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Local regulation of the coronary circulation in health and
disease: role of nitric oxide and endothelin
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Coronary artery disease is the leading cause of morbidity and mortality in western countries. Its pathogenesis is unknown,
but involves enhanced vasoconstriction, increased interaction of platelets and monocytes with the vessel wall, as well as pro-
liferation, migration and extracellular matrix formation of vascular smooth muscle. The endothelium lies in a strategic
anatomical position between circulating blood and vascular smooth muscle cells. This supports the concept that dysfunction
of these cells significantly contributes to coronary artery disease. Besides other mediators, endothelial cells are a source of
nitric oxide and endothelin.

Nitric oxide is a vasodilator, an inhibitor of both platelet function and proliferation and migration of vascular smooth
muscle. Endothelin is a potent vasoconstrictor that facilitates proliferation.

Under pathological conditions, in particular the presence of cardiovascular risk factors, endothelial dysfunction occurs
and is a major contributor to the increase in platelet vessel wall interaction, vasoconstriction and proliferation in the coro-
nary system. Endothelium-dependent vasodilation is usually reduced and endothelium-dependent constrictor responses, as
well as endothelin production, are augmented. Hence, endothelial cells are important targets and mediators of coronary
artery disease.

Introduction

Coronary artery disease is an important cause of morbidity
and mortality in western countries. The disease is only par-
tially understood, but involves increased vasoconstrictor
responses, enhanced interaction of circulating blood cells
with the blood vessel wall and proliferation and migration
of vascular smooth muscle'1'. These events impair coronary
blood flow during exercise and/or under resting conditions.

Due to their strategic anatomical position, endothelial
cells can regulate blood cells as well as vascular smooth
muscle (see '''). Endothelium-derived factors modify
platelet function as well as the contractile and proliferative
state of vascular smooth muscle. Nitric oxide and prostacy-
clin are vasodilators and inhibitors of platelet function. In
addition, endothelial cells produce vasoconstrictors such as
prostaglandin A2 and thromboxane A2 as well as endothe-
lin- 1. Furthermore, endothelial cells are a source of growth
promoters and inhibitors.

Nitric oxide and vascular regulation

Endothelium-dependent vasodilation is mediated by
nitric oxide (NO) (Fig. I'2"5'). Nitric oxide is formed from
L-arginine'21 via the constitutive form of NO synthase'6' and
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causes relaxation via activation of guanylyl cyclase in vas-
cular smooth muscle.

In porcine coronary arteries, endothelium-dependent
relaxations to serotonin are prevented by inhibitors of NO
formation, while the relaxations to bradykinin are only
partially inhibited'7'. Pertussis toxin, which ADP-
ribolysates Gj proteins, has no effects on bradykinin-
induced relaxations, but prevents those to serotonin'7-8'.
Endothelial 5-HT! serotonergic receptors (as well as a2

receptors;'8') are linked to G, proteins and activate the L
arginine NO pathway. In contrast, the bradykinin receptor
is not linked to a pertussis toxin sensitive pathway and NO
only in part contributes to its relaxations.

NO is formed under basal conditions. Inhibition of NO
formation by L-NMMA or endothelium removal causes
endothelium-dependent contractions'910', increases vaso-
constrictor responses of coronary arteries'"*1 and increases
arterial blood pressure in vivo'"'. Furthermore, shear stress
increases NO formation'12' and in turn causes flow-
dependent vasodilation1'3"15'.

Nitric oxide and platelet-vessel-wall interaction

The fact that platelets remain inactivated despite high
shear stress in the arterial circulation may be due to the
continuous release of inhibitors of platelet function from
endothelial cells such as NO and prostacyclin (Fig. 2'1').
Both mediators prevent platelet adhesion and aggrega-
tion"^19!.

Activated platelets release serotonin, thromboxane A2,
ATP and ADP, platelet-derived growth factor and trans-
forming growth factor beta-1. Several of these mediators
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Figure 1 The endothelium produces nitric oxide (NO), which
causes relaxation. O = receptors; cGMP = cyclic guanosine
monophosphate: GTP = guanosine triphosphate; NOSC =
constitutive nitric oxide synthase; NOS, = inducible nitric
oxide synthase; ADMA = asymmetric dimethyl arginine;
L-NMMA = L-monomethylarginine; L-NAME = L-nitro-argi-
nine methylester: sGQ, = inactive/activated soluble guanosine
cyclase; TNF = tumour necrosis factor; IL-1 = interleukin-1;
LPS = lipopolysaccharide.

interact with endothelial receptors (Fig. 21'1)- In addition,
platelets possess an L-arginine-NO-pathway which blunts
aggregatory stimuli'18'.

