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1. Introduction

Investigations of closure operators on an involution poset T lead to a certain
type of closure operators (so called c-closure operators) that are closely related
to projections on T.

In terms of these operators we give a necessary and sufficient condition for
an involution poset to be an orthomodular lattice. An involution poset is an ortho-
modular lattice if and only if it admits certain c¢-closure operators. In that case,
if Lis an orthomodular lattice, the set of c-closure operators, under the usual
ordering of closure operators, is"orderisomorphic to the set of projections of the
Baer *-semigroup B(L) of hemimorphisms on L [4]. In this sense, but working
on the ‘‘opposite end”’, this treatment enlarges that given in [3] where a similar
necessary and sufficient condition is represented but for orthocomplemented
posets and for mappings which in the case of an orthomodular lattice are exactly
the closed projections of B(L). C-closure operators appear as a natural gener-
alization of symmetric closure operators [5].

2, C-closure operators

An involution poset T is a poset with largest element (1) and a mapping
ecT—o e’ eT such that ¢ = ¢ and e £ f=f’' < e¢'. For basic definitions
see [1,2]. ‘

A projection ¢ on an involution poset T is a mapping ¢: T'— T with the
following properties:

) esf=>ep=fo,

i) (eg)¢ = eg,

iii) (ep)'¢d < e’ (e, feT).
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The set of projections on T, denoted by P(T), is not empty since I defined by
el: = e is a projection.

LEMMA 1. Let ¢ be a projection on T. Then ((e¢p)'d)'¢ = e¢ is valid for
all eeT.

ProoOF. Since (ed)’ < e’ for all ee T, it follows that ((e¢)’ d) ¢ < ((ed))’ = ed.
Clearly e < ((e¢)’¢)’. Using monotony, we get from the latter inequality

ep = ((e9)'¢)'¢. Hence ed = ((e9)'9)'d.

ReMARK 1. Let L be an orthomodular lattice. A projection ¢ € P(L) is a
join-homomorphism of L [2, Theorem 5.2, page 37]. On the other hand every
join-homomorphism is monotone. From (1¢)'¢ < 1’ we get 0 = 0, where
0: = 1’. Therefore P(L) coincides with the set of projections introduced by
Foulis [4], namely the set of idempotent, self-adjoint hemimorphisms on L.

One verifies that in an involution poset T a closure operator y satisfies

(ep)y)'y S ey (eeT).

Those closure operators for which the equality

{(er) )y =ev (eeT)

is valid are of special interest. As we will see below they are closely related to
projections and determining for the lattice and orthomodular structure of T.
We call these operators c-closure operators and denote with C(T) the set of all
c-closure operators on an involution poset T. The mappings I and eJ: =1 are
c-closure operators.

C(T) is partially ordered by means of the ordering relation

NSy ey Zey  (eeT).
I is the largest and J the smallest element of C(T).

THEOREM 2. Let T be an involution poset. If y is a c-closure operator,
then ((ey)'y)’ is a projection on T. If ¢ is a projection, then ((e¢)’' @)’ is a c-closure
operator on T.

The mapping ye C(T) — ¢ € P(T) where ep:= ((ey)'y)’ is one-to-one and
maps the set of c-closure operators onto the set of projections on T. ¢ € P(T) —
y€ C(T) where ey:= ((e)'d)’ is the corresponding inverse mapping.

Proofr. Clearly the mapping e — ((ey)’y)’ is monotone. Using properties of
c-closure operators, we get

(e D' = (en)y),

which proves idempotence of the mapping. Furthermore
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{((((eNIDP) = (eNN)V) = (er) S e’

Hence the mapping is a projection.

Let ¢ be a projection. By i) and iii) of the definition of a projection, one easily
sees that the mapping ey: = ((e¢)’®)’ is monotone and majorizes the argument.
By Lemma 1 and the basic properties of projections we get

(ev)y = (((ed)' D) D)D) = ((ed)'P) = ey

and
(e))y = ((((ed) D)D) D)D) D) = ((eh) D)D) D)’ = ((e)'$)’ = ey.
Hence ye C(T).
For all ¢ e P(T), yeC(T) and eeT
(e DDV = (en)V)'y = e

and

() @YD) D) = (ed)' $)'$ = e¢
is valid. This proves the second part of the theorem.

