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Severe meningococcemia, which is associated with hemodynamic instability, purpura fulminans and dissem-

inated intravascular coagulation, still has a high mortality rate, and patients who survive are often left invalids

because of amputations and organ failure. Clinical studies have shown that levels of protein C are markedly

decreased in patients with severe meningococcemia and that the extent of the decrease correlates with a

negative clinical outcome. There is a growing body of data demonstrating that activated protein C, in addition

to being an anticoagulant, is also a physiologically relevant modulator of the inflammatory response. The dual

function of protein C may be relevant to the treatment of individuals with severe meningococcal sepsis. In

the present review we give a basic overview of the protein C pathway and its anticoagulant activity, and we

summarize experimental data showing that activated protein C replacement therapy clearly reduces the mor-

tality rate for fulminant meningococcemia.

The effect of invasion of the bloodstream by Neisseria

meningitidis can vary from a transient, mild febrile ill-

ness to (in about 10% of cases) an acute fulminant

disease that may be fatal within hours. Fulminant men-

ingococcemia is characterized by profound endotoxi-

nemia leading to vasomotor collapse, multiple organ

failure, and disseminated intravascular coagulation.

Clinical hallmarks are rapidly enlarging skin and mu-

cosal hemorrhagic lesions (given the name “purpura

fulminans”) and/or arterial thrombi leading to gan-

grene of digits and limbs. There is an increasing amount
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of experimental and clinical data indicating that infu-

sion of protein C not only can reverse the procoagulant

state but also can reduce the inflammatory reaction in

fulminant meningococcemia. The present review de-

scribes the anticoagulant and anti-inflammatory action

of activate protein C and summarizes the published

clinical experience with protein C replacement in severe

meningococcemia.

THE PROTEIN C PATHWAY

The 3 most important regulators of coagulation are

(1) the tissue factor pathway inhibitor, which directly

inhibits activated factor X (factor Xa) and, complexed

to factor Xa, mediates a feedback inhibition on tissue

factor and activated factor VII (factor VIIa); (2) anti-

thrombin, which mainly inhibits thrombin and factor

Xa; and (3) the protein C pathway (figure 1). Protein

C becomes activated by thrombin bound to vascular
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Figure 1. Protein C (PC) activation and anticoagulant action of activated protein C. Upper panel: The tenase complex (formed by activated factor
IX [IXa], activated factor VIII [VIIIa], calcium ions, and negatively charged membrane phospholipids) activates factor X. Activated factor X (Xa) then
forms with activated factor V (Va), calcium ions, and a negatively charged phospholipid surface, the prothrombinase complex, which converts prothrombin
(II) to thrombin (IIa). Thrombin can either promote clotting and activate cells or it can bind to thrombomodulin (TM), leading to PC conversion to the
anticoagulant activated protein C (APC). PC activation by the thrombin-thrombomodulin complex is facilitated by the transmembrane protein endothelial
protein C receptor (EPCR). Bottom panel: Protein S (PS) facilitates APC binding to cell surfaces and enhances APC-mediated cleavage of coagulant
factors VIIIa and Va. The inactivated forms of these cofactors (VIIIi and Vi) are no longer capable of sustaining thrombin generation.

thrombomodulin and acquires the ability to degrade activated

factor VIII (factor VIIIa) and activated factor V (factor Va),

which are the cofactors of the coagulation complexes that ac-

tivate factor X and prothrombin, respectively.

Human protein C is a vitamin K–dependent plasma glyco-

protein, consisting of a light chain of 21 kd and a heavy chain

of 41 kd, joined by a single disulfide bridge [1, 2]. The gene

of protein C, spanning 12 kilobases and containing 9 exons, is

located on chromosome 2. Protein C is synthesized by the liver

as a single-chain glycoprotein, which is cleaved after secretion

and circulates at a plasma concentration of ∼4 mg/mL. The light

chain contains, in its N-terminal region, 9 posttranslationally

g-carboxylated glutamic-acid residues, which are necessary for

further intracellular processing and for calcium-dependent bind-

ing to negatively charged membranes. Next to the vitamin

K–dependent glutamic acid domain, there is a sequence rich in

hydrophobic residues and 2 epidermal growth factor domains.

The serine protease domain is located in the heavy chain.

Here, occupancy of a single calcium-binding site produces a

conformational change that allows protein C to be readily ac-

tivated by thrombin bound to vascular thrombomodulin but

not by free thrombin. The major site of protein C activation

is probably the microcirculation, where, because of a high ratio

of endothelial cell surface to blood volume, the thrombomo-

dulin concentration is 1100 nM. The complex thrombin-

thrombomodulin cleaves a single bond (Arg 12–Leu 13) at the

N-terminal end of the heavy chain, thereby transforming the

zymogen protein C to activated protein C, a serine protease

with enhanced proteolytic activity.

Activated protein C rapidly dissociates from the thrombin-

thrombomodulin complex and inactivates coagulant factor Va

and factor VIIIa by cleaving specific Arg-containing peptide

bonds. For instance, activated protein C cleaves factor Va first

at Arg 506, which results in rapid but incomplete loss of activity,

and subsequently at Arg 306, which leads to complete inacti-

vation. A third cleavage site is at Arg 679. Simultaneously, ac-

tivated protein C enhances the action of tissue plasminogen

activator by inactivating its inhibitor plasminogen activator in-

hibitor 1, thereby stimulating the fibrinolytic system.

The action of activated protein C is potentiated by protein

S. Human protein S is a single-chain vitamin K–dependent

glycoprotein of 70 kD [1–3]. It is synthesized by hepatocytes,

vascular endothelial cells, and megakaryocytes. In human

plasma, protein S is present at a total concentration of 20–25

mg/mL and is found in at least 2 forms: ∼40% circulates as free

protein and ∼60% as a noncovalent complex with a large (570-

kd) multisubunit regulatory protein of the classic complement

pathway, C4b-binding protein. Only free protein S is func-

tionally active as an anticoagulant cofactor, although protein S

complexed to C4b-binding protein retains its ability to interact

with activated protein C and competitively inhibits the activity

of the free form.
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Protein S facilitates binding of activated protein C to platelet

and endothelial cell surfaces. In addition, it enhances activated

protein C–mediated inactivation of factor Va by promoting

cleavage at Arg 306 and by abolishing the ability of factor Xa

to protect factor Va. Similarly, protein S also enhances inacti-

vation of factor VIIIa by blocking the ability of activated factor

IX (factor IXa) to protect factor VIIIa from the proteolytic

action of activated protein C.

Recently, an endothelial protein C receptor was identified [4,

5]. This is a transmembrane glycoprotein homologous to the

major histocompatibility complex class I family of molecules

[4, 6] and is mainly expressed on the surface of large vessels

[7]. In vitro studies indicate that the major function of the

cellular form of the endothelial protein C receptor is the fa-

cilitation of protein C activation by the thrombin-thrombo-

modulin complex [8], especially on large vessels where the

concentration of thrombomodulin is low. It is intriguing that

the soluble form of the endothelial protein C receptor inhibits

the anticoagulant activity of activated protein C without altering

its sensitivity to inhibition by protein C inhibitor or a1-anti-

trypsin [9]. This observation suggests that soluble endothelial

protein C receptor may modulate the substrate specificity of

activated protein C in a manner reminiscent of the influence

of thrombomodulin on thrombin [9].

Three aspects of the protein C pathway deserve particular

mention. (1) The pathway is activated by thrombin bound to

vascular thrombomodulin. Such a mechanism is responsible

for “on-demand” activation of protein C and therefore for an

anticoagulant response whose magnitude is proportional to the

level of thrombin generated [10]. (2) Thrombomodulin acts as

a “molecular switch” for thrombin. Not only does thrombin

that is bound to thrombomodulin efficiently activate an im-

portant anticoagulant pathway, but it also no longer functions

as a procoagulant: it has a diminished ability to clot fibrinogen,

to activate clotting factors such as factors V, VIII, and XIII,

and to induce platelet activation [11]. Moreover, thrombin

bound to thrombomodulin complexes more rapidly with anti-

thrombin and protein C inhibitor than free thrombin does, and

so is quickly inactivated. (3) Activated protein C has a half-life

in circulation of ∼15 min [12], demonstrating an unusual re-

sistance to the action of serine protease inhibitors, such as

protein C inhibitor and a1-antitrypsin (for comparison, throm-

bin has a half-life of 10–20 s). Its long half-life suggests that

once activated protein C is generated, it can circulate through-

out the vascular bed as a “sentry” and inactivate multiple Va

and VIIIa molecules on membrane surfaces.

In summary, the protein C pathway is designed to block

efficiently the procoagulant activity of thrombin, to inhibit the

amplification of the coagulation response brought about by

cofactors factor Va and factor VIIIa, and to stimulate endog-

enous fibrinolysis.

LINKS BETWEEN INFLAMMATION AND
COAGULATION

The systemic inflammatory response that occurs in sepsis is

generated by the interplay between several microbial and host-

derived mediators. Bacterial endotoxin, which is composed of

lipopolysaccharide, is a component of the outer membrane of

gram-negative bacteria and is a powerful trigger of the host

response. Bacterial membrane-bound and released lipopoly-

saccharide can interact with a variety of lipophilic proteins. The

end results of lipopolysaccharide action are complement acti-

vation generating the membrane attack complex C5b9 [13, 14]

and synthesis of inflammatory mediators, including platelet-

activating factor and an array of proinflammatory cytokines

[15]. In humans, the most avid lipopolysaccharide receptor is

CD14 [15], which is found on cells such as monocytes, mac-

rophages, and neutrophils.

Two endogenous monocyte/macrophage-derived cytokines,

TNF-a and IL-1b, play a major role in the development of the

inflammatory host response [16, 17]. The cytokine system func-

tions as a network of communication signals between neutro-

phils, monocytes, macrophages, and endothelial cells to poten-

tiate the inflammatory response once it is activated by a systemic

microbial challenge (e.g., endotoxinemia). If regulatory control

is lost, the inflammatory response results in diffuse endothelial

injury, septic shock, and multiple organ dysfunction.

A characteristic complication of sepsis is activation of co-

agulation, leading in the most severe cases to a consumptive

coagulopathy and diffuse thrombi in the microcirculation [18]

and resulting in purpura-like lesions similar to those in infants

with homozygous protein C deficiency [19]. Challenge of

healthy volunteers with lipopolysaccharide and TNF-a indi-

cates that the extrinsic pathway is the predominant mechanism

by which the coagulation system is activated in sepsis [20, 21].

Lipopolysaccharide and TNF-a can interact with monocytes,

inducing synthesis and expression of tissue factor [22, 23], and

both substances can promote endothelial expression of tissue

factor in vitro [24, 25]. Exposure on the platelet surface of

negatively charged aminophospholipids, which are critical for

the assembly of tenase and prothrombinase complexes, can be

brought about by the membrane attack complex C5b9 [26] and

by the combined action of thrombin and exposed subendo-

thelial collagen [27]. These mechanisms provide a trigger to

initiate and amplify the coagulation response. In addition, re-

cent publications indicate that circulating microparticles may

have a critical role in the generation of a consumptive coa-

gulopathy [28, 29].

In addition to the extrinsic coagulation pathway, the contact

activation system, including factor XII, prekallikrein, and

high–molecular-weight kininogen, is also activated. This ini-

tiates vasodilation by generating bradykinin from

high–molecular-weight kininogen [20] and potentiates lipo-
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polysaccharide-induced activation of the complement system

[13] through activation of the complement component C1,

mediated by activated factor XII (factor XIIa) [30].

At the same time, the inflammatory response inhibits the

anticoagulant system. Antithrombin becomes complexed with

thrombin and other proteases, and activated protein C becomes

complexed with protein C inhibitor and a1-antitrypsin, and

both are thereby consumed. Furthermore, antithrombin acts

as a negative acute-phase protein [31], and its synthesis is di-

minished [18]. TNF-a [32–34], IL-1b [35, 36], and lipopoly-

saccharide [25] can interact with the endothelium to down-

regulate thrombomodulin, although the extent of this

downregulation appears to be less in vivo than in vitro. In

addition, activated neutrophils can decrease the function of

endothelial thrombomodulin by releasing reactive oxygen spe-

cies, which can oxidize a specific methionine on thrombom-

odulin critical for protein C activation [37], and by releasing

elastase, which can cleave thrombomodulin [38]. These mech-

anisms lead to decreased thrombin inactivation and decreased

generation of activated protein C. In addition, as a consequence

of complement activation and cytokine elaboration, the serum

level of C4b-binding protein increases, thus diminishing the

availability of free protein S for supporting activated protein

C [3]. Moreover, since one of the major inhibitors of activated

protein C, a1-antitrypsin, is an acute-phase reactant, the rate

of inhibition of activated protein C is increased [39]. Finally,

the acute inflammatory response also raises the concentration

of plasminogen activator inhibitor 1, decreasing fibrinolytic ac-

tivity [40].

In summary, systemic inflammation disrupts the balance be-

tween procoagulant, anticoagulant and fibrinolytic systems,

leading to a massive activation of intravascular coagulation,

which results in microthrombi and depletion of coagulation

factors [18]. Severe diffuse intravascular coagulation, associated

with endothelial cell dysfunction and diffuse microvascular

thrombosis, heralds a poor prognosis.

Why is a prothrombotic state favorable for the inflammatory

response? Thrombin not only plays a role in clot formation

and in triggering an anticoagulant response but also mediates

cellular proliferation and inflammation [41, 42]. For instance,

thrombin appears to be directly chemotactic for neutrophils

[43] and promotes synthesis by endothelial cells of platelet-

activating factor, a potent neutrophil agonist [44], and of IL-

8, the most potent chemotactic molecule for neutrophils in

vivo [45]. Thrombin is also chemotactic for monocytes [46],

where it induces an increase in intracellular calcium [41] and

synthesis of IL-6 and IL-8 [47]. On endothelial surfaces, throm-

bin causes the expression of P-selectin and E-selectin, which

are critical for neutrophil and monocyte tethering and acti-

vation [45, 48]. Thrombin has also been implicated in facili-

tating increased capillary permeability [49]. Activated platelets

induce IL-8 production by endothelial cells [50] and increase

IL-1 and TNF-a secretion by monocytes [51]. Finally, factor Xa

also may function as a mediator of acute inflammation in vivo

[52]. Thus, the propagation of a procoagulant state appears to

represent an amplification loop of the inflammatory response.

PROTEIN C AS AN ANTI-INFLAMMATORY
AGENT

Animal studies have provided evidence that the protein C

pathway, in addition to its anticoagulant function, plays an

important role in regulating the host response to inflammation,

particularly sepsis (figure 2). Initially it was observed that

thrombin infusion at a dose of 0.5 U/kg/min significantly in-

creased survival rates among dogs that were subsequently chal-

lenged with a lethal dose of endotoxin [53]. At first sight this

appears paradoxical, because thrombin generation leads to dif-

fuse intravascular coagulation, which contributes to the mor-

tality associated with septic shock. However, it had previously

been shown that extracorporeal circulation without added hep-

arin generated an endogenous anticoagulant [54] and protected

dogs against endotoxin shock [55].

Second, it had also been shown that low-level thrombin in-

fusion leads to a net anticoagulant response due to the for-

mation of activated protein C through the thrombin-throm-

bomodulin complex [56, 57]. Therefore, it was hypothesized

that generation of activated protein C might be responsible for

some protective effect against endotoxin-induced septic shock.

