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POLYNOMIAL TIME OPERATIONS IN EXPLICIT MATHEMATICS 

THOMAS STRAHM 

Abstract. In this paper we study (self-)applicative theories of operations and binary words in the context 

of polynomial time computabiHty. We propose a first order theory PTO which allows full self-application 

and whose provably total functions on W = {0, 1} * are exactly the polynomial time computable functions. 

Our treatment of PTO is proof-theoretic and very much in the spirit of reductive proof theory. 

§1. Introduction. Theories with self-application provide an elementary frame
work for many activities in (the foundations of) mathematics and computer science. 
They were first introduced by Feferman [11,12] as a basis for his systems of explicit 
mathematics, e.g., the theory T0; these theories are broadly discussed in the litera
ture from a proof-theoretic and model-theoretic point of view, cf. e.g., the textbooks 
Beeson [2] and Troelstra and Van Dalen [26] for a survey. 

It is the aim of the present work to propose & first order theory PTO of opera
tions and binary words, which allows full self-application and whose provably total 
functions on W = {0,1}* are exactly the polynomial time computable functions. 
In spite of its proof-theoretic weakness, PTO has an enormous expressive power 
due to the presence of full (partial) combinatory logic, i.e., there are terms for every 
partial recursive function. 

When trying to set up a theory with self-application of polynomial strength, one 
might first try to mimic first order systems of bounded arithmetic—say Buss' S\—in 
the applicative setting in a direct way. However, it is shown in Strahm [24] that this 
naive approach does not work, and one immediately ends up with systems of the 
same strength as primitive recursive arithmetic PRA; this is due to the presence 
of unbounded recursion principles in the applicative language. Hence, a direct 
translation of induction principles from bounded arithmetic is not successful, and 
a theory had to be found which is better tailored for the applicative framework. 

The formulation of the proposed theory PTO is very much akin to well-known 
theories of operations and numbers, namely PTO can be viewed as the polynomial 
time analogue of the theory BON + (Set-IND^) of Feferman and Jager [14]. The 
choice of a unary predicate W for binary words instead of a predicate N for natural 
numbers is not mandatory, but more natural in the context of polynomial time 
computabiHty. Crucial in the formulation of PTO is the principle of so-called set 
induction, which is very natural and—most important—in the spirit of applicative 
theories. 
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576 THOMAS STRAHM 

The proof of the fact that PTO captures exactly polynomial time is established 
along the lines of reductive proof theory. More precisely, we show that PTO contains 
Ferreira's system of polynomial time computable arithmetic PTCA (cf. [16,17]) via a 
natural embedding. Furthermore, PTO is reducible to the theory PTCA+ + (E-Ref), 
where PTCA+ denotes the extension of PTCA by NP induction and (E-Ref) is the 
reflection principle for E formulas. E reflection (E-Ref) is equivalent to the collection 
principle for bounded formulas, (E^-CP). PTCA+ + (E-Ref) is known to be a II2 
conservative extension of PTCA+ by the work of Buss [5], Cantini [7], or Ferreira 
[19]. Moreover, PTCA+ is II2 conservative over PTCA by Buchholz and Sieg 
[3], Cantini [7], and Ferreira [17]. Summing up, the provably total functions of 
PTCA+ + (E-Ref) are exactly the polytime functions. 

Finally, let us mention that our approach can easily be extended in order to provide 
applicative theories which capture the nth level of the Grzegorczyk hierarchy. 

The plan of the paper is as follows. In Section 2 we introduce the formal frame
work for partial applicative theories, and we give an exact formulation of the theory 
PTO. Section 3 is centered around the theory of polynomial time computable 
arithmetic PTCA+ plus the E reflection principle, and some known proof-theoretic 
results are addressed. The exact proof-theoretic strength of PTO is established in 
Section 4: we give an embedding of PTCA into PTO and show how PTO can be 
reduced to PTCA+ + (E-Ref). Section 5 deals with various conservative extensions 
of PTO, and in Section 6 we briefly address suitable applicative theories which cap
ture the Grzegorczyk classes. Section 7 contains a conclusion and an open problem 
concerning the totality of the application operation. Finally, in the Appendix of 
this paper we include a proof of Theorem 10. 

§2. The theory PTO. In this section we introduce the theory PTO of polynomial 
time operations on binary words, and we address some of its basic properties. 

The language .SWo of PTO is a first order language of partial terms with indi
vidual variables a, b, c, x, y, z, u, v, w, f,g,h,... (possibly with subscripts). In addi
tion, J2?PTO includes individual constants k, s (combinators), p, po, Pi (pairing and 
unpairing), E, 0,1 (empty word, zero, one), *,x,pw (word concatenation and mul
tiplication, predecessor), Cc (initial subword relation), dw (definition by cases on 
binary words), Xw (bounded primitive recursion). JZ?PTO has a binary function 
symbol • for (partial) term application, unary relation symbols j (defined) and W 
(binary words) as well as a binary relation symbol = (equality). 

The individual terms (r, s, t, r\, s\, t\,...) of .SPTO are inductively defined as fol
lows: 

1. The individual variables and individual constants are individual terms. 
2. If s and t are individual terms, then so also is (̂  • ?). 

In the following we write (st) or just st instead of (s-t), and we adopt the convention 
of association to the left, i.e., s\s2.. .s„ stands for (... (s\s2) • • • •?«)• We also write 
{t\, t2) for pt\t2 and {ti,t2,... , t„) for (t\,(t2,... , tn)). Finally, we often use infix 
notation for * and x, i.e., s*t abbreviates *st and sxt stands for xst. 

The formulas (<t>, y/, %, 4>\, y/\, x\ > • • •) of J?PTO are inductively defined as follows: 

1. Each atomic formula W{t), t[ and (s = t) is a formula. 
2. If 0 and y/ are formulas, then so also are ->(/>, (0V^) , (4>Ay/) and (<p —> y/). 
3. If 0 is a formula, then so also are (3x)0 and (Vx)< .̂ 
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POLYNOMIAL TIME OPERATIONS IN EXPLICIT MATHEMATICS 577 

Our applicative theories are based on partial term application. Hence, it is not 
guaranteed that terms have a value, and f J, is read as 't is defined' or lt has a value'. 
The partial equality relation ~ is introduced by 

s ~ t := Os|V?|) -> (J = 0-

We use the following abbreviations concerning the predicate W (s* — s\,... , s„): 

se w 
{3x e w)4> 
(Vx € W)(f> 

{t:W^W) 

(t : Wm+] -+ W) 

:= W ( ^ ) A - - - A ^ U ) , 

:= (3x)(x GWA<t>), 

(Vx)(x e PF -» 0), 

(Vx e H^)(rx e PF), 

(Vx e PF)(?x : Wm -^ PT). 

In addition, let us write s C t instead of Ccst — 0, and s < t (or Ixs C lxt. 
Finally, (s = t \ r) is an abbreviation for 

. (r <t As Ct Alxs = lxr)V (t <r As = t). 

