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Analgesic effect in humans of subanaesthetic isoflurane 
concentrations evaluated by evoked potentials 
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Summary 

The aim of this study was to see if an analgesic 
effect of subanaesthetic concentrations of iso- 
flurane could be detected with evoked potentials 
elicited by nociceptive stimuli. We studied 10 
healthy volunteers breathing three steady-state 
subanaesthetic concentrations of isoflurane (0.08, 
0.16 and 0.24 vol% end-tidal). Reaction time, sub- 
jective pain intensities and evoked vertex potentials 
to laser (LEP) and electrical (SEP) stimuli were 
recorded and compared with auditory evoked 
potentials (AEP). Compared with baseline, the 
subanaesthetic concentrations of isoflurane did not 
change the latencies of the evoked potentials, but 
caused a significant reduction in the amplitudes of 
the LEP and SEP at 0.16 and 0.24 vol% and of the 
AEP at all three concentrations. There were no 
changes in perceived pain intensity, and isoflurane 
produced similar reductions in evoked potentials 
elicited by both nociceptive and non-nociceptive 
stimuli. The reaction time was increased signifi- 
cantly at 0.24 vol% isoflurane. The results demon- 
stated that subanaesthetic isoflurane concen- 
trations caused similar changes in evoked potentials 
with both painful and non-painful stimuli, with no 
effect on perceived pain intensity. (Br. J. Anaesth. 
1996; 76: 38�42) 
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The analgesic effect of subanaesthetic concentrations 
of inhalation anaesthetics has been investigated by 
either clinical assessment [1–3] or pain threshold 
measurements [4, 5], but with conflicting results. In 
a recent study we found no analgesic effect of 
subanaesthetic concentrations of isoflurane on ex- 
perimental pain tests [6]. These pain tests may, 
however, not always be able to detect a weak 
analgesic effect [7]. Laser stimulation may be a more 
sensitive method, as this has been used to demon- 
strate the analgesic effect of weak analgesics [8–11]. 
The purpose of the present study therefore was to 
see if evoked vertex potentials elicited by nociceptive 
electrical and laser stimulation could be used to 
detect weak analgesic effects of subanaesthetic con- 
centrations of isoflurane. 

Patients and methods 
We studied 10 healthy volunteers (five male, mean 
age 24 (range 22–30) yr). They were not receiving 
any medication, had no allergies or adverse reactions 
to previous anaesthetics and, for the female 
volunteers, were not pregnant. Written informed 
consent was obtained and the study was approved by 
the Ethics Committee of the Faculty of Medicine, 
University of Bern. 

To minimize the risk of acid aspiration, the 
volunteers received omeprazole 40 mg (Antra) the 
evening before testing, and were investigated after a 
fasting period of at least 6 h. During the tests the 
volunteers rested comfortably supine. An i.v. in- 
fusion of NaCl-glucose was given and 

2Op ,S  ECG 
and non-invasive arterial pressure were monitored 
continuously. The subanaesthetic concentrations of 
isoflurane were delivered via a face mask. The 
breathing system and the gas monitors have been 
described previously [6]. 

The following tests were applied in a randomized 
order. 

ARGON LASER STIMULATION 

The output from an argon laser (Spectra Physics 
168) was transmitted via a single 0.2-mm quartz fibre 
(output controlled with an external power meter). 
The distance to the skin was adjusted to obtain a 
laser beam diameter of 3 mm on the skin and a 
stimulus of 200 ms duration was applied to the 
dorsum of the right hand (C7 dermatome). The 
target area was divided into small sectors and, to 
avoid receptor fatigue, the sectors were stimulated 
sequentially. Pain threshold, defined as a distinct 
sharp pinprick, was determined with five ascending 
and five descending series of stimulation. For 
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recording of the laser evoked potentials (LEP), 16 
laser stimuli with an intensity of 1.5 times the initial 
pain threshold and with a random inter-stimulus 
interval between 10 and 20 s were applied. After the 
last stimulation, the volunteer was asked to rate the 
perceived pain intensity on a visual analogue scale 
(VAS). 

