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In the blood-vessel wall, the endothelium plays a key functional role by generating several substances that modulate vas-
cular smooth muscle tone, as well as growth, and platelet function. This review focuses on the role of the endothelial
L-arginine/nitric oxide signal transduction pathway in the maintenance of vascular integrity. Functional alterations of this
pathway may be important in cardiovascular disease, because depressed activity of this protective mechanism leads to
impaired relaxation and is also associated with reduced antithrombotic properties of the endothelial layer. Many of the
beneficial effects of ACE inhibitor therapy may be mediated through their ability to enhance the physiological roles of nitric

oxide.

Introduction

Nitric oxide is a vasodilator and potent inhibitor of platelet
function that is synthesized from L-arginine by nitric oxide
synthase. Nitric oxide enters adjacent smooth muscle cells,
leading to increased generation of cyclic guanosine
monophosphate and, subsequently, to vascular relaxation.
Nitric oxide-mediated vascular dilation is constant, as
endothelial cells continuously release small amounts of this
relaxing factor. Studies have shown that a basal level of
nitric oxide production, as well as agonist-stimulated pro-
duction, plays a key role in the regulation of vascular tone.
Thus, endothelial generation of nitric oxide is involved in
the maintenance of normal blood flow and pressure. Given
its ability to keep the vascular smooth muscle surface non-
adhesive and nonthrombogenic for circulating blood cells,
nitric oxide prevents platelet adhesion and aggregation.
Depressed activity of the L-arginine/nitric oxide pathway
leads to impaired relaxation (vasoconstriction and reduced
local blood flow) and is associated with reduced antithrom-
botic properties of the endothelium. In disease states
such as hypertension, endothelium-dependent relaxation
may be impaired, despite evidence of increased nitric oxide
release. Its haemodynamic roles may be diminished by pro-
duction of oxidative radicals or other disease-related
factors.

In patients with atherosclerosis, the response to
endothelium-dependent vasodilators, including nitric
oxide, may be impaired, possibly due to increased forma-
tion of superoxide radicals or interference by oxidized low-
density lipoprotein with the L-arginine/nitric oxide
pathway. Angiotensin I converting enzyme (ACE) plays a
key role in vascular homeostasis. Pharmacological inhibi-
tion of ACE not only prevents the formation of the power-
ful vasoconstrictor angiotensin II, but augments local
concentrations of bradykinin, a potent stimulator of the
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L-arginine/nitric oxide pathway, thereby enhancing vaso-
dilation. Studies have demonstrated improved endo-
thelial function with these agents, as well as inhibition of
platelet aggregation.

Thus the protective effects of ACE inhibitors in various
cardiovascular disease states may be attributable to
enhancement of the physiological roles of nitric oxide.

The endothelium and vascular homeostasis

Endothelial cells, which line the intimal surface of blood
vessels, play an important role in many physiological
processes. They perform a variety of functions, including
transportation of water and solute regulation of plasma
lipids, participation in inflammatory and immunological
reactions, maintenance of the fluidity of blood, and adjust-
ment of the calibre of blood vessels to the ever-changing
haemodynamic and hormonal environment. Because of
their strategic anatomical location between circulating
blood and tissues, endothelial cells have the capacity to
sense changes in haemodynamic forces (shear forces and
pressure) and in locally produced or circulating mediators,
andto respond to these changes by the production of a num-
ber of biologically active factors. The endothelium is
regarded as one of the most important, and certainly the
most extensive, ‘organ’ in the body that participates in car-
diovascular homeostasis.

The seminal observation of Furchgott and Zawadzkil'! 15
years ago, that endothelial cells play an obligatory role in
the relaxation evoked by acetylcholine in isolated rabbit
aortas, not only stimulated research activity worldwide
but truly revolutionized cardiovascular sciences. Now,
endothelium-dependent regulation of vascular tone (local
regulation of blood flow), platelet function, and mitogen-
esis (antithrombotic mechanisms) have become a key part
of our view of cardiovascular physiology. Perhaps even
more important, the achievements in recent years have led
to a better understanding of the pathophysiology of hyper-
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Figurel Schematic diagram showing endothelium-derived vasoactive factors produced in blood vessels.

tension, vasospasm, and atherosclerosis and to new thera-
peutic strategies to fight these pathological conditions.