Sets of binary words are naturally understood in our context via their total charac
teristic functions. Accordingly, we define P( W) by 

f eP{W) := (Vxe W){fx=0Vfx = l). 

Before we turn to the exact axiomatization of PTO, let us give an informal inter
pretation of its syntax. The individual variables are conceived of as ranging over 
a universe V of computationally amenable objects, which can freely be applied to 
each other. Self-application is meaningful, but not necessarily total. V is assumed 
to be combinatory complete, due to the presence of the well-known combinators 
k and s, and V is closed under pairing. There is a collection of objects W c V, 
consisting of finite sequences of 0's and l's; W is generated from e, 0 and 1 by the 
operation * of word concatenation. Furthermore, we have an operation x of word 
multiplication, where w\ x w2 denotes the word w\ concatenated with itself length 
of w2 times. p«/ is supposed to be a predecessor or destructor operation on W, and 
Cc denotes the characteristic function of the initial subword relation. dw acts as 
a definition by cases operator on W. The relation w\ < w2 means that the length 
of to 1 is less than or equal to the length of wi, accordingly, w\\wi denotes the 
truncation of w\ to the length of u>2- This gives meaning to the bounded recursor 
xw on W, which provides an operation Xw fgb for primitive recursion from / and 
g with length bound b. 

The underlying logic of PTO is the classical logic of partial terms due to Beeson 
[2]; it corresponds to E+ logic with strictness and equality of Troelstra and van 
Dalen [25]. The non-logical axioms of PTO are divided into the following nine 
groups. 

I. Partial combinatory algebra. 

(1) kxy = x, 

(2) Sxyl A Sxyz ~ xz(yz). 

II. Pairing and projection. 

(3) po{x,y) = x A Pi(x,y) = y. 
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578 THOMAS STRAHM 

III. Binary words. 

(4) s £ W A 0 6 W A 1 G W, 
(5) (* : W2 - • W), 
(6) x £ W ^> x*e = x, 
(7)x£WAy£W^> x*(y*0) = {x*y)*0 A x*(y*l) = (x*y)*l, 
(8) x £ W Ay £ W ^ x*0 ^ y*l A x*0 ^e A x*l ^ e, 
(9) x £W Ay £W A x*0 = y*0 -> x=y, 

(10) x £ W Ay £ W A x*l = y*l -> x = y. 

IV. Word multiplication. 

(11) x : W2 -> W, 
(12) x £ W - > x x e = e, 
(13) x £W Ay £W -* xx{y*0) = (xxy)*x A xx(y*l) = (xxy)*x. 

V. Predecessor on W. 

(14) pw : W -> W, 
(15) pive = e, 
(16) x G W -* pn/(x*0) = x A p^ (x* l ) = x, 
(17) x G W A x ^ e -> (pwx)*0 = x V (p^x)* l = x. 

VI. Initial subword relation. 

(18) x £W Ay £W -* Ccxy = 0 V C<zxy = 1, 
(19) x £JV ^ (x Ce <-+ x = e), 
(20) x G W A y G W A J ^ £ -> (x C j <-> x C p ^ y V x = j ) . 

VII. Definition by cases on W. 

(21) a £ W Ab £ W Aa =b —> dwxyab = x, 
(22) a £ W Ab £ W Aa^b -+ 6wxyab = y. 

VIM. Bounded primitive recursion on W. 

(23) ( / : W - • W) A (g : W3 -> W) A (b : W2 - W) -» 
(r^/gfc : W2 -> JF), 

(24) ( / : W - • W) A {g : W3 - • W) A (6 : fF2 -» W) A 

x e W A y G W A > > ^ £ A r t = r > / g 6 -> 

«X£ = / x A hxy = gxy(/zx(pn/_}>)) | tary. 

IX. Set induction on W (S-lw) 

(25) / £ P{W) A fs = 0 A (Vx G W0( / (P^* ) = 0 -» / * = 0) -

(VxG W ) ( / x = 0 ) . 
Observe that in the formulation of bounded primitive recursion rw on W, we do no? 
require b to be a polynomial, but only a total operation on W. This formulation is 
more natural, and we will see in Section 4.2 that it does not raise the proof-theoretic 
strength of PTO. 

The principle of set induction is crucial for the proof-theoretic strength of PTO. 
As we will see in Section 4, the premise f £ P{W) allows one to treat set induction 
in a certain theory of arithmetic, which has polynomial strength only. Set induction 
has previously played an important role in systems of explicit mathematics with the 
so-called non-constructive minimum operator, cf. [14, 15, 20, 22]. 
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POLYNOMIAL TIME OPERATIONS IN EXPLICIT MATHEMATICS 579 

As usual the axioms of a partial combinatory algebra allow one to define X 
abstraction and to prove a recursion theorem (cf. e.g., [12, 11]). Hence, there is an 
J2?PTO term t / for each partial recursive function / , however, PTO does generally not 
prove the totality o f / . In particular, PTO includes a term /eXp for exponentiation. 

PROPOSITION 1. For each J?PTO term t there exists an .S?PTO term (Xx.t) whose free 
variables are those oft, excluding x, so that 

PTO h (Xx.t)l A (Xx.t)x ~ t. 

PROPOSITION 2. There exists an J?PTO term rec so that 

PTO h rec/J, A (Vx)(rec/x ~ / ( r e c / ) * ) . 

In the following let us briefly sketch the standard recursion-theoretic model PRO 
(partial recursive operations) of PTO. The universe of PRO consists of the set 
of finite 0-1 sequences W = {0,1}*, and W is interpreted by W. Application • 
is interpreted as partial recursive function application, i.e., x • y means {x}{y) in 
PRO, where {x} is a standard enumeration of the partial recursive functions over 
W. It is easy to find interpretations of the constants of JSVro SO that the axioms of 
PTO are true in PRO. Observe that the elements ofP(W) are exactly the recursive 
sets on W in PRO. 

There are many more interesting models of the combinatory axioms, which can 
easily be extended to models of PTO. These include further recursion-theoretic 
models, term models, generated models and set-theoretic models. For detailed 
descriptions and results the reader is referred to Beeson [2], Feferman [12] and 
Troelstra and van Dalen [26]. 

Let us finish this section by making some comments concerning polynomial 
time functionals. Cook and Urquhart [10] introduced a class BFF of basic feasible 
functionals in all finite types in order to provide functional interpretations of feasibly 
constructive arithmetic. The type 1 functions of BFF coincide with the polynomial 
time computable functions. It is straightforward from the axioms of PTO and 
Proposition 1 that there exists an i?p-ro term tF for each functional F in BFF 
so that the defining equations and the well-typedness of F are derivable in PTO. 
Further work on BFF and feasible functionals in general can be found in Cook and 
Kapron [9] and Seth [23]. 