ELECTRICAL STIMULATION 

An intracutaneous finger electrode applied to the 
pulp of the third finger was used [12]. A 25-ms single 
stimulus (in reality train of five, 1-ms, square-wave 
impulses, but these are perceived as a single 
stimulus) was delivered from a Digitimer DS 7 
(Digitimer Ltd, Hertfordshire, England) constant 
current stimulator triggered by a Philips Generator 
PM 5150 (Philips GmbH, Hamburg, Germany). 
The current was increased from 0 in steps of 0.2 mA 
until the volunteer rated the perceived pain intensity 
of the stimulation on the VAS equally with that of 
laser stimulation. This intensity was then used for 
recording of the SEP. Application of the 16 stimuli 
and rating of perceived pain intensity were per- 
formed as for the LEP. 

ACOUSTICAL STIMULATION 

A binaural click with an intensity of 90 dB was 
provided by a Medelec ST 10 stimulator (Medelec 
Ltd, Surrey, England) through acoustically shielded 
headphones. For recording of the AEP, 16 stimuli 
with a random inter-stimulus interval between 10 
and 20 s were applied as described for the laser and 
electrically evoked vertex potentials. 

REACTION TIME 

A tone was delivered from a computer with random 
intervals of 3–8 s, and simultaneously a timer was 
started. The volunteer was told to press a button as 
fast as possible after the tone. The reaction time was 
defined as the time from the tone until the volunteer 
pressed the button. The mean value of three 
consecutive measurements was used. 

RECORDING OF THE EVOKED POTENTIALS 

All evoked potentials were recorded from a needle 
electrode (Dantec, Denmark), inserted at Cz� (ac- 
cording to the international 10–20 system) against a 
surface Ag-AgCl electrode on the right mastoid. The 
signal was filtered (bypass 0.1–30 Hz), amplified, 
recorded and averaged on a personal computer (PC) 
with the EPsys software (Aalborg University, 
Denmark) in the interval from 0.5 s before the 
stimulus until 2 s after the stimulus. 

In order to familiarize the volunteer with the 
procedure, all experiments were explained before 
trial testing was performed. The mask was then 
fitted and the volunteer breathed air for 5 min, or 
until he felt comfortable, and there were no leaks 
from the mask. A baseline test series of the above 

described tests was then performed. Thereafter, 
isoflurane was introduced slowly into the breathing 
system and adjusted to the desired end-tidal 
concentration. This was chosen randomly from one 
of the three concentrations, 0.08, 0.16 and 0.24 vol%. 
We did not use concentrations higher than 0.24 vol% 
(about 0.2 MAC isoflurane), as volunteers at higher 
concentrations tend to be too sedated to co-operate 
[13]. After 15 min of equilibration at a constant end- 
tidal concentration, a test series was performed. This 
procedure was repeated with the two other isoflurane 
concentrations. The delivered isoflurane concen- 
tration was known only to the anaesthetist per- 
forming “anaesthesia”. After testing had been 
performed at all three isoflurane concentrations, 
isoflurane was discontinued. 

Latencies and peak-to-peak amplitudes of the first 
three major peaks, P1, N1 and P2 of the late LEP, 
SEP and AEP were measured (fig. 1). Statistical 
analysis was performed independently for each class 
of the evoked vertex potentials and the reaction time 
with the software SigmaStat v1.01 (Jandel Scientific 
GmbH, Erkrath, Germany). Median values and 
quartiles were calculated for the three isoflurane 
concentrations. The numerical values of all measure- 
ments were expressed as a percentage of baseline 
values. The values at the different isoflurane concen- 
trations were compared with baseline using 
Friedman’s test for repeated measures analysis of 
variance on ranks, and the Student–Newman–Keuls 
test for multiple comparison. P � 0.05 was con- 
sidered statistically significant. 

