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ABSTRACT

The set of tripotents in a JBW*-triple 21 with its natural ordering and with a largest element adjoined
is shown to be a complete lattice, order isomorphic to the lattice of norm closed faces in the unit ball
&„! of the predual 21* of 21 and anti-order isomorphic to the lattice of weak* closed faces of the unit ball
Ulj in SI. As a consequence, the set of partial isometries in a W*-algebra with its natural ordering and again
with a largest element adjoined forms a complete lattice and every non-empty weak* closed face of its unit
ball is of the form

M + (1 - MM*) 21(1 -«*«) !

for some unique partial isometry M.

1. Introduction

In previous papers [9,10,11] the authors explored the facial structure of the
closed unit balls in JBW-algebras and their preduals, and in JB-algebras and their
duals. It was shown that the faces, closed in the relevant topology, can be described
by means of elements of the complete lattice of idempotents in the first case in the
JBW-algebra itself and in the second case in the enveloping JBW-algebra. Most of
the techniques used in those papers do not lend themselves to the study of the facial
structure of unit balls in complex Banach spaces, in particular the complexifications
of JB-algebras and JBW-algebras known respectively as Jordan C*-algebras [33] (or
JB*-algebras [34]) and Jordan W*-algebras [8] (or JBW*-algebras [34]). The sets of
such algebras respectively include the sets of C*-algebras and W*-algebras. The open
unit balls in Jordan C*-algebras are bounded symmetric domains which generalise the
classical bounded symmetric domains in finite-dimensional complex vector spaces
[24, 27]. However, the most general bounded symmetric domains in infinite-
dimensional complex Banach spaces are isomorphic to the open unit balls, not in
Jordan C*-algebras, but in the wider class of JB*-triples. Therefore, JB*-triples and
those JB*-triples which are dual spaces, the JBW*-triples, not only form natural
generalisations of Jordan C*-algebras and C*-algebras, and Jordan W*-algebras and
W*-algebras, but also provide a context for the study of infinite-dimensional
holomorphy and infinite-dimensional Lie algebras [25].

Recently the structure theory of JB*-triples and JBW*-triples has received
considerable attention [4, 5,12 to 18, 22]. In this paper the facial structure of the unit
balls in a JBW*-triple and its predual are studied. One of the methods used in the
investigation of real Banach spaces which is available in the complex case is the use
of the mappings E-> E' and F-* Ft between subsets of the unit balls Vx and Kf in a
Banach space V and its dual V* defined by

E' = {a:aeV*, a(x) = l,Vxe£}, (1.1)

Ff = {x:x€ Vx, a{x) = 1, VxeF}. (1.2)
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The ranges of these mappings are the complete lattices Sw*(Vf) and SB(F^) of
weak*-semi-exposed faces of Ff and norm-semi-exposed faces of Vx respectively. This
method, so effective in [10,11], is also extremely useful in the study of JBW*-triples.
In this case the role played by idempotents in the theory of JBW-algebras is taken by
elements of the set <%(SH) of tripotents in the JBW*-triple 21. Indeed, the first main
result of the paper shows that every norm closed face of the unit ball 2I+1 in the
predual 21* of 21 which is not 21 #1 itself is of the form {«}, for some unique element
u of ^(21), that with respect to the natural partial ordering ^(21) with a largest
element adjoined forms a complete lattice ^(21) ~, and that the mapping u -> {u}f is an
order isomorphism from ^(21) ~ onto the complete lattice #'n(2(1|tl) of norm closed
faces of 21.H. The second main result shows that every non-empty weak* closed face
of 2lx is of the form {«}/ for some element u of ^(21) and that the mapping u -> {M}/
extends to an anti-order isomorphism from <^(2l)~ onto the complete lattice
•^w(^i) of weak* closed faces of 2I r An important consequence of this result is that
the non-empty weak* closed faces of the unit ball in a W*-algebra 21 are all of the
form M + (1 — MM*) 21(1— M*M)1? where u is a partial isometry in 21 with initial
projection u*u and final projection uu*. Neither this result nor the fact that the set of
partial isometries in a W*-algebra with a largest element adjoined forms a complete
lattice in which the lattice of projections appears as a principal ideal seems to have
been previously observed.

The paper is organized as follows. In §2 various preliminary definitions and results
are given. In §3 the properties of the set ^(21) of tripotents in 21 and its connection
with the local facial structure of %1 and 2I+1 are described. Since it is the aim of the
authors to make the paper reasonably self-contained, whilst most of the results of
§§2, 3 are new both sections owe much to [16]. It should be said however that some
of the results in [16] were proved under additional assumptions which were later
shown to be redundant [4, 5]. The main results are proved in §4, and §5 is devoted to
a study of special cases, particularly that of W*-algebras.

The authors are grateful for the support that their research has received from
Schweizerischer Nationalfonds/Fonds national suisse and from the United Kingdom
Science and Engineering Research Council. Each author is also grateful for the
hospitality received from the other's institution.