§3. The theory PTO+ + (£ -Ref). In the following let us briefly sketch the theory 
PTCA+ + (S-Ref), which we will use in the next section in order to interpret PTO. 

The theory PTC A of polynomial time computable arithmetic over binary strings 
was introduced by Ferreira [16, 17]. PTC A can be viewed as a polynomial time 
analogue of Skolem's system of primitive recursive arithmetic PRA. The theory 
PTC A is formulated in the first order language L&, which is based on the elementary 
language L. The latter contains individual variables a, b, c, x, y, z, u, v, w, f,g,h,... 
(possibly with subscripts), constants e, 0, 1, the binary function symbols * and x ' 
as well as the binary relation symbols — and C; the meaning of these symbols 
is identical to the one of the corresponding operations in .SVro- Now L# is 
obtained from L by adding a function symbol for each description of a polynomial 

We again use infix notation for * and x and often write ts instead of t * s 
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580 THOMAS STRAHM 

time computable function, where the terms of L act as bounding terms, similar to 
Cobham's characterization of the polytime functions (cf. [8]). Terms (r, s,t,...) 
and formulas (<f>, y/, / , . . . ) of L@ (both possibly with subscripts) are denned as 
usual. For the details the reader is referred to [16, 17]. 

There are two sorts of bounded quantifiers which are relevant in the sequel. The 
sharply bounded quantifiers have the form (3x)(x C t A . . . ) or (Vx)(x C r - > . . . ) , 
and in the following we just write (3x C *)(•••) and (Vx C t)(...). Furthermore, 
we have (generally) bounded quantifiers (3x)(x < t A . . . ) and (Vx)(x <*—>. . . ) , 
where x < t reads as 1 x x C 1 x t as in the previous section. Again we use the 
usual shorthands as above. If <f> is an arbitrary L& formula, then we write <j>' for the 
formula which is obtained from <f> by replacing each unbounded quantifier {<§x) by 
the corresponding bounded quantifier (<§x < t). The following definition contains 
important classes of L& formulas. 

DEFINITION 3. Let us define the following eight classes of L& formulas. 
1. QF denotes the set of all quantifier free L& formulas. 
2. A formula is called Ag if all its quantifiers are sharply bounded. 
3. A formula is in the class 2* if it has the form (3x < t)<j> for <p a formula in 

QF. 
4. A formula is called extended 2^ or eL\ if (i) all its positive existential and 

negative universal quantifiers are bounded, and (ii) all its positive universal 
and negative existential quantifiers are sharply bounded. 

5. An Ljs formula is called Z ^ or bounded if all its quantifiers are bounded. 
6. A Si formula has the form (3x)0 for <p in QF; a FL; formula is of the shape 

(Vx)(3j)0for<^inQF. 
7. A formula is in the class £ if all its positive universal and negative existential 

quantifiers are bounded. 

The AQ formulas are the polynomial time decidable matrices of [16, 17]. Further
more, the E^ formulas define exactly the NP predicates and the 2 ^ formulas the 
predicates in the Meyer-Stockmeyer polynomial time hierarchy. 

The theory of polynomial time computable arithmetic PTCA is a first order theory 
based on classical logic with equality, and comprising defining axioms for the base 
language L as well as defining equations for each description of a polytime function 
in Lgs. In addition, PTCA includes the notation induction scheme 

^(e)A(Vx)(0(x) ->^(xO)A0(;cl)) - • (Vx)0(x) 

for each L& formula <f>(x) in QF. It is well-known that PTCA proves induction for 
AQ formulas. For details we refer to [16, 17]. Furthermore, it is straightforward 
to establish that the provably total functions of PTCA are exactly the polytime 
functions (cf. [3, 17]). 

Let PTCA+ denote the extension of PTCA, where notation induction is allowed 
for NP predicates, i.e., formulas in £*. The system PTCA+ is closely related to 
Buss' system S\ (cf. [4]). Induction is provable in PTCA+ for extended Y!{ formulas 
(cf. [16, 17]). In analogy to Parson's result we obtain that PTCA+ is a conservative 
extension of PTCA with respect to Fl2 statements. Proofs can be found in [3, 7, 17]. 
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POLYNOMIAL TIME OPERATIONS IN EXPLICIT MATHEMATICS 581 

PROPOSITION 4. Suppose PTCA+ I- (\/x)(3y)<f>(x,y), where cj> is a QF formula. 
Then we have PTCA h (\/x)(3y)<f>(x, y). 

COROLLARY 5. Suppose PTCA+ h- (\/x)(3y)<p(x,y), where <j) is a QF formula. 
Then there exists an L& term t{x) so that PTCA h (Vx)0(x, t(x)). 

In order to interpret our theory of polynomial time operations on binary words 
PTO, we will need the crucial principle of £ reflection (S-Ref), which has the form 

(I-Ref) <f> - • (3a)<f>a, 

where 0 is a formula in £. It is not difficult to see that (2-Ref) is equivalent to the 
collection principle for bounded formulas (S^-CP), which reads as 

(2&-CP) (Vx < t)(3y)4> - (Ba)(Vx < t)(3y < a)<j>, 

where 0 is a Z^, formula. It is known that adding £ reflection (or equivalently 
bounded collection) to a suitable bounded theory yields a IT2 conservative extension. 
This was first proved by Buss [5]. Another elementary model-theoretic proof is 
due to Ferreira [19]. Finally, a very perspicuous proof-theoretic proof making 
use of partial cut elimination and an asymmetric interpretation has recently been 
established by Cantini [7]. 

PROPOSITION 6. Suppose PTCA+ + (I-Ref) h (Wx)(3y)<p(x,y), where <f> is a 2 ^ 
formula. Then we have PTCA+ h (yx)(3y)<f>(x, y). 

As consequence we get by Corollary 5 the desired conservation result. 

COROLLARY 7. Suppose PTCA+ + (S-Ref) h (Vx)(3y)<fi(x,y), where <p is a QF 
formula. Then there exists an L& term t(x) so that PTCA I- i^lx)(f>(x, t(x)). 

Let us mention that Z reflection (E-Ref) follows from Weak Konig's Lemma for 
trees defined by bounded formulas, (E^-WKL). In fact, the first order strength 
of (E^-WKL) is exactly (S-Ref) (over the base theory PTCA+), cf. Ferreira [18]. 
Furthermore, (E^-WKL) is a consequence of strict II j reflection, which by Cantini 
[7] again yields a II2 conservative extension of PTCA. 

In the following we often write \s\ (the length of s) instead o f l x s , i c / instead 
of s C t A s ^ t, and s < t instead o f l x s c l x ( . The abbreviation s — 11 r is 
understood in the same way as in the previous section. In addition, p denotes the 
obvious predecessor function on binary words and c<z is the binary characteristic 
function of the initial subword relation. Finally, we use the trivial representation of 
the natural numbers as tally words, which is given by 0 = s and n + 1 = n\. We 
will write n instead of n whenever it is clear from the context that we mean n as a 
tally word and not as a natural number. 

We finish this section by adopting some conventions concerning polynomial time 
sequence coding within PTCA. For the details the reader is again referred to Ferreira 
[16,17]. Let (...) denote a polytime function for forming n-sequences (to,... , ?„_i) 
of binary words, and let lh(t) denote the length of the sequence coded by t, i.e., if 
/ = (t0,... , tn-\), then lh(t) = n. We write Seq„(?) for Seq(0 A lh(t) = n. There 
is a polytime projection function so that (t)m denotes the wth component of the 
sequence coded by r if m c lh(t); we write last{t) for (0 (̂/A(r)) and (t)mi„ instead of 
({t)m)„. Furthermore, let o denote the polytime sequence concatenation function. 
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582 THOMAS STRAHM 

For example, if tis the sequence {to,t\,t2, t^), then lh(t) = 1111, (t)e = to, (Oi = h, 
M n = h, M m = ?3, /os<(0 = '3 and f = {t0, tx) o (?2, f3)- Finally, let SqBd{a,b) 
denote a suitable L& term, so that PTCA proves 

Seq(v) A lh{v) < \b\\ A (Vtu C lh(v)){{v)w < a) -+ v < SqBd(a,b). 

SqBd is easily constructed from the terms in L. This ends our discussion of the 
theory PTCA+ + (S-Ref). In the next sections we establish the exact proof-theoretic 
strength of PTO and its extensions. 

§4. The proof-theoretic strength of PTO. In the following we address the main 
result of this paper, which says that the provably total functions of PTO are exactly 
the polytime functions. We sketch proof-theoretic lower and upper bounds, and 
we propose a generalization of set induction which does not go beyond polynomial 
strength. 

4.1. Lower bounds. There is a natural embedding of the language Lg? into the 
language ^ P T O - Using the bounded recursion operator rw, each (description of) a 
polytime function can be represented in PTO by an Jzfpjo term. Furthermore, the 
recursion equations and the totality of the corresponding function are derivable in 
PTO. Hence, we have an .S^PTO formula <f>w (x) for each L& formula </>, where the 
individual variables of L& are supposed to range over W, i.e. 

((3y)4>(x,y))w = £y€W)ct>w{x,y), 

and similarly for universal quantifiers. Moreover, each quantifier free formula of 
Lg> can be represented in Jzfpjo by a s e t in the sense of P{ W). 

LEMMA 8. For every quantifier free formula <j>{x) ofL& with at most x free there 
exists an individual term t^ of 5?PJO, so that 

1. PTO h (Vx G W^x = 0 V / ^ f = 1), 
2. PTO h (Vf€ W){<j)w{x) +-• t^x = 0). 

It is an immediate consequence of this lemma that notation induction for quan
tifier free formulas carries over to set induction in -S?PTO- Hence, we have the 
following embedding of PTCA into PTO. 

THEOREM 9. We have for every Lgo formula <j>(x) with at most x free: 

PTCA h <j){x) =>• P T O h x G W ^<pw{x). 

This finishes our discussion of the lower bound for PTO. 
4.2. Upper bounds. In the following we show that PTO can be embedded into 

PTCA+ + (S-Ref), which is known to be a H2 conservative extension of PTCA by the 
results of Section 3. As a consequence, we obtain that the provably total functions 
of PTO are computable in polynomial time. 

The main step in establishing an embedding of PTO into PTCA+ + (S-Ref) is 
to find an Lg> formula App(x, y, z) which interprets xy ~ z. Together with an 
interpretation of the constants of JZ?PTO this will yield a translation of -2*PTO into 
L@ in a standard way. In the definition of App we will make use of a construction 
similar to Feferman [12, p. 200], Feferman and Jager [15, p. 258] or Beeson [2, 
p. 144]. In particular, App will be represented as a fixed point of a 2] positive 
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inductive definition. The details of this construction are very relevant due to the 
weakness of PTCA+ + (I-Ref). 

In order to describe a suitable inductive operator form below, it will be convenient 
to work with an extension L&(Q) oiL& by a ternary relation symbol Q which does 
not belong to L&>. \i<j>{Q) is an L&{Q) formula and y/(x, y, z) an L& formula, then 
4>{y) denotes the result of substituting y/(r, s, t) for every occurrence of Q(r, s, t) in 
the formula <f>(Q). 

In the following let us first turn to the interpretation of the recursion operator 
IV. Toward this end, assume that A(f, x, y) is a fixed Lg>(Q) formula with at most 
f,x,y free. Then we define for each natural number n greater than 0 an L&>(Q) 
formula A„(f,x\,... , x„, y) by recursion on n as follows: 

A\{f,x\,y) := A(f,x\,y), 
A„+\(f,x\,... ,xn+\,y) := (3z)(An(f,xu...,x„,z)AA{z,xn+uy)). 

If A(f,x,y) is assumed to interpret fx ~ y, then A„(f,x\,... ,x„,y) interprets 
fx\,. ..x„~y. We will drop the subscript n whenever it is clear from the context. 

Now we are ready to define the L&> {Q) formula Reĉ j (/, g, b,x,y,z). It describes 
the graph of the function which is defined from / and g by bounded primitive 
recursion with length bound b in the sense of A. The exact formulation of Rec^ is 
as follows: 

RecA(f,g,b,x,y,z) 

:= (3«)[Seq(t;) A lh(v) = \y\\ A A(f,x,(v%) 

A(Vu; C y)(w ^ £ 

-> (3uuu2)[A3(g,x,w,{v)\pM\,ui) AA2{b,x,w,u2) A (u)w = «i|w2]) 

Kz = (v)M]. 

In a next step we define a g-positive L&{Q) formula sf(Q,x,y,z), a so-called 
inductive operator form; a fixed point of stf will later serve as an interpretation of 
the application operation. Let us choose pairwise different binary words k, s, p, p0, 
Pi> *, x, pw, Cc, dw and rw, which do not belong to SeqU{fi,0,1}. In addition, 
put £ = £,0 = 0 and 1 = 1. Then we define s/{Q,x,y,z)\o be the disjunction of 
the following formulas (1)—(26): 

(1) x = kAz = (k,>^ 

(2) Seq2(x) A (x)0 = k A (x){ = z, 
(3) x = S A z = (s , j ) , 
(4) Seq2(x) A (x)0 = S A z = (s,(x)uy), . 
(5) Seq3(x) A {x)0 = S A (3v,w) (Q((x)uy,v) A Q((x)2,y,w) A Q{v,w,z)), 
(6) x = p A z = (p,y), 
(7) Seq2(x) A (x)0 = p A z = ((x)uy), 
(8) x = p0 Ay = (z,(y)i), 
(9) x = pl Ay = ({y)0,z), 

(10) x = * A z = (*,y), 
(11) Seq2(x) A (̂ ^0^= * A z = (x)i *y, 
(12) x = x A z = (x,y), 
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584 THOMAS STRAHM 

(13) Seq2(x) A (x)o = x A z = (x)i x y, 
(14) x = pw A z = p{y), 
(15) x = Cc A z = (Cc,j) , 
(16) Seq2(x) A (x)0 = Cc A z = cc((*)i, jO, 
(17) x -dw A z = ( d ^ , j ) , 

(18) Seq2(x) A (x)0 = dw A z = (<V, (x)i,.y), 

(19) Seq3(x) A (x)0 = ( V A z = (d^ , (x),, (x)2,_y), 

(20) Seq4(x) A (x)0 = dw A (x)3 = j A z = (x)i, 

(21) Seq4(x) A (x)0 = <V A (*)3 / .y A z = (x)2, 
(22) x = f ̂  A z = (f^,j>), 
(23) Seq2(x) A (x)0 = Xw A z = ( r ^ , ( x ) ! , j ) , 
(24) Seq3(x) A (x)0 = f̂  A z = (P,y, (x)1; ( x ^ y ) , 
(25) Seq4(x) A (x)0 = fw A z = ( r^ , ( x ) b (x)2, (x)3,_y), 
(26) Seq5(x) A (x)0 = r> A Rece((x)1 ; (x)2, (x)3, (x)4, j , z ) . 

This finishes the definition of the g-positive L&{Q) formula st{Q,x,y,z). Note 
that stf is in fact a Si definition (modulo (S-Ref)). Hence, we know from standard 
recursion theory (cf. e.g., Hinman [21]) that the least fixed point of sf is an r.e. set. 
The usual proof of this fact uses a careful construction from below by defining 
some sort of computability predicate, similar to the proof of Kleene's normal form 
theorem. Since we have all the sequence coding available in our weak setting, it is 
more or less straightforward to see that this construction can be carried through 
in PTCA+. The details, however, are long and tedious. Moreover, one easily 
verifies that the so-obtained r.e. set—call it App—defines a fixed point of stf, where 
an obvious application of (E-Ref) is needed. PTCA+ + (E-Ref) does not prove the 
minimality of App, of course. Instead, it is not difficult to establish the functionality 
of App. Summing up, we have the following theorem, whose proof is contained in 
the appendix of this paper. 

THEOREM 10. There exists a Zi formula App(x, y, z) of L& with free variables as 
shown so that PTCA+ + (S-Ref) proves: 

1. (Vx, j , z ) (^(App,x , j , z ) <-• App(x,j ,z)) . 
2. (Vx,j,zi,z2)(App(x,>',zI) A App(x,y,z2) -> zx = z2). 

Now the stage is set in order to describe a translation (•)* from J?PTO into Lg>. 
Let us first define an L@ formula V*{x) for each individual term t of SCPJQ so that 
the variable x does not occur in t. The formula V*(x) says that x is the value of t 
under the interpretation *. The exact definition is by induction on the complexity 
of/: 

1. If t is an individual variable, then V*(x) is {t = x). 
2. If t is an individual constant, then V*(x) is (f = x). 
3. If t is the individual term (rs), then 

V,*(x) := ^yx,y2){v;{yx) A v;(y2) A App(yuy2,x)). 

In a second step we define the * translation of an -Sfpro formula <f> as follows: 

4. If 4> is the formula W(t) or t[, then <j>* is 

(3x)v;(x). 
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5. If <j) is the formula (s = t), then (p* is 

Ox)(v;(x) A v;(x)). 
6. If 4> is the formula - ^ , then <f>* is ->(y/*)-
7. If <f> is the formula (y j / ) for y e {V, A, —>}, then 0* is {y/* j x*)-
8. If <j> is the formula (&x)y/ for <? e {3, V}, then <j>* is {<Sx)y/*. 

This finishes the description of the translation (•)* from ^ P T O into L&. In a further 
step we have to verify the * translation of the PTO axioms (1)—(25) in the theory 
PTCA+ + (Z-Ref). In the following we only discuss axiom (23) for bounded primitive 
recursion and axiom (25) for set induction on W, (S-lw)- The remaining axioms 
are easily verified by making use of Theorem 10. 

Let us first turn to the bounded recursor xw, and let us show the totality of Xw 
in PTCA+ + (Z-Ref). We will realize the crucial role of £ reflection (Z-Ref) for the 
first time. 

LEMMA 11. The * translation of axiom (23) about xw is provable in the theory 
PTCA+ + (Z-Ref), i.e., PTCA+ + (Z-Ref)proves 

[ ( / :W -> W) A (g:W3 -> W) A {b : W2 -^ W) - • {xwfgb : W2 -> W)\*. 

PROOF. In the sequel we work informally in the theory PTCA+ + (Z-Ref) and 
assume 

(i) {f-.w^wy, 
(2) (b : W2 - • W)*, 

(3) (g : W -> W)*. 

If we spell out (1), (2) and (3) according to the translation *, we obtain 

(4) (Vx)(3z)App(/,x,z), 

(5) (\/x,w)(3z) App2(b,x,w,z), 

(6) (Vx,w,v){3z) App3(g,x,w,v,z). 

It is our aim to show {xwfgb : W2 —> W)*, i.e. 

(7) (Vx, w){3z) App((f ^ , / , g, b, x), w, z), 

which by Theorem 10 is equivalent to 

(8) {Vx,w)(3z)Rec/s,pp(f,g,b,x,w,z). 

In the sequel fix arbitrary x0 and jo- Furthermore, by (4) choose zo so that 
App(/ , xo, zo). Now we obtain from (5) and Z reflection (Z-Ref) an a\ so that 

(9) (Vw C y0)(3z < a1)App?(b,x0,w,z). 

If we set «2 = zoa\, then (6) and another application of (Z-Ref) provide us with an 
«3 so that 

(10) (Vw C j0)(Vv < a2)(3z < a3) App%(g,x0,w,v,z). 
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586 THOMAS STRAHM 

Now set 04 = SqBd{ci2,yo) and consider the statement RecAPP(/,g, b, xo,y, z), 
which is given by the formula 

RecAPP(/,g, b,x0>y,z) 

:= {3v < a4)[Seq(v) A lh(v) = \y\l A (v)e = z0 

A(Vu; C y)(w / £ 

-> (3«i < a3)(3w2 < ai)[App33(g,^o,^, (^)|/,(^)|. "1) 

A Appj1 (Z>, x0, w, «2) 

A(u) H =UX\U2]) 

Az = (v)|j,|]. 

In the following let us write <j>{y) for the L@ formula which is given by 

y Q Jo -> (3z < a2)RecApp(/,g,*,x0,>',z). 

Then one easily verifies that (9) and (10) imply 

(11) <t>(s) A (V>O(0OO - <t>(yO)A<t>(y\)). 

