
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
1
5
3
2
6

|

d
o
w
n
l
o
a
d
e
d
:

9
.
4
.
2
0
2
4

THE JOURNAL OF SYMBOLIC LOGIC

Volume 62, Number 2, June 1997

POLYNOMIAL TIME OPERATIONS IN EXPLICIT MATHEMATICS

THOMAS STRAHM

Abstract. In this paper we study (self-)applicative theories of operations and binary words in the context

of polynomial time computabiHty. We propose a first order theory PTO which allows full self-application

and whose provably total functions on W = {0, 1} * are exactly the polynomial time computable functions.

Our treatment of PTO is proof-theoretic and very much in the spirit of reductive proof theory.

§1. Introduction. Theories with self-application provide an elementary frame
work for many activities in (the foundations of) mathematics and computer science.
They were first introduced by Feferman [11,12] as a basis for his systems of explicit
mathematics, e.g., the theory T0; these theories are broadly discussed in the litera
ture from a proof-theoretic and model-theoretic point of view, cf. e.g., the textbooks
Beeson [2] and Troelstra and Van Dalen [26] for a survey.

It is the aim of the present work to propose & first order theory PTO of opera
tions and binary words, which allows full self-application and whose provably total
functions on W = {0,1}* are exactly the polynomial time computable functions.
In spite of its proof-theoretic weakness, PTO has an enormous expressive power
due to the presence of full (partial) combinatory logic, i.e., there are terms for every
partial recursive function.

When trying to set up a theory with self-application of polynomial strength, one
might first try to mimic first order systems of bounded arithmetic—say Buss' S\—in
the applicative setting in a direct way. However, it is shown in Strahm [24] that this
naive approach does not work, and one immediately ends up with systems of the
same strength as primitive recursive arithmetic PRA; this is due to the presence
of unbounded recursion principles in the applicative language. Hence, a direct
translation of induction principles from bounded arithmetic is not successful, and
a theory had to be found which is better tailored for the applicative framework.

The formulation of the proposed theory PTO is very much akin to well-known
theories of operations and numbers, namely PTO can be viewed as the polynomial
time analogue of the theory BON + (Set-IND^) of Feferman and Jager [14]. The
choice of a unary predicate W for binary words instead of a predicate N for natural
numbers is not mandatory, but more natural in the context of polynomial time
computabiHty. Crucial in the formulation of PTO is the principle of so-called set
induction, which is very natural and—most important—in the spirit of applicative
theories.

Received June 19, 1995; revised January 17, 1996.
Research supported by the Swiss National Science Foundation.

© 1997, Association for Symbolic Logic
0022-4812/97/6202-0012/S3.00

575

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2275547
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:52:55, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2275547
https:/www.cambridge.org/core

576 THOMAS STRAHM

The proof of the fact that PTO captures exactly polynomial time is established
along the lines of reductive proof theory. More precisely, we show that PTO contains
Ferreira's system of polynomial time computable arithmetic PTCA (cf. [16,17]) via a
natural embedding. Furthermore, PTO is reducible to the theory PTCA+ + (E-Ref),
where PTCA+ denotes the extension of PTCA by NP induction and (E-Ref) is the
reflection principle for E formulas. E reflection (E-Ref) is equivalent to the collection
principle for bounded formulas, (E^-CP). PTCA+ + (E-Ref) is known to be a II2
conservative extension of PTCA+ by the work of Buss [5], Cantini [7], or Ferreira
[19]. Moreover, PTCA+ is II2 conservative over PTCA by Buchholz and Sieg
[3], Cantini [7], and Ferreira [17]. Summing up, the provably total functions of
PTCA+ + (E-Ref) are exactly the polytime functions.

Finally, let us mention that our approach can easily be extended in order to provide
applicative theories which capture the nth level of the Grzegorczyk hierarchy.

The plan of the paper is as follows. In Section 2 we introduce the formal frame
work for partial applicative theories, and we give an exact formulation of the theory
PTO. Section 3 is centered around the theory of polynomial time computable
arithmetic PTCA+ plus the E reflection principle, and some known proof-theoretic
results are addressed. The exact proof-theoretic strength of PTO is established in
Section 4: we give an embedding of PTCA into PTO and show how PTO can be
reduced to PTCA+ + (E-Ref). Section 5 deals with various conservative extensions
of PTO, and in Section 6 we briefly address suitable applicative theories which cap
ture the Grzegorczyk classes. Section 7 contains a conclusion and an open problem
concerning the totality of the application operation. Finally, in the Appendix of
this paper we include a proof of Theorem 10.

§2. The theory PTO. In this section we introduce the theory PTO of polynomial
time operations on binary words, and we address some of its basic properties.

The language .SWo of PTO is a first order language of partial terms with indi
vidual variables a, b, c, x, y, z, u, v, w, f,g,h,... (possibly with subscripts). In addi
tion, J2?PTO includes individual constants k, s (combinators), p, po, Pi (pairing and
unpairing), E, 0,1 (empty word, zero, one), *,x,pw (word concatenation and mul
tiplication, predecessor), Cc (initial subword relation), dw (definition by cases on
binary words), Xw (bounded primitive recursion). JZ?PTO has a binary function
symbol • for (partial) term application, unary relation symbols j (defined) and W
(binary words) as well as a binary relation symbol = (equality).

The individual terms (r, s, t, r\, s\, t\,...) of .SPTO are inductively defined as fol
lows:

1. The individual variables and individual constants are individual terms.
2. If s and t are individual terms, then so also is (̂ • ?).

In the following we write (st) or just st instead of (s-t), and we adopt the convention
of association to the left, i.e., s\s2.. .s„ stands for (... (s\s2) • • • •?«)• We also write
{t\, t2) for pt\t2 and {ti,t2,... , t„) for (t\,(t2,... , tn)). Finally, we often use infix
notation for * and x, i.e., s*t abbreviates *st and sxt stands for xst.

The formulas (<t>, y/, %, 4>\, y/\, x\ > • • •) of J?PTO are inductively defined as follows:

1. Each atomic formula W{t), t[and (s = t) is a formula.
2. If 0 and y/ are formulas, then so also are ->(/>, (0V^) , (4>Ay/) and (<p —> y/).
3. If 0 is a formula, then so also are (3x)0 and (Vx)< .̂

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2275547
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:52:55, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2275547
https:/www.cambridge.org/core

POLYNOMIAL TIME OPERATIONS IN EXPLICIT MATHEMATICS 577

Our applicative theories are based on partial term application. Hence, it is not
guaranteed that terms have a value, and f J, is read as 't is defined' or lt has a value'.
The partial equality relation ~ is introduced by

s ~ t := Os|V?|) -> (J = 0-

We use the following abbreviations concerning the predicate W (s* — s\,... , s„):

se w
{3x e w)4>
(Vx € W)(f>

{t:W^W)

(t : Wm+] -+ W)

:= W (^) A - - - A ^ U) ,

:= (3x)(x GWA<t>),

(Vx)(x e PF -» 0),

(Vx e H^)(rx e PF),

(Vx e PF)(?x : Wm -^ PT).

In addition, let us write s C t instead of Ccst — 0, and s < t (or Ixs C lxt.
Finally, (s = t \ r) is an abbreviation for

. (r <t As Ct Alxs = lxr)V (t <r As = t).

Sets of binary words are naturally understood in our context via their total charac
teristic functions. Accordingly, we define P(W) by

f eP{W) := (Vxe W){fx=0Vfx = l).

Before we turn to the exact axiomatization of PTO, let us give an informal inter
pretation of its syntax. The individual variables are conceived of as ranging over
a universe V of computationally amenable objects, which can freely be applied to
each other. Self-application is meaningful, but not necessarily total. V is assumed
to be combinatory complete, due to the presence of the well-known combinators
k and s, and V is closed under pairing. There is a collection of objects W c V,
consisting of finite sequences of 0's and l's; W is generated from e, 0 and 1 by the
operation * of word concatenation. Furthermore, we have an operation x of word
multiplication, where w\ x w2 denotes the word w\ concatenated with itself length
of w2 times. p«/ is supposed to be a predecessor or destructor operation on W, and
Cc denotes the characteristic function of the initial subword relation. dw acts as
a definition by cases operator on W. The relation w\ < w2 means that the length
of to 1 is less than or equal to the length of wi, accordingly, w\\wi denotes the
truncation of w\ to the length of u>2- This gives meaning to the bounded recursor
xw on W, which provides an operation Xw fgb for primitive recursion from / and
g with length bound b.

The underlying logic of PTO is the classical logic of partial terms due to Beeson
[2]; it corresponds to E+ logic with strictness and equality of Troelstra and van
Dalen [25]. The non-logical axioms of PTO are divided into the following nine
groups.

I. Partial combinatory algebra.

(1) kxy = x,

(2) Sxyl A Sxyz ~ xz(yz).

II. Pairing and projection.

(3) po{x,y) = x A Pi(x,y) = y.

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2275547
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:52:55, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2275547
https:/www.cambridge.org/core

578 THOMAS STRAHM

III. Binary words.

(4) s £ W A 0 6 W A 1 G W,
(5) (* : W2 - • W),
(6) x £ W ^> x*e = x,
(7)x£WAy£W^> x*(y*0) = {x*y)*0 A x*(y*l) = (x*y)*l,
(8) x £ W Ay £ W ^ x*0 ^ y*l A x*0 ^e A x*l ^ e,
(9) x £W Ay £W A x*0 = y*0 -> x=y,

(10) x £ W Ay £ W A x*l = y*l -> x = y.

IV. Word multiplication.

(11) x : W2 -> W,
(12) x £ W - > x x e = e,
(13) x £W Ay £W -* xx{y*0) = (xxy)*x A xx(y*l) = (xxy)*x.

V. Predecessor on W.

(14) pw : W -> W,
(15) pive = e,
(16) x G W -* pn/(x*0) = x A p^ (x* l) = x,
(17) x G W A x ^ e -> (pwx)*0 = x V (p^x)* l = x.

VI. Initial subword relation.

(18) x £W Ay £W -* Ccxy = 0 V C<zxy = 1,
(19) x £JV ^ (x Ce <-+ x = e),
(20) x G W A y G W A J ^ £ -> (x C j <-> x C p ^ y V x = j) .

VII. Definition by cases on W.

(21) a £ W Ab £ W Aa =b —> dwxyab = x,
(22) a £ W Ab £ W Aa^b -+ 6wxyab = y.

VIM. Bounded primitive recursion on W.

(23) (/ : W - • W) A (g : W3 -> W) A (b : W2 - W) -»
(r^/gfc : W2 -> JF),

(24) (/ : W - • W) A {g : W3 - • W) A (6 : fF2 -» W) A

x e W A y G W A > > ^ £ A r t = r > / g 6 ->

«X£ = / x A hxy = gxy(/zx(pn/_}>)) | tary.

IX. Set induction on W (S-lw)

(25) / £ P{W) A fs = 0 A (Vx G W0(/ (P^*) = 0 -» / * = 0) -

(VxG W) (/ x = 0) .
Observe that in the formulation of bounded primitive recursion rw on W, we do no?
require b to be a polynomial, but only a total operation on W. This formulation is
more natural, and we will see in Section 4.2 that it does not raise the proof-theoretic
strength of PTO.

The principle of set induction is crucial for the proof-theoretic strength of PTO.
As we will see in Section 4, the premise f £ P{W) allows one to treat set induction
in a certain theory of arithmetic, which has polynomial strength only. Set induction
has previously played an important role in systems of explicit mathematics with the
so-called non-constructive minimum operator, cf. [14, 15, 20, 22].

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2275547
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:52:55, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2275547
https:/www.cambridge.org/core

POLYNOMIAL TIME OPERATIONS IN EXPLICIT MATHEMATICS 579

As usual the axioms of a partial combinatory algebra allow one to define X
abstraction and to prove a recursion theorem (cf. e.g., [12, 11]). Hence, there is an
J2?PTO term t / for each partial recursive function / , however, PTO does generally not
prove the totality o f / . In particular, PTO includes a term /eXp for exponentiation.

PROPOSITION 1. For each J?PTO term t there exists an .S?PTO term (Xx.t) whose free
variables are those oft, excluding x, so that

PTO h (Xx.t)l A (Xx.t)x ~ t.

PROPOSITION 2. There exists an J?PTO term rec so that

PTO h rec/J, A (Vx)(rec/x ~ / (r e c /) *) .

In the following let us briefly sketch the standard recursion-theoretic model PRO
(partial recursive operations) of PTO. The universe of PRO consists of the set
of finite 0-1 sequences W = {0,1}*, and W is interpreted by W. Application •
is interpreted as partial recursive function application, i.e., x • y means {x}{y) in
PRO, where {x} is a standard enumeration of the partial recursive functions over
W. It is easy to find interpretations of the constants of JSVro SO that the axioms of
PTO are true in PRO. Observe that the elements ofP(W) are exactly the recursive
sets on W in PRO.

There are many more interesting models of the combinatory axioms, which can
easily be extended to models of PTO. These include further recursion-theoretic
models, term models, generated models and set-theoretic models. For detailed
descriptions and results the reader is referred to Beeson [2], Feferman [12] and
Troelstra and van Dalen [26].

Let us finish this section by making some comments concerning polynomial
time functionals. Cook and Urquhart [10] introduced a class BFF of basic feasible
functionals in all finite types in order to provide functional interpretations of feasibly
constructive arithmetic. The type 1 functions of BFF coincide with the polynomial
time computable functions. It is straightforward from the axioms of PTO and
Proposition 1 that there exists an i?p-ro term tF for each functional F in BFF
so that the defining equations and the well-typedness of F are derivable in PTO.
Further work on BFF and feasible functionals in general can be found in Cook and
Kapron [9] and Seth [23].

§3. The theory PTO+ + (£ -Ref). In the following let us briefly sketch the theory
PTCA+ + (S-Ref), which we will use in the next section in order to interpret PTO.

The theory PTC A of polynomial time computable arithmetic over binary strings
was introduced by Ferreira [16, 17]. PTC A can be viewed as a polynomial time
analogue of Skolem's system of primitive recursive arithmetic PRA. The theory
PTC A is formulated in the first order language L&, which is based on the elementary
language L. The latter contains individual variables a, b, c, x, y, z, u, v, w, f,g,h,...
(possibly with subscripts), constants e, 0, 1, the binary function symbols * and x '
as well as the binary relation symbols — and C; the meaning of these symbols
is identical to the one of the corresponding operations in .SVro- Now L# is
obtained from L by adding a function symbol for each description of a polynomial

We again use infix notation for * and x and often write ts instead of t * s

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2275547
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:52:55, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2275547
https:/www.cambridge.org/core

580 THOMAS STRAHM

time computable function, where the terms of L act as bounding terms, similar to
Cobham's characterization of the polytime functions (cf. [8]). Terms (r, s,t,...)
and formulas (<f>, y/, / , . . .) of L@ (both possibly with subscripts) are denned as
usual. For the details the reader is referred to [16, 17].

