chromosome analysis in dog.
Therefore first mapping efforts were re-
stricted to the establishment of synteny
groups by means of somatic cell hybrid
panel analysis (e.g., Bruns et al. 1978;
Meera Khan et al. 1984; Oldenburg et al.
1987; Wilson and Adari 1987) and linkage
analysis of expressed genes (e.g., Brink-
house et al. 1973; Grosse-Wilde et al. 1983;
Meera Khan et al. 1978). Only with the de-
velopment of PCRable canine genetic
markers, notably microsatellites (Francis-
co et al. 1996; Holmes et al. 1993, 1994,
1995; Mariat et al. 1996; Mellersh et al.
1994; Mellersh and Sampson 1993; Moly-
neux and Batt 1994; Ostrander et al. 1992,
1993, 1995; Primmer et al. 1994; Rothuizen
and van Raak 1994; Shibuya et al. 1993,
1994; Thomas et al. 1997), in the early
1990s became the establishment of canine
genetic marker maps feasible (Lingaas et
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Table 1. Comparison of the percentage of maximum LOD scores greater than a given constant simulated with 10,000 iterations using the option ISIM of the
SLINK package

Type Families Grandparents Parents
Offspring/
family

Total
offspring

Total
individuals

LOD score
. 1

LOD score
. 2

LOD score
. 3

Full sib 24 0 48 4 96 144 68.2 36.5 16.1
Full sib 24 96 48 4 96 240 98.3 89.9 72.9
Half sib 12 0 36 8 96 132 78.1 50.2 27.6
Half sib 12 72 36 8 96 204 98.3 89.3 73.2
Full sib 12 0 24 8 96 120 85.6 62.9 39.4
Full sib 12 48 24 8 96 168 96.8 87.6 71.9
Half sib 6 0 24 16 96 120 68.7 39.7 18.7
Half sib 6 48 24 16 96 168 93.0 76.5 53.9

At locus 1 the allele frequencies were set to 0.1, 0.3, and 0.6 (PIC 5 0.466), at locus 2 they were set to 0.1, 0.2, 0.2, and 0.5 (PIC 5 0.610) and the true theta was set to 0.1.

al. 1997; Yuzbasiyan-Gurkan et al. 1997).
Also the introduction of fluorescent in situ
hybridization, techniques together with
the development of a canine standard kar-
yotype (Switonski et al. 1996), gave a
boost to the physical mapping effort (Dolf
et al. 1997; Fischer et al. 1996; Guevara-
Fujita et al. 1996; Thomas et al. 1997).

The DogMap Consortium

In 1992 the Institute of Animal Breeding at
the University of Berne (Berne, Switzer-
land) and the Division of Animal Genetics
of The Royal Veterinary and Agricultural
University (Copenhagen, Denmark) initi-
ated the DogMap collaboration. The num-
ber of participating laboratories grew con-
tinuously during the following years. To-
day DogMap comprises 42 laboratories
from 20 different countries. The collabo-
ration has no common funding but shares
the wish to have a canine marker map as
a tool for genetic investigations in dog. Al-
though very loosely organized, the collab-
oration has a structure in the form of a
managing committee and scientific coor-
dinators in the areas of microsatellite pro-
duction, other markers, informatics, ref-
erence families, physical mapping, and he-
reditary diseases. The main purpose of
these bodies is to facilitate the flow of in-
formation between the members of
DogMap and to facilitate collaboration.

Goal of the Collaboration
The common goal of the DogMap partici-
pants is to contribute to the establishment
of a low-resolution canine marker map
with 20 cM intervals and physically an-
chored linkage groups. For this purpose,
members of the collaboration are typing a
common panel of reference families and
chromosomally assigning cosmid-derived
probes by FISH. Although the backbone of
the emerging map consists predominantly
of microsatellites, expressed loci will be
included as PCRable markers for genes as

they become available (Bartlett et al.
1996; Boyer et al. 1995; Burnett et al. 1995;
Francino et al. 1997; Gould et al. 1995;
Holmes 1994; Holmes et al. 1996; Occhio-
doro and Anson 1996; Ray et al. 1996a,b,c,
1997; Shibuya et al. 1995a,b, 1996; Venta et
al. 1996; Wagner et al. 1996a,b; Yuzbasiyan-
Gurkan et al. 1997; Zheng et al. 1994). The
mapping of genes is of paramount interest
to the DogMap community since most of
the participants are investigating specific
canine traits, which are most often hered-
itary diseases. A more immediate benefit
from growing canine marker maps lies in
paternity testing (Binns et al. 1995; Fred-
holm and Winterø 1995, 1996; Zajc et al.
1994; Zajc and Sampson 1996) and genetic
diversity studies (Gottelli et al. 1994; Pih-
kanen et al. 1996; Werner et al. 1996; Zajc
et al. 1997).

The Reference Families
At the beginning of the DogMap collabo-
ration a main concern was the establish-
ment of a panel of reference families for
genetic mapping purposes. It was then de-
cided to use a two-generation panel,
which was available within a year, instead
of breeding three-generation families and
delaying the typing activities. The reason-
ing was that the alignment of different
maps would be inevitable anyway as phe-
notypes have to be mapped in resource
families, so switching to a better panel of
reference families at a later stage would
not pose a novel problem. The present
panel in use consists of six German shep-
herd full-sib families of which the 35 off-
spring are all half-sibs between the fami-
lies and nine beagle full-sib families with a
total of 71 offspring, where in two instanc-
es the offspring are half-sibs between two
families.

