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SOME THEORIES WITH POSITIVE INDUCTION 
OF ORDINAL STRENGTH <pcoO 

GERHARD JAGER AND THOMAS STRAHM 

Abstract. This paper deals with: (i) the theory ID* which results from ID] by restricting induction on 

the natural numbers to formulas which are positive in the fixed point constants, (ii) the theory BON(^) 

plus various forms of positive induction, and (iii) a subtheory of Peano arithmetic with ordinals in which 

induction on the natural numbers is restricted to formulas which are I in the ordinals. We show that these 

systems have proof-theoretic strength ipmO. 

§1. Introduction. Systems of explicit mathematics were introduced in Feferman 
[7, 9]. In particular, two families of theories were presented there: (i) the theory 
To and its subsystems, (ii) extensions of these theories by the non-constructive 
minimum operator. The original work on systems of explicit mathematics was 
mainly concerned with the analysis of classification existence axioms. It turned 
out only recently that already the applicative basis of these theories is of significant 
proof-theoretic interest. 

Feferman and Jager [12] is concerned with the basic applicative theory of opera­
tions and numbers BON and especially with the theory BON(/i) which results from 
BON by adding a natural axiomatization of the unbounded minimum operator. A 
proof-theoretic analysis is provided there for BON and BON(//) plus a very weak 
form of induction on the natural numbers, called set induction as well as induction 
for arbitrary formulas. Natural intermediate forms of induction like operation in­
duction, N induction and positive formula induