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1. Introduction

Investigations of closure operators on an involution poset Tlead to a certain
type of closure operators (so called c-closure operators) that are closely related
to projections on T.

In terms of these operators we give a necessary and sufficient condition for
an involution poset to be an orthomodular lattice. An involution poset is an ortho-
modular lattice if and only if it admits certain c-closure operators. In that case,
if L is an orthomodular lattice, the set of c-closure operators, under the usual
ordering of closure operators, is'orderisomorphic to the set of projections of the
Baer *-semigroup B(L) of hemimorphisms on L [4]. In this sense, but working
on the "opposite end", this treatment enlarges that given in [3] where a similar
necessary and sufficient condition is represented but for orthocomplemented
posets and for mappings which in the case of an orthomodular lattice are exactly
the closed projections of B(L). C-closure operators appear as a natural gener-
alization of symmetric closure operators [5].

2. C-closure operators

An involution poset T is a poset with largest element (1) and a mapping
eeT-> e'eT such that e" = e and e ^ f=>f ^ e'. For basic definitions
see [1,2].

A projection <j> on an involution poset T is a mapping <f>: T-> T with the
following properties:

i) e|/=> ejZft,
i i ) (e(f>)(/> = e(j>,
iii) (etf>)'tf> ^ e' (e,feT).
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454 Gottfried T. Ruttimann [2]

The set of projections on T, denoted by P(T), is not empty since / defined by
el: = e is a projection.

LEMMA 1. Let <p be a projection on T. Then ((e(j>)''$)'(f> = e<f) is valid for
all eeT.

PROOF. Since (e<t>)' ^ e' for all e e T, it follows that ((e<f>)''$)''<t> ^ ((e<t>)')' = e<t>-

Clearly e ^ ((e<f>)'<£)'. Using monotony, we get from the latter inequality

e<j> ^ {{e4>)'4>)'4>. H e n c e e<f> = ({e<t>)'$)'<j>.

REMARK 1. Let L be an orthomodular lattice. A projection (j>eP(L) is a
join-homomorphism of L [2, Theorem 5.2, page 37]. On the other hand every
join-homomorphism is monotone. From (l̂ >)'</> ^ 1' we get 00 = 0, where
0: = 1' . Therefore P(L) coincides with the set of projections introduced by
Foulis [4], namely the set of idempotent, self-adjoint hemimorphisms on L.

One verifies that in an involution poset T a closure operator y satisfies

)'y^ey (eeT).

Those closure operators for which the equality

'y = ey (eeT)

is valid are of special interest. As we will see below they are closely related to
projections and determining for the lattice and orthomodular structure of T.
We call these operators c-closure operators and denote with C(T) the set of all
c-closure operators on an involution poset T. The mappings / and eJ: = 1 are
c-closure operators.

C(T) is partially ordered by means of the ordering relation

Vi ^ li• o eyi ^ <7i (eeT).

/ is the largest and J the smallest element of C(T).

THEOREM 2. Let T be an involution poset. If y is a c-closure operator,
then ((ey)'y)' is a projection on T. If (j) is a projection, then ((e<j>)'<j>)' is a c-closure
operator on T.

The mapping yeC(T) -> <f>eP(T) where ecp:= ((ey)'y)' is one-to-one and
maps the set of c-closure operators onto the set of projections on T. <j> e P(T) -*
yeC(T) where ey:= ((e<p)'</»)' is the corresponding inverse mapping.

PROOF. Clearly the mapping e -> ((ey)'y)' is monotone. Using properties of
c-closure operators, we get

((((ey)'y)'y)'yy =

which proves idempotence of the mapping. Furthermore
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[3] Involution posets 455

(((((ey)'y)')'y)'y)' = ((foO'y)'?)' = (ey)' ^ «' •

Hence the mapping is a projection.
Let <̂  be a projection. By i) and iii) of the definition of a projection, one easily

sees that the mapping ey: = ((e($>Y<f>Y is monotone and majorizes the argument.
By Lemma 1 and the basic properties of projections we get

(ey)y = ((((e<j>Y <}>Y 4>Y 4>Y = ( ( e 0 ) ' 0 ) ' = ey

and

((eyYyYy = ((((((«*) W ) W ) W = ((((e<j>Y 4>Y 4>)'4>)' = ((e</>)>)' = ey.

Hence yeQT) .