In human coronary and internal mammary arteries, aggre-
gating platelets cause endothelium-dependent relaxations
via NO'20-21'. ADP and serotonin are important mediators'221.

In contrast to normal arteries, arteries devoid of endo-

Figure 2 Activated platelets release numerous factors which can
interact with receptors on the endothelium and vascular smooth
muscle. O = receptors: PThr = prothrombin; Thr = thrombin: Bk
= bradykinin: 5-HT = serotonin; TGFp = transforming growth
factor /3: TXA2 = tromboxan A2: NO = nitric oxide: PGI2 =
prostacyclin; cGMP = cyclic guanosine monophosphate;
ATP/ADP = adenosine-tri(di)phosphate; All = angiotensin II.
(Modified from<".)

thelial cells or with dysfunctional endothelium contract to
aggregating platelets'211 due to serotonin and thromboxane
Az"21-22'.

Where platelets are stimulated, thrombin is formed.
Thrombin is a potent activator of platelets'191, but also has
endothelial effects. Its receptor has been cloned'23"251.
Thrombin causes endothelium-dependent relaxations in
human coronary and internal mammary artery which are
inhibited by indomethacin and L-nitroarginine methyles-
ther (Fig. 3; L-NAME'26-271). Hence both NO and prostacy-
clin contribute (Fig. 2). These effects counteract the direct
activating effects of thrombin in platelets. In the absence of
endothelium, thrombin causes a potentiation of platelet-
induced contractions via release of thromboxane A2'

26'.

Endothelium-dependent contraction

The endothelium produces contracting factors via
cyclooxygenase (i.e. prostaglandin H2 and thromboxane
A;,'4-28' and the peptide endothelin-l'28"341). While endothe-
lin-1, the primary product of endothelial cells, is a potent
activator of ETA receptors which are primarily expressed
on vascular smooth muscle cells'35', endothelin-3 is much
less potent at this receptor. In contrast, ETB receptors,
which are expressed on endothelium and smooth muscle,
bind endothelin-l and endothelin-3 equally well (Fig. 4'36').

ETA receptors are linked to phospholipase C which leads
to the formation of inositoltrisphosphate as well as diacyl-
glycerol'37-381. These second messengers lead to the intracel-
lular release of Ca2+'391 and activation of protein kinase C.
Endothelin receptors are linked via a G, protein to voltage-
operated Ca2+ channels'40'. ETA and ETB receptors on
smooth muscle contribute to the contractile proliferative
effects of endothelin (see'41').

Endothelial receptors are of ETB type and linked to
NO and prostacyclin'42^141 mediating initial transient
vasodilation which occurs with intraluminal infusion of
endothelin'34-351.

Thrombin (U. ml"1)

• Control
(n = 6)

• Indomethacin
(n = 6)

L-NMMA (n = 6) • Control
(n = 4)

a L-NAME
(n = 4)

L-NMMA +
indomethacin
(n = 5)

Figure 3 Thrombin-induced relaxation in the human internal
mammary artery. Indomethacin and L-NMMA (left panel) and
L-NAME (right panel) inhibit thrombin-induced vasodilation,
suggesting that thrombin acts through release of both NO and
prostacyclin. (I261, with permission of the American Heart
Association.)
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Figure 4 Endothelin (ET) is mainly released abluminally to inter-
act with ETA and ETB receptors on vascular smooth muscle.
Activation of ETB receptors on the endothelium causes vasodila-
tion. cAMP/cGMP = cyclic adenosine and/or guanosine monophos-
phate:NO = nitric oxide: O = receptors: PGI2 = prostacyclin: ECE
= endothelin converting enzyme. (From1'20', with permission )

Endothelin production is stimulated by hypoxia (includ-
ing that occurring at high altitude146-471), mechanical forces,
as well as thrombin, interleukin-1, arginine vasopressin
and angiotensin HPM2.34.48]

Plasma endothelin levels are very low'49'. This may
be related to the fact that most of the peptide is released
abluminallyl501 and to inhibitory mechanisms of produc-
tion'32- 5I~541. Three inhibitory mechanisms have been
delineated, i.e. a cGMP-dependent pathway activated by
NO132-53541 and atrial natriuretic peptide1531, a cAMP path-
way activated by prostaglandins and a putative inhibitory
factor produced by smooth muscle cells'52'.

Endothelin antagonists inhibit the effects of endothelin
I55"71'. Some inhibit ETA receptors and others ETA and ETB

receptors. With these drugs it could be shown that ETB

receptors on vascular smooth muscle cells also contribute to
the contractile and potentially proliferative effects of
endothelin. Indeed, in contrast to ETA receptor antagonists,
combined ETA and ETB receptor antagonists in vitro are
able to fully inhibit endothelin-induced contractions in a
competitive manner in human mammary arteries'41-72'. On
the other hand, in the human skin microcirculation
endothelin activates mainly ETA receptors, as both the
selective ETA antagonist and the ETA/ETB antagonist
inhibit the effects of endothelin'73'. Endothelin antagonists
will help to characterize the distribution of endothelin
receptors and their pathophysiological importance'74'.

Although in atherosclerosis, myocardial infarction, coro-
nary spasm, pulmonary and possibly arterial hypertension,
endothelin plasma levels are elevated'41-75"79', the pathophysio-
logical role of these findings remain controversial. Endothelin
receptor antagonists will clarify the role of endothelin in dis-
ease. In experimental situations they improve blood flow after

acute renal failure and in cerebral vasospasm and decrease
blood pressure in sodium-depleted monkeys'801.

Effects of hyperlipidaemia and atherosclerosis

Endothelial dysfunction can occur due to (1) different
expression of endothelial receptors, (2) alteration in signal
transduction (in particular G, proteins), (3) alteration in
the activity or expression of enzymes such as NO synthase,
endothelin converting enzyme. (4) increased breakdown of
the factor and/or (5) response of target cells (i.e. platelets
and vascular smooth muscle).

Exposure of coronary arteries with low density lipopro-
tein (LDL) does not cause alterations in endothelial func-
tion unless the lipids have been oxidized'81"83'. Thus
oxidation of LDL alters its biochemical properties, in par-
ticular its capability to interfere with the LDL receptor,
and allows it to interact with a scavenger receptor'811. This
alters endothelial function by (1) interfering with the Gj
protein of serotonergic and alpha-2 adrenergic recep-
tors'7-81, (2) reducing intracellular mobilization of L-argi-
nine'821 or (3) the activity of NO synthase and/or (4) due to
inactivation of NO by oxidized products'84'. Hence
oxidation of LDL is a crucial step'85'; and anti-oxidants such
as vitamins C and E, and probucol protect the coronary
circulation, in particular endothelial cells'86"921. Chronic
hyperlipidaemia induces similar changes in endothelial
function as does acute exposure of oxidized LDL'931. In
atherosclerotic plaques oxidized LDL is present'85'. More
recent evidence suggests that in hyperlipidaemia and
atherosclerosis NO expression and activity is not reduced
(but rather increased) the reduced biological activity of
NO is due to inactivation by superoxide radicals'84'.

In contrast to hyperlipidaemia, in atherosclerosis, not
only the response to serotonin, but also that to bradykinin
as well as the calcium ionophore A23187 is
reduced'20-84-93-94'. Studies in the catheterization laboratory
showed that infusion of acetylcholine or serotonin causes a
paradoxical contraction in patients with coronary artery
disease, while they induce vasodilation in patients without
coronary artery disease'95'. Receptor-operated mechanisms
activated by acetylcholine or serotonin become dysfunc-
tional early, while flow-dependent stimulation becomes
dysfunctional very late'95'. Impairment of flow-dependent
vasodilation can be demonstrated not only pharmacologi-
cally by infusion of a vasodilator distal to the site of angio-
graphic measurements'1415-951, but also during exercise,
when patients with coronary artery disease exhibit a
paradoxical vasoconstriction of epicardial coronary
arteries'96'.

Abnormal coronary vasomotion in hyperlipidaemia and
atherosclerosis is not only due to dysfunction of the L-argi-
nine NO pathway, but also to increased formation of con-
tracting factors. In regenerated endothelial cells a
cyclooxygenase-derived contracting factor facilitates con-
tractions to serotonin'971. Increased endothelin levels occur
in atherosclerosis, coronary spasm and acute myocardial
infarction'76-77-98'. Oxidized LDL in atherosclerotic blood
vessels stimulates endothelin production'99', as well as
hypoxia'471 and thrombin'32'. Increased local endothelin
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Figure 5 Effect of oxidized (ox-LDL: • = 100/ig.mr1) and native (nat-LDL) low-density
lipoproteins ( • = 200/ig.mr1) on endothelin messenger RNA expression in cultured porcine
(PAEC) and human aortic endothelial cells (HAEC). Only the oxidized form of LDL stimulates
endothelin. (From1"', with permission of the American Heart Association.)

production may contribute to vasoconstriction and
ischaemia and proliferation'1001.