The comparison of families with the
same number of offspring but with differ-
ent structure clearly shows the mapping
power to be greater in the cases where the
phase of the offspring is known rather

than in the cases where the phase is un-
known (Table 1). The average maximum
LOD score in each case has been calculat-
ed using the option ISIM of the SLINK
package (Ott 1989; Weeks et al. 1990). This
table also shows that the number of off-
spring per family and the family structure
influence the mapping power of a pedi-
gree. Using the same simulation program
package on our actual panel of reference
families shows that the mapping power is
perfectly acceptable if we deal with loci
with PIC values of 0.4 or greater, which are
predominantly type II markers, and genet-
ic distances less than 20 cM (Table 2). We
may not be able to initially map loci with
low PIC values (,0.3), but eventually, as
the map becomes denser, we will be able
to tie them in, provided our families are
informative.

The simulation results shown in Tables
1 and 2 demonstrate that although the
mapping power varies with the family
structure, any family material can be used
for mapping. This is a comforting thought,
since resource families for mapping spe-
cific traits often have structures far from
ideal. A problem that should be seriously
considered when establishing such fami-
lies is the level of inbreeding. Alleles iden-
tical by descent add to the mapping pow-
er, but an increasing number of inbreeding
or mating loops may prohibit making full
use of this information. In the case of com-
plex traits, it may be necessary to resort
to nonparametric methods of linkage anal-
ysis if the mode of inheritance cannot be
clearly established.

The DogMap Genetic and Physical
Map

Several members of the DogMap commu-
nity have engaged in typing the panel of
reference families and in FISH mapping. A
first genetic map produced within this col-
laboration comprises 43 loci in 16 linkage
groups, of which two could be assigned to
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Table 2. Comparison of the percentage of maximum LOD scores greater than a given constant
simulated with 10,000 iterations using the option ISIM of the SLINK package on our actual panel of
reference families

True
theta Allele frequencies PIC

LOD score
. 1

LOD score
. 2

LOD score
. 3

0.1 0.5, 0.5 0.375 91.3 78.3 61.9
0.5, 0.5 0.375

0.2 0.5, 0.5 0.375 60.7 33.8 16.3
0.5, 0.5 0.375

0.1 0.1, 0.9 0.164 31.4 16.2 8.0
0.1, 0.9 0.164

0.2 0.1, 0.9 0.164 16.1 5.8 1.8
0.1, 0.9 0.164

0.1 0.3, 0.3, 0.4 0.568 100 99.9 99.6
0.2, 0.2, 0.2, 0.2, 0.2 0.786

0.2 0.3, 0.3, 0.4 0.568 98.2 92.1 81.1
0.2, 0.2, 0.2, 0.2, 0.2 0.786

0.1 0.1, 0.2, 0.7 0.410 97.3 92.3 84.3
0.03, 0.07, 0.1, 0.2, 0.6 0.543

0.2 0.1, 0.2, 0.7 0.410 81.8 59.7 39.1
0.03, 0.07, 0.1, 0.2, 0.6 0.543

specific chromosomes; that is, L13 to CFA
20 and L16 to CFA 18 (Lingaas et al. 1997).
The fact that not even 50% of the typed
loci fall into a linkage group reflects the
power of the two-generation reference
families (Table 2) as well as the low prior
probability to detect linkage in dog given
that the loci are evenly distributed across
the genome. Today more than 100 loci are
typed in our reference families. So far 21
loci have been physically mapped within
the DogMap collaboration (Dolf et al.
1997; Fischer et al. 1996; Thomas et al.
1997). In 14 cases the proper identification
of the chromosomes concerned still await
the completion of the standardization of
the canine karyotype. Within the DogMap
collaboration there are also resource fam-
ilies being typed which will provide, as a
byproduct, additional mapping data to be
integrated in the growing map.

The DogMap Web Site

The DogMap Web site (http://www.cx.unibe.
ch/itz/dogmap.html) describes the orga-
nization and the activities of the DogMap
collaboration. It also provides information
on access to the DogMap database and
forthcoming meetings relevant to the par-
ticipants. The DogMap members are en-
couraged to contribute toward its contin-
uous development.

The DogMap Database

The DogMap database has a two-tier
structure—a private and a public domain.
Presently the database is only accessible
on the Internet using a character or graph-
ical user interface. It provides information
on the mapped loci such as linkage and
synteny, physical location, primer se-

quences, allele numbers, PIC values for
specific populations, and references. In
comparison to the public domain, the pri-
vate domain contains unpublished data
generated within the DogMap collabora-
tion. Details on the structure and the un-
derlying hardware and software are avail-
able at our Web site. Because of limited
resources the development of the data-
base is advancing rather slowly. However,
a major effort is being made to offer the
database on the Web in 1998. Organiza-
tional improvements in the management
of the database to be implemented in 1999
will ensure its currency.

Outlook

The DogMap collaboration will continue
its effort toward a 20 cM marker map. In
the future DogMap will actively seek col-
laboration with its present competitors
with the goal of producing a map as fast
as possible useful for addressing the ge-
netics of hereditary diseases.
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