Indeed, a number of endothelium-derived factors can
profoundly modify platelet function as well as the contrac-
tile and proliferative state of vascular smooth muscle cells?l.
These factors include nitric oxide and prostacyclin, which
are both vasodilators and potent inhibitors of platelet func-
tion, and a putative endothelium-derived hyperpolarizing
factor. By contrast, endothelial cells can also produce
vasoconstrictors and growth promoters, such as throm-
boxane A,, prostaglandin H;, endothelin, and angiotensin
II (Fig. 1).

This review will focus on the current knowledge con-
cerning the role of the nitric oxide signal transduction path-
way in the maintenance of vascular integrity.

L-Arginine/nitric oxide pathway

The demonstration in 1980 of the phenomenon of
endothelium-dependent relaxations and of the release of
endothelium-derived relaxing factor (EDRF)!" led to a
search for the chemical identity of this factor. In the next
few years, EDRF was shown to be an extremely labile mol-
ecule) and some of its properties were described.
Eventually, it was shown that vascular endothelial cells
release nitric oxide and that this compound accounted for
the vasodilatory and platelet inhibitory effects of EDRFY,
Nitric oxide is synthesized from L-arginine by nitric oxide
synthase (NOS) through a five-electron oxidation of the
guanidine-nitrogen terminal of L-argininel’l. Many
advances in the understanding of the L-arginine/nitric oxide
pathway have come from molecular studies of NOS. Three
distinct genes encoding different NOS isoforms have been

cloned. Neuronal NOS was the first form of the enzyme to
be purified and cloned®, More recently, both endothelial !
and macrophage forms have also been cloned!'*'2.
Macrophages have negligible NOS activity under basal con-
ditions, but after stimulation with lipopolysaccharide and/or
cytokines, massive increases in NOS activity occur within
2 to 4 hU'*1%, The macrophage enzyme, which is calcium
independent, has thus been referred to as ‘inducible NOS’
(iNOS) in contrast to the enzyme in neuronal tissues or
endothelium, which appears to be constitutively expressed.

Many cell types throughout the body, including hepato-
cytes, neurons, neutrophils, endothelial cells, vascular
smooth muscle cells, and cardiac myocytes, appear capable
of INOS expression!”'%, Once expressed, the inducible iso-
form generates large amounts of nitric oxide over
an extended period of time (48 to 72 h)®. In humans,
INOS has been found to be expressed in a variety of
cytokine-induced pathologic states, including tumors?',, cir-
rhosis!@), ulcerative colitis®!, and endotoxemic shock!?*.,

To understand the role of NOS in vascular physiology and
pathology, discrimination between the involvement of the
various isoforms of NOS may be important.

Constitutive NOS synthesizes nitric oxide within seconds
in response to ligand-receptor-coupling events at the
cell surface and displays a strict dependence on Ca** and
calmodulin/®?], In vascular endothelium, Ca** may be
made available through stimulation by agonists such as
acetylcholine and bradykinin, which generate inositol 1,4,5-
triphosphate (IPs) production via activation of the so called
‘phosphoinositide second messenger system’. IP; elicits
Ca?* release from intracellular stores by binding to IPs
receptors on the endoplasmic reticulum (Fig. 2).
Furthermore, a portion of mobilized Ca?* is thought to arise
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Figure 2 Pathways that can increase intracellular calcium in
endothelial cells, which in turn leads to activation of nitric oxide
synthase: phospholipase C activation by receptor and G protein
coupling; influx of extracellular calcium. (Modified from!'2l.)

extracellularly. Alternatively, agonist-independent nitric
oxide release also contributes to vascular tone. Both shear
stress®land deformation of endothelium®!, due to pulsatile
flow in blood vessels, stimulate nitric oxide release through
poorly characterized mechanisms. Once released, nitric
oxide enters adjacent smooth muscle cells, where it activates
soluble guanylate cyclase to generate cyclic guanosine
monophosphate (¢cGMP). The increased concentration of
c¢GMP in these cells causes vascular relaxation!®l.