2. Preliminaries

Let V be a complex vector space and let C be a convex subset of V. A convex
subset E of C is said to be a face of C provided that, if x is an element of E such that
x = tx1 + (\ — t) x2, where x1 and x2 lie in C and 0 < t < 1, then x1 and x2 lie in E. An
element x of C for which {x} is a face of C is said to be an extreme point of C. Let
T be a total convex Hausdorff topology on V and let C be r-closed. Let !FX(C) denote
the set oft-closed faces of C. Both C and 0 are elements of !FX(C) and the intersection
of an arbitrary family of elements in ^ ( C ) again lies in ^X{C). Hence, with respect
to the ordering by set inclusion !FX{C) forms a complete lattice. A subset E of C is said
to be a x-exposedface of C provided that there exists a r-continuous linear functional
/ o n V and a real number t such that, for all elements x in C\E, Re/(X) < / and, for
all elements x in E, Re/(x) = t. Let SZ{C) denote the set of r-exposed faces of C.
Clearly &X{C) is contained in 3FX{C) and the intersection of a finite number of elements
of &T(C) again lies in &X{C). The intersection of an arbitrary family of elements of
SX(C) is said to be a x-semi-exposed face of C. Let Sfx(Q denote the set of r-semi-
exposed faces of C. Clearly &X(C) is contained in Sfx(C) and the intersection of an
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arbitrary family of elements of Sfx(C) again lies in Sfx(C). Hence, with respect to the
ordering by set inclusion £fx{C) forms a complete lattice and the infimum of a family
of elements of £fx(C) coincides with its infimum when taken in i ^ (Q-

When V is a complex Banach space with dual space V* the abbreviations n and
w* will be used for the norm topology of V and the weak* topology of V*. For each
subset E of the unit ball Vx in V let E' be the subset of the unit ball F* in V* defined
by (1.1), and for each subset F of V* let F, be the subset of Vx defined by (1.2). The
properties of these mappings are summarised in the following lemma, the proof of
which is straightforward.

LEMMA 2.1. (i) For subsets D and E of Vx and F and G of V* and for any real
number t,

(euE)' = e~uE', {euF), = e^F,,

ifD^E, then E' c D' and ifF^G, then G, g Ft.
(ii) A subset E of Vx lies in Sfn( VJ if and only if E = (£"), and a subset FofVf lies

in STjyX) if and only if F = {F)'.
(iii) The mappings E-+E' and F->F, are anti-order isomorphisms between

and yw*{VX) and are inverses of each other.

For further details the reader is referred to [3, 10, 11].
Recall that a real Jordan algebra A which is also a Banach space such that, for all

elements a and b in A, ||a2 — b2|| ^max{||a2| | , ||&2||}and ||a2|| = ||<2||2, is said to be a JB-
algebra. The set A+ consisting of squares of elements of A forms a norm closed cone
in A. If A is the dual of a Banach space A* then A is said to be a JBW-algebra. In this
case the cone A+ is weak* closed and A is monotone complete. It follows that A
possesses a multiplicative unit e. With respect to the ordering induced from A and the
orthocomplementation p^-e—p the set of idempotents in A forms a complete
orthomodular lattice, two idempotents p and q being orthogonal if and only if
poq = 0. Let A% denote the norm closed cone in A* dual to A+ and let Kdenote the
set of elements of A+ of norm one. Elements of A* are precisely the normal linear
functionals on A and hence K is said to be the set of normal states of A. A unital
Jordan *-algebra 31 which is also a complex Banach space such that, for all elements
a and b in % \\a*\\ = \\a\\, \\aob\\ < ||a|| \\b\\ and | |{aaa}| | = \\a\\3, where

{abc} = ao(b*oc)-b*o(coa) + co(aob*) (2.1)

is the Jordan triple product on 21, is said to be a Jordan C*-algebra [33] or 3B*-algebra
[34]. Examples of JB*-algebras include all finite-dimensional formally real complex
Jordan *-algebras and all unital C*-algebras A with Jordan product defined, for
elements a and b in 51, by aob = ^ab + ba). A Jordan C*-algebra which is the dual
of a Banach space $1* is said to be a Jordan W*-algebra [8], or a 5BW*-algebra [34].
The self-adjoint part $lsa of a Jordan C*-algebra (respectively Jordan W*-algebra) is
a JB-algebra (respectively JBW-algebra). Each JB-algebra (respectively JBW-algebra)
is obtained in this manner. The correspondences so established are one to one. In
addition, for a Jordan W*-algebra 51, (2Isa)* = (2I*)sa- Notice that examples of
Jordan W*-algebras are provided by W*-algebras equipped with the usual Jordan
product.
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LEMMA 2.2. Let SSL be a Jordan C*'-algebra. Then the unit e in 91 is an extreme point
of the unit ball 9lx in 91.

Proof. Let a and b be elements of 9IX such that e = \a + \b. Putting c = f(
and d = l(b + b*), it follows that e = \c + \d. Let B be the sub-JB-algebra of the self-
adjoint part 9lsa of 91 generated by c, d, and e. Then, by [33, Proposition 2.1], B may
be regarded as a JB-algebra of bounded self-adjoint operators on a complex Hilbert
space and [29, Proposition 1.6.1] shows that c = d=e. Hence a* = 2e—a, and
applying [33, Corollary 2.2] it follows that a = e, as required.

LEMMA 2.3. Let %be a Jordan yN*-algebra with unit e and let x be an element of
norm one in the predual 21 „, o/2I such that x(e) = 1. Then x is a normal state o/9lsa.

Proof Let a be an element of 9lsa and suppose that x(a) = s + //, where s and t
are real. Let W(a, e) be the smallest sub-JBW-algebra of 9lsa containing a and e, and
let 2C(a, e) = W{a, e) + iW(a, e). Then, by [7, Lemma 3.2], 2B(a, e) is a commutative
W*-algebra. Applying [29, Proposition 1.5.2] to the restriction of x to 2B(a, e), it
follows that f = 0. The proof of the corresponding result for W*-algebras can also be
applied in this case to show that x is positive.

