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MODEL COMPANIONS OF DISTRIBUTIVE p-ALGEBRAS
JURG SCHMID

§0. Introduction, Let B,, 0 < n < w, be the equational classes of distributive
p-algebras (precise definitions are given in §1). It has been known for some time
that the elementary theories T, of B, possess model companions TY¥; see, e.g., [6]
and [14] and the references given there. However, no axiomatizations of T* were
given, with the exception of n = 0 (Boolean case) and n = 1 (Stonian case). While
the first case belongs to the folklore of the subject (see [6], also [11]), the second
case presented considerable difficulties (see Schmitt [13]). Schmitt’s use of methods
characteristic for Stone algebras seems to prevent a ready adaptation of his results
to the cases n > 2. v

The natural way to get a hold on T} is to determine the class E(B,)of existentially
complete members of B,: Since T} exists, it equals the elementary theory of E(B,).
The present author succeeded [12] in solving the simpler problem of determining
the classes A(B,) of algebraically closed algebras in B, (exact definitions of 4(B,)
and E(B,) are given in §1) for all 0 < n < w. A(B,) is easier to handle since it
contains sufficiently many ““small’’ algebras—viz. finite direct products of certain
subdirectly irreducibles—in terms of which the members of 4(B,) may be analyzed
(in contrast, all members of E(B,) are infinite and 8,-homogeneous). As it turns out,
A(B,,) is finitely axiomatizable for all #n, and comparing the theories of A(By), A(B;)
with the explicitly known theories of E(By), E(B;)-viz. T§, TT-, a reasonable con-
jecture for T¥, 2 < n < w, is immediate. The main part of this paper is concerned
with verifying that the conditions formalized by T}* suffice to describe the algebras
in E(B,) (necessity is easy). This verification rests on the same combinatorial
techniques as used in [12] to describe the members of A(B,).

§1 gives the pertinent definitions. For anything not found there, the reader is
referred to Gritzer [3, Chapter III, in particular] for the algebraic part and to
Hirschfeld and Wheeler [6] for the model-theoretic side. In §2, we summarize the
results on A(B,) from [12] and characterize the members of E(B,) within 4(B,)
by four conditions, EC1 through EC4. Combination of these results yields the de-
sired description of existentially complete algebras in B, for 0 < n < . Form-
alizing these descriptions accordingly, T may be written down explicitly (§3) and
shown to be 8y-categorical and complete for all n, whereas only T¢f, T¥, T% and T *
are even model completions of their respective T;.
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MODEL COMPANIONS OF DISTRIBUTIVE p-AL GEBRAS 681

§1. Definitions and notation. A (distributive) p-algebra L is an algebra L(A, V,
* 0, 1) such that L(A, Vv, 0, 1) is a distributive lattice with universal bounds 0 and
1 and the unary operation * satisfies x < a* iff x A a = 0. Since only distributive
p-algebras are considered in this paper, “distributive” will be omitted in the sequel.
The class of all p-algebras is equational and will be denoted by B,,. The nontrivial
equational subclasses of B, may be enumerated in a sequence By < B; € --- <
B, < --- & B, (n€w) (see Lee [10]). By is the class of all Boolean algebras, B,
that of all Stone algebras (those satisfying the identity x* v x** = 1). The easiest
way to describe the classes B, is by listing their subdirectly irreducible members. We
need some notation. Let 2 be the two-element Boolean algebra, and put F, = 2, for
new. For later reference, we agree to write C for the countable atomless Boolean
algebra. If L is any lattice, L denotes the lattice obtained from L by adjoining a
new greatest element to L. Now the subdirectly irreducible algebrasin B, (n < w)
are exactly ﬁo ~ 2, }3‘1, .. .,ﬁ’,, while an algebra is subdirectly irreducible in B,, iff it
is of the form B for some Boolean algebra B. For details, compare Chapter III of [3].

On the model-theoretic side, we use a first-order language % with equality. %
has variables x;, x;, ... and as nonlogical symbols two binary function symbols
A, V,a unary function symbol * and two constants 0, 1 with the obvious intended
interpretations. We define #-theories T, for 0 < n < @ as follows: T, consists of
any convenient set of .#-sentences axiomatizing distributive lattices with 0, 1 to-
gether with (Wx;, x)(x; A (x3 A x2)* = x; A x¥). Forn > 1, let 6, be the sentence

xg, s X )G A - AX)VOEFAXA - A X)F
VEAXEA - AXYV - V(X AXA - AXH*=1).

Let 6y be (Vx)(x; v x}¥ = 1). Now define T, = T, U {60,}. Then B, is exactly
the class of models of T,, for 0 < n < o (see [10]).

Consider now any fixed B,, 0 < n < w. L€ B, is called existentially complete
(abbreviated e.c.)iff for any 3,-sentence 6 from #(L) and for any extension L' € B,
of L, L' k= 0 implies L = #. L is called algebraically closed (abbreviated a.c.) if
the same holds for positive 3;-sentences. We put E(B,) = {Le B,; L is e.c.} and
A(B,) = {LeB,; L is a.c.}. Hence E(B,) < A(B,) < B, and all inclusions are
strict, as we shall see. Given L€ B,, SL = {xe L; x = x**} is the skeleton of
L, CL ={xeL; x v x* =1} is the center of L and DL = {xe L; x* =0} is
the filter of dense elements of L. Any L € B, contains a largest subalgebra which is
Stonian, i.e., which belongs to B;. This is the subalgebra of L generated by CL |
DL, and we denote it by Ston L. This definition is due to Katrinak; see, e.g., [7]
for more details. Alternatively, Ston L = {x € L; x* v x** = 1}. The following
definition is adopted for technical convenience: Let L € B,, s € Ston L. Define
Bi(s) ={beSL; b <sandb v b* =5 v s*} U {0, s}. The subscript L will be
omitted when there is no danger of confusion. In general, B(s) is not closed under
A or V; however x € B(s) implies x* A se B(s) (since x Vv (x* A s) = s and
x A (x* A 5) = 0 this defines a relativized complementation on B(s)). Details
may be found in [12]. Given x € L and a finite subset {y,, ..., y,} < L, we say
that {y;, . .., ¥,} is a partition of x provided y; V --- Vy, =xand y; A y, =0
for 1 < i < k < n. A partition is called proper iff it does not contain 0. Finally,
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682 JURG SCHMID

given two p-algebras L,, L, we allow ourselves to write L, = L, whenever L,
contains an isomorphic copy of L; as a p-subalgebra.

§2. Existentially complete distributive p-algebras. The members of A(B,) for
0 < n < o were determined in [12]. The following two theorems summarize the
situation.

THEOREM 1 (n < w). Let L€ B,, 0 < n < w. The following are equivalent:

() L e A(B,).

(ii) L satisfies the following four conditions:

AC1 DL is relatively complemented.

AC2 For all dy, d, € DL satisfying dy v dy = 1, there exists ¢ € CL such that
¢ < dl’ c* < dz.

AC3n Assume n > 2. For all se Ston L\CL, there exists a proper partition
{by, ..., b,} € By(s)of s.

ACA4n Assume n > 2. Put N =27 + 1. For all se Ston L\CL, every proper
partition {by, ...,b,} < By(s) of s and every0, s # b € B,(s), there exists a partition
{c1, ..., cn} € CLof s** € CLsuch thatb = \/{(b; A ¢)); 1 <i<n 1 <j< N}

(iii) If Ly is a finite subalgebra of L, there exists a p-algebra Ly such that Ly = L,
S Land Ly = 2 x Fiforsomei,je w.

THEOREM lw. Let L € B,. The following are equivalent.

() L € A(B,).

(ii) L satisfies the following four conditions:

AC1 as above.

AC2 as above.

AC3w For all s € Ston L\CL, B,(s) 2 {0, s}.

ACAw For all s € Ston L\CL and all0, s # be B,(s), there exists a proper partition
{by, by} = By(s) of b.