There are two sorts of bounded quantifiers which are relevant in the sequel. The
sharply bounded quantifiers have the form (3x)(x C t A . . .) or (Vx)(x C r - > . . .) ,
and in the following we just write (3x C *)(•••) and (Vx C t)(...). Furthermore,
we have (generally) bounded quantifiers (3x)(x < t A . . .) and (Vx)(x <*—>. . .) ,
where x < t reads as 1 x x C 1 x t as in the previous section. Again we use the
usual shorthands as above. If <f> is an arbitrary L& formula, then we write <j>' for the
formula which is obtained from <f> by replacing each unbounded quantifier {<§x) by
the corresponding bounded quantifier (<§x < t). The following definition contains
important classes of L& formulas.

DEFINITION 3. Let us define the following eight classes of L& formulas.
1. QF denotes the set of all quantifier free L& formulas.
2. A formula is called Ag if all its quantifiers are sharply bounded.
3. A formula is in the class 2* if it has the form (3x < t)<j> for <p a formula in

QF.
4. A formula is called extended 2^ or eL\ if (i) all its positive existential and

negative universal quantifiers are bounded, and (ii) all its positive universal
and negative existential quantifiers are sharply bounded.

5. An Ljs formula is called Z ^ or bounded if all its quantifiers are bounded.
6. A Si formula has the form (3x)0 for <p in QF; a FL; formula is of the shape

(Vx)(3j)0for<^inQF.
7. A formula is in the class £ if all its positive universal and negative existential

quantifiers are bounded.

The AQ formulas are the polynomial time decidable matrices of [16, 17]. Further
more, the E^ formulas define exactly the NP predicates and the 2 ^ formulas the
predicates in the Meyer-Stockmeyer polynomial time hierarchy.

The theory of polynomial time computable arithmetic PTCA is a first order theory
based on classical logic with equality, and comprising defining axioms for the base
language L as well as defining equations for each description of a polytime function
in Lgs. In addition, PTCA includes the notation induction scheme

^(e)A(Vx)(0(x) ->^(xO)A0(;cl)) - • (Vx)0(x)

for each L& formula <f>(x) in QF. It is well-known that PTCA proves induction for
AQ formulas. For details we refer to [16, 17]. Furthermore, it is straightforward
to establish that the provably total functions of PTCA are exactly the polytime
functions (cf. [3, 17]).

Let PTCA+ denote the extension of PTCA, where notation induction is allowed
for NP predicates, i.e., formulas in £*. The system PTCA+ is closely related to
Buss' system S\ (cf. [4]). Induction is provable in PTCA+ for extended Y!{ formulas
(cf. [16, 17]). In analogy to Parson's result we obtain that PTCA+ is a conservative
extension of PTCA with respect to Fl2 statements. Proofs can be found in [3, 7, 17].

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2275547
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:52:55, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2275547
https:/www.cambridge.org/core

POLYNOMIAL TIME OPERATIONS IN EXPLICIT MATHEMATICS 581

PROPOSITION 4. Suppose PTCA+ I- (\/x)(3y)<f>(x,y), where cj> is a QF formula.
Then we have PTCA h (\/x)(3y)<f>(x, y).

COROLLARY 5. Suppose PTCA+ h- (\/x)(3y)<p(x,y), where <j) is a QF formula.
Then there exists an L& term t{x) so that PTCA h (Vx)0(x, t(x)).

In order to interpret our theory of polynomial time operations on binary words
PTO, we will need the crucial principle of £ reflection (S-Ref), which has the form

(I-Ref) <f> - • (3a)<f>a,

where 0 is a formula in £. It is not difficult to see that (2-Ref) is equivalent to the
collection principle for bounded formulas (S^-CP), which reads as

(2&-CP) (Vx < t)(3y)4> - (Ba)(Vx < t)(3y < a)<j>,

where 0 is a Z^, formula. It is known that adding £ reflection (or equivalently
bounded collection) to a suitable bounded theory yields a IT2 conservative extension.
This was first proved by Buss [5]. Another elementary model-theoretic proof is
due to Ferreira [19]. Finally, a very perspicuous proof-theoretic proof making
use of partial cut elimination and an asymmetric interpretation has recently been
established by Cantini [7].

PROPOSITION 6. Suppose PTCA+ + (I-Ref) h (Wx)(3y)<p(x,y), where <f> is a 2 ^
formula. Then we have PTCA+ h (yx)(3y)<f>(x, y).

As consequence we get by Corollary 5 the desired conservation result.

COROLLARY 7. Suppose PTCA+ + (S-Ref) h (Vx)(3y)<fi(x,y), where <p is a QF
formula. Then there exists an L& term t(x) so that PTCA I- i^lx)(f>(x, t(x)).

Let us mention that Z reflection (E-Ref) follows from Weak Konig's Lemma for
trees defined by bounded formulas, (E^-WKL). In fact, the first order strength
of (E^-WKL) is exactly (S-Ref) (over the base theory PTCA+), cf. Ferreira [18].
Furthermore, (E^-WKL) is a consequence of strict II j reflection, which by Cantini
[7] again yields a II2 conservative extension of PTCA.

In the following we often write \s\ (the length of s) instead o f l x s , i c / instead
of s C t A s ^ t, and s < t instead o f l x s c l x (. The abbreviation s — 11 r is
understood in the same way as in the previous section. In addition, p denotes the
obvious predecessor function on binary words and c<z is the binary characteristic
function of the initial subword relation. Finally, we use the trivial representation of
the natural numbers as tally words, which is given by 0 = s and n + 1 = n\. We
will write n instead of n whenever it is clear from the context that we mean n as a
tally word and not as a natural number.

We finish this section by adopting some conventions concerning polynomial time
sequence coding within PTCA. For the details the reader is again referred to Ferreira
[16,17]. Let (...) denote a polytime function for forming n-sequences (to,... , ?„_i)
of binary words, and let lh(t) denote the length of the sequence coded by t, i.e., if
/ = (t0,... , tn-\), then lh(t) = n. We write Seq„(?) for Seq(0 A lh(t) = n. There
is a polytime projection function so that (t)m denotes the wth component of the
sequence coded by r if m c lh(t); we write last{t) for (0 (̂/A(r)) and (t)mi„ instead of
({t)m)„. Furthermore, let o denote the polytime sequence concatenation function.

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2275547
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:52:55, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2275547
https:/www.cambridge.org/core

582 THOMAS STRAHM

For example, if tis the sequence {to,t\,t2, t^), then lh(t) = 1111, (t)e = to, (Oi = h,
M n = h, M m = ?3, /os<(0 = '3 and f = {t0, tx) o (?2, f3)- Finally, let SqBd{a,b)
denote a suitable L& term, so that PTCA proves

Seq(v) A lh{v) < \b\\ A (Vtu C lh(v)){{v)w < a) -+ v < SqBd(a,b).

SqBd is easily constructed from the terms in L. This ends our discussion of the
theory PTCA+ + (S-Ref). In the next sections we establish the exact proof-theoretic
strength of PTO and its extensions.

§4. The proof-theoretic strength of PTO. In the following we address the main
result of this paper, which says that the provably total functions of PTO are exactly
the polytime functions. We sketch proof-theoretic lower and upper bounds, and
we propose a generalization of set induction which does not go beyond polynomial
strength.