For further details of the theory of JBW-algebras and Jordan W*-algebras the
reader is referred to [1, 2, 6, 7, 19, 23, 30].

A complex vector space 91 equipped with a triple product (a, b, c)->{ab c} from
91 x 91 x 91 to 91 which is symmetric and linear in the first and third variables,
conjugate linear in the second variable and satisfies the identity

[D(a, b), D(c, d)} = D({a b c}, d) - D(c, {d a b}) (2.2)

= D{a,{bcd})-D{{cda},b), (2.3)

where [,] denotes the commutator and D is the mapping from 91 x 91 to the space of
linear operators on 91 defined by D(a, b)c = {ab c}, is said to be a Jordan triple. When
91 is also a Banach space such that D is continuous from 91 x 91 to the Banach space
£(91) of bounded linear operators on 91 and, for each element a in 91, D(a, a) is
hermitean with non-negative spectrum and satisfies \\D(a, a)\\ = ||fl||2, then 91 is said
to be a JB*-triple. In this event it can be shown that, for all elements a, b and c in 91,
||{a b c}\\ ̂  \\a\\ \\b\\ \\c\\ and ||{a aa}\\ = \\a\\3 [17]. Let Hx and H2 be complex Hilbert
spaces. A norm-closed subspace 91 of the Banach space 2(HV H2) of bounded linear
operators from H1 to H2 with the property that for each element a in 91, the bounded
operator aa*a also lies in 91, is said to be a J*-algebra [21]. With respect to the triple
product {a b c} = \iab*c + cb*a) a J*-algebra is a JB*-triple. Further examples of JB*-
triples are provided by Jordan C*-algebras with the triple product (2.1). In particular,
every C*-algebra is a JB*-triple. A JB*-triple 91 which is the dual of a Banach space
91* is said to be a JBW*-triple. In this case the predual is unique and the triple product
is separately weak* continuous [4, 5]. Weak* closed J*-algebras and Jordan W*-
algebras provide examples of JBW*-triples. In particular, W*-algebras are JBW*-
triples. An element u in a JB*-triple 91 is said to be a tripotent if {uuu} = u. The set
of tripotents in 91 is denoted by ^(91). Notice that if 91 is a J*-algebra then < (̂9I) is
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the set of partial isometries in 91. For each tripotent u, the operators Q(u), P^u),
7 = 0, 1,2, are defined by

Q(u) a = {ua u}, P2(u) = Q(u)\ P^u) = 2(D(u, u) - Q{u)%

The operators Pj{u), j = 0, 1,2, are projections onto the eigenspaces 9I/M) of D(u, u)
corresponding to the eigenvalues \j and

is the Peirce decomposition ofSU relative to u. Forj, k, I = 0, 1,2, %(u) is a sub-JB*-
triple of SH such that

wheny—k + l = 0, 1 or 2 and is {0} otherwise, and

{2!2(M)<H0(Mm = {%(u)%(u)SH} = {0}.

Moreover, 312(M) is a Jordan C*-algebra with product (a, b)-+{au b), unit u, and
involution a->{ua u}. If 51 is a J*-algebra and u is a partial isometry in S&, with initial
and final projections u*u and uu*, respectively, then

P2(u)a = uu*au*u, P0(M)a = (\—uu*)a(\—u*u),

P^iija = w«*fl(l— «*«) + ( 1— MM*) au*u.

If 31 is a JBW*-triple then the operators D(a, b), Q(u), P;(u),j = 0, 1, 2, are all weak*
continuous and %(u),j = 0, 1,2, are sub-JBW*-triples of % with 2I2(M) a Jordan W*-
algebra. A pair u, v of elements of <^(2l) is said to be orthogonal if one of the following
equivalent conditions holds:

D(u,v) = 0; D(v,u) = 0;

{uuv} = 0; {vvu} = 0;

For two elements u and v of ^(91), write M ^ u i f y - M i s a tripotent orthogonal to u

or, equivalently, if
P2(u)v = u. (2.4)

This defines a partial ordering on <%(&). Notice that, if u ^ v then, since u and U - M
are orthogonal,

{v u v} = — {u u u) + 2{v u u} = — u + 2{v — u u u} + 2M = u,

and it follows that
P2(v)u = u. (2.5)

LEMMA 2.4. Let %be a JBW*-triple and let v be an element o
(i) An element u in 5J is a tripotent such that u < v if and only ifu is an idempotent

in the JBW-algebra M2(v)M.
(ii) Let MX and M2 be elements of%{%) such that ux, u2 ^ v. Then ux < M2 if and only

ifu2 — ux lies in ^I2(
v)t&-

JLM 38



322 C. M. EDWARDS AND G. T. RUTTIMANN

Proof, (i) Notice that, by (2.4), in 9l2(y),

uou = {u v u} = {{u u u}v{u u u}} = {u P2(u)vu} = u.

Moreover, since v — u and u are orthogonal,

u* = {v u v} = —{u u u} + 2{v u u} = —u + 2{v — u u u} + 2u = u.

Conversely, if u is an element of 2l2(y) such that {v u v) = u and {uvu} = u, then
{uuu} = 2uo(uou) — u2ou = u.

