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ON THE EULER CHARACTERISTIC OF SPHERICAL
POLYHEDRA AND THE EULER RELATION

H. HADWIGER AND P. MANI

Let E"+1, for some integer n > 0, be the (n + l)-dimensional Euclidean space,
and denote by S" the standard «-sphere in En+1, S": = {x e £B+1 : ||x|| = 1}. It
is convenient to introduce the (—l)-dimensional sphere S"1 : = 0 , where 0
denotes the empty set. By an i-dimensional subsphere T of S", i = 0 n, we
understand the intersection of S" with some (i+l)-dimensional subspace of En+1.
The affine hull of T always contains, with this definition, the origin of £B+1. 0 is
the unique (—l)-dimensional subsphere of S". By the spherical hull, sphX, of a
set X <=. S", we understand the intersection of all subspheres of S" containing X.
Further we set dim X: = dim sph X. The interior, the boundary and the
complement of an arbitrary set X c: S", with respect to S", shall be denoted by
int X, bd X and cpl X. Finally we define the relative interior rel int X to be the
interior of X c S" with respect to the usual topology of sphZ c S". For « > 1
each (n — l)-dimensional subsphere of S" defines two closed hemispheres of S",
whose common boundary it is. The two hemispheres of the sphere S° are denned
to be the two one-pointed subsets of S°. A subset P c S" is called a closed
(spherical) polytope, if it is the intersection of finitely many closed hemispheres,
and, if, in addition, it does not contain a subsphere of S". Q c S" is called an
i-dimensional, relatively open polytope, i > 1, or shortly an i-open polytope, if
there exists a closed polytope P c S" such that dimP = i and Q = rel int P.
I c S" is called a closed polyhedron, if it is a finite union of closed polytopes
Pu..., Pr. The empty set 0 is the only (—l)-dimensional closed polyhedron of
S". We denote by X the set of all closed polyhedra of S". Y <= S" is called an
i-open polyhedron, for some i > 1, if there are finitely many i-open polytopes
Qlt .,„ Qr in S" such that Y = Qt u ... u Qr, and dim Y = i. By 9J( we denote the
set of all i-open polyhedra. Clearly 0 e X, 0 0 9)^ for all i ^ 1, and each
i-dimensional subsphere of S", i > 1, belongs to 3£ and to $,. For each
i-dimensional subsphere T of S", set 3)i(T): = { T e ? ) i : Y <= T}. A map
8 : I u ? j U . , . u S I , - » { H l } is defined by EX : = 0, for all X e X, and
aY: = 1, for all Y e ^ u ... u %, Y$X.

DEFINITION 1. Let 3 be a ring of subsets of S", generated by some subset of
I u ? ) i U . . . u ? ) r An Euler characteristic on 3 is a map \f/ : 3 -* 2 (the ring of
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140 H. HADWIGER AND P. MANI

integers) with the following properties:

(1) 7 / 0 6 3, thenil/0 = 0.

(2) \j/X = 1, whenever X is a closed non-void polytope, or an i-open polytope
(i ^ 1), contained in 3-

(3) For all X, Y in 3 , \//(X u Y) + i//(X n 7) = jtX + $ Y.

It is well known that there exists a unique Euler characteristic Xo o n %> and, for
each i-dimensional subsphere T of S", a unique Euler characteristic XT o n ^.(TO
(see [2], [3]). For notational convenience we denote all these characteristics by the
same letter x- Thus a mapping x : 3 E u 9 ) 1 u . . . u ' J ) B - * Z is defined, which
satisfies (1) and (2), and which satisfies (3) for certain pairs of polyhedra. On the
other hand we notice that there are rings 3 which admit no Euler characteristic,
and others which admit more than one. For example there exists no Euler
characteristic on the ring of sets generated by 3£ u 9)t u ... u $„, n Js 1. To see
this, consider a 1-dimensional subsphere S <= S", a set X <= S with two elements,
and the complement Y : = S ~ X. (3) would not hold for X and Y. Sometimes
it is more convenient to study the map eo :3Eu9) 1 u . . . u? ) I I ->Z defined by
co(l/):.= (-iyV6imVx(U), rather than / itself. For n > 1, let S <= Sn be a
subsphere of dimension n — 2, and denote by 8 the set of all (« — l)-dimensional
subspheres of S" containing S, together with the usual topology. S is homeomorphic
to the real projective line, and hence to S1. Each choice of an orientation of 8
and of a fixed element So e 8 determines, by means of the " angular parameter ",
a continuous and periodic map p : R -> S with p(t) = p(t + n), for each real
number t, and with the fundamental interval / : = [0, n). For the rest of this
article we assume that a fixed choice of the covering projection p has been made, for
every (n — 2)-dimensional subsphere S <= S". The sphere p(t) e 8 will often be
denoted by St. Given a map/: S - » R and an element t e I, we define the right-hand
limit / + (S() in the usual way. If there exists a real number x such that for each
sequence of numbers tn with tn ^ t and /„ -> t (n -> oo) we have fp(tn) -* x
(n -* oo), we set / + (Sr): = x. We say that two subspheres S and T of S" are in
general position, if either S n T = 0 or dim (S n T) = dim S + dim T — n.

PROPOSITION 1. Let X c S", n ^ 1, be a spherical polyhedron,

and let S <= S" be an [n — 2)-dimensional subsphere. With the notation introduced
above,

(i) coX = <o(X n S)+ ~£ (co(X nS,)-co + (X n S,)).
t e I

As above / : = [0, n) is the fundamental interval of the periodic map p: U -* 8,
where S stands for the set of all (n — l)-spheres in S" containing S. Before we
proceed to prove Proposition 1, notice that the value co(X n 5,) — co+(X n St)
vanishes for all but a single t e I, whenever A" is a closed polytope, or an i-open
polytope, for some i ^ 1. Thus the sum to the right of the equality sign is in fact
finite, for each polyhedron X. Proposition 1 is a spherical counterpart of a well
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SPHERICAL POLYHEDRA AND THE EULER RELATION 141

known recursion formula for the Euler characteristic for Euclidean polyhedra
(see [1]).

Proof of Proposition 1. We assume Xe!)ji for some i > 1. The case X e 3E
may be treated by an obvious modification of the argument. Set JR : = sph X, and
for each Z S ) ^ )

\}>Z: = (-iy(co(Z nS)+ £ (co(Z n St) - <o+{Z n St))\

It suffices to show that ip is an Euler characteristic on 9),CR)- The requirements
(1) and (3) of Definition 1 are satisfied by ip. Now suppose that Z is an i-open
polytope in R. Let us first assume Z n S # 0 . We distinguish three cases. If
the spheres S and R are in general position we have i ^ 2, dim (Z n S) = i — 2,
dim(Z n S,) = i - 1, for each t in the interval / : = [0, 71), hence
\\>Z = x(Z n S) = 1. In the case R c S w e find Z n St = Z n S = Z, for every
t el. This again implies \j/Z = x(Z n S) = 1. If none of the above cases hold
we see that R <fi S, but R c St, for some number t el. Hence Z r\ Sr = Z n S
for all t' el,t'^ t, and

\j/Z = ( - iy(co(Z n S) + co(Z n S() - ra(Z n S ) ) = 1.

Assume now Z n S = 0. We are confronted with two cases. If R c St, for some
point t el, we have Z n S, = Z and Z n S,. = 0 , for every /' el, /' ^ f.
Clearly \j/Z = 1. If i? and S are in general position, let A c I be the set of all
points t e / such that Z n S, ^ 0. A is an open interval in /, denote its left end-
point by x. Clearly

co(ZnSx)-co+(ZnSx)= - ( - I ) ' " 1 ,

whereas co(Z n St)-co+(Z n S() = 0, for all t =£ x. This shows again xj/Z = 1, and
^ is indeed an Euler characteristic on 9);(i?). To prove (3) for \j/, notice thatxPO = 0,
for each odd dimensional sphere X, hence for each X e 9)2t+1 n £•

DEFINITION 2. Let X be a spherical polyhedron, Z e l u 9)j u ... u ?)„. By a
5-decomposition of X we understand a finite srt 3) c X u 5)i u ... u 3)s such that
\JT> = X, and, further, U n V = 0 whenever U and V are two different members
oft).

If, for example, £ is a complex, in the usual sense of the word, whose members
are closed spherical simplices, then the relative interiors of the elements of (£ form a
5-decomposition of (J (£.

PROPOSITION 2. For each spherical polyhedron X a S", n Ss 1,

wd /or eac/j S-decomposition T) of X we have

(ii) coX = £ 0)7.
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142 H. HADWIGER AND P. MANI

Proof. We proceed by induction on the dimension n of the sphere S" containing
X, the case n = 0 being trivial. For given « > l , X e I u 5 ) 1 u . . . u f ) 1 , and
for a ^-decomposition J of X c S", choose an (n — 2)-sphere S <= S". With
the notation of the section preceding Proposition 1 we find, by Proposition 1 and the
inductive assumption of our statement

coX = co(X nS)+ £ (co(X n St) - co+(X n St))
t e I

<o(Y nS)+ £ £ (co(Y n S,) - o>+(7 n S,))

(F n S) + E («(y n S,) - a,+(Y n

As an application of the foregoing arguments let us derive some elementary relations
involving the Euler characteristic.

PROPOSITION 3.

X cz Sn, XeX

(v) *(cpl X) = 1 + (-1)" - ( - 1T/X X c S", X 6 X

(vi) x(cpl 7) = 1 + (-1)» - ( - \fxY Y c S", 7 e ?)

Proo/. (iii) We proceed by induction on n. The cases n < 0 are trivial. For
« > 1 choose an arbitrary (« — 2)-dimensional subsphere S of S", and apply
Proposition 1 to the polyhedron S" e X. By the inductive hypothesis,

(iv) {bd X, int X} is a ^-decomposition of the polyhedron X e X. By
Proposition 2, coX = co(bdX) + co(intX). Since {X, bdX} c X and intX 6 £)„,
our assertion follows at once from the definition of co.

(v) {X, cpl X} is a 5-decomposition of the polyhedron S" e X. Our assertion
follows immediately from Proposition 2 if we keep in mind that {X, S"} c X
andcplXe?), .

(vi) The proof of this relation is quite analogous to that of (v).
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