Physiological roles of nitric oxide

REGULATION OF VASCULAR TONE

The vasculature is in a constant state of active dilation
mediated by nitric oxide. Endothelial cells continuously
release small amounts of nitric oxide, producing a basal level
of vascular smooth muscle relaxation. However, the expres-
sion of constitutive enzyme and the release of nitric oxide
can be enhanced above basal levels after receptor stimu-
lation by different agonists. Both in vitro and in vivo
studies have demonstrated that basal and stimulated pro-
duction of nitric oxide in endothelial cells plays a key role
in the regulation of vascular tone. The strongest evidence
comes from results obtained in studies with N9-substituted
analogs of L-arginine, which are potent and selective
inhibitors of nitric oxide synthesis (Fig. 3)1**!\. L-Arginine
analogs, such as N°-monomethyl-L-arginine (L-NMMA),
NC-nitro-L-arginine-methyl ester (L-NAME) and NC-nitro-
L-arginine (L-NA), cause endothelium-dependent contrac-
tions in a number of isolated arteries. These contractions
are mediated by inactivation of basal production of nitric
oxide®*%¥l, The inhibitory effect of these compounds is pre-
vented by L-arginine (but not D-arginine). This stere-
ospecific inhibition indicates that L-arginine analogs
compete with L-arginine for the NOS active site to prevent
production of nitric oxide. Intravenous injections of
L-NMMA into anaesthetized rabbits resulted in an imme-
diate and substantial rise in blood pressure, which could be
reversed by L-arginineP. The blood pressure-elevating and
vasoconstrictive effects of L-NMMA have now been
demonstrated in a number of species, including man®—,

Similar results have been obtained with the other known
NOS inhibitorsP. These inhibitors have no intrinsic con-
strictor activity on vascular smooth muscle; their activity is
entirely endothelium dependent and results from the inhi-
bition of endogenous vasodilatation.

Thus, it appears that the endothelial generation of nitric
oxide by NOS is involved in the maintenance of normal
blood flow and pressure. The observations that in porcine
coronary arteries and in small canine cerebral arteries
endothelium-dependent relaxations to bradykinin are resis-
tant to inhibitors of nitric oxide formation or cyclooxyge-
nase®#1 strongly suggest that an endothelium-derived
relaxing substance distinct from nitric oxide and prostacy-
clinisformed as well. Recent studies suggest that bradykinin
and acetylcholine hyperpolarize vascular smooth muscle
cells in an endothelium-dependent manner?*S. These
data would be compatible with the concept that endo-
thelial cells release a biochemically unidentified substance
that has the capacity to hyperpolarize vascular smooth
muscle cells via adenosine triphosphate-dependent potas-
sium channels#*#"l. Hyperpolarization of vascular smooth
muscle cells is associated with a decreased sensitivity to
vasoconstrictor substances and may also contribute to
vasodilator responses induced by prostacyclin and nitric
oxide.

INHIBITION OF PLATELET FUNCTION

Endothelium-derived relaxing factors, such as nitric
oxide and prostacyclin, not only serve to relax the
underlying smooth muscle but also keep the surface
nonadhesive and nonthrombogenic for circulating blood
cells. Both mediators increase cGMP and cyclic adenosine
monophosphate (cAMP) in platelets and thereby prevent
platelet adhesion and aggregation!*%. In addition,
platelets themselves possess an L-arginine/nitric oxide path-
way that modulates the reactivity of the cells to aggregatory
stimulil*?,

Inisolated human coronary and internal mammary arter-
ies, aggregating platelets cause endothelium-dependent
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Figure 3 Schematic representation of inhibitory effect of L-argi-
nine analogs on basal and stimulated production of nitric oxide.
(Modified from™1.)
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relaxations that are mediated by nitric oxide®**]. The
platelet-derived mediator primarily responsible for the
stimulation of nitric oxide formation is adenosine diphos-
phate, although serotonin may contribute under certain
conditions®l, In contrast to normal arteries, arteries
devoid of endothelial cells or with dysfunctional endothe-
lium markedly contract in response to aggregating
plateletstsl. Platelet-induced vasoconstriction is mediated
primarily by serotonin and thromboxane A,, which activate
specific receptors on vascular smooth muscle cells*%. At
sites where platelets are stimulated, the coagulation cascade
also is activated, leading to the formation of thrombin.
Thrombin is an enzyme that is responsible for the for-
mation of fibrin from fibrinogen. In addition to its activity
in the coagulation cascade, thrombin is a potent activator
of platelets®®), but it also exerts effects in endothelial cells.
Indeed, thrombin causes endothelium-dependent relax-
ations in human coronary arteries and internal mammary
arteriest®®l. These relaxations are partially inhibited by
indomethacin and L-NAMEP. This indicates that both
nitric oxide and prostacyclin contribute to the response.
Hence, in the presence of an intact endothelium, thrombin
not only causes vasodilatation, but it also inhibits platelet
function via an endothelium-dependent mechanism. These
effects counteract the direct activating effects of thrombin
in platelets and thereby represent a protective negative
feedback mechanism, preventing further activation of
platelet-vessel wall interaction.