Results 
Evoked vertex potentials were recorded in all 
subjects. There were no statistically significant 
changes in the latencies of the LEP and SEP 
compared with baseline (table 1) or with the AEP. 
The results in the peak-to-peak amplitudes are 
summarized in table 2. Statistically significant reduc- 
tions compared with baseline were observed for 
P1–N1 amplitudes of the SEP at 0.16 and 0.24 vol% 
and for AEP at 0.08, 0.16 and 0.24 vol% isoflurane. 
N1–P2 amplitudes were reduced significantly for the 
LEP and SEP at 0.16 and 0.24 vol% and for AEP at 
0.08, 0.16 and 0.24 vol% isoflurane. Furthermore, 
N1–P2 amplitude of the SEP at 0.08 vol% was 
reduced significantly less compared with those of the 
SEP and AEP at 0.16 and 0.24 vol%. There were no 

 

Figure 1 An LEP, which is the average of 16 evoked 
potentials elicited by short laser stimulations of 200 ms 
duration. 
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significant differences between the reductions in the 
amplitudes of the LEP and SEP compared with the 
AEP at each of the three isoflurane concentrations 
(figs 2–4). 

There was no significant reduction in perceived 
pain intensity for either laser or electrical stimu- 
lation. Compared with baseline, median reaction 
time was 97.7 % (25–75 percentiles 79.7–127.9 %) at 
0.08 vol%, 116.5 % (94.2–128.7 %) at 0.16 vol% and 
161.1 % (131.6–238.7 %) at 0.24 vol%. Reaction time 
was increased significantly at 0.24 vol% compared 
with baseline, 0.08 and 0.16 vol%. 

Discussion 
We have shown that subanaesthetic concentrations 
of isoflurane did not change the latencies of the 
evoked vertex potentials, but caused a significant 
reduction in the amplitudes of the LEP and SEP at 
0.16 and 0.24 vol% and of the AEP at all three 
concentrations. There was no change in perceived 
pain intensity, and isoflurane produced similar 

Table 2 Change in amplitudes (median (25–75 percentiles)) of evoked vertex potentials to laser, electrical and 
auditory stimulation. Values are percentage of baseline values. *P � 0.05 compared with baseline; †P � 0.05 
compared with baseline and the SEP at 0.08 vol% isoflurane 

  Isoflurane    

 Amplitudes 0.08 % 0.16 % 0.24 %  

 Laser evoked potentials 
 Pl–N1 98.5 (51.6–126.9) 64.7 (54.4–86.6) 51.8 (30.4–107.1) 

 Laser evoked potentials 
 N1–P2 76.2 (51.7–100.0) 68.9 (23.6–83.8)* 47.2 (37.5–55.8)* 

 Laser evoked potentials 
 VAS 97.4 (89.7–100.0) 98.5 (90.0–105.3) 103.7 (92.0–108.7) 

 Somatosensory evoked potentials 
 P1–N1 49.6 (42.0–86.0) 50.9 (28.9–61.9)* 18.3 (6.8–42.1)* 

 Somatosensory evoked potentials 
 N1–P2 76.5 (59.5–102.7) 51.5 (35.8–59.4)† 40.9 (17.9–60.7)† 

 Somatosensory evoked potentials 
 VAS 90.0 (66.7–100.0) 88.6 (71.2–111.1) 87.0 (65.9–111.1) 

 Auditory evoked potentials 
 P1–N1 53.8 (37.7–65.7)* 48.0 (39.7–54.6)* 45.8 (36.1–70.7)* 

 Auditory evoked potentials 
 N1–P2 56.1 (40.8–67.5)* 39.0 (37.1–51.6)† 42.3 (25.0–58.9)† 

Table 1 Change in latencies (median (25–75 percentiles)) of evoked vertex potentials to laser, electrical and 
auditory stimulation. Values are percentage of baseline values 

  Isoflurane  

 Latencies 0.08 % 0.16 % 0.24 %  

 Laser evoked potentials 
 P1 102.9 (100.0–108.8) 99.0 (95.9–103.1) 103.3 (98.1–115.1) 

 Laser evoked potentials 
 N1 99.3 (96.1–102.5) 99.2 (97.4–102.5) 101.0 (95.1–114.5) 

 Laser evoked potentials 
 P2 97.6 (94.8–100.0) 98.3 (95.8–101.4) 94.4 (85.3–101.9) 