Since (f>{y) is an extended £* formula oiLg>, induction is available in PTCA+ for <j>. 
Hence, (11) implies </>(yo), from which we immediately derive 

(12) (3z)RecApp(/,g,*,x0,>'o,z). 

Since xo and yo were arbitrary, we have shown (8), and this finishes our proof. H 

In a next step we show that the * translation of set induction is provable in the 
system PTCA+ + (Z-Ref). Again the presence of S reflection (E-Ref) is crucial: the 
requirement / e P{W) allows one to "reflect" Si induction by S* induction. 

LEMMA 12. The * translation of set induction (S-lyv) is provable in the system 
PTCA+ + (I-Ref), i.e„ PTCA+ + (I-Ref) proves 

[fEP(W)Afs=0A (Vx G W)(f(pwx) = 0 - fx = 0) 

- (Vxe w)(fx =0)]*. 

PROOF. Let us work informally in PTCA+ + (L-Ref). Assume the * translations 
o f / eP(W), fe = 0 and (Vx <s W)(f(pwx) = 0->fx = 0 ) . Hence, we get 

(1) (Vx)(3\y)App(f,x,y), 

(2) App( / , £ ) 0) , 

(3) (Vx)[App(/,x,0) - App( / ,xO,0)AApp( / ,x l ) 0 ) ] . 

Now fix an arbitrary xo. By £ reflection (S-Ref) there exists an a so that 

(4) (VxCx0)(3y<a)Appa(f,x,y). 

As an immediate consequence we get that 

(5) (Vx C xo){Vy)[App(f,x,y) -> Appa(f,x,y)]. 
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Let us now write ip{x) for the extended Z* statement 

x C Xo -> App"(/,x,0). 

Then one easily derives (Vx)tp(x) by Z* induction, making use of (2), (3) and (5). 
Hence, we have obtained 

(6) Appa(/,*o,0), 

and since x0 was arbitrary, we have derived the * translation of (Vx e W)(fx — 0) 
in PTCA+ + (Z-Ref). This finishes our proof. H 

The reader may have noticed that in the proofs of Lemma 11 and Lemma 12 we 
did not make use of the full strength of the Z reflection principle (Z-Ref). In fact, 
reflection is only needed for formulas of the shape (\/x < y)<j>, so that each positive 
universal and each negative existential quantifier in <f> is sharply bounded. We can 
also dispense with the initial universal bounded quantifier, expect for obtaining 
the bound 03 in equation (10) of the proof of Lemma 11. Similar remarks will 
apply to the treatment of the theory PTO+ in Section 5, cf. the proof of Lemma 
17. However, the full Z reflection principle will be needed for analyzing the theory 
PTO+ + (Z+-CPpj/) at the end of Section 5. For reasons of notational simplicity, 
we refrained from displaying the fine structure of Z reflection in the formulation of 
theorems and proofs. This is perfectly justified by the fact that full Z reflection does 
not take us beyond polynomial strength, cf. Corollary 7. 

We are now in a position to state the following embedding theorem. 

THEOREM 13. We have for all JZ?PTO formulas <p: 

PTO \- <p = > PTCA+ + (Z-Ref) h <f>*. 

From Corollary 7 and Theorem 9 we get the following equivalences. Here '= ' 
denotes a natural adaptation to our setting of Feferman's [13] notion of proof-
theoretic equivalence. 

COROLLARY 14. We have the following proof-theoretic equivalences: 

PTO = PTCA+ + (Z-Ref) = PTCA. 

From Corollary 7 and the fact that an ^PTO formula (Vx e W){tx G W) 
translates into a II2 statement under (•)*, we get the following crucial corollary. 

COROLLARY 15. Suppose that t is a closed term of Sfpjo and 

PTOh(Vx£W)(txeW). 

Then t defines a polytime function on W. 

§5. The theory PTO+. In this section we propose an extension PTO+ of PTO, 
which results from PTO by strengthening set induction to a form of complete 
induction on W which is related to NP induction, though it is formally much 
stronger. Furthermore, we briefly address a collection principle which does not 
raise the proof-theoretic strength of PTO+. 
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In the following let the i?p-ro formula N(f, g, x) be given by 

N(f,g,x) := (3y<fx)(gxy = 0)2 

In addition, P( W2) denotes the obvious generalization of P{ W) to binary (curried) 
characteristic functions on W, i.e. 

feP{W2) := ( V x , j € W)(fxy=Ovfxy = l). 

Then PTO+ is defined to be PTO, where set induction (S-lw) is replaced by the 
induction axiom (N-lw): 

( / : W -> W) A g G P(W2) A N(f,g,e) 

A(Vx e W)(N(f,g,pwx)-*N(f,g,x)) - (Vx e » W / , * , X ) . 

It is easy to see that set induction (S-lw) in fact follows from the above induction 
principle (N-lw). 

We know from Theorem 9 that PTCA is contained in PTO via the translation 
{•)w. By making use of Lemma 8, it is now straightforward to verify that PTO+ 

validates the NP induction principle of PTCA+ with respect to {-)w. Hence, the 
following analogue of Theorem 9 holds. 

THEOREM 16. We have for every L^ formula <f>{x) with at most x free: 

PTCA+ h <f>{x) =4- PTO+ \- x€W ^ <f>w(x). 

On the other hand, we will now show that PTO+ is not stronger than PTO. In 
particular, we establish the * translation of (N-lw) in PTCA+ + (S-Ref). 

LEMMA 17. The * translation of (N-lw) is provable in PTCA+ + (E-Ref). 

PROOF. In the following let us work informally in PTCA+ + (E-Ref), and assume 
the * translation of the premise of (N-lw). The assumptions ( / : W —> W)* and 
(g£P{W2))* yield 

(1) (Vx)(3!z)App(/,x,Z), 

(2) (\/x,y)(3.z)App2(g,x,y,z). 

In the sequel fix an arbitrary XQ. By (1) and (S-Ref) there exists an a\ so that 

(3) (VxC*o)Oz<f l 1 )App a ' ( . /> > z ) . 

In addition, (2) and (E-Ref) provide us with an ai so that 

(4) (Vx C x0)(Vy < ai)(3z < a2)Appa
2>(g,x,y,z). 

In the following we write (j>{f, g, x) for the formula 

(3z < ai)(3y < z)[App?'(/ ,x,z) A App?(g,x,y,0)]. 

Then it is straightforward to check from (3) and (4) that 

(5) (Vx C x0)[N* ( / , g, x) ~ 4>{f, g, x)]. 

2 Bounded quantifiers are understood to be restricted to W. 
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On the other hand, we have assumed 

(6) N*(f,g,e), 

(7) (Vx)(N*(f,g,x) - N*(f,g,xO)AN*(f,g,xl)). 

Hence, we can derive (Vx)y/(x) by S* induction from (5), (6) and (7), where y/(x) 
denotes the formula 

x C x0 -> 4>(f,g,x). 

We have shown N*(f, g, x0), and since xo was arbitrary, this finishes our proof. H 

The following analogue of Theorem 13 has been established. 

