Let E^{n+1}, for some integer $n \geq 0$, be the $(n+1)$-dimensional Euclidean space, and denote by S^n the standard n-sphere in E^{n+1}, $S^n := \{x \in E^{n+1} : \|x\| = 1\}$. It is convenient to introduce the (-1)-dimensional sphere $S^{-1} := \emptyset$, where \emptyset denotes the empty set. By an i-dimensional subsphere T of S^n, $i = 0, ..., n$, we understand the intersection of S^n with some $(i+1)$-dimensional subspace of E^{n+1}. The affine hull of T always contains, with this definition, the origin of E^{n+1}. \emptyset is the unique (-1)-dimensional subsphere of S^n. By the spherical hull, $\text{sph} X$, of a set $X \subset S^n$, we understand the intersection of all subspheres of S^n containing X. Further we set $\dim X := \dim \text{sph} X$. The interior, the boundary and the complement of an arbitrary set $X \subset S^n$, with respect to S^n, shall be denoted by $\text{int} X$, $\text{bd} X$ and $\text{cpl} X$. Finally we define the relative interior $\text{rel int} X$ to be the interior of $X \subset S^n$ with respect to the usual topology of $\text{sph} X \subset S^n$. For $n \geq 1$ each $(n-1)$-dimensional subsphere of S^n defines two closed hemispheres of S^n, whose common boundary it is. The two hemispheres of the sphere S^0 are defined to be the two one-pointed subsets of S^0. A subset $P \subset S^n$ is called a closed (spherical) polytope, if it is the intersection of finitely many closed hemispheres, and, if, in addition, it does not contain a subsphere of S^n. $Q \subset S^n$ is called an i-dimensional, relatively open polytope, $i \geq 1$, or shortly an i-open polytope, if there exists a closed polytope $P \subset S^n$ such that $\dim P = i$ and $Q = \text{rel int} P$. $X \subset S^n$ is called a closed polyhedron, if it is a finite union of closed polytopes $P_1, ..., P_r$. The empty set \emptyset is the only (-1)-dimensional closed polyhedron of S^n. We denote by \mathcal{X} the set of all closed polyhedra of S^n. $Y \subset S^n$ is called an i-open polyhedron, for some $i \geq 1$, if there are finitely many i-open polytopes $Q_1, ..., Q_r$ in S^n such that $Y = Q_1 \cup ... \cup Q_r$, and $\dim Y = i$. By \mathcal{Y}_i we denote the set of all i-open polyhedra. Clearly $\emptyset \in \mathcal{X}$, $\emptyset \notin \mathcal{Y}_i$, for all $i \geq 1$, and each i-dimensional subsphere of S^n, $i \geq 1$, belongs to \mathcal{X} and to \mathcal{Y}_i. For each i-dimensional subsphere T of S^n, set $\mathcal{Y}_i(T) := \{T \in \mathcal{Y}_i : Y \subset T\}$. A map $\varepsilon : \mathcal{X} \cup \mathcal{Y}_1 \cup ... \cup \mathcal{Y}_n \rightarrow \{0, 1\}$ is defined by $\varepsilon X := 0$, for all $X \in \mathcal{X}$, and $\varepsilon Y := 1$, for all $Y \in \mathcal{Y}_1 \cup ... \cup \mathcal{Y}_n$, $Y \notin \mathcal{X}$.

Definition 1. Let \mathcal{Z} be a ring of subsets of S^n, generated by some subset of $\mathcal{X} \cup \mathcal{Y}_1 \cup ... \cup \mathcal{Y}_n$. An Euler characteristic on \mathcal{Z} is a map $\psi : \mathcal{Z} \rightarrow \mathbb{Z}$ (the ring of
integers) with the following properties:

(1) If $\emptyset \in \mathcal{Z}$ then $\psi \emptyset = 0$.

(2) $\psi X = 1$, whenever X is a closed non-void polytope, or an i-open polytope ($i \geq 1$), contained in \mathcal{Z}.

(3) For all X, Y in \mathcal{Z}, $\psi (X \cup Y) + \psi (X \cap Y) = \psi X + \psi Y$.

It is well known that there exists a unique Euler characteristic χ_0 on \mathfrak{X}, and, for each i-dimensional subsphere T of S^n, a unique Euler characteristic χ_T on $\mathfrak{Y}_i(T)$ (see [2], [3]). For notational convenience we denote all these characteristics by the same letter χ. Thus a mapping $\chi: \mathfrak{X} \cup \mathfrak{Y}_1 \cup \ldots \cup \mathfrak{Y}_n \to \mathbb{Z}$ is defined, which satisfies (1) and (2), and which satisfies (3) for certain pairs of polyhedra. On the other hand we notice that there are rings \mathfrak{Z} which admit no Euler characteristic, and others which admit more than one. For example there exists no Euler characteristic on the ring of sets generated by $\mathfrak{X} \cup \mathfrak{Y}_1 \cup \ldots \cup \mathfrak{Y}_n$, $n \geq 1$. To see this, consider a 1-dimensional subsphere $S \subseteq S^n$, a set $X \subseteq S$ with two elements, and the complement $Y := S \sim X$. (3) would not hold for X and Y. Sometimes it is more convenient to study the map $\omega: \mathfrak{X} \cup \mathfrak{Y}_1 \cup \ldots \cup \mathfrak{Y}_n \to \mathbb{Z}$ defined by $\omega(U) := (-1)^{\text{dim} U} \chi(U)$, rather than χ itself. For $n \geq 1$, let $S \subseteq S^n$ be a subsphere of dimension $n - 2$, and denote by \mathcal{S} the set of all $(n - 1)$-dimensional subspheres of S^n containing S, together with the usual topology. \mathcal{S} is homeomorphic to the real projective line, and hence to S^1. Each choice of an orientation of \mathcal{S} and of a fixed element $S_0 \in \mathcal{S}$ determines, by means of the "angular parameter", a continuous and periodic map $p: \mathbb{R} \to \mathcal{S}$ with $p(t) = p(t + \pi)$, for each real number t, and with the fundamental interval $I := [0, \pi)$. For the rest of this article we assume that a fixed choice of the covering projection p has been made, for every $(n - 2)$-dimensional subsphere $S \subseteq S^n$. The sphere $p(t) \in \mathcal{S}$ will often be denoted by S_t. Given a map $f: \mathcal{S} \to \mathbb{R}$ and an element $t \in I$, we define the right-hand limit $f^+(S_t)$ in the usual way. If there exists a real number x such that for each sequence of numbers t_n with $t_n \geq t$ and $t_n \to t$ ($n \to \infty$) we have $f(S_{t_n}) \to x$ ($n \to \infty$), we set $f^+(S_t) := x$. We say that two subspheres S and T of S^n are in general position, if either $S \cap T = \emptyset$ or $\dim (S \cap T) = \dim S + \dim T - n$.

Proposition 1. Let $X \subseteq S^n$, $n \geq 1$, be a spherical polyhedron,

$$X \in \mathfrak{X} \cup \mathfrak{Y}_1 \cup \ldots \cup \mathfrak{Y}_n,$$

and let $S \subseteq S^n$ be an $(n - 2)$-dimensional subsphere. With the notation introduced above,

(i) $\omega X = \omega (X \cap S) + \sum_{t \in I} (\omega (X \cap S_t) - \omega^+ (X \cap S_t)).$

As above $I := [0, \pi)$ is the fundamental interval of the periodic map $p: \mathbb{R} \to \mathcal{S}$, where \mathcal{S} stands for the set of all $(n - 1)$-spheres in S^n containing S. Before we proceed to prove Proposition 1, notice that the value $\omega (X \cap S_i) - \omega^+ (X \cap S_i)$ vanishes for all but a single $t \in I$, whenever X is a closed polytope, or an i-open polytope, for some $i \geq 1$. Thus the sum to the right of the equality sign is in fact finite, for each polyhedron X. Proposition 1 is a spherical counterpart of a well
known recursion formula for the Euler characteristic for Euclidean polyhedra (see [1]).

Proof of Proposition 1. We assume \(X \in \mathfrak{j}_i \) for some \(i > 1 \). The case \(X \in \mathfrak{x} \) may be treated by an obvious modification of the argument. Set \(R := \text{sph} X \), and for each \(Z \in \mathfrak{j}_i(R) \),

\[
\psi Z := (-1)^i \left(\omega(Z \cap S) + \sum_{t \in I} \left(\omega(Z \cap S_t) - \omega^+(Z \cap S_t) \right) \right).
\]

It suffices to show that \(\psi \) is an Euler characteristic on \(\mathfrak{j}_i(R) \). The requirements (1) and (3) of Definition 1 are satisfied by \(\psi \). Now suppose that \(Z \) is an i-open polytope in \(R \). Let us first assume \(Z \cap S \not= \emptyset \). We distinguish three cases. If the spheres \(S \) and \(R \) are in general position we have \(i > 2 \), \(\dim(Z \cap S) = i - 2 \), \(\dim(Z \cap S_t) = i - 1 \), for each \(t \) in the interval \(I := [0, \pi) \), hence \(\psi Z = \chi(Z \cap S) = 1 \). In the case \(R \subset S \) we find \(Z \cap S_t = Z \cap S = Z \), for every \(t \in I \). This again implies \(\psi Z = \chi(Z \cap S) = 1 \). If none of the above cases hold we see that \(R \not= S \), but \(R \subset S_t \), for some number \(t \in I \). Hence \(Z \cap S_t = Z \cap S \) for all \(t' \in I, t' \not= t \), and

\[
\psi Z = (-1)^i \left(\omega(Z \cap S) + \omega(Z \cap S_t) - \omega(Z \cap S) \right) = 1.
\]

Assume now \(Z \cap S = \emptyset \). We are confronted with two cases. If \(R \subset S_t \), for some point \(t \in I \), we have \(Z \cap S_t = Z \) and \(Z \cap S_t' = \emptyset \), for every \(t' \in I, t' \not= t \). Clearly \(\psi Z = 1 \). If \(R \) and \(S \) are in general position, let \(A \in I \) be the set of all points \(t \in I \), such that \(Z \cap S_t \not= \emptyset \). \(A \) is an open interval in \(I \), denote its left end-point by \(x \). Clearly

\[
\omega(Z \cap S_x) - \omega^+(Z \cap S_x) = -(-1)^{i-1},
\]

whereas \(\omega(Z \cap S_t) - \omega^+(Z \cap S_t) = 0 \), for all \(t \not= x \). This shows again \(\psi Z = 1 \), and \(\psi \) is indeed an Euler characteristic on \(\mathfrak{j}_i(R) \). To prove (3) for \(\psi \), notice that \(\chi(X) = 0 \), for each odd dimensional sphere \(X \), hence for each \(X \in \mathfrak{j}_{2k+1} \cap \mathfrak{x} \).

Definition 2. Let \(X \) be a spherical polyhedron, \(X \in \mathfrak{x} \cup \mathfrak{j}_1 \cup \ldots \cup \mathfrak{j}_n \). By a \(\delta \)-decomposition of \(X \) we understand a finite set \(\mathfrak{D} \subset X \cup \mathfrak{j}_1 \cup \ldots \cup \mathfrak{j}_n \) such that \(\bigcup \mathfrak{D} = X \), and, further, \(U \cap V = \emptyset \) whenever \(U \) and \(V \) are two different members of \(\mathfrak{D} \).

If, for example, \(\mathfrak{C} \) is a complex, in the usual sense of the word, whose members are closed spherical simplices, then the relative interiors of the elements of \(\mathfrak{C} \) form a \(\delta \)-decomposition of \(\bigcup \mathfrak{C} \).

Proposition 2. For each spherical polyhedron \(X \subset S^n, n \geq 1 \),

\[
X \in \mathfrak{x} \cup \mathfrak{j}_1 \cup \ldots \cup \mathfrak{j}_n,
\]

and for each \(\delta \)-decomposition \(\mathfrak{D} \) of \(X \) we have

\[
(\text{ii}) \quad \omega X = \sum_{T \in \mathfrak{D}} \omega Y.
\]
Proof. We proceed by induction on the dimension n of the sphere S^n containing X, the case $n = 0$ being trivial. For given $n \geq 1$, $X \in \mathcal{X} \cup \mathcal{Y}_1 \cup \ldots \cup \mathcal{Y}_n$, and for a δ-decomposition \mathcal{D} of $X \in S^n$, choose an $(n-2)$-sphere $S \subset S^n$. With the notation of the section preceding Proposition 1 we find, by Proposition 1 and the inductive assumption of our statement

$$\omega X = \omega(X \cap S) + \sum_{t \in \mathcal{I}} (\omega(X \cap S_t) - \omega^+(X \cap S_t))$$

$$= \sum_{Y \in \mathcal{D}} \omega(Y \cap S) + \sum_{t \in \mathcal{I}} \sum_{Y \in \mathcal{D}} (\omega(Y \cap S_t) - \omega^+(Y \cap S_t))$$

$$= \sum_{Y \in \mathcal{D}} \left(\omega(Y \cap S) + \sum_{t \in \mathcal{I}} (\omega(Y \cap S_t) - \omega^+(Y \cap S_t))\right)$$

$$= \sum_{Y \in \mathcal{I}} \omega Y.$$

As an application of the foregoing arguments let us derive some elementary relations involving the Euler characteristic.

Proposition 3.

(iii) $\chi(S^n) = 1 + (-1)^n$

(iv) $\chi X = \chi(bd X) + (-1)^n \chi(int X)$

(v) $\chi(cpl X) = 1 + (-1)^n - (-1)^n \chi X$

(vi) $\chi(cpl Y) = 1 + (-1)^n - (-1)^n \chi Y$

Proof. (iii) We proceed by induction on n. The cases $n \leq 0$ are trivial. For $n \geq 1$ choose an arbitrary $(n-2)$-dimensional subsphere S of S^n, and apply Proposition 1 to the polyhedron $S^n \in \mathcal{X}$. By the inductive hypothesis,

$$\chi S^n = \chi S = 1 + (-1)^{n-2} = 1 + (-1)^n.$$

(iv) $\{bd X, int X\}$ is a δ-decomposition of the polyhedron $X \in \mathcal{X}$. By Proposition 2, $\omega X = \omega(bd X) + \omega(int X)$. Since $\{X, bd X\} \subset \mathcal{X}$ and $int X \in \mathcal{Y}_n$, our assertion follows at once from the definition of ω.

(v) $\{X, cpl X\}$ is a δ-decomposition of the polyhedron $S^n \in \mathcal{X}$. Our assertion follows immediately from Proposition 2 if we keep in mind that $\{X, S^n\} \subset \mathcal{X}$ and $cpl X \in \mathcal{Y}_n$.

(vi) The proof of this relation is quite analogous to that of (v).
References

Mathematisches Institut,
Universität Bern,
Bern, Switzerland.

05A99: Combinatorics; Classical combinatorial problems.

50B99: Geometry; Euclidean geometry.

57A99: Manifolds and cell complexes; Topological manifolds.

(Received on the 3rd of July, 1972.)