4.1. Lower bounds. There is a natural embedding of the language Lg? into the
language ^ P T O - Using the bounded recursion operator rw, each (description of) a
polytime function can be represented in PTO by an Jzfpjo term. Furthermore, the
recursion equations and the totality of the corresponding function are derivable in
PTO. Hence, we have an .S^PTO formula <f>w (x) for each L& formula </>, where the
individual variables of L& are supposed to range over W, i.e.

((3y)4>(x,y))w = £y€W)ct>w{x,y),

and similarly for universal quantifiers. Moreover, each quantifier free formula of
Lg> can be represented in Jzfpjo by a s e t in the sense of P{ W).

LEMMA 8. For every quantifier free formula <j>{x) ofL& with at most x free there
exists an individual term t^ of 5?PJO, so that

1. PTO h (Vx G W^x = 0 V / ^ f = 1),
2. PTO h (Vf€ W){<j)w{x) +-• t^x = 0).

It is an immediate consequence of this lemma that notation induction for quan
tifier free formulas carries over to set induction in -S?PTO- Hence, we have the
following embedding of PTCA into PTO.

THEOREM 9. We have for every Lgo formula <j>(x) with at most x free:

PTCA h <j){x) =>• P T O h x G W ^<pw{x).

This finishes our discussion of the lower bound for PTO.
4.2. Upper bounds. In the following we show that PTO can be embedded into

PTCA+ + (S-Ref), which is known to be a H2 conservative extension of PTCA by the
results of Section 3. As a consequence, we obtain that the provably total functions
of PTO are computable in polynomial time.

The main step in establishing an embedding of PTO into PTCA+ + (S-Ref) is
to find an Lg> formula App(x, y, z) which interprets xy ~ z. Together with an
interpretation of the constants of JZ?PTO this will yield a translation of -2*PTO into
L@ in a standard way. In the definition of App we will make use of a construction
similar to Feferman [12, p. 200], Feferman and Jager [15, p. 258] or Beeson [2,
p. 144]. In particular, App will be represented as a fixed point of a 2] positive

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2275547
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:52:55, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2275547
https:/www.cambridge.org/core

POLYNOMIAL TIME OPERATIONS IN EXPLICIT MATHEMATICS 583

inductive definition. The details of this construction are very relevant due to the
weakness of PTCA+ + (I-Ref).

In order to describe a suitable inductive operator form below, it will be convenient
to work with an extension L&(Q) oiL& by a ternary relation symbol Q which does
not belong to L&>. \i<j>{Q) is an L&{Q) formula and y/(x, y, z) an L& formula, then
4>{y) denotes the result of substituting y/(r, s, t) for every occurrence of Q(r, s, t) in
the formula <f>(Q).

In the following let us first turn to the interpretation of the recursion operator
IV. Toward this end, assume that A(f, x, y) is a fixed Lg>(Q) formula with at most
f,x,y free. Then we define for each natural number n greater than 0 an L&>(Q)
formula A„(f,x\,... , x„, y) by recursion on n as follows:

A\{f,x\,y) := A(f,x\,y),
A„+\(f,x\,... ,xn+\,y) := (3z)(An(f,xu...,x„,z)AA{z,xn+uy)).

If A(f,x,y) is assumed to interpret fx ~ y, then A„(f,x\,... ,x„,y) interprets
fx\,. ..x„~y. We will drop the subscript n whenever it is clear from the context.

Now we are ready to define the L&> {Q) formula Reĉ j (/, g, b,x,y,z). It describes
the graph of the function which is defined from / and g by bounded primitive
recursion with length bound b in the sense of A. The exact formulation of Rec^ is
as follows:

RecA(f,g,b,x,y,z)

:= (3«)[Seq(t;) A lh(v) = \y\\ A A(f,x,(v%)

A(Vu; C y)(w ^ £

-> (3uuu2)[A3(g,x,w,{v)\pM\,ui) AA2{b,x,w,u2) A (u)w = «i|w2])

Kz = (v)M].

In a next step we define a g-positive L&{Q) formula sf(Q,x,y,z), a so-called
inductive operator form; a fixed point of stf will later serve as an interpretation of
the application operation. Let us choose pairwise different binary words k, s, p, p0,
Pi> *, x, pw, Cc, dw and rw, which do not belong to SeqU{fi,0,1}. In addition,
put £ = £,0 = 0 and 1 = 1. Then we define s/{Q,x,y,z)\o be the disjunction of
the following formulas (1)—(26):

(1) x = kAz = (k,>^

(2) Seq2(x) A (x)0 = k A (x){ = z,
(3) x = S A z = (s , j) ,
(4) Seq2(x) A (x)0 = S A z = (s,(x)uy), .
(5) Seq3(x) A {x)0 = S A (3v,w) (Q((x)uy,v) A Q((x)2,y,w) A Q{v,w,z)),
(6) x = p A z = (p,y),
(7) Seq2(x) A (x)0 = p A z = ((x)uy),
(8) x = p0 Ay = (z,(y)i),
(9) x = pl Ay = ({y)0,z),

(10) x = * A z = (*,y),
(11) Seq2(x) A (̂ ^0^= * A z = (x)i *y,
(12) x = x A z = (x,y),

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2275547
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:52:55, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2275547
https:/www.cambridge.org/core

584 THOMAS STRAHM

(13) Seq2(x) A (x)o = x A z = (x)i x y,
(14) x = pw A z = p{y),
(15) x = Cc A z = (Cc,j) ,
(16) Seq2(x) A (x)0 = Cc A z = cc((*)i, jO,
(17) x -dw A z = (d ^ , j) ,

(18) Seq2(x) A (x)0 = dw A z = (<V, (x)i,.y),

(19) Seq3(x) A (x)0 = (V A z = (d^ , (x),, (x)2,_y),

(20) Seq4(x) A (x)0 = dw A (x)3 = j A z = (x)i,

(21) Seq4(x) A (x)0 = <V A (*)3 / .y A z = (x)2,
(22) x = f ̂ A z = (f^,j>),
(23) Seq2(x) A (x)0 = Xw A z = (r ^ , (x) ! , j) ,
(24) Seq3(x) A (x)0 = f̂ A z = (P,y, (x)1; (x ^ y) ,
(25) Seq4(x) A (x)0 = fw A z = (r^ , (x) b (x)2, (x)3,_y),
(26) Seq5(x) A (x)0 = r> A Rece((x)1 ; (x)2, (x)3, (x)4, j , z) .

This finishes the definition of the g-positive L&{Q) formula st{Q,x,y,z). Note
that stf is in fact a Si definition (modulo (S-Ref)). Hence, we know from standard
recursion theory (cf. e.g., Hinman [21]) that the least fixed point of sf is an r.e. set.
The usual proof of this fact uses a careful construction from below by defining
some sort of computability predicate, similar to the proof of Kleene's normal form
theorem. Since we have all the sequence coding available in our weak setting, it is
more or less straightforward to see that this construction can be carried through
in PTCA+. The details, however, are long and tedious. Moreover, one easily
verifies that the so-obtained r.e. set—call it App—defines a fixed point of stf, where
an obvious application of (E-Ref) is needed. PTCA+ + (E-Ref) does not prove the
minimality of App, of course. Instead, it is not difficult to establish the functionality
of App. Summing up, we have the following theorem, whose proof is contained in
the appendix of this paper.

THEOREM 10. There exists a Zi formula App(x, y, z) of L& with free variables as
shown so that PTCA+ + (S-Ref) proves:

1. (Vx, j , z) (^(App,x , j , z) <-• App(x,j ,z)) .
2. (Vx,j,zi,z2)(App(x,>',zI) A App(x,y,z2) -> zx = z2).

Now the stage is set in order to describe a translation (•)* from J?PTO into Lg>.
Let us first define an L@ formula V*{x) for each individual term t of SCPJQ so that
the variable x does not occur in t. The formula V*(x) says that x is the value of t
under the interpretation *. The exact definition is by induction on the complexity
of/:

1. If t is an individual variable, then V*(x) is {t = x).
2. If t is an individual constant, then V*(x) is (f = x).
3. If t is the individual term (rs), then

V,*(x) := ^yx,y2){v;{yx) A v;(y2) A App(yuy2,x)).

In a second step we define the * translation of an -Sfpro formula <f> as follows:

4. If 4> is the formula W(t) or t[, then <j>* is

(3x)v;(x).

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2275547
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:52:55, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2275547
https:/www.cambridge.org/core

POLYNOMIAL TIME OPERATIONS IN EXPLICIT MATHEMATICS 585

5. If <j) is the formula (s = t), then (p* is

Ox)(v;(x) A v;(x)).
6. If 4> is the formula - ^ , then <f>* is ->(y/*)-
7. If <f> is the formula (y j /) for y e {V, A, —>}, then 0* is {y/* j x*)-
8. If <j> is the formula (&x)y/ for <? e {3, V}, then <j>* is {<Sx)y/*.

This finishes the description of the translation (•)* from ^ P T O into L&. In a further
step we have to verify the * translation of the PTO axioms (1)—(25) in the theory
PTCA+ + (Z-Ref). In the following we only discuss axiom (23) for bounded primitive
recursion and axiom (25) for set induction on W, (S-lw)- The remaining axioms
are easily verified by making use of Theorem 10.

Let us first turn to the bounded recursor xw, and let us show the totality of Xw
in PTCA+ + (Z-Ref). We will realize the crucial role of £ reflection (Z-Ref) for the
first time.

LEMMA 11. The * translation of axiom (23) about xw is provable in the theory
PTCA+ + (Z-Ref), i.e., PTCA+ + (Z-Ref)proves

[(/ :W -> W) A (g:W3 -> W) A {b : W2 -^ W) - • {xwfgb : W2 -> W)*.

PROOF. In the sequel we work informally in the theory PTCA+ + (Z-Ref) and
assume

(i) {f-.w^wy,
(2) (b : W2 - • W)*,

(3) (g : W -> W)*.

If we spell out (1), (2) and (3) according to the translation *, we obtain

(4) (Vx)(3z)App(/,x,z),

(5) (\/x,w)(3z) App2(b,x,w,z),

(6) (Vx,w,v){3z) App3(g,x,w,v,z).

It is our aim to show {xwfgb : W2 —> W)*, i.e.

(7) (Vx, w){3z) App((f ^ , / , g, b, x), w, z),

which by Theorem 10 is equivalent to

(8) {Vx,w)(3z)Rec/s,pp(f,g,b,x,w,z).

In the sequel fix arbitrary x0 and jo- Furthermore, by (4) choose zo so that
App(/ , xo, zo). Now we obtain from (5) and Z reflection (Z-Ref) an a\ so that

(9) (Vw C y0)(3z < a1)App?(b,x0,w,z).

If we set «2 = zoa\, then (6) and another application of (Z-Ref) provide us with an
«3 so that

(10) (Vw C j0)(Vv < a2)(3z < a3) App%(g,x0,w,v,z).

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2275547
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:52:55, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2275547
https:/www.cambridge.org/core

586 THOMAS STRAHM

Now set 04 = SqBd{ci2,yo) and consider the statement RecAPP(/,g, b, xo,y, z),
which is given by the formula

RecAPP(/,g, b,x0>y,z)

:= {3v < a4)[Seq(v) A lh(v) = \y\l A (v)e = z0

A(Vu; C y)(w / £

-> (3«i < a3)(3w2 < ai)[App33(g,^o,^, (^)|/,(^)|. "1)

A Appj1 (Z>, x0, w, «2)

A(u) H =UX\U2])

Az = (v)|j,|].

In the following let us write <j>{y) for the L@ formula which is given by

y Q Jo -> (3z < a2)RecApp(/,g,*,x0,>',z).

Then one easily verifies that (9) and (10) imply

(11) <t>(s) A (V>O(0OO - <t>(yO)A<t>(y\)).

Since (f>{y) is an extended £* formula oiLg>, induction is available in PTCA+ for <j>.
Hence, (11) implies </>(yo), from which we immediately derive

(12) (3z)RecApp(/,g,*,x0,>'o,z).

Since xo and yo were arbitrary, we have shown (8), and this finishes our proof. H

In a next step we show that the * translation of set induction is provable in the
system PTCA+ + (Z-Ref). Again the presence of S reflection (E-Ref) is crucial: the
requirement / e P{W) allows one to "reflect" Si induction by S* induction.

LEMMA 12. The * translation of set induction (S-lyv) is provable in the system
PTCA+ + (I-Ref), i.e„ PTCA+ + (I-Ref) proves

[fEP(W)Afs=0A (Vx G W)(f(pwx) = 0 - fx = 0)

- (Vxe w)(fx =0)]*.

PROOF. Let us work informally in PTCA+ + (L-Ref). Assume the * translations
o f / eP(W), fe = 0 and (Vx <s W)(f(pwx) = 0->fx = 0) . Hence, we get

(1) (Vx)(3\y)App(f,x,y),

(2) App(/ , £) 0) ,

(3) (Vx)[App(/,x,0) - App(/ ,xO,0)AApp(/ ,x l) 0)] .

Now fix an arbitrary xo. By £ reflection (S-Ref) there exists an a so that

(4) (VxCx0)(3y<a)Appa(f,x,y).

As an immediate consequence we get that

(5) (Vx C xo){Vy)[App(f,x,y) -> Appa(f,x,y)].

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2275547
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:52:55, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2275547
https:/www.cambridge.org/core

POLYNOMIAL TIME OPERATIONS IN EXPLICIT MATHEMATICS 587

Let us now write ip{x) for the extended Z* statement

x C Xo -> App"(/,x,0).

Then one easily derives (Vx)tp(x) by Z* induction, making use of (2), (3) and (5).
Hence, we have obtained

(6) Appa(/,*o,0),

and since x0 was arbitrary, we have derived the * translation of (Vx e W)(fx — 0)
in PTCA+ + (Z-Ref). This finishes our proof. H

The reader may have noticed that in the proofs of Lemma 11 and Lemma 12 we
did not make use of the full strength of the Z reflection principle (Z-Ref). In fact,
reflection is only needed for formulas of the shape (\/x < y)<j>, so that each positive
universal and each negative existential quantifier in <f> is sharply bounded. We can
also dispense with the initial universal bounded quantifier, expect for obtaining
the bound 03 in equation (10) of the proof of Lemma 11. Similar remarks will
apply to the treatment of the theory PTO+ in Section 5, cf. the proof of Lemma
17. However, the full Z reflection principle will be needed for analyzing the theory
PTO+ + (Z+-CPpj/) at the end of Section 5. For reasons of notational simplicity,
we refrained from displaying the fine structure of Z reflection in the formulation of
theorems and proofs. This is perfectly justified by the fact that full Z reflection does
not take us beyond polynomial strength, cf. Corollary 7.

We are now in a position to state the following embedding theorem.

THEOREM 13. We have for all JZ?PTO formulas <p:

PTO \- <p = > PTCA+ + (Z-Ref) h <f>*.

From Corollary 7 and Theorem 9 we get the following equivalences. Here '= '
denotes a natural adaptation to our setting of Feferman's [13] notion of proof-
theoretic equivalence.

COROLLARY 14. We have the following proof-theoretic equivalences:

PTO = PTCA+ + (Z-Ref) = PTCA.

From Corollary 7 and the fact that an ^PTO formula (Vx e W){tx G W)
translates into a II2 statement under (•)*, we get the following crucial corollary.

COROLLARY 15. Suppose that t is a closed term of Sfpjo and

PTOh(Vx£W)(txeW).

Then t defines a polytime function on W.

§5. The theory PTO+. In this section we propose an extension PTO+ of PTO,
which results from PTO by strengthening set induction to a form of complete
induction on W which is related to NP induction, though it is formally much
stronger. Furthermore, we briefly address a collection principle which does not
raise the proof-theoretic strength of PTO+.

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2275547
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:52:55, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2275547
https:/www.cambridge.org/core

588 THOMAS STRAHM

In the following let the i?p-ro formula N(f, g, x) be given by

N(f,g,x) := (3y<fx)(gxy = 0)2

In addition, P(W2) denotes the obvious generalization of P{ W) to binary (curried)
characteristic functions on W, i.e.

feP{W2) := (V x , j € W)(fxy=Ovfxy = l).

Then PTO+ is defined to be PTO, where set induction (S-lw) is replaced by the
induction axiom (N-lw):

(/ : W -> W) A g G P(W2) A N(f,g,e)

A(Vx e W)(N(f,g,pwx)-*N(f,g,x)) - (Vx e » W / , * , X) .

It is easy to see that set induction (S-lw) in fact follows from the above induction
principle (N-lw).

We know from Theorem 9 that PTCA is contained in PTO via the translation
{•)w. By making use of Lemma 8, it is now straightforward to verify that PTO+

validates the NP induction principle of PTCA+ with respect to {-)w. Hence, the
following analogue of Theorem 9 holds.

THEOREM 16. We have for every L^ formula <f>{x) with at most x free:

PTCA+ h <f>{x) =4- PTO+ \- x€W ^ <f>w(x).

On the other hand, we will now show that PTO+ is not stronger than PTO. In
particular, we establish the * translation of (N-lw) in PTCA+ + (S-Ref).

LEMMA 17. The * translation of (N-lw) is provable in PTCA+ + (E-Ref).

PROOF. In the following let us work informally in PTCA+ + (E-Ref), and assume
the * translation of the premise of (N-lw). The assumptions (/ : W —> W)* and
(g£P{W2))* yield

(1) (Vx)(3!z)App(/,x,Z),

(2) (\/x,y)(3.z)App2(g,x,y,z).

In the sequel fix an arbitrary XQ. By (1) and (S-Ref) there exists an a\ so that

(3) (VxC*o)Oz<f l 1)App a ' (. /> > z) .

In addition, (2) and (E-Ref) provide us with an ai so that

(4) (Vx C x0)(Vy < ai)(3z < a2)Appa
2>(g,x,y,z).

In the following we write (j>{f, g, x) for the formula

(3z < ai)(3y < z)[App?'(/ ,x,z) A App?(g,x,y,0)].

Then it is straightforward to check from (3) and (4) that

(5) (Vx C x0)[N* (/ , g, x) ~ 4>{f, g, x)].

2 Bounded quantifiers are understood to be restricted to W.

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2275547
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:52:55, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2275547
https:/www.cambridge.org/core

POLYNOMIAL TIME OPERATIONS IN EXPLICIT MATHEMATICS 589

On the other hand, we have assumed

(6) N*(f,g,e),

(7) (Vx)(N*(f,g,x) - N*(f,g,xO)AN*(f,g,xl)).

Hence, we can derive (Vx)y/(x) by S* induction from (5), (6) and (7), where y/(x)
denotes the formula

x C x0 -> 4>(f,g,x).

We have shown N*(f, g, x0), and since xo was arbitrary, this finishes our proof. H

The following analogue of Theorem 13 has been established.

THEOREM 18. We have for all JZ?PTO formulas <j>:

PTO+ h <f> = > PTCA+ + (E-Ref) h <f>*.

From Corollary 7 and Theorem 16 we can derive the same corollaries as in the
previous section.

COROLLARY 19. We have the following proof-theoretic equivalences:

PTO+ = PTCA+ + (Z-Ref) = PTCA.

COROLLARY 20. Suppose that t is a closed term of^fpjo and

PTO+h(VxG W){txe W).

Then t defines a polytime function on W.

We finish this section by formulating a collection principle in J?PTO which does
not raise the proof-theoretic strength of PTO+ either. The class of E+ formulas of
.SfpTo is inductively generated as follows:

1. Each atomic formula W{t), t[and (s — t) is a S + formula.
2. If 4> and y/ are 2 + formulas, then so also are (0 V y/) and (<f> A y/).
3. If ^ is a S + formula, then so also are (Vx < y)<j> and {3x)<f>.

Now the scheme of S + collection on W, (Z+-CP^), has the form

(S+-CP^) (Vx < y)(3z € W)4> -» (3w G W)(\/X < y)(3z < u)<j>,

where (j> is a S + formula of -!?PTO-

Now it is easy to verify that PTCA+ + (E-Ref) validates the * translation of
each instance of {~L+-QPW) and, therefore, PTO+ + (2+-CP^) does not go beyond
polynomial strength, too. Here the full strength of (E-Ref) is needed in order to
handle (S + - C P K /) , of course.

§6. Extensions to the Grzegorczyk hierarchy. Our approach described in the
previous sections seems to be general enough. Let am denote the mth branch of
the Ackermann function, and put stf„ := {am : 3 < m < n} for n > 3. If we add
the functions in s>/„ as base functions to our system, we get applicative theories G„
(« > 3) so that the provably total functions of G„ are exactly the number-theoretic
functions in the «th level of the Grzegorczyk hierarchy. In particular, G3 captures
the elementary functions, and it is proof-theoretically equivalent to I Ao + exp in the
terminology of Paris and Wilkie.

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2275547
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:52:55, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2275547
https:/www.cambridge.org/core

590 THOMAS STRAHM

All these results are established in complete analogy to the results of the previous
sections. Again it is possible to provide reductions to suitable subsystems of arith
metic, and it is not difficult to verify that S reflection (S-Ref) can conservatively be
added to the theory under consideration.

We finish this section by mentioning that in the case of the theories G„ it might
be more natural to replace the predicate W by the usual predicate N for the natural
numbers.

§7. Final discussion. We have presented a theory PTO of polynomial time op
erations and binary words in the context of explicit mathematics. PTO contains
Ferreira's theory PTCA, and it can be embedded into the system PTCA+ plus the
crucial principle of 2 reflection (S-Ref), thus yielding that the provably total func
tions of PTO are exactly the polytime functions. We have proposed an extension
PTO+ of PTO which is not stronger than PTO. Finally, we have sketched applicative
theories G„ (« > 3) which capture the nth level of the Grzegorczyk hierarchy.

The theories PTO and PTO+ are based on a partial form of term application, and
the proof-theoretic reduction described in Section 4.2 makes substantial use of this
fact. The question arises whether the assumption of a total application operation
does raise the strength of PTO. More precisely, what is the exact proof-theoretic
strength of PTO + (Tot), where (Tot) denotes the axiom of totality,

(Tot) (Vx,y)(xyl).

It is known that totality (Tot) does not raise the strength of various applicative theo
ries of strength at least PRA, including systems with the so-called non-constructive
minimum operator (cf. Jager and Strahm [22]). The proof-theoretic strength of
such systems is generally established by formalizing total term models in suitable
systems of arithmetic, where essential use is made of the fact that Church Rosser
properties of certain reduction relations can be formalized there.

If we consider a suitable total term model of PTO which is based on the usual
reduction relation for total combinatory logic, then we do not know whether the
corresponding Church Rosser property is provable in PTCA+ + (S-Ref). The usual
proof that the combinatory reduction relation is Church Rosser is certainly formal-
izable in PRA, and a more sophisticated proof can already be carried through in
IAo + exp. This has recently been established by Duccio Pianigiani. In particu
lar, G„ + (Tot) is not stronger than G„ (n > 3). However, we do not yet know
whether PTO + (Tot) is stronger than PTO, although we strongly conjecture that
the provably total functions of PTO + (Tot) are still computable in polynomial time.

Recently, Cantini [6] has established—among other things—that the provably
total functions of the system PTO + (Tot) have polynomial growth rate only. His
analysis of PTO + (Tot) makes use of partial cut elimination and an asymmetric
interpretation with respect to the W predicate. However, it does not follow from
Cantini's argument that the provably total functions of PTO + (Tot) are computable
in polynomial time.

Appendix. In this appendix we give a proof of Theorem 10. In particular, we show
that the operator form st(Q, x, y, z) has a Si fixed point App which is functional,
provably in PTCA+ + (S-Ref). As already indicated, App will be constructed from

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2275547
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:52:55, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2275547
https:/www.cambridge.org/core

POLYNOMIAL TIME OPERATIONS IN EXPLICIT MATHEMATICS 591

below by making use of a specific computability predicate CompJ/(c), expressing
that c is a computation sequence with respect to the operator form stf. Informally,
a computation sequence c with respect to stf is a sequence c — ((c)o, • • • , (c)p(ih(c))}
so that each (c)a is a sequence ((c)flio, (c)a,\, {c)a,2) of length 3 with the intended
meaning that (c)a,o applied to (c)a,i yields (c)„i2 in the sense of stf, and moreover,
this is computed or "proved" by ((c)o,... , (c)p(a)).

Let us first define L& formulas A p p „ (/ , x \ , . . . ,x„,y,a,c)3 for each n > 1 by
induction on n as follows:

bppx{f,x\,y,a,c) := (3b C a)((c)b = (f,xuy)),

App„ + i (/ , * i , . . . ,x„+i,j>,a,c)

:= (3z < c)(3b C a) [App„(/ ,x 1 ; . . . ,x„ ,z ,a ,c) A (c)b = (z,x„+l,y)].

The intended meaning of App„(/, x\,... ,x„,y, a, c) is that fx\ . . . x„ ~ j with
respect to the sequence c restricted to the entries with index smaller than a.

REMARK 21. App„ {f,x\,... , x„, y, a, c) is an extended S* formula.

In a next step we define an L@ formula RecAPP(/, g, b, x, y,z,a,c). It defines the
graph of the function which is defined from / and g by bounded primitive recursion
with length bound b in the sense of the computation sequence c with entry indices
smaller than a.

RecAPP(/, g, b, x, y, z,a,c)

••= (3v < c)[Seq(u) A lh(v) = \y\l A A p p ^ / . x , (v)e,a,c)

A(Vtu C y)(w ^ e

-^ (3uuu2)[App3(g, x, w, (v)lpMl,uua, c)

AApp2{b,x,w,u2,a,c) A (v)\w\ = Ui\u2])

A Z = (V)\y\].

REMARK 22. RecAPP(/, g, b, x, y, z,a,c) is an extended Z* formula.

In the following let us write sft (x, y, z) for the ith clause of the operator form
s/ for i ^ 5 and / ^ 26. We are ready to define the L& formula Comp^, which
expresses that c is a computation sequence in the sense of the operator form s4'.

Comp^(c) := Seq(c) A (Va c/A(c))[Seq3((c)a) A C((c)afi, (c)a,\, {c)a<2,a%

where C (x, y,z,a) is the disjunction of the sft (x, y, z) for J ^ 5 and / ^ 26 plus the
two disjuncts

(5') Seq3(x) A (x)0 = §

A (3v, w < c)[App, ({x)u y, v, a, c) A Appj ((x)2, y, w, a, c) A Appj (v, w, z, a, c)],

(26') Seq5(x) A(x)0 = rw ARecAPP((x)i, (x)2, (x)3, (x)4,y,z,a,c).

3 In the sequel it will always be clear from the number of parameters shown whether we mean
App„ (/ , x i , . . . ,xn,y,a,c) or App„ (/ , * i , . . . ,x„,y).

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2275547
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:52:55, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2275547
https:/www.cambridge.org/core

592 THOMAS STRAHM

REMARK 23. Comp^(c) is an extended ll\ formula.

Now we are in a position to define the L& formula App(x, y,z), which expresses
that there is a computation sequence c whose last entry is {x, y,z).

App(x,.y,z) := (3c)[Comp^(c) A last(c) = {x,y,z)].

REMARK 24. App(x, y, z) is equivalent to a Si formula, provably in PTCA+.

REMARK 25. The reader might ask why we did at all make use of the operator
form s/{Q, x,y,z) in Section 4.2 instead of giving the above definition directly. The
reason is conceptual clarity: the only properties which we used in order to establish
the embedding of PTO into PTCA+ + (S-Ref) are the fixed point property and the
functionality property, i.e., the two claims of Theorem 10. This is in full accordance
with previous treatments of applicative theories, cf. e.g., Feferman and Jager [14].

It remains to show that (i) App is a fixed point of the operator form stf, and (ii)
App is functional, and in addition, (i) and (ii) are provable in PTCA+ + (S-Ref). In
the following we work informally in the theory PTCA+ + (S-Ref), and we first want
to show that App is functional.

LEMMA 26. PTCA h (Vx,j,zuZ2){App(x,y,z\) A App(x,y,zj) —» z\ = z-i).

PROOF. We assume Comp^(Z)) A Comp^(c) and show the Ajj statement

v c lh(c)

- (V« C v)(Vw C lh(b))[(b)w = ((c)Wi0, (c)uA, (b)w,2) -» (b)w,2 = (c)„,2]

by induction on v. Then our claim immediately follows. If v = e, then one of the
clauses stft for some i different from 5 and 26 applies, and our assertion is immediate.
For the induction step let us assume that our assertion holds for some v; in order
to verify it for vl, we have to distinguish several cases. If we are again in the case
of one of the clauses s^t for i different from 5 and 26, then our claim follows as
above. If clause (5') for the S combinator applies, then we are immediately done
by the induction hypothesis. Finally, if we are in the case of clause (26') for rw,
then our assertion follows from the induction hypothesis and an obvious subsidiary
induction. This settles our claim about the functionality of App. H

It remains to show that App(x, y, z) defines a fixed point of the positive operator
•^(Q,x,y,z), provably in PTCA+ + (S-Ref). We split the proof of the fixed point
property into the two implications (i) s/{App,x,y,z) —> App{x,y,z), and (ii)
App(x, y,z) -* $/{App,y,z).