THEOREM 18. We have for all JZ?PTO formulas <j>: 

PTO+ h <f> = > PTCA+ + (E-Ref) h <f>*. 

From Corollary 7 and Theorem 16 we can derive the same corollaries as in the 
previous section. 

COROLLARY 19. We have the following proof-theoretic equivalences: 

PTO+ = PTCA+ + (Z-Ref) = PTCA. 

COROLLARY 20. Suppose that t is a closed term of^fpjo and 

PTO+h(VxG W){txe W). 

Then t defines a polytime function on W. 

We finish this section by formulating a collection principle in J?PTO which does 
not raise the proof-theoretic strength of PTO+ either. The class of E+ formulas of 
.SfpTo is inductively generated as follows: 

1. Each atomic formula W{t), t[ and (s — t) is a S + formula. 
2. If 4> and y/ are 2 + formulas, then so also are (0 V y/) and (<f> A y/). 
3. If ^ is a S + formula, then so also are (Vx < y)<j> and {3x)<f>. 

Now the scheme of S + collection on W, (Z+-CP^), has the form 

(S+-CP^) (Vx < y)(3z € W)4> -» (3w G W)(\/X < y)(3z < u)<j>, 

where (j> is a S + formula of -!?PTO-

Now it is easy to verify that PTCA+ + (E-Ref) validates the * translation of 
each instance of {~L+-QPW) and, therefore, PTO+ + (2+-CP^) does not go beyond 
polynomial strength, too. Here the full strength of (E-Ref) is needed in order to 
handle ( S + - C P K / ) , of course. 

§6. Extensions to the Grzegorczyk hierarchy. Our approach described in the 
previous sections seems to be general enough. Let am denote the mth branch of 
the Ackermann function, and put stf„ := {am : 3 < m < n} for n > 3. If we add 
the functions in s>/„ as base functions to our system, we get applicative theories G„ 
(« > 3) so that the provably total functions of G„ are exactly the number-theoretic 
functions in the «th level of the Grzegorczyk hierarchy. In particular, G3 captures 
the elementary functions, and it is proof-theoretically equivalent to I Ao + exp in the 
terminology of Paris and Wilkie. 
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All these results are established in complete analogy to the results of the previous 
sections. Again it is possible to provide reductions to suitable subsystems of arith
metic, and it is not difficult to verify that S reflection (S-Ref) can conservatively be 
added to the theory under consideration. 

We finish this section by mentioning that in the case of the theories G„ it might 
be more natural to replace the predicate W by the usual predicate N for the natural 
numbers. 

§7. Final discussion. We have presented a theory PTO of polynomial time op
erations and binary words in the context of explicit mathematics. PTO contains 
Ferreira's theory PTCA, and it can be embedded into the system PTCA+ plus the 
crucial principle of 2 reflection (S-Ref), thus yielding that the provably total func
tions of PTO are exactly the polytime functions. We have proposed an extension 
PTO+ of PTO which is not stronger than PTO. Finally, we have sketched applicative 
theories G„ (« > 3) which capture the nth level of the Grzegorczyk hierarchy. 

The theories PTO and PTO+ are based on a partial form of term application, and 
the proof-theoretic reduction described in Section 4.2 makes substantial use of this 
fact. The question arises whether the assumption of a total application operation 
does raise the strength of PTO. More precisely, what is the exact proof-theoretic 
strength of PTO + (Tot), where (Tot) denotes the axiom of totality, 

(Tot) (Vx,y)(xyl). 

It is known that totality (Tot) does not raise the strength of various applicative theo
ries of strength at least PRA, including systems with the so-called non-constructive 
minimum operator (cf. Jager and Strahm [22]). The proof-theoretic strength of 
such systems is generally established by formalizing total term models in suitable 
systems of arithmetic, where essential use is made of the fact that Church Rosser 
properties of certain reduction relations can be formalized there. 

If we consider a suitable total term model of PTO which is based on the usual 
reduction relation for total combinatory logic, then we do not know whether the 
corresponding Church Rosser property is provable in PTCA+ + (S-Ref). The usual 
proof that the combinatory reduction relation is Church Rosser is certainly formal-
izable in PRA, and a more sophisticated proof can already be carried through in 
IAo + exp. This has recently been established by Duccio Pianigiani. In particu
lar, G„ + (Tot) is not stronger than G„ (n > 3). However, we do not yet know 
whether PTO + (Tot) is stronger than PTO, although we strongly conjecture that 
the provably total functions of PTO + (Tot) are still computable in polynomial time. 

Recently, Cantini [6] has established—among other things—that the provably 
total functions of the system PTO + (Tot) have polynomial growth rate only. His 
analysis of PTO + (Tot) makes use of partial cut elimination and an asymmetric 
interpretation with respect to the W predicate. However, it does not follow from 
Cantini's argument that the provably total functions of PTO + (Tot) are computable 
in polynomial time. 

Appendix. In this appendix we give a proof of Theorem 10. In particular, we show 
that the operator form st(Q, x, y, z) has a Si fixed point App which is functional, 
provably in PTCA+ + (S-Ref). As already indicated, App will be constructed from 
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below by making use of a specific computability predicate CompJ/(c), expressing 
that c is a computation sequence with respect to the operator form stf. Informally, 
a computation sequence c with respect to stf is a sequence c — ((c)o, • • • , (c)p(ih(c))} 
so that each (c)a is a sequence ((c)flio, (c)a,\, {c)a,2) of length 3 with the intended 
meaning that (c)a,o applied to (c)a,i yields (c)„i2 in the sense of stf, and moreover, 
this is computed or "proved" by ((c)o,... , (c)p(a)). 

Let us first define L& formulas A p p „ ( / , x \ , . . . ,x„,y,a,c)3 for each n > 1 by 
induction on n as follows: 

bppx{f,x\,y,a,c) := (3b C a)((c)b = (f,xuy)), 

App„ + i ( / , * i , . . . ,x„+i,j>,a,c) 

:= (3z < c)(3b C a) [App„( / ,x 1 ; . . . ,x„ ,z ,a ,c) A (c)b = (z,x„+l,y)]. 

The intended meaning of App„(/, x\,... ,x„,y, a, c) is that fx\ . . . x„ ~ j with 
respect to the sequence c restricted to the entries with index smaller than a. 

REMARK 21. App„ {f,x\,... , x„, y, a, c) is an extended S* formula. 

In a next step we define an L@ formula RecAPP(/, g, b, x, y,z,a,c). It defines the 
graph of the function which is defined from / and g by bounded primitive recursion 
with length bound b in the sense of the computation sequence c with entry indices 
smaller than a. 

RecAPP(/, g, b, x, y, z,a,c) 

••= (3v < c)[Seq(u) A lh(v) = \y\l A A p p ^ / . x , (v)e,a,c) 

A(Vtu C y)(w ^ e 

-^ (3uuu2)[App3(g, x, w, (v)lpMl,uua, c) 

AApp2{b,x,w,u2,a,c) A (v)\w\ = Ui\u2]) 

A Z = (V)\y\]. 