(iii) If Ly is a finite subalgebra of L, there exists a p-algebra Ly such that Ly <
Lic LandL, =~ 2% x Ci for somei,je w.

The following definition lists the conditions necessary and sufficient to charac-
terize the members of E(B,) within A(B,) for0 < n < w:

DerFINITION. Let L€ B,, 0 < n < . L will be said to satisfy.

ECI1 iff CL has no atoms.

EC2 iff DL has no antiatoms;

EC3iffforany 1 # ce CL the set {de DL; 1 > d > c} has no least element;

EC4 iff for any 0 # b € SL there exists 0 # ¢ € CL such that ¢ < b.

The following theorem contains the main result of this paper.

THEOREM 2. An algebra is existentially complete in B,(0 < n < w) iff it is alge-
braically closed and satisfies EC1-EC4. Alternatively, L € E(B,) iff L satisfies
ACI1-AC4n and EC1-ECA4.

Theorem 2 may be rephrased in a more compact form using Ston L and Theorem
3.2 of [13]:

COROLLARY 3. Le E(B,) (0 < n < w) iff Ston L € E(B,) and L satisfies AC3n,
AC4n and ECA4.

ProoF. Schmitt [13] proved that L € E(B,) iff L satisfies ACl, AC2 and ECI-
EC3. B
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MODEL COMPANIONS OF DISTRIBUTIVE p-ALGEBRAS 683

The proof of Theorem 2 will be broken down into a series of lemmata. We begin
with the easy half of the theorem.

LEmMMA 4. Let L € E(B,), 0 < n < w. Then L satisfies EC1-EC4.

ProoF. Consider the following 3;-sentences from #(L):

#:(c) Ax)a vx¥=1&0<x <¢),0#ceCL,

O0d) :@x)xf=0&d<x;<1),1 #deDL,

Oic, d) :Ax)xF=0&c<xy<d),l#ceCLandc<d<1,deDL,

04(17) :(3x1)(x1 in" =1 &xl #O&Xl Sb),o#bGSL

Each one of these sentences may be satisfied in some direct product L' = L
of suitably many subdirectly irreducibles from B,, so they must holdin L. [l

LEMMA 5. Let L€ B,, 0 < n < w, and assume L = [I(L;, i€ I). Then any of
EC1, ..., EC4 holds in L iff it holds in every L;, i€ I.

ProoF. Straightforward. [l

We use the following notation: If L € B, and ay, ..., a,€L, {a, ...,a,);
denotes the subalgebra of L generated by {ay, ..., a,}. A homomorphism f is over
an algebra L iff L © dom fand ffixes L pointwise.

The following two lemmata take care of the essential cases of the sufficiency
half of Theorem 2.

LEMMA 6. Assume Le B, (2 < n < @) satisfies AC1-AC4n and ECI-ECA4.
Let L L'and L' = I:",,T (T some index set); Ly = L and Ly =~ F, for somel < r <
nor Ly F,; Ly c L and Ly = F, for somel < s <nor L = F",,. Then there
exists L, © L, Ly =~ Lysuchthat {Ly \J L,) and {Ly U L;) are isomorphic over L.

PrROOF. Assume L, L', Ly and L, are given as described. Let py, ..., p, be the
atoms of Ly, ¢4, ..., g, those of Ly; d=p, VvV - VP, d=q,V -+ V(s
denote by S, the group of permutations of an n-element set.

We define u; (1 <j<s),v,(heS,), x; (1 <i<r)and y;(1 <i<r 1<
j < s)in CL’ as follows by listing their components (t€ T):

1, d #1 =
{  d# landgi =1, (Lo F,, r = n);
0, otherwise
1, dg=0;#1andgq;, =Py, forl <j<s, N
v,.,={ (LyxF, = L,r = s=n);

0, otherwise

1, é; # 1l and p;, = 1, @ F
~ F,s=n)
0, otherwise ! ? )

) _{1, pa=1=gqj,
o 0, otherwise.