LEMMA 27. PTCA+ + (S-Ref) 1- (Vx,y, z)(^(App, x,y, z) -> App(x,y, z)).

PROOF. Let us assume j/(App, x,y,z). Then exactly one of the clauses (1)—(26)
applies. If we have s^t(x,y,z) for an i different from 5 and 26, then we are done
by the computation sequence c = ((x, y,z)). Now suppose that clause (5) applies.
Then we have Seq3(x) A (x)o = s, and there exist binary words v and w so that

App{{x)uy,v) A App((x)2,y,w) A Ap-p(v,w,z).

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2275547
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:52:55, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2275547
https:/www.cambridge.org/core

POLYNOMIAL TIME OPERATIONS IN EXPLICIT MATHEMATICS 593

The above three conjuncts provide $f computation sequences CQ, C\ and c2, and
obviously the sequence c = c0 o c\ o c2 o ((x, y, z)) witnesses App(x, y, z) as desired.
Finally, we have to consider clause (26) for Xw- Therefore, assume

Seq5(x) A (x)0 = xw A RecApp((x)i, (x)2, (x)3, (x)4 ,y,z) .

Then there exists a v, and by (S-Ref) an a so that we have

Seq(v) A lh(v) = \y\l A App"((x) , , (x)4 , («)«)

A(Vw C y)(w ^e -> (3uuu2 < a)[Appa
3((x)2,(x)4,w,(v)lpMl,ui)

AApp2{(x)3,(x)4,w,u2) A(v)\w] =UI\U2])

l\Z = {V)\y\.

Now it is straightforward to establish the statement

y'Qy -» (3 C < ? (/ , a)) [C o m p ^ (c)

A RecApp((x)1, (x)2, (x)3, (x)4, j ' , (u)|y|,/>(//j(c)), c)]

by induction o n / , where *(>>', a) is a suitable L term which provides an upper
bound for the length of c (as a binary word). For example, choose the term
t(y', a) as (aaaaaS x / 1) . By setting y' = y, there now exists an sf computation
sequence cy so that RecApp((x)1, (x)2, (x)3, (x)4, y, z, p(lh(cy)), cy). Our argument
is finished, since the sequence c' = cy o ((x, y, z)) witnesses App(x, y,z). H

Our last aim is to show the other direction of the fixed point property.

LEMMA 28. PTCA h (Vx,y, z)(App(x,y, z) —* j / (App, x,y,z)).

PROOF. Suppose App(x, y, z) holds for some binary words x,y and z. Hence,
there exists a sequence c so that

CompJ/(c) A last{c) = (x,y,z).

If s£i (x, y, z) holds for some /' different from 5 and 26, then our claim is trivial. If
(x,y, z) was computed according to clause (5'), then an obvious decomposition of
c yields the desired result. Finally, let us consider the case where we have

Seq5(x) A (x)0 = xw A RecApp((x)1, (x)2, (x)3, {x)4,y,z,p(lh(c)),c).

Then an easy decomposition of c yields RecApp((x)i, (x)2, (x)3, (x)4) as desired. H

This ends the proof of Theorem 10, and in fact also our paper.

REFERENCES

[1] H. P. BARENDREOT, The Lambda calculus, revised ed., North Holland, Amsterdam, 1984.
[2] M. J. BEESON, Foundations of constructive mathematics: Metamathematical studies, Springer-

Verlag, Berlin, 1985.
[3] W. BUCHHOLZ and W. SIEO, A note on polynomial time computable arithmetic, Contemporary

Mathematics, vol. 106 (1990), pp. 51-55.
[4] S. R. Buss, Bounded arithmetic, Bibliopolis, Napoli, 1986.
[5] , A conservation result concerning bounded theories and the collection axiom, Proceedings

of the AMS, vol. 100 (1987), no. 4, pp. 709-715.

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2275547
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:52:55, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2275547
https:/www.cambridge.org/core

594 THOMAS STRAHM

[6] A. CANTINI, On the computational content of theories of operations with total application, hand
written notes, June 1995.

[7] — , Asymmetric interpretation for bounded theories, Mathematical Logic Quarterly, vol. 42
(1996), pp. 270-288.

[8] A. COBHAM, The intrinsic computational difficulty of functions, Logic, methodology and philosophy
of science II, North Holland, Amsterdam, 1964, pp. 24-30.

[9] S. A. COOK and B. M. KAPRON, Characterizations of the basic feasible functionals of finite type,
Feasible mathematics, Birkhauser, Basel, 1990, pp. 71-95.

[10] S. A. COOK and A. URQUHART, Functional interpretations of feasibly constructive arithmetic,
Annals of Pure and Applied Logic, vol. 63 (1993), no. 2, pp. 103-200.

[11] S. FEFERMAN, A language and axioms for explicit mathematics, Algebra and logic, Lecture Notes
in Mathematics, vol. 450, Springer-Verlag, Berlin, 1975, pp. 87-139.

[12] , Constructive theories of functions and classes, Logic Colloquium '78, North-Holland,
Amsterdam, 1979, pp. 159-224.

[13] , Hubert's program relativized: proof-theoretical and foundational studies, this JOURNAL,
vol. 53 (1988), pp. 364-384.

[14] S. FEFERMAN and G. JAGER, Systems of explicit mathematics with non-constructive fi-operator.
Part I, Annals of Pure and Applied Logic, vol. 65 (1993), no. 3, pp. 243-263.

[15] , Systems of explicit mathematics with non-constructive jx-operator. Part II, Annals of Pure
and Applied Logic, vol. 79 (1996), no. 1.

[16] F. FERREIRA, Polynomial time computable arithmetic and conservative extensions, Ph.D. thesis,
Pennsylvania State University, 1988.

[17] , Polynomial time computable arithmetic, Contemporary Mathematics, vol. 106 (1990),
pp. 137-156.

[18] , A feasible theory for analysis, this JOURNAL, vol. 59 (1994),no. 3, pp. 1001-1011.
[19] , A note on a result of Buss concerning bounded theories and the collection scheme, Portu-

galiae Mathematica, vol. 52 (1995), no. 3, pp. 331-336.
[20] T. GLAB and T. STRAHM, Systems of explicit mathematics with non-constructive fi-operator and

join, Annals of Pure and Applied Logic, to appear.
[21] P. G. HINMAN, Recursion-theoretic hierarchies, Springer-Verlag, Berlin, 1978.
[22] G. JAGER and T. STRAHM, Totality in applicative theories, Annals of Pure and Applied Logic,

vol. 74 (1995), no. 2, pp. 105-120.
[23] A. SETH, Complexity theory of higher type functionals, Ph.D. thesis, Tata Institute of Fundamental

Research, Bombay, 1994.
[24] T. STRAHM, Theories with self-application of strength PRA, Master's thesis, Institut fiir Informatik

und angewandte Mathematik, Universitat Bern, 1992.
[25] A. TROELSTRA and D. VAN DALEN, Constructivism in mathematics vol. I, North-Holland, Ams

terdam, New York, 1988.
[26] — , Constructivism in mathematics vol. II, North-Holland, Amsterdam, 1988.

INSTITUT FUR INFORMATIK UND ANGEWANDTE MATHEMATIK
UNIVERSITAT BERN

NEUBRUCKSTRASSE 10
CH-3012 BERN, SWITZERLAND

E-mail: strahm@iam.unibe.ch

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2275547
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:52:55, subject to the Cambridge Core terms of use, available at

mailto:strahm@iam.unibe.ch
https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2275547
https:/www.cambridge.org/core

	1