REMARK 22. RecAPP(/, g, b, x, y, z,a,c) is an extended Z* formula. 

In the following let us write sft (x, y, z) for the ith clause of the operator form 
s/ for i ^ 5 and / ^ 26. We are ready to define the L& formula Comp^, which 
expresses that c is a computation sequence in the sense of the operator form s4'. 

Comp^(c) := Seq(c) A (Va c/A(c))[Seq3((c)a) A C((c)afi, (c)a,\, {c)a<2,a% 

where C (x, y,z,a) is the disjunction of the sft (x, y, z) for J ^ 5 and / ^ 26 plus the 
two disjuncts 

(5') Seq3(x) A (x)0 = § 

A (3v, w < c)[App, ({x)u y, v, a, c) A Appj ((x)2, y, w, a, c) A Appj (v, w, z, a, c)], 

(26') Seq5(x) A(x)0 = rw ARecAPP((x)i, (x)2, (x)3, (x)4,y,z,a,c). 

3 In the sequel it will always be clear from the number of parameters shown whether we mean 
App„ ( / , x i , . . . ,xn,y,a,c) or App„ ( / , * i , . . . ,x„,y). 
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REMARK 23. Comp^(c) is an extended ll\ formula. 

Now we are in a position to define the L& formula App(x, y,z), which expresses 
that there is a computation sequence c whose last entry is {x, y,z). 

App(x,.y,z) := (3c)[Comp^(c) A last(c) = {x,y,z)]. 

REMARK 24. App(x, y, z) is equivalent to a Si formula, provably in PTCA+. 

REMARK 25. The reader might ask why we did at all make use of the operator 
form s/{Q, x,y,z) in Section 4.2 instead of giving the above definition directly. The 
reason is conceptual clarity: the only properties which we used in order to establish 
the embedding of PTO into PTCA+ + (S-Ref) are the fixed point property and the 
functionality property, i.e., the two claims of Theorem 10. This is in full accordance 
with previous treatments of applicative theories, cf. e.g., Feferman and Jager [14]. 

It remains to show that (i) App is a fixed point of the operator form stf, and (ii) 
App is functional, and in addition, (i) and (ii) are provable in PTCA+ + (S-Ref). In 
the following we work informally in the theory PTCA+ + (S-Ref), and we first want 
to show that App is functional. 

LEMMA 26. PTCA h (Vx,j,zuZ2){App(x,y,z\) A App(x,y,zj) —» z\ = z-i). 

PROOF. We assume Comp^(Z)) A Comp^(c) and show the Ajj statement 

v c lh(c) 

- (V« C v)(Vw C lh(b))[(b)w = ((c)Wi0, (c)uA, (b)w,2) -» (b)w,2 = (c)„,2] 

by induction on v. Then our claim immediately follows. If v = e, then one of the 
clauses stft for some i different from 5 and 26 applies, and our assertion is immediate. 
For the induction step let us assume that our assertion holds for some v; in order 
to verify it for vl, we have to distinguish several cases. If we are again in the case 
of one of the clauses s^t for i different from 5 and 26, then our claim follows as 
above. If clause (5') for the S combinator applies, then we are immediately done 
by the induction hypothesis. Finally, if we are in the case of clause (26') for rw, 
then our assertion follows from the induction hypothesis and an obvious subsidiary 
induction. This settles our claim about the functionality of App. H 

It remains to show that App(x, y, z) defines a fixed point of the positive operator 
•^(Q,x,y,z), provably in PTCA+ + (S-Ref). We split the proof of the fixed point 
property into the two implications (i) s/{App,x,y,z) —> App{x,y,z), and (ii) 
App(x, y,z) -* $/{App,y,z). 

LEMMA 27. PTCA+ + (S-Ref) 1- (Vx,y, z)(^(App, x,y, z) -> App(x,y, z)). 

PROOF. Let us assume j/(App, x,y,z). Then exactly one of the clauses (1)—(26) 
applies. If we have s^t(x,y,z) for an i different from 5 and 26, then we are done 
by the computation sequence c = ((x, y,z)). Now suppose that clause (5) applies. 
Then we have Seq3(x) A (x)o = s, and there exist binary words v and w so that 

App{{x)uy,v) A App((x)2,y,w) A Ap-p(v,w,z). 
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The above three conjuncts provide $f computation sequences CQ, C\ and c2, and 
obviously the sequence c = c0 o c\ o c2 o ((x, y, z)) witnesses App(x, y, z) as desired. 
Finally, we have to consider clause (26) for Xw- Therefore, assume 

Seq5(x) A (x)0 = xw A RecApp((x)i, (x)2, (x)3, (x)4 ,y,z) . 

Then there exists a v, and by (S-Ref) an a so that we have 

Seq(v) A lh(v) = \y\l A App"((x) , , (x)4 , («)«) 

A(Vw C y)(w ^e -> (3uuu2 < a)[Appa
3((x)2,(x)4,w,(v)lpMl,ui) 

AApp2{(x)3,(x)4,w,u2) A(v)\w] =UI\U2]) 

l\Z = {V)\y\. 

Now it is straightforward to establish the statement 

y'Qy -» ( 3 C < ? ( / , a ) ) [ C o m p ^ ( c ) 

A RecApp((x)1, (x)2, (x)3, (x)4, j ' , (u)|y|,/>(//j(c)), c)] 

by induction o n / , where *(>>', a) is a suitable L term which provides an upper 
bound for the length of c (as a binary word). For example, choose the term 
t(y', a) as (aaaaaS x / 1 ) . By setting y' = y, there now exists an sf computation 
sequence cy so that RecApp((x)1, (x)2, (x)3, (x)4, y, z, p(lh(cy)), cy). Our argument 
is finished, since the sequence c' = cy o ((x, y, z)) witnesses App(x, y,z). H 

Our last aim is to show the other direction of the fixed point property. 

LEMMA 28. PTCA h (Vx,y, z)(App(x,y, z) —* j / (App, x,y,z)). 

PROOF. Suppose App(x, y, z) holds for some binary words x,y and z. Hence, 
there exists a sequence c so that 

CompJ/(c) A last{c) = (x,y,z). 

If s£i (x, y, z) holds for some /' different from 5 and 26, then our claim is trivial. If 
(x,y, z) was computed according to clause (5'), then an obvious decomposition of 
c yields the desired result. Finally, let us consider the case where we have 

Seq5(x) A (x)0 = xw A RecApp((x)1, (x)2, (x)3, {x)4,y,z,p(lh(c)),c). 

Then an easy decomposition of c yields RecApp((x)i, (x)2, (x)3, (x)4) as desired. H 

This ends the proof of Theorem 10, and in fact also our paper. 
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