Activated protein C that was infused into baboons before or

2 h after administration of lethal doses of Escherichia coli pre-

vented the expected coagulopathic, hepatotoxic, and lethal re-

sponses [58]. These results have been reproduced in studies

that have used other in vivo models: studies investigating en-

dotoxin-induced pulmonary edema in rats [59, 60] and en-

dotoxin shock in rabbits [61]. When endogenous protein C

activation in baboons was blocked with a monoclonal antibody,

E. coli doses that normally induce only an acute inflammatory

reaction (10% of the lethal dose) caused a lethal septic shock

response, which could be prevented by infusing activated pro-

tein C [58]. Similarly, blocking protein S function in baboons

with an infusion of C4b-binding protein also exacerbated the

response to sublethal concentrations of E. coli, and this could

be prevented by infusing free protein S [62, 63].

It is noteworthy that the concentration of activated protein

C that exhibited an anti-inflammatory effect was less than the

concentration required for efficient anticoagulation [58, 59].

Moreover, the administration of other anticoagulants, such as

heparin, alone or in combination with antithrombin, and ac-

tive-site-blocked factor Xa (a powerful inhibitor of thrombin

generation) inhibited endotoxin-induced coagulopathy but did

not prevent shock and organ damage, nor did it improve the
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Figure 2. Anti-inflammatory action of activated protein C. Activated protein C has the potential for regulating the inflammatory response by means
of at least 3 mechanisms: (1) it prevents thrombus formation and stimulates fibrinolysis, thereby diminishing ischemic tissue damage; (2) it blocks
thrombin generation, thereby preventing amplification of the inflammatory response induced by thrombin itself; and (3) it has a direct effect on
monocytes that dampens elaboration of cytokines, such as TNF-a, IL-6, and IL-8. FVa, activated factor V; FVIIIa, activated factor VIII; PAI, plasminogen
activator inhibitor.

rate of survival [59, 60, 64]. Taken together, these observations

indicate that the protein C pathway, in addition to its anti-

coagulant function, is a physiologically relevant modulator of

the inflammatory response to endotoxinemia.

Potential mechanisms underlying this effect of activated pro-

tein C have been delineated (figure 2). When the protein C

pathway is blocked, baboons challenged with sublethal doses

of E. coli have much higher levels of circulating TNF-a than

control animals [58, 62], and restoration of the system prevents

elaboration of elevated cytokine levels. Activated protein C has

been shown to dampen the TNF-a response in rats challenged

with endotoxin [60, 65] and to be able to prevent formation

of TNF-a in tissues after compression-induced spinal cord in-

jury [66]. In addition, increased levels of TNF-a during human

allograft rejection are associated with depression of protein C

and protein S [67].

The ability of activated protein C to regulate the inflam-

matory response seems to be related to a direct effect on mono-

cytes. These cells have specific binding sites for activated protein

C [68], which appear to be distinct from the endothelial protein

C receptor [4]. In vitro studies have shown that activated pro-

tein C, in conjunction with protein S, reduces endotoxin-in-

duced cytokine production by monocytes by 190% [69]. Pre-

treatment with activated protein C blocks the IFN-g–induced

increase in the amount of free intracellular calcium [68] and

the activation of monocytes [69] and inhibits the monocyte-

dependent proliferation of T cells [68]. In addition, activated

protein C inhibits the CD14-dependent endotoxin-induced

pathway of monocyte activation but does not prevent upre-

gulation of the levels of major histocompatibility complex class

II, intercellular adhesion molecule 1, or IL-2 receptor and does

not prevent production of reactive oxygen intermediates [69].

These observations suggest that activated protein C has a dif-

ferential anti-inflammatory action.

Although lipopolysaccharide and TNF-a downregulate

thrombomodulin levels on endothelial cells, they induce in-

creased cytosolic mRNA and surface thrombomodulin levels

on monocytic cells [70, 71]. This provides the potential for

localized monocyte-mediated production of activated protein

C at sites of inflammation, even when thrombomodulin levels

on endothelium have been downregulated. Another candidate

receptor for preferential protein C activation in inflammation

is the endothelial protein C receptor [72]. In a rodent model

it has been demonstrated that lipopolysaccharide induces upre-

gulation of levels of endothelial protein C receptor mRNA and

that this is mediated by thrombin [73]. Moreover, the in vivo

contribution of the endothelial protein C receptor to the neg-

ative regulation of coagulopathic and inflammatory responses

to E. coli has recently been demonstrated [74].

The differential action of activated protein C on monocytes

and macrophages—inhibiting the production of cytokines but

maintaining the responses that are associated with adhesion,

phagocytosis, and killing of gram-negative bacteria [69]—sug-

gests that it could be used to treat inflammatory states that
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involve activation of monocytes and/or macrophages and over-

production of cytokines, such as gram-negative sepsis.

PROTEIN C IN MENINGOCOCCEMIA

Neisseria meningitidis is an encapsulated aerobic gram-

negative diplococcus. It colonizes the nasopharynx and causes

infection by penetrating the mucosal barrier and entering the

intravascular space. Meningococcemia varies from a transient,

mild febrile illness to an acute fulminant disease that is fatal

within hours [75]. It is not known which factors predispose to

the development of the severe form, which is characterized by

hemodynamic instability, disseminated intravascular coagulo-

pathy, and diffuse microvascular thrombosis. However, clinical

studies have found that increased levels of plasminogen acti-

vator inhibitor 1 [76] and decreased levels of protein C correlate

with the development of purpura-like skin lesions and with a

poor prognosis [77, 78]. It is particularly noteworthy that pro-

tein C activity was found to be decreased to a greater extent

than was the activity of antithrombin or protein S, approaching

levels similar to those observed in homozygous protein C de-

ficiency [78].

Purified protein C concentrate is the first choice for therapy

in cases of homozygous protein C deficiency with neonatal

purpura [79–81] and has been successfully administered to

patients with disseminated intravascular coagulopathy [82].

Gerson et al. [83] described the reversal of disseminated in-

travascular coagulopathy and purpura fulminans following ad-

ministration of protein C concentrate in a child with septic

shock who did not respond to aggressive conventional

treatment.

Rivard et al. [84] described 2 girls and 2 boys (aged 3 months

to 15 years) who were admitted to an intensive care unit with

clinical findings of meningococcemia and purpura fulminans;

results of laboratory studies revealed disseminated intravascular

coagulopathy and protein C levels !0.5 IU/mL (normal level,

0.7–1.2 IU/mL). Aggressive conventional treatment was initi-

ated with antibiotics, fluid resuscitation, vasoactive amines, and

mechanical ventilation when required. Protein C was admin-

istered iv at a dose of 100 IU/kg for 15–20 min. Identical doses

were given every 6 h during the acute phase. All 4 patients

survived. However, 1 patient required bilateral mid-thigh and

right mid-forearm amputations, as well as skin grafts on her

left breast, and 1 patient required bilateral submalleolar am-

putation. It is noteworthy that both patients received protein

C concentrate at a relatively late stage, 20 and 14 h, respectively,

after the onset of skin lesions (vs. 7 and 8 h for the other 2

patients). Rintala et al. [85] described 3 more patients with

meningococcemia, purpura fulminans, and multiple organ fail-

ure whose treatment included administration of protein C con-

centrate at a dosage of 100 IU/kg iv every 6–8 h. Laboratory

and clinical parameters of coagulopathy and multiple organ

failure improved. However, 1 patient died of cerebral edema.

Smith et al. [86] prospectively studied 12 patients (aged 3

months to 27 years) admitted to an intensive care unit with

severe meningococcemia, septic shock, purpura fulminans, lab-

oratory evidence of disseminated intravascular coagulopathy,

and protein C levels !0.3 IU/mL. In addition to conventional

treatment (with antibiotics, fluid resuscitation, inotropic drugs,

and mechanical ventilation), all patients received continuous

protein C concentrate infusion. After administration of a test

dose (10 IU/kg), followed by a loading dose (100 IU/kg), pro-

tein C concentrate was continuously infused (10–15 IU/kg/h),

with the aim of achieving a plasma concentration of 0.8–1.2

IU/mL. Additional treatment included unfractioned iv heparin

(10–15 IU/kg/h) for 11 patients, hemodiafiltration for 9 pa-

tients, and peritoneal dialysis for 1 patient. All the patients

survived. Two patients, who had received protein C concentrate

later than the others (48 and 72 h after admission to the hos-

pital, vs. �18 h for the other patients) needed lower-limb am-

putations; 1 of them also had a thrombotic cerebrovascular

accident. This group of investigators has treated 30 patients

thus far [87, 88]. Only the 2 above-mentioned patients who

did not receive protein C replacement within 18 h after hospital

admission required amputations. Three patients died (mortality

rate, 10%), and the 25 who survived had minimal residual

morbidity (2 required skin grafts and 1 has chronic renal failure

that does not require dialysis) [87, 88].

Recently, Kreuz et al. described 8 children (aged 2 months

to 18 years) with severe meningococcus-induced septic shock,

purpura fulminans, disseminated intravascular coagulopathy,

and acquired protein C deficiency [89, 90]. Six patients survived

(1 required limb amputation), and 2 died. These results (6

deaths among 46 reported patients) compare favorably with an

expected mortality rate of at least 30% to 150% for severe

meningococcemia [77, 91–93]. In addition, administration of

protein C halted the progression of skin lesions and dissemi-

nated intravascular coagulopathy and reduced the incidence of

amputations, and in all these studies no adverse effects from

protein C concentrate were noted.

CONCLUSION

Meningococcal sepsis is a fulminant disease requiring a high

index of suspicion for diagnosis and immediate administration

of antibiotics. Conventional therapy includes close observation,

volume resuscitation, inotropic support, and early intubation

[93, 94]. In addition, several experimental approaches have

been proposed, such as plasmapheresis, antiendotoxin thera-

pies, anticytokine therapies, use of heparin, and thrombolysis

[93, 94]. There is an increasing amount of experimental and

clinical data that strongly support the use of protein C replace-
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ment in meningococcal purpura fulminans. The protein C

pathway acts not only as an anticoagulant mechanism but also

as an anti-inflammatory mechanism, and protein C replace-

ment has been shown to improve the rate of survival and clin-

ical outcome for patients with severe meningococcemia.

Of particular clinical interest is the fact that protein C re-

placement has been shown to be effective even when imple-

mented several hours after hospital admission [86, 88] or after

development of skin lesions [84]. Therefore, protein C replace-

ment provides a valuable therapy for severe meningococcal

disease. Protein C concentrate is not yet approved for clinical

use, but it can be used in the context of clinical studies and

may be available for compassionate use.
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Note Added in Proof While this manuscript was in press, 2 additional articles on protein C replacement therapy were

published. White at al. (White B, Livingston W, Murphy C, Hodgson A, Rafferty M, Smith OP. An open-label study of the role

of adjuvant hemostatic support with protein C replacement therapy in purpura fulminans–associated meningococcemia. Blood

2000; 96:3719–24) have updated their experience with protein C replacement in cases of severe meningococcemia [8688] to include

36 patients and report a mortality rate of 8%, which compares favorably with the predicted mortailty rate of 50%. Bernard et al.

(Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N

Engl J Med 2001; 344:699-709) have reported results from a randomized, double-blind, placebo-controlled, multicenter trial

investigating whether iv administration of recombinant human activated protein C would reduce the death rate at 28 days among

patients with severe sepsis of any cause. The data show that such treatment does significantly reduce mortality, but at the expense

of an increased risk of bleeding.
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