Nitric oxide has also been shown to inhibit leukocyte acti-
vation both in vitro and in vivo!®'%2, Thus, nitric oxide even
appears to be involved in regulating the interactions
between leucocytes and the vascular endothelium.

REGULATION OF VASCULAR GROWTH

Removal of the endothelium by balloon catheter invari-
ably leads to intimal proliferation. This strongly suggests
that the presence of endothelial cells exerts an antiprolif-
erative effect!®, which may be related to the fact that
endothelial cells inhibit the adhesion and aggregation of
circulating platelets”->] and of monocytes!®, both impor-
tant sources of platelet-derived growth factor and trans-
forming growth factor beta-15, Furthermore, endothelial
cells produce inhibitors of migration and proliferation, such
as nitric oxidel®5 and heparin-like substances!®, as well as
transforming growth factor beta-1, which under certain con-
ditions is an inhibitor of vascular proliferation!®™l. On the
other hand, endothelial cells can also produce growth pro-
moters, such as platelet-derived growth factor, basic fibro-
blast growth factor, and endothelin-1!*""72 Thus, the
secretion of growth inhibitors or promoters by endothelial
cells, as well as their capacity to inhibit circulating blood
cells, modulates vascular structures!®],

Nitric oxide in cardiovascular disease

Functional alterations of the endothelial L-arginine/nitric
oxide pathway may be important in cardiovascular disease,
because a depressed activity of this protective mechanism
would lead to impaired relaxation (vasoconstriction and
reduced local blood flow) and be associated with reduced

antithrombotic properties of the endothelial layer.
Hypertension and atherosclerosis are well-recognized
pathophysiological contributors to the progression of
cardiovascular disease.

HYPERTENSION

The role of endothelium in hypertension is still contro-
versial. The endothelium-dependent relaxations are het-
erogeneously affected in this condition. In some vascular
beds of hypertensive rats, such as the aorta and mesenteric,
carotid, and cerebral vessels, endothelium-dependent relax-
ations are impaired™ 7. In contrast, in coronary and renal
arteries of spontaneously hypertensive rats (SHR),
endothelial function does not seem to be affected by high
blood pressure!”7l. Although the endothelium-dependent
relaxations are either diminished or normal in spontaneous
hypertension, the production of nitric oxide seems to be
increased. The release of breakdown products of nitric
oxide (NONO,) from isolated coronary vessels is aug-
mented in SHR™, The activity of constitutive NOS is also
enhanced in the SHR heart™l. In addition, it has been
demonstrated that pharmacologically induced elevations in
blood pressure increase the release of nitric oxide in nor-
motensive ratsl. These data suggest that blood pressure
per se is a stimulus for nitric oxide release. This interpreta-
tion is reinforced by the fact that constitutive NOS activity
is normal in prehypertensive 4-week-old SHR!®. Despite
its increased release, nitric oxide is functionally unable to
perform its haemodynamic role in the vasculature of gen-
etically hypertensive rats®™|, probably because higher
production of oxidative radicals, such as superoxide anion,
or diminished activity of superoxide dismutase (SOD)
accounts for increased degradation of nitric oxide. This
effect may contribute to the impaired endothelium-depen-
dent relaxations in this model of hypertension!™.. In addi-
tion, increased production of endothelium-dependent
contracting factors can explain the abnormal endothelial
function of some vascular beds.

Nitric oxide production and inactivation might be het-
erogeneously affected in different forms of hypertension®®".
Indeed, in Dahl salt-sensitive rats, endothelium-dependent
relaxations are impaired® ), but no release of vasocon-
strictor prostanoids can be demonstrated. This suggests that
decreased nitric oxide production could contribute to the
pathogenesis of this form of hypertension.