REMARK 2. Because of the one-to-one correspondence between P(T) and
C(T) the ordering in the set of c-closure operators induces an ordering in the set
of projections as follows:

Let ¢,, ¢, be two projections and y,,y, the corresponding c-closure opera-
tors. The relation

o1 Sy, £,

is an ordering relation that makes P(T) into a partially ordered set. The mapping
y = ¢ where ed: = ((ey)’y)’ can then be interpreted as an order-isomorphism
between the posets C(T) and P(T).

The next two lemmata lead us to the main result of this paper.

LeMMA 3. Let T be an orthocomplemented poset and ye C(T). Then
i) eyV (ey)'y exists and is equal to 1,
i) ey A (ey)'y exists and is equal to Oy.

ProOF. 1) Of course ey < 1 and (ey)’y £ 1. If there is an fe T such that
ey < fand (ey)’y < f, then also (ey)’ < fsince (ey)’ < (ep)’y. Butey V (ep)’ =1,
hence 1 < f. This proves that ey V (ey)’y = 1. ii) By monotony oy £ ey and
0y < (ey)’y. Let fe Tbe an element such that f < ey and f < (ey)’y. By monotony
and idempotence of the closure operator we get

fr = ey and fy < (ey)y or (ey) = (fy)
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and ((ey)'y)’ < (fy)'. Again by monotony we have then (ey)’y < (fy)’y and

ey = ((ep)y)y = (M'y.

According to part i) of this proof, this implies that (fy)’y = 1 or ((fy)’y)’ = 0.
Finally we get f < fy = ((fy)'»)’y = Oy. Thus ey A(ey)’y = 0y.

LEMMA 4. Let T be an involution poset and y a c-closure operator, then
Opy=1.

ProOF. By theorem 2 there is a projection ¢ such that ey = ((e¢p)’¢)’. Since
0¢ = 0 and by lemma 1 we get

Oy = ((((09)'$)"$)$) = ((0$)'$)'$)" = (0¢)" = 1.

THEOREM 5. Let T be an involution poset. T is an orthomodular lattice
if and only if every interval [e,1] (e T) is the range of a c-closure operator.

PrOOF. Assume that T is an orthomodular lattice. One verifies that for a
given interval [e,1] the mapping f — e\ f is a closure operator that maps T
onto it. We show that this mapping has the characteristic property of c-closure
operators,

Since e < eV f, there exists by orthomodularity of the lattice T an element
geTsuch that e\ g = eV fand e £ g'. Now

eVieV(evf))=eV(ev(evg))=eV(e AleVg)=eV (e ANg=eVg=eVf

Conversely, we prove first that T must be a lattice. When e,fe T, then there is
a c-closure operator y that maps T onto the interval [ f,1]. Clearly ¢ £ ey and
f =0y £ ey. Let ge T be an element such that ¢ < g and f < g. Since y maps
T onto [f,1], it follows fron the latter inequality that gy = g. From e < ¢
we then get ey < gy = g. Thus eV f exists in T and is equal to ey.

Let ye C(T) with Ty = [e,1]. By lemma 4 we get 1 =(0p)'y=e’y=¢" Ve
for all ee T. Therefore T is an orthocomplemented lattice.

Now we prove orthomodularity of the lattice T. Let ¢ < f and ye C(T)
such that Ty = [e,1]. We again have e = Oy and fy = f. By Lemma 3 (ii) and
the result above we get e =0y =y A(M)'y=fASfy=fNA(eVSf).

REMARK 3. Let Lbe an orthomodular lattice. By Theorem 2 and Remark 1

the mappings e — e¢: = ((ey)’y)’ (ye C(L)) are the projections in the Baer
*-semigroup of hemimorphisms on L. One can prove that

(edp )b, = ed; (Pp1,P,€P(L); ecLl) = ¢y < ¢,

thus the usual ordering of projections coincides with that induced by the poset
C(L) (Remark 2). The closed projections, namely the Sasaki-projections, are giver
by ((eyp)'vs)" (feL) where y,eC(L) and Ly, = [f,1].
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Note that a mapping y is a symmetric closure operator on L[5] if and only
if y is a c-closure operator for which 0y = 0 is valid. Furthermore, the symmetric
closure operators are the fixelements of the mappings €xhibited in theorem 2.
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