 Somatosensory evoked potentials 
 P1 106.3 (76.5–109.3) 102.0 (94.9–116.0) 113.6 (100.0–122.9) 

 Somatosensory evoked potentials 
 N1 97.6 (93.2–100.0) 102.2 (100.0–107.1) 98.6 (91.4–109.3) 

 Somatosensory evoked potentials 
 P2 102.7 (96.1–104.7) 99.7 (90.7–105.4) 101.4 (95.9–104.7) 

 Auditory evoked potentials 
 P1 100.0 (95.6–100.0) 100.0 (100.0–105.1) 106.9 (100.0–110.3) 

 Auditory evoked potentials 
 N1 101.5 (100.0–106.0) 100.0 (95.3–108.0) 108.4 (103.2–114.3) 

 Auditory evoked potentials 
 P2 95.4 (93.1–101.9) 102.3 (93.1–107.6) 96.7 (90.7–107.6) 

 

Figure 2 Argon laser stimulation. Comparison between the 
decrease in N1–P2 amplitude (expressed as percentage of 
baseline values) with increasing isoflurane concentrations of the 
long latency vertex potential to laser stimuli, and the perceived 
pain rated on a visual analogue scale. * Significantly different 
from baseline. 
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reductions in amplitudes of the evoked potentials 
elicited by both nociceptive and non-nociceptive 
stimuli. The reaction time was increased significantly 
at 0.24 vol% isoflurane. We conclude that sub- 
anaesthetic concentrations of isoflurane have a 
sedative but no or only a minimal analgesic effect 
which the present techniques could not detect. 

Several studies have shown that potentials, evoked 
by noxious laser stimuli, correlate with perceived 
pain intensity [10, 11, 14, 15]. In contrast, there is a 
lack of correlation between the amplitude of the 
vertex potential evoked by nociceptive electrical 
stimulation on the surface of the skin and subjective 
pain rating [16, 17]. This suggests that trans- 
cutaneous electrically evoked vertex potentials are 
not a reliable measure or correlate for changes within 
the nociceptive system. 

In the present study electrical stimulation was 
applied using the intractaneous technique [12]. 
This procedure ensured a high current density at the 
superficial nociceptors. As a consequence, pain 
thresholds were up to 10 times lower compared with 
transcutaneous stimulation. The sensation is de- 
scribed as a distinct pricking pain, very similar to 

that elicited by laser stimulation. This perception is 
attributed to the activity in the A� nociceptive 
afferents [18]. Kochs and colleagues [19] used the 
same technique for eliciting latè SEP. They found 
that the recorded SEP were sensitive to opioid 
treatment during inhalation anaesthesia. 

We did not find any correlation between the 
decrease in amplitudes of the LEP and SEP, and 
subjective pain rating. There was a reduction in the 
peak-to-peak amplitudes for the evoked vertex 
potentials elicited by nociceptive electrical and laser 
stimulation at the two higher isoflurane concen- 
trations (see table 2), which could be interpreted as 
an analgesic effect [16, 20–22]. But the same decrease 
in the peak-to-peak amplitudes was observed also for 
the non-nociceptive AEP, and furthermore the 
perceived pain intensity did not differ significantly 
from baseline. These results suggest that the re- 
duction in peak-to-peak amplitudes of the LEP and 
SEP are caused by a non-specific effect of isoflurane 
on the vertex potentials (sedation ?) rather than by a 
specific analgesic effect on the nociceptive system. 

We have shown that when evoked vertex potentials 
are used to investigate the analgesic effect of a drug, 
it is important not only to evaluate the effects of 
nociceptive stimuli, but also to control for a non- 
analgesic general effect on the evoked vertex 
potentials elicited by non-nociceptive stimuli. Fur- 
thermore, the electrophysiological responses should 
(when possible) be compared with subjective pain 
ratings. If we had measured only the effect of 
subanaesthetic concentrations of isoflurane on the 
amplitude of the evoked vertex potentials to painful 
laser and electrical stimulation, we would have 
presumed this to result from an analgesic effect, 
which in reality was not present. 
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