Studies in humans have demonstrated diminished basal
and stimulated nitric oxide production®®, The decrease in
forearm blood flow induced by L-NMMA is smaller in
hypertensive than in normotensive patients™l. Most
studies have shown reduced endothelium-dependent
vasodilatation in patients with primary or secondary
hypertension® 1. The impaired endothelial response in
hypertensive patients can be improved by indomethacin,
suggesting that vasoconstrictor prostanoids also contribute
to impaired endothelium-dependent relaxation(®l.

HYPERLIPIDAEMIA AND ATHEROSCLEROSIS

Although the morphology of the vascular endothelium is
not altered in the early stage of atherogenesis!®, its func-
tion as a regulator of vascular homeostasis is profoundly
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modified. By contrast, the presence of overt atherosclerosis
is associated with morphological changes in the intima of
large arteries (intimal thickening, accumulation and pro-
liferation of smooth muscle cells and lipid containing
macrophages)®],

Functional studies report that the response of athero-
sclerotic arteries to endothelium-dependent vasodilators is
impaired at a very early stage in rabbit®’, porcine!®l and
human coronary arteries!®™, whereas relaxationsin response
to the nitric oxide-donor molsidomine SIN-1 are well main-
tained excluding reduced responsiveness of vascular
smooth muscle to nitric oxide. In vivo, acetylcholine and
serotonin have even produced paradoxical vasoconstric-
tion**%). Furthermore, bioassay experiments with athero-
sclerotic arteries have shown that the release of nitric oxide
is reduced in porcine coronary arteries with hypercholes-
terolaemia and atherosclerosis®®4. However, recent
research in hypercholesterolaemic rabbit aortas has
revealed that the production of nitric oxide is markedly
enhanced rather than impaired®*. The latter observation
suggests increased formation of superoxide radicals in the
endothelium, inactivating nitric oxide, and/or decreased
activity of SOD, Indeed, superoxide anion production in
these preparationsisincreased™ and treatment with exoge-
nous SOD partially improves endothelium-dependent
relaxations of this artery!™.

In the porcine coronary artery, oxidized low-density
lipoprotein (ox-LDL) inhibits endothelium-dependent
relaxations to different agents, such as platelets, serotonin,
and thrombin®%, This inhibition of endothelium-derived
relaxation is specific for ox-LDL, and it is not induced by
comparable concentrations of native LDL®.. A receptor
distinct from that for LDL, the scavenger receptor, appears
to be activated by ox-LDL, since the endothelial effect of
modified LDL can be prevented by dextran sulphate, a
competitive antagonist of ox-LDL for this receptorl®,

Oxidized LDL may interfere with the L-arginine pathway,
since the inhibition of the endothelium-dependent relax-

ation that it produces is similar to that of L-NMMA.
However, the effect of ox-LDL can be reversed by L-argi-
nine, suggesting that NOS is not directly affected.
Furthermore, the pretreatment of isolated vessels with
L-arginine improves endothelial function in response to
serotonin that was blunted by ox-LDL. These results sug-
gest that ox-LDL decreases the intracellular availability of
L-arginine. Accordingly, in humans with hypercholestero-
laemia, L-arginine enhances the blunted increase in local
blood flow in response to acetylcholine!'™,

Vascular effects of ACE inhibition

As indicated above, endothelium-derived mediators reg-
ulate vascular integrity. There is evidence that in cardio-
vascular disease states, the protective role of the
endothelium appears to diminish, while the production
of vasoconstrictive, proaggregatory, and promitogenic
mediators is maintained or enhanced®:'®, One of the
enzymes with a key role in vascular homeostasis is
angiotensin I converting enzyme (ACE). ACE is located on
the endothelial cell membrane and is responsible for the
conversion of angiotensin I into angiotensin II as well as for
the breakdown of bradykinin.