(ii) Suppose that ux ^ u2 ^ v. Then, applying (2.2) and (2.3),

{ux v u2) = {{ux ux ux}v u2} = D(u2, v)D(ux, ux)ux

= D(u2, {V UX ux})ux-D({ux ux u2}, v)ux + D(ux, u

= D(uvu1){u1vu2}.

It follows that {ux v u2} is an element of 5I2(w1) and hence that

uxou2 = {ux v u2} = {ux {ux v u2} ux) = D(ux, {ux v u2}) ux

= D({v u2 MJ, M1)W1 + D(UX, uJDiv, u2)ux-D{v, u

= ux + ux — ux = ux.

Hence ux ^ u2 in 5l2(y)sa. Conversely, suppose that this is the case. Then, since ux is
orthogonal to v — ux,

{ux ux u2) = {ux v u2) = ult

which implies that D(ux, ux) (ux-u2) = 0 and ux-u2 lies in ^ ( i / J as required.

For further details of the properties of JB*-triples and JBW*-triples the reader is
referred to [4, 5,12 to 18, 22, 26, 31, 32].

3. Supports of elements of a JEW*-triple

Throughout this section 51 denotes a JBW*-triple with predual 21* and <^(3l)
denotes the set of tripotents in 91.

Let a be an element of 91 of norm one and let 2B(a) be the smallest sub-JBW*-
triple of 21 containing a. Notice that 2C(a) is the weak* closure of the linear span of
the elements a2n+1 of 91 defined inductively by

a3 = {a a a}, a*n+1 = {a a2"-1 a}.

Then, by [17, Corollary 6; 21, Theorem 3.2; 13], 2C(a) is isomorphic as a JBW*-triple
to a commutative W*-algebra L00(Q, fi). By slight abuse of notation, 2B(a) and
L^Q, fi) will be identified. Consequently, if

a = r(a)\a\, \a\ = r(a)*a (3.1)

is the polar decomposition of a in L^Q, JJ), then

a2n+1 = a\a\2n = r(a)\a\2n+l (3.2)

and r(a) is a partial isometry in L^Cl, fi), hence an element of ^(91) such that

{r(a) r(a) a} = {r(a) a r(a)} = a.

The tripotent r(<z) is said to be the support of a. Clearly a can be regarded as an
element of the JBW-algebra 9l2(r(a))sa.
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LEMMA 3.1. The complexification of the smallest sub-iW^f-algebra W{a) of
$l2(r(a))sa containing a coincides with 2B(fl), and r(a) is the unit in W{a).

Proof. First observe that every Jordan *-subalgebra of 2I2(r(a)) is a subtriple,
and hence that 2B(a) is contained in W{a) + iW{a). Moreover, since 2B(a) is a subtriple
containing r(a), for all integers n and m, {a2n+1 r{a) a2m+1) and {r(a) a2n+1 r(a)} are
elements of 2B(«). Using the weak* continuity properties of the triple product it
follows that 2B(fl) is a Jordan W*-subalgebra ofH2(r(a)) and therefore coincides with
W(a) + iW(a).

By spectral theory there exists a sequence (qn) of real odd polynomials of degree n
on [0,1] such that the sequence (qn(\a\)) converges in the weak* topology of LJQ, n)
to r(a)*r(a), the range projection of |a|. Notice that, by (3.2), qn(a) = r(a)qn(\a\)
and, by the weak* continuity of multiplication, the sequence (qn(a)) converges in the
weak* topology to r(a). Let ew be the spectral measure on [0, 1] corresponding to \a\
with range in LOT(O, f£). Then, as in [21, Theorem 3.2], ua, defined for each Borel
subset M of [0, 1] by ua(M) = r(a) eM(M), is a ^(21)-valued measure on [0, 1] such
that

a= tdua
t. (3.3)

Jo
A simple calculation shows that, for all Borel subsets M of [0, 1], ua(M) ^ r(a) and,
by using Lemma 2.4, that (3.3) is precisely the spectral resolution of a in the JBW-
algebra 2l2(r(a))sa. It follows that, in $l2(r(a))sa, 0 =̂  a ^ r{a). The unit in W{a) is the
range idempotent of a and can be regarded as the weak* limit of the sequence (qn(a))
in 2I2(

r(«))sa- Since, in SH2(r(a)), odd powers of a defined by the Jordan product of
W2(r(a)) and by the triple product of 31 coincide it follows that r(a) is precisely the unit
in W(a).

Notice that the fact that ^(51) contains a non-zero element is a consequence of
this result. The next result describes a further property of the partially ordered set

LEMMA 3.2. The mapping u-+{u}f is an order isomorphism from ^(21) onto the
partially ordered set <^n(3l*i)\^l*i of norm-exposed faces ofSH^l with $1^ excluded.

Proof. Let u and v be elements of %(?&) with u ^ v. Notice that, for each element
x in {u}f,

\(P2(u)*x)(u)\ = \x(P2(u)u)\ = \x(u)\ = 1

and therefore ||P2(M)*JC|| = ||JC||. It follows from [16, Proposition 1] that P2(u)*x = x.
Then, by (2.3),

x(v) = P2(u)*x(v) = x(P2(u)v) = x(u) = 1.