For all 4>eP(T), yeC(T) and e e T

((((ey)'y)"y)'y)" = ((eyYyYy = ey

and

is valid. This proves the second part of the theorem.

REMARK 2. Because of the one-to-one correspondence between P(T) and
C(T) the ordering in the set of c-closure operators induces an ordering in the set
of projections as follows:

Let 4>u<i>2 De two projections and yx,y2 the corresponding c-closure opera-
tors. The relation

is an ordering relation that makes P(T) into a partially ordered set. The mapping
y -*• <f> where e<j>: = ((ey)'y)' can then be interpreted as an order-isomorphism
between the posets C(T) and P(T).

The next two lemmata lead us to the main result of this paper.

LEMMA 3. Let T be an orthocomplemented poset and y e C(T). Then
i) ey V (ey)'y exists and is equal to 1,
ii) ey f\{ey)'y exists and is equal to Oy.

PROOF, i) Of course ey ^ 1 and (eyYy ^ 1. If there is a n / e T such that
ey g / a n d (eyYy g / , then also (eyY ^ /since (ey)' ^ (eyYy • But ey V (ey)' = 1,
hence 1 ^ / . This proves that ey V (eyYy = 1. ii) By monotony oy ^ ey and
Oy ^ (ey)'y • Le t / e The an element such tha t / :g ey a n d / ^ (ey)'y. By monotony
and idempotence of the closure operator we get

/y ^ ey and /y ^ (ey')y or (ey)' ^ (/y)'
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456 Gottfried T. Riittimann [4]

and ((ey)'y)' ^ (fy)'. Again by monotony we have then (ey)'y ^ (fy)'y and

ey = ((ey)'y)'y:g(/y)'y.

According to part i) of this proof, this implies that (fy)'y = 1 or ((fy)'y)' = 0.
Finally we get / ^ fy = ((/y)'y)'y = Oy. Thus ey A (ey)'y = Oy.

LEMMA 4. Let T be an involution poset and y a c-closure operator, then
(Oy)'y = 1.

PROOF. By theorem 2 there is a projection <j> such that ey = {(e<f>)'4>)'. Since

00 = 0 and by lemma 1 we get

THEOREM 5. Let T be an involution poset. T is an orthomodular lattice
if and only if every interval [e, 1] (eeT) is the range of a c-closure operator.

PROOF. Assume that T is an orthomodular lattice. One verifies that for a
given interval [e,l] the mapping / -> e \J f is a closure operator that maps T
onto it. We show that this mapping has the characteristic property of c-closure
operators.

Since e ^ e V / , there exists by orthomodularity of the lattice T an element
g e T such that e\J g = e\] f and e ;g g'. Now

Conversely, we prove first that T must be a lattice. When e,fe T, then there is
a c-closure operator y that maps T onto the interval [/, 1]. Clearly e g ey and
f = Oy ^ ey. Let g e Tbe an element such that e ^ g and/ ^ g. Since y maps
T onto [/, 1], it follows fron the latter inequality that gy = g. From e ^ g
we then get ey % gy = g. Thus e V / exists in T and is equal to ey.

Let y e C(T) with Ty = [e, 1]. By lemma 4 we get 1 = (Oy)'y = e'y = e' V e
for all eeT. Therefore Tis an orthocomplemented lattice.

Now we prove orthomodularity of the lattice T. Let e ^ / and yeC(T)
such that Ty = [e, 1]. We again have e = Oy and /y = / . By Lemma 3 (ii) and
the result above we get e = Oy =/y /\{fy)'y = f Af'y = / A ( e V / ' ) -

REMARK 3. Let L be an orthomodular lattice. By Theorem 2 and Remark 1
the mappings e—> e(j>: = ((ey)'y)' (j>eC(L)) are the projections in the Baer
•"-semigroup of hemimorphisms on L. One can prove that

(e<Pi)4>2 = e4>i (<£i>02eP(L);eeL)o<t>i g <j>2,

thus the usual ordering of projections coincides with that induced by the poset
C(L) (Remark 2). The closed projections, namely the Sasaki-projections, are giver
by ((eyf)'yf)' (feL) where yfeC(L) and Ly, = [ / , ! ] .
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[5] Involution posets 457

Note that a mapping y is a symmetric closure operator on L [5] if and only
if 7 is a c-closure operator for which Oy = 0 is valid. Furthermore, the symmetric
closure operators are the fixelerrients of the mappings exhibited in theorem 2.
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