Bradykinin is a potent stimulator of the L-arginine/nitric
oxide pathway!’l. Hence, ACE inhibitors not only prevent
the formation of a powerful vasoconstrictor with prolifer-
ative properties, but also augment the local vascular con-
centrations of bradykinin and, in turn, the activation of the
L-arginine/nitric oxide pathway (Fig. 4)102-106],

Endothelial function has been shown to be improved by
ACE inhibitors in several animal models of cardiovascular
disease including SHRU and hypercholesterolaemic
rabbits!!®, as well as models of experimental heart
fatlure!®],

Several animal models have shown that ACE inhibitors
can reduce neointima formation!''*'"!] following vascular
injury. Further analysis of the mechanisms involved in the
inhibition of miointimal formation!''? points to a role for
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Figure 4 Local vascular effects of ACE inhibitors in the blood vessel wall [12!]
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bradykinin. These findings establish a link between the
ability of ACE inhibitors to increase kinin concentrations
and their antiproliferative effects following vascular injury.
It is likely that the inhibitory effect of kinins on neointima
formation is mediated through their stimulation of nitric
oxide synthesis, which is known to inhibit smooth muscle
cell proliferation and migration!®*). Another connection
between ACE inhibition and the actions of bradykinin is
indicated by the finding that the endothelium-dependent
relaxation evoked by ACE inhibition is attenuated by a B2-
kinin receptor antagonist!'3l.

Evidence points to the positive activity of ACE inhibitors
on arterial thrombosis through their effects on platelet
function and the endogenous fibrinolytic system. Several
studies have demonstrated inhibition of platelet aggrega-
tion by ACE inhibitors!!'*!!3], These inhibitory actions may
be related to the inhibition of angiotensin II formation,
which is associated with an increase in thrombotic activity.
In addition, the increase in bradykinin levels resulting from
the inhibition of ACE kininase activity induces the gener-
ation of elevated levels of prostacyclin and EDRE, both of
which are associated with modulation of platelet aggrega-
tion'l. The ability of ACE inhibitors to attenuate platelet
aggregation and adhesion may have positive effects in the
prevention of atherosclerosis.

ACE inhibitors also appear to have a protective effect
against endothelial damage caused by oxygen-derived free
radicals. In rabbit aorta, ACE inhibition attenuated the
reduction of the vasodilatory response to acetylcholine!*'®},
normally seen when oxygen-derived free radicals are
generated. L-arginine also significantly reduced oxygen-
derived free radical damage, while L-NA attenuated the pro-
tective effects of both ACE inhibitors and L-arginine. The
results of this study suggest that the protective effects of
ACE inhibitors may be mediated by facilitation of nitric
oxide release, with a subsequent reduction in lipid peroxi-
dation.

In recent clinical trials, ACE inhibitors have been shown
to reduce mortality and morbidity in patients with heart
failure. In the SOLVD study!!"’], patients with asymptomatic
left ventricular dysfunction who received ACE inhibitors
were found to have significantly reduced mortality rates,
progression to heart failure, and heart failure-related hos-
pitalizations. In addition, a statistically significant risk
reduction for death, MI, and unstable angina of 23% was
observed in the SOLVD population"¥l, In the SAVE
study!"®,, ACE inhibitors administered to patients follow-
ing myocardial infarction resulted in a 25% reduction in
recurrent myocardial infarction, as well as a 19% reduction
in all-cause mortality. In the more recent AIRE study!"® of
more than 2000 patients following myocardial infarction,
the all-cause mortality rate was reduced by 27% over the
15-month study period. It is interesting to note that the risk
reduction was similar in patients with different levels of sys-
tolic and diastolic blood pressure at baseline. These obser-
vations suggest that the reduction in major ischaemic events
seen with ACE inhibition is due, at least in part, to mech-
anisms separate from their hypotensive effects. Some prob-
able mechanisms include the attenuating effects of ACE
inhibitors on the progression of atherosclerosis, stabil-

ization of atherosclerotic lesions, inhibition of cardiac
hypertrophy and remodelling, and antithrombotic effects.

Condlusions

In summary, the L-arginine/nitric oxide pathway has
undoubtedly reached the clinical arena and is currently
under intensive investigation in various forms of cardio-
vascular disease, including essential hypertension, athero-
sclerosis, and vasospasm. Many of the beneficial effects of
ACE inhibitor therapy may be explained by the inhibition
of bradykinin degradation. Thus, ACE inhibition may
restore cardiovascular homeostasis, at least in part, by
enhancing the physiological roles of nitric oxide.
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