1t is fairly obvious that u;, v,, x;, y,; are central in L’, pairwise disjoint and have
join 1. Note that if u; 3 0, then u; £ d < 1 and similarly for v,, whereas x,,
Yii < p; < d. We will now use ACI through EC4 to “‘simulate’ these members of
CL’ within CL.

Suppose d = 1. Hence p;, € CL for 1 < i < r. Use ECl to find %;, y;;€ CL,
pairwise disjoint, such that p; = %, v \/;7;; and %, = 0 iff x;, = 0, y;; = Qiff
yii=0.Puty; =% =0forl <j<s hes,
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684 JURG SCHMID

Suppose d < 1. Use EC4tofind ¢; € CL, ¢; # O,suchthatc; < p;forl <i<r.
Use ECIl to find %;, y,; € CL, pairwise disjoint, such that ¢; = %, vV \/,;y,; for
l<i<randx =0iff x;, =0, y; =0iff y,; =0. Let c=(c; V --- V c)*
It follows that ¢ £ d. We want to construct &;, ¥,€ CL for 1 <j < s, he S,
pairwise disjoint, £ d, ¢ = \/;#; vV \/ ¥4, %; = 0iff 4; = 0,9, =0 iff v, =0.1t
suffices to show that if ¢ £ d, there exist nonzero c;, ¢; € CL satisfying ¢; V ¢; = ¢,
caNc=0,¢1 ¢ £ d Nowc £ dimplies ¢* v d < 1. By EC3,we find d, € DL
such that ¢* v d < d; < 1. By ACI, there exists d; € DL such that d, A d; =
c* vd, dy Vv d = 1. By AC2, there exists ¢g€ CL such that ¢y < dy, ¢§ < ds.
It is easy to check that ¢; = ¢ A ¢, ¢; = ¢ A cff have the required properties.

L, will now be constructed by describing its atoms @, ..., @, “‘piecewise”’,
that is, by listing the meets of 0y, ..., Q, with @;, ¥, ¥;, y;;. This is sufficient since
all algebras of type F, or F, are generated, as p-algebras, by their atoms. Only Q;
N\ X, requires some preliminary work. Assume %; # 0. Apply EC2 to x¥ in order
to produce d; e DL satisfying x; A d; < %;. Obviously, %; A d; e StonL\CL,
so by AC3n there exists a proper partition {8, ..., Bin} S B(%; A d;) of %/ d;
(as observed above, %; # 0 implies L, = F, and thus s = n). Now put

r
Qi=1u; Vv h\e/S (Paip APV 2\40 Bii V .\=/1 (pi A Dip)

and let L, = {(Qy, ..., Q.. It is fairly obvious from the construction that
{(Ly U L) and {Ly U L;) are isomorphic over L,. W

LeEMMA 7. Assume L € B, satisfies AC1-AC4 and EC1-EC4. Let L = L' and
L = [I(A4,, t e T), where A, is an atomless Boolean algebra for each te T; Ly = L
and Ly >~ F, orLo—Fforsomerea),r>l Lic L andL, ~F,or L; = F,
for some s€ w, s > 1. Then there exists L, < L, Ly =~ L;, such that {Ly U L;)
and {Ly \) L3> are isomorphic over L.

PrOOF. Assume L, L', L, L, are given as specified; let py, ..., p, be the atoms of
Ly, q, ...,q;thoseof Ly;d=p Vv --- Vp,0=q V --- V gq,. Let M be the
set of all r x s (0, 1)-matrices having at least one 1 in each row and each column.

We define u;(1 <j<5s), vg(MAdeM),x;(1<i<r)and y;;(1 <i<r, 1 <
Jj < 5)in CL’ as follows by listing their components (¢ € T):

{1, dy# land g;; = 1,
Ujp = .
0, otherwise;

{1, d, =0, # 1 and p, A q;, = 0 iff a;; = 0, where 4 = (a;)),
Va = .

0, otherwise;
{la 5t¢ landpit:‘ la
0, otherwise;

I, pa=1=gqjp
Yije = )
0, otherwise.

Xit =

Again, uj, v,, x;, y;; are central in CL’, pairwise disjoint and have join 1; u; # 0
implies #; £ d < 1, and similarly for v,.
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Proceed as in the proof of Lemma 6 to obtain @, ¥, %;, y;; € CL which are 0
exactly if their counterparts in CL’' are such, which are pairwise disjoint, have
join 1, and satisfy x,, y;; < p;, #;, ¥4 % dprovidedd < 1.

We construct @, ..., Q, in the same way as in the proof of Lemma 6. Let
A = (a;;) € M. To obtain Q; A ¥,, consider p, A ¥4 for i <1 < r: p; A V,€
B(d A v,), so use AC3w and AC4w to get a representation p; A ¥4 = /= Pijas
where the p,;, belong to B(d; A v,), are disjoint and p;;4 = 0 iff a;; = 0. Put
Q; A ¥4 = \/i-1Pija- Next, assume x%; # 0. Applying EC2 to xf yields d; € DL
satisfying %; A d; < X;. By AC3w, B(x%; A d;) # {0, %; A d;}, so using AC4w
suitably often one finds By, ..., 8; € B(X; A d,), nonzero, pairwise disjoint and
satisfying ;, A d; =4V --- V B Put Q; A %; = B;;. Finally, let

<.,

Qi=uV NV
Define L, = {Qy, ..., Q1. By construction, (Lo U L;) and {Ly U L,) are
isomorphic over L. [l
PROOF OF THEOREM 2, SUFFICIENCY PART. Let L€ B, (2 < n < o) and assume
L satisfies AC1-AC4n and EC1-EC4. Consider L, €B,, Ly =2 L; a;, ..., €L,
Vi, ..., Vm € L1. Proving L € E(B,) amounts to constructing u,, ..., #,, € L such
that {ay, ..., @ V1, ..5-5 Vmp and {ay, ..., a;, Uy, ..., U, are isomorphic over
ay, .., a): I L= @xy, ..o, Xp)@(x1, - ooy Xy @5 - - -, @) With @ quantifier-free
from £(L), say Ly k= ¢(v15 - . .5 YV, @1, - . ., @), then by isomorphism over <{ay, ...,
a) wehave L = ¢(uy, ..., U, @y, ..., @), thatis, L = 3xy, ..., x,)¢(x1, ...,
Xm a1, ..., a;)). Using subdirect representation and the fact that every Boolean
algebra may be embedded into an atomless one, it clearly suffices to assume that

r
Pija vV x\-io Bij V .\=/1 (pi A 3ip)-

Il

) LiFT(n<w or Lix[[(4,teT) (n= w),

where A, is an atomless Boolean algebra for each ¢ € T (T any suitable index set).

Next, we may assume w.l.o.g. that {a), ..., a;} actually is a subalgebra of L.
L is a.c. since it satisfies AC1-AC4n, so by Theorem 1(iii) there exists a subalgebra
L’ of L such that {@;, ...,a} & L' and L' > 2 x Fin<aworL =2 x Ci
(n = ) for suitable i, j € w. In the second case, we may conclude that {a;, ..., a;}
c 2 x I:";' for some r > 1. Hence, we may assume w.l.o.g. that {a;, ..., a;} is
isomorphic to 2¢ x 15"{; (n < w)orto 2 x 15";" (n = w) for some i, j; r. The centers
of these finite subalgebras of L contain i + j atoms ¢y, ..., c¢4; € CL € CL;.
Divide L; by the canonical congruences 6(c,), 1 < k < i + j. L/0(c,) is still a
direct product of type (x), and L/0(c,) still satisfies EC1-EC4 by Lemma 5 and
AC1-AC4n by Lemma 2.2 of [12]. Since L = [I(L/8(cy), 1 < k < i + j), it will
obviously suffice to construct the desired u;, ..., u, modulo 0(c,) for each k.
Summing up, the problem reduces to the case where L, is a direct product of type
(»), and {ay, ..., a;} is a subalgebra of L isomorphic to 2 or ﬁ',, (n < w)or to2or
F forsomer > 1 (n = w).

We turn to v, ..., v,. Observe L; is a.c. as a direct product of a.c. factors
[12, Lemma 2.2]. So we may proceed as above and replace {v, ..., v,,} by a"subal-
gebra of L, isomorphic to 2¢ x F 72 (n < w)or to 2¢ x F’z (n = w) for suitable
P; q; r. The centers of these finite algebras contain p + g atomscy, ..., ¢y, € CL,.
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To carry out the same factorization as above, we have to find ¢y, ..., ¢pr, € CL
(nonzero, pairwise disjoint, with join 1) and v, ..., v,, € L, such that

JH@/0(ch)) = a/b(cy)

Ji@f0c)) = a/f(cy)
Jinl0(eD) = vifB(ey)

Jvul0(c)) = v,[0(ch)
induces an isomorphism

jk: <al’ BTN /TR S PR vm>/0(cl,¢) = <al’ <oy g V{, LU ] v;n)/o(ck)'

If {a1, ..., &} is 2, let {c}, ..., cpy,} be an arbitrary proper central partition of
lin L. If {ay, ...,a} is F, for some rew, let B, ..., S, be the atoms of F,
and d their join. Proceed as in the proof of Lemma 6 to produce ¢, € CL,
I < k < p + q (nonzero, disjoint, with join 1) such that ¢, < d iff ¢, < d and
e A B: #0iff g A B; # 0for 1 < i < r. Obviously, then, j, as defined above
will induce an isomorphism <ay, ..., @ >/0(cy) = {ay, .... aD/0cy). vy, ...,
v,, € Ly will be constructed in the same way as Qy, ..., Q, were obtained in the
proof of Lemma 7; the difference being that all the auxiliary elements used in
that construction live trivially within the direct product L; so we need not appeal
to the EC and AC conditions at this point (except for EC1 which guarantees the
existence of arbitrarily fine central partitions of ¢, within L, thus within L,).
Now the problem of finding the required u, ..., u,, € L may be factorized
again since L = [I[(L/#(cy), | < k < p + g). Observing that every nontrivial
homomorphic image of F, (r € w) is some F, (s < r), we are reduced to considering
the two cases dealt with in Lemmata 6 and 7. In view of Lemma 4, the proof of
Theorem 2 is now complete, since the cases By, B; are known [11], [13]. W

§3. Model companions for 7,. The existence of T, the model companion of
T,, for 0 < n < @ has been known for some time. As far as the author knows,
it appeared in print first in Burris [1]. However, as noted there, no description
of the theories T¥ was known then. T} belongs to the folklore of the subject:
It is the elementary theory of atomless Boolean algebras, see, e.g., [6] or, for an
elementary account, [11]. An explicit description of T} appeared in Schmitt
[13]. Schmitt’s constructions are based on some specific features of Stone algebras:
The availability of a workable “triple” characterization of Stone algebras, and
the coincidence between skeleton and center in such algebras. While the second
property fails for n > 2, triple constructions for algebras in B, exist for n > 2;
see Katrinak [8] and [9]). Their technical complexity seems, however, to prevent
a ready adaptation of Schmitt’s techniques to the cases n > 2. A further existence
proof for T§, T} and T} was given by Weispfenning in [14]. No axiomatization
of T} is provided there, however, and the absence of the amalgamation property
in B, for 2 < n < @ prevents a direct extension of Weispfenning’s results to
T, for these values of n.
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It is well known that if E(K)is a generalized elementary class for K the class of
all models of some universal theory T, then T* = Th(E(K)) is the model compan-
ion of T. The T, are obviously universal for 0 < n < w. Now, for Le B,, 0 <
n < w, the sets CL, SL, DL, Ston L, B;(s) are clearly definable by formulae
from % (#(L) for the last); and so is the concept of a partition (proper partition)
of fixed length. It follows that conditions ACI-AC4n and ECI-EC4 may be
formalized by V,-sentences from %. Let ¢y, @2, #3(n), ¢a(n) be such formalizations
of ACl, AC2, AC3n, AC4n for 2 < n < w, and similarly 0, for ECi (1 < i < 4).
We may now rephrase Theorem 2 as follows:

THEOREM 8. The model companions T} of T, for 0 < n < w are given by:

T = To U {41},

¥ = Ty U {¢1, ¢2 01, 05, 03},

T: T, U {¢1’ ¢2’ ¢3(n)9 ¢4(n)9 019 029 03’ 04} for 2<n<o

Hence, T¥ is finitely axiomatizable for all n.

COROLLARY 9. T¥ is Ry-categorical for all n.

ProOF. See Burris [1]. W

COROLLARY 10. T* is a model completion of T, precisely for n = 0, 1, 2, w.

PRrROOF. B, = Mod(T,) has the amalgamation property exactly for these values
of n (see [4]). The result follows (see [2]). W

COROLLARY 11. T¥ is a complete theory for all n.

Proor. T} is complete iff B, = Mod(7,) has the joint embedding property
(see [6]). Now 2 is an absolute subretract in B, for all n (see [5]), hence L,, L, € B,
may be embedded into L; x L,e B, W

REFERENCES

[1] S. BURRIS, An existence theorem for model companions, Proceedings of the Ulm Lattice Theory
Conference (G. Kalmbach, Editor), Ulm, 1975, pp. 33-37.

[2] P. ExLoF and G. SABBAGH, Model completions and modules, Annals of Mathematical Logic,
vol. 2 (1970), pp. 251-295.

[3) G. GRATZER, Lattice theory: First concepts and distributive lattices, Freeman,San Francisco,
1971.

[4] G. GrATzER and H. LAKSER, The structure of pseudocomplemented distributive lattices. 11:
Congruence extension and amalgamation, Transactions of the American Mathematical Society,
vol. 156 (1971), pp. 343-357.

[5] , The structure of pseudocomplemented distributive lattices. 111: Injective and absolute
subretracts, Transactions of the American Mathematical Society, vol. 169 (1972), pp. 475-487.

[6] J. HirscHFELD and W. H. WHEELER, Forcing, arithmetic, division rings, Lecture Notes in
Mathematics, vol. 454, Springer-Verlag, Berlin and New York, 1975.

[7] T. KATRINAK, Subdirectly irreducible modular p-algebras, Algebra Universalis, vol. 2 (1972),
pp. 166-173.

i8] , Ueber eine Konstruktion der distributiven pseudokomplementdren Verbdnde, Mathe-
matische Nachrichten, vol. 53 (1972), pp. 85-99.

91 , Die Kennzeichnung der distributiven pseudokomplementdiren Halbverbdnde, Journal
fiir die Reine und Angewandte Mathematik, vol. 241 (1970), pp. 160-179.

[10] K. B. Leg, Equational classes of distributive pseudo-complemented lartices, Canadian Jour-
nal of Mathematics, vol. 22(1970), pp. 881-891.

[11] J. ScuMID, Algebraically and existentially closed distributive lattices, Zeitschrift fiir Mathe-
matische Logik und Grundlagen der Mathematik, vol. 25 (1979), pp. 525-530.

Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:54:53, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2273597


https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2273597
https:/www.cambridge.org/core

688 JORG SCHMID

[12) ——, Algebraically closed distributive p-algebras, Algebra Universalis (to appear).

[13]) P.H. ScHMITT, The model completion of Stone algebras, Annales Scientifiques de I Univer-
sité de Clermont, Série Mathématique, fasc. 13 (1976), pp. 135-155.

[14] V. WEISPFENNING, 4 note on ¥.-categorical model companions, Archiv fiir Mathematiscke
Logik und Grundlagenforschung, vol. 19(1978), pp. 23-29.

UNIVERSITAT BERN
BERN, SWITZERLAND

Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:54:53, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2273597


https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2273597
https:/www.cambridge.org/core

	1