Little is known about the release of growth promoters
and stimulators of migration from endothelial cells
in hyperlipidaemia and atherosclerosis'10'1 (Fig. 5'"1)- A
reduced formation and/or an increased breakdown of NO
could facilitate proliferation and migration of vascular
smooth muscle'101102].

Effects of hypertension
Hypertension is associated with endothelial dysfunc-

tion'1031 most likely as a consequence of hypertension. It
appears that endothelial dysfunction is related to the
degree of blood pressure elevation. Normalization of
blood pressure—at least in the rat—normalizes endothe-
lium-dependent relaxation'1041.

Potential intracellular mechanisms of endothelial dys-
function in hypertension are similar as in hyperlipidaemia
and atherosclerosis (see above). In addition, endothelium-
derived contracting factors, in particular cyclooxygenase
products, are important'281. Endothelial dysfunction in the
aorta and cerebral and renal circulation is not related to
alterations in the L-arginine NO pathway, but to the

release of endothelium-derived cyclooxygenase products
= i.e. prostaglandin H2

|105'. Coronary arteries of REN-2
transgenic rats exhibit a decreased basal but not stimulated
(by acetylcholine) formation of NO'1061.

In large conduit arteries of Dahl salt-sensitive rats,
mainly impaired formation of NO is responsible for
blunted endothelium-dependent relaxations, although an
impaired response of smooth muscle to NO also a con-
tributes'1071. Most direct measurements of the activity of
NO synthase suggest normal or increased enzyme func-
tion'1081. Hence, it is possible that similar to experimental
atherosclerosis, an increased breakdown of NO occurs.

In hypertensive subjects, most studies were performed in
the forearm circulation. Results showed impaired endo-
thelium-dependent vasodilation to acetylcholine, but
preserved responses to sodium nitroprusside'5109""21. How-
ever, others were unable to reproduce these findings'1131. In
contrast, in the coronary circulation of hypertensive sub-
jects, endothelium-dependent vasomotion of epicardial
coronary arteries is abnormal'"41. The increase in coronary
blood flow induced by acetylcholine is also blunted in
hypertensive subjects, in particular in the presence of left
ventricular hypertrophy'951151. Hence, in the human, the
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Figure 6 Local vascular mechanisms of proliferation of vascular
smooth muscle cells in the blood vessel wall. Platelet, monocytes
and endothelial cells release growth promoters (black arrows) and
inhibitors (white arrows) which normally keep the blood vessel
wall in a quiescent state (left panel). Under pathological condi-
tions such as atherosclerosis, proliferation and migration of vascu-
lar smooth muscle cells as well as adhesion of monocytes and
platelets occurs. EDNO = nitric oxide; PGI2 = prostacyclin;
PDGF = platelet derived growth factor; bFGF = basic fibroblast
growth factor; HS/HP = heparin sulfate/heparin; TS = throm-
bospondin; TGF/3 = transforming growth factor fi\ ET =
endothelin; Thr = thrombin; cGMP = cyclic guanosine mono-
phosphate; cAMP = cyclic adenosine monophosphate. (From'1031,
with permission.)

coronary circulation exhibits impaired endothelial func-
tion in the presence of hypertension.

The role of endothelin in hypertension is controversial
(see1411). Most studies find normal plasma levels. The vas-
cular response to endothelin-1 is paradoxically reduced in
experimental hypertension, while the indirect potentiating
effects of endothelin are augmented. Hence, the exact role
of endothelin in hypertension remains uncertain, but more
recent studies using inhibitors of endothelin converting
enzyme or receptors suggest that endothelin may con-
tribute to blood pressure elevation1"61'71. On the other
hand endothelin-2 transgenic rats do not develop high
blood pressure inspite of high circulating endothelin-2
levels1'181 and 'knock-out' endothelin rats (which lack the
endothelin-1 gene) are hypertensive and have marked mal-
formations of the larynx and throat'"91. Studies in patients
with essential hypertension will reveal whether inhibition
of endothelin receptors is associated with a decrease in
arterial blood pressure1'201.
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