Hence {u}f <=, {v},. Conversely, suppose that u and v are elements of <%(%) such that
{u}t £ {v)r Elements of {u}/ may be regarded as linear functional of norm one in the
predual 212(«)* of the JBW*-algebra 2I2(«). By Lemma 2.3, {«}, can be identified with
the normal state space of $12(M). However, P2(u)v is an element of 2l2(w) such that, for
each element x of its normal state space,

11-2
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It follows that P2(u) v is the unit u in 5l2(w) and hence that u ^ v. It remains to show
that the mapping u -> {u}/ is surjective. Let a be an element of $1 of norm one. Then,
using Lemma 3.1, as in [16, Proposition 8], there exists an element u(a) in ^(31) such
that {a}t and {u{a)}f coincide. Finally, observe that {0}, is the empty set and the proof
is complete.

COROLLARY 3.3. For each element u in <^(5I) the smallest weak*-semi-exposed
face {«}/ of^ll containing u is

Proof. By [16, Lemma 1.3(a)], for each element a in 3I0(M)15 u + a lies in SUV

Moreover, for each element x in {u},,

x(u + a) = P2(u)*x(u + P0(u)a) = x(u) = 1

and u + $lo(
M)i *s contained in {«}/. Conversely, if a is an element of {«}/ then P2(u)a

is an element of 9I2(M) which takes the value one on its normal state space, and hence
P2(u)a = u. By [16, Lemma 1.6], Px(u)a = 0, and it follows that a = u + P0(u)a. Since
P0(u) is a contraction, a lies in u + ^ ( M X and the proof is complete.

For each element a of 51 of norm one let u(a) be the unique element of
defined in Lemma 3.2, with the property that {a}/ and {u(a)}f coincide. The next result
gives alternative characterisations of the tripotent u(a) associated with a.

LEMMA 3.4. (i) The tripotent u(a) is the greatest element of the subset £f o/
consisting of elements u such that {uau} = u.

(ii) The tripotent u{a) is the limit in the weak* topology of the sequence (a2n+1).
(iii) Ifu is an element of Zf such that \\P^{u)a\\ < 1, then u = u(a).

Proof. Notice that, as in the proof of Lemma 3.2, P2(u(a))a = u(a) and hence
u(a) is an element of Sf. If u is an arbitrary element of <9" then P2{u) a = u and
{w}, £ {a}f = {u(a)}r By Lemma 3.2, u ^ u(a) and the proof of (i) is complete.
To prove (ii) the notation used in the proof of Lemma 3.2 is maintained. By spectral
theory in L^JCl, //), the sequence (bn) defined by

bn = r(a)*r(a)-(r(a)*r(a)-\a\fn+l

converges in the weak* topology to r(a)*r(a). Hence, the sequence (|fl|2n+1) converges
in the weak* topology to r(a)*r(a) — r, where r is the range idempotent of the positive
element r(a)*r{a) — \a\. By (3.2), the sequence (a2n+1) converges in the weak* topology
to the element w, where w = r(a)r(a)*r(a) — r(a)r = r(a) — r(a)r. Notice that

{r(a) r r(a) r r{a) r) = r{a) r, {r(a) r r(a) r{a) r) = r{a) r,

and r(a) r is an idempotent in $I2(r(a))sa. Therefore, w is an idempotent in 5l2(r(a))sft

and, by Lemma 2.4, w is an element of <%{S8L) such that w < r(a). Moreover,

{w a w} = (r(a) - r(a) r) a*(r(a) - r(a) r) = (r(a) - r(a) r) Qa\ - \a\r)

= (r(a) - r(a) r) {\a\ - r(a)*r(a) r + r(a)*r(a) - \a\)

= w.

It follows from (i) that w ^ u{a). Regarded as elements of 5I2(r(fl))^a, the sequence
(a2n+l) decreases with infimum w and therefore converges to w in the weak* topology
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of SU2(r(a)). The weak* continuity of the Peirce projections shows that the convergence
is also in the weak* topology of 51. As in the proof of Corollary 3.3,

from which it follows that
a2n+1 = «

If x is an element of {w(a)},, since P2(u(a))*x = x and 9I0(M(a)) is a subtriple,

x(a2n+1) = \+x{(P0(u(a))ayn+1 = 1.

Therefore x(w) = 1 and x lies in {w}r By Lemma 3.2, u(a) ^ w, and therefore u(a) and
w coincide. To prove (iii) suppose that u is an element of Sf. Then a = u + P0(u)a and
a2n+i _ M + (/>o(M)fl)

2n+1. if ||/»0(M)a|| < 1 then the sequence (a2n+1) converges in norm
and hence in the weak* topology to u. From above u = u(a).

The next result is the principal technical lemma needed in §4 to describe the set
of weak* closed faces of 2 l r

LEMMA 3.5. (i) The tripotent u(a) is contained in the weak* closure face a of the
smallest face face a of(Hi1 containing a.

(ii) The weak* semi-exposed face u(a) + fio(u(a))1 of^i1 coincides with the smallest
face face(face a )of(H1 containing face a .

Proof. Maintaining the notation used above, define the sequence (bn) of
elements of L ^ Q , //) by

bn = r(a)*r(a)-(r(a)*r(a)-(r(a)*r(a)-\a\)r+\

Notice that the sequence (bn) lies in 3 ^ and, by spectral theory,

0 ^ bn^(2n+l)(r(a)*r(a)-\a\),

\\(2n+\)(r(a)*r(a)-\a\)-bn\\ <2n.

Moreover,

r(a)*r(a)-\a\ = (2n+ \y1bn + 2n(2n+ l)"1^,

where

cn = (2n)-\(2n+\)(r(a)*r(a)-\a\)-bn).

Hence,

\a\ = (2n+\y1(r(a)*r(a)-bn) + 2n(2n+\)-\r(arr(a)-cn),

a convex combination of elements in L00(Q, /i)v Therefore,

a = r(a)\a\ = (2«+ \)-\r(a)-r(a)bn) + 2n(2n+ \y\r(a)-r(a)cn),

a convex combination of elements of <mv Moreover,
r(a)-r(a)bn = r(a)\a\2n+1 = a2n+1.

It follows that a2n+1 is an element of face a and, by Lemma 3.4(iii), that u(a) lies in
face a .

Now let b be an element of WQ(u(a))v By [16, Lemma 1.3], u(a)±b are elements
of 5lx and, since u(a) = l(u(a) + b) + \(u(a} — b), u(a)±b lie in face u(a). Therefore,
u(a) + SH0(u(a))1 is contained in face(face a ). However, by Corollary 3.3 and Lemma
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3.4, a lies in the weak*-semi-exposed face «(«) + ^(wOa))! of SHV Therefore, face a,
face a", and face(face a") are contained in u{a) + ̂ lo(u(a))l and the proof is
complete.

Let x be an element of 51^ of norm one. Then, by [16, Proposition 2], there exists
a unique tripotent e(x) in $1 such that P2(e(x))*x = x and the restriction of x to the
Jordan W*-algebra %2(e(x)) is a faithful normal state.

LEMMA 3.6. The tripotent e(x) is the least element in {x}' (1 <%{%).

Proof. Notice that since x(e(x)) = 1, e(x) is a tripotent in {JC}'. Let u be a
tripotent in {x}', from which it follows that xe{x}', £ {u},. Therefore, x is a normal
state of the JBW-algebra $l2(«)sa. The support idempotent of* in ^I2(u)sa

nas t n e s a m e

properties as e(x) and therefore, by uniqueness, coincides with e(x). It follows that
e(x) < u as required.

4. Mam results

The main results of the paper are proved in this section. The notation of §3 is
retained.

LEMMA 4.1. The mapping u -*• {u}/ is an order isomorphism from <%•($!) onto the
partially ordered set ^n(QIs|el)\

<sUJ|el of norm-semi-exposed faces of $1^ with $1^
excluded.

Proof. By Lemma 3.2 it is only required to show that every norm-semi-exposed
face of %^ is norm-exposed. First, let F be a norm-semi-exposed face of W^
different from $1,^. There exists a family {us:SeA} of elements of %{W) such that
F = f]{{ud}f:SeA}. Let Af be the set of non-empty finite subsets of A directed
by set inclusion.For each element j in Af, let u, be the unique tripotent such that
{u}}f = OiWj},: 3ej}. It follows from Lemma 3.2 that ifj\ => jz then u} < u^. Therefore
{ujijeA1} forms a decreasing net in ^(21). Fixy0 in Af and let Af° = {j:J€Af,j0 £y}.
Then {ujjeAty forms a decreasing subnet in ^(31). Therefore, by Lemma 2.4, when
regarded as idempotents in the JBW-algebra 212(«, )sa, the decreasing net {u/.je A7*}
converges in the weak* topology to its infimum, an idempotent u0. By Lemma 2.4,
u0 lies in ^(31). Moreover, the net {UjijeA*0} converges to u0 in the weak* topology
of 21. Suppose that j is any element of A7. Then the union y1 ofy and j0 contains j and
therefore uo^u} ^ u}. Hence u0 is a lower bound for {u^JeA*}. If the tripotent v0 is
a further lower bound for {u^.jeA1) then v0 is also a lower bound for {uy:yeA/o} and
y0 ^ u0. It follows that w0 is the infimum of the net {u^.jeA1) and hence that, for all
5 in A, u0 ^ «£. Therefore,

Now let x be an element of F. Then, for all elements S in A, x(ud) = 1, and so for all
elements j in A/o, x{u^) = 1. But, since {u^.jeA^} converges in the weak* topology to
u0, it follows that x(u0) = 1 and x lies in {uQ},. Therefore F and {w0}, coincide as
required.
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COROLLARY 4.2. Let x be an element ofty^ of norm one. Then {e(x)}t = {x}',.

Proof. By Lemma 3.6, {x}', £ {e(x)}f. However, {x}', is a norm-semi-exposed face
of 5l#1 different from 2I+1 and, by Lemma 4.1, there exists an element u in ^(21) such
that {x}'f = {«},. Hence, by Lemma 3.2, u ^ e(x). But, ue{u}', = {x}',' = {x}' and, by
Lemma 3.7, e(x) ^ w. This completes the proof.

Let <%(%)" be the disjoint union of <^(9I) with a one point set {co}, and define a
relation on ^(^4) ~ by writing u < y if both w and y lie in <^(2I) and w ̂  v in the
ordering of %(S&) or if M is an arbitrary element of ^(21) ~ and v and co coincide. It is
easily seen that this defines a partial ordering on <^(2l) ~ which extends that on
Define {co}> to be equal to 5t+1 in which case {co}/ is the empty set.

COROLLARY 4.3. With respect to the ordering defined above 4 (̂21) ~ forms a
complete lattice.

Proof Clearly the partially ordered set %(%) ~ has the least element 0 and
greatest element co. Moreover, by Lemma 4.1, the mapping u -»• {u}/ is an order
isomorphism from <^($l) ~ onto S^J^i^). Since SfJ^L^ is a complete lattice the
assertion follows.

There now follows the first main result of the paper.

THEOREM 4.4. Let 31 be a JBW*-triple and let $1* be its predual. Then, the
mapping u -*• {«}, is an order isomorphism from the complete lattice <^($l) ~ onto the
complete lattice J%(51#1) of norm closed faces of the unit ball $l+1 in 21.

Proof. By Lemma 4.1 it remains to prove that every norm-closed face F of
51.H is norm-exposed. Let x be an element of Fand let face* be the smallest face of
21*! containing x. Then, by Corollary 4.2,

face* £ {x}', = {e(x)}r

Recalling that {e(x)}f is the normal state space of the JBW-algebra 2l2(e(x))sa it follows
from [23, Appendix 2, Lemme 6] that the norm closure face x of face x coincides
with {e(x)}r When ordered by set inclusion the set {face x.xeF}, denoted by F, is
directed, and if x and y are elements of F such that face x £ face^ then {e{x)}t £ {e(y)},
and e{x) ^ e(y). Moreover, if face A: = face^, then e(x) = e(y). Therefore,

{e(x): face x e F}

forms an increasing net in <%(SX) ~. However, (F')/ is a norm-semi-exposed face of
9I#1 and hence, by Lemma 4.1, of the form {w}, for some u in ^(51) ~. Therefore,
F £ {u}, and, by Corollary 4.2, for all elements x in F, e(x) ^ u. Hence the increasing
net {e(x): face JC e F} is bounded above by u. Restricting to the JBW-algebra $l2(

w)sa

and applying Lemma 4.2, the increasing net converges in the weak* topology to its
supremum, an element v in <#f($l) with v ^ u. Notice that, for all elements x in F,
face xn = {^(JC)}, ^ [v}) and it follows that F ^ {y} . On the other hand, if y lies in {v}t,
the net {P2(e(;x:))*y:face;*:er} converges weakly to y. Notice that, regarded as an
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operator on 9I2(u)sa, P2(e(x)) is positive and it follows that y lies in the weak closure
Gw of the set G denned by

G = \J{PMx))*(%(v)t) n Wn:xeF) <= \J{E5Z?:xeF] = F.

Since F is weakly closed it follows that {v}f is contained in F and hence that {v}f and
/"coincide. Indeed, since

{u}, = (F'), = F={v},,

it follows that u and v coincide.

Notice that this result extends [16, Proposition 4], which shows that the map
u -> {«}, sends the set of minimal elements of <^(9l) ~ onto the set of minimal non-empty
norm closed faces of 9I#1, the set of its extreme points.

COROLLARY 4.5. Every norm-closed face o/9l# 1 is norm-exposed.

The next result gives a complete description of the set of weak*-closed faces of the
unit ball 51, in the JBW*-triple 91.

THEOREM 4.6. Let %be a JEW*-triple. Then the mapping u -> {«}/ is an anti-order
isomorphism from the complete lattice <̂ (9T) ~ onto the complete lattice Jr

w*(9l1) of
weak*-closed faces of the unit ball 9JX in 91 and ifu lies in ̂ (91), then {«}/ coincides with

Proof. By Corollary 3.3, for each element u in ^(91), the smallest element {«},' of
«^V(^i) containing u is u + W0(u)v Let Fbe a weak*-semi-exposed face of SUV Then,
by Theorem 4.4, there exists a unique element u in <^(9J) ~ such that F/ coincides with
{u},. Therefore, by Lemma 2.1,

F=(F,)' = {«}/.

The mapping w -> {«}/ therefore sends ^(/4) * onto SfJWJ. Suppose that u and v are
elements of <^(9I)~ such that M ^ v. Then, by Lemma 3.2, {u}> c {i;}̂  and, by Lemma
2.1, {v},' ^ {M}/. On the other hand, if {v}/ £ {«}/ then

{«}, = {«}/, c {»}/, = {v},

and, by Theorem 4.4, u ^v.It follows that the mapping is an anti-order isomorphism.
It remains to show that every non-empty weak*-closed face F of 9IX is weak*-semi-
exposed. Notice that, since Ft is a norm-closed face of ^l^ls different from Sl^, there
exists a tripotent u in 91 such that Ff coincides with {u}/ and {F)' coincides with {«}/.
As in the proof of Theorem 4.4, when ordered by set inclusion the set T consisting
of faces of <$l1 of the form face a, where a lies in F, is directed. By Lemma 3.5 and the
above, {u(a): face a e F} is a decreasing net in ^(91) which, as in the proof of Lemma
4.1, converges in the weak* topology to its infimum, a tripotent v. Since, for all
elements a in F, v ^ u(a), it follows from Lemma 4.1 that

{v}, £ r\ma)},:asF} = (]{{a}t:aeF) = F, = {u},

and therefore v ^ u. By Lemma 3.5(i), for all elements a in /% u(a) lies in F. It follows
that, for all elements a in F, {u}/ £ {«(«)}, and hence that M ^ u(a). Therefore, u and
v coincide. Since the net {u(a): face a e F} converges in the weak* topology to u it
follows that u lies in i7. If b is an element of 9I0(«)15 by writing
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it follows that u + b lies in F and hence that u + %(i{u)1 is contained in F.
Therefore,

{F)' {};

and the proof is complete.

COROLLARY 4.7. Every weak*-closed face ofSH^ is weak*-semi-exposed.

Notice that for each element a = u + bofu + 9lo(")i w i t n \\b\\ < 1 w e n a v e u(a) - u>
and in particular Theorem 4.6 then generalises [28, Theorem 6.3]. It also follows
from the theorem that the maximal tripotents correspond to the minimal non-empty
weak*-closed faces of $l1} namely its extreme points. This is implicit in [32] though no
proof is given. In fact rather more can be said about the set of extreme points of
^Jj. An element u in 21 of norm one is said to be a complex extreme point of 2^
provided that for any element a of $l15 the condition that the set {u + ta: teC, \t\ ^ 1}
lies in 3lr necessarily implies that a is zero. A real extreme point is similarly defined
with U replacing C.

COROLLARY 4.8. The following conditions are equivalent:

(i) u is a maximal element of<%(SH);
(ii) %(u) = {0};

(iii) u is a real extreme point;
(iv) u is a complex extreme point;
(v) u is an extreme point.

Proof, (i) => (ii) Suppose that 2lo(") # {0}. Since ^(2I0(w)) contains a non-zero
element v it follows that u ^ u + v, contradicting the maximality of u.

(ii) => (i) If u is a tripotent such that 2lo(w) = {0} and u ^ v. Then v — u lies in
$lo(w), and v = u as required.

(ii) => (iii) Let u be a maximal tripotent and let a be an element of 2tx such
that for all real numbers / in [—1, 1], u + ta lies in 2^. By [16, Corollary 1.2(b)]
(P2(u) + P0(u)) (u + ta) is an element of SHlt from which it follows that u + tP2(u) a is an
element of 2^. Therefore, u-\-tP2(u)a is an element of the unit ball ^(wX in the
Jordan W*-algebra 212(«). The same is true of u — tP2(u) a and therefore, since

u = K« + tftf")a) + ¥M ~ tP2(u) a),
Lemma 2.2 shows that P2(u) a = 0. Therefore, Px{u) a = a and u + tPx{u) a is an element
of 51^ Moreover, P2(u) (u + tP^u) a) = u and since the proof of [16, Lemma 1.6]
applies to any non-zero element of $lx, it follows that a = PX(M) a = 0.

(iii) => (iv) This follows from the definition.
(iv) => (ii) This is given in [27, Proposition 3.5].
(v) =>(i) This follows immediately from Theorem 4.5.

5. Applications

The results of §4 describe the facial structure of the unit balls in a weak*-closed
J*-algebra and in its predual. In particular they apply to W*-algebras. In these
examples the set <%(ty) of tripotents coincides with the set of partial isometries. Notice
that if u and v are elements of %{*&) such that u ^ v, then their initial and final
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projections satisfy uu* ^ vv* and u*u ^ v*v. Moreover, u and v are orthogonal if and
only if one of the following three equivalent conditions hold:

uv*u = 0;

uv* = vu* = 0;

uu* 1 vv*, u*u 1 v*v.

When, as before, <^(5I) ~ denotes the set of partial isometries in 51 with a largest
element adjoined its properties can be summarised in the following manner.

THEOREM 5.1. Let 51 be a weak*-closed J*-algebra and let <&(5l) ~ be the set of

partial isometries in 51 with an element co adjoined. Then, with respect to the partial

ordering defined for two partial isometries u and v in 51 by the conditions that u^v if

and only ifuv*u = u and, for all elements u in <^(5l) ~,u^co, <^(5t) "forms a complete

lattice.

In the special case when 51 is a W*-algebra a little more can be said.

COROLLARY 5.2. Let A be a W*-algebra and let <^(5l) ~ be the complete lattice of
partial isometries in 51 with a largest element adjoined. Then the set 8P(S2L) of self-adjoint
idempotents in 51 is a principal ideal in ^(51) ~ generated by the unit e in A {that is,

Proof. It is clearly enough to show that if u is an element of <^(5l) and p is an
element of ^(51) such that u ^ p then u lies in ^(51). If this is the case then 5l2(/>) is
the sub-W*-algebra of 51 consisting of elements a of 51 such that a = pap. By Lemma
2.4 it follows that u is a self-adjoint idempotent in 5I2(/>) and hence an element of

as required.

When applied to weak*-closed J*-algebras Theorem 4.4 yields the following
result.

THEOREM 5.3. Let 51 be a weak*-closed J*-algebra. Then every norm-closed face
F of the unit ball 5l+1 in the predual 51* o/5l not equal to 5l1(tl is of the form

for some unique element u of the set ^(51) of partial isometries in 51. Alternatively, F
consists of the set of all elements x in <H1^.1 such that, for all elements a in 51,

x(uu*au*u) = x(ua*u)

and
x(ua*uu*au*u) ^ 0.

Moreover, the mapping u -> {«}, is an order isomorphism from the complete lattice
onto the complete lattice ir

n(5l1|tl) of norm closed faces o

Proof. The result follows from Theorem 4.4 and the observation that F can be
regarded as the normal state space of the Jordan W*-algebra 512(«).

The final result extends [20, Theorem 11], where the extreme points of the unit ball
in a J*-algebra are described in terms of partial isometries. When applied to W*-
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algebras it extends [29, Proposition 1.6.5]. Its proof follows immediately from
Theorem 4.6.

THEOREM 5.3. Let %be a weak*-closed J*-algebra. Then every non-empty weak*

closed face of the unit ball <Hl in 51 is of the form

{u}/ = u + (\-uu*)M(\-u*u)1

for some unique element u of the set ^(51) of partial isometries in 21. Moreover, the
mapping u -+ {«}/ is an anti-order isomorphism from the complete lattice ^(21) ~ onto the
complete lattice ^w*(<Hl1) of weak*-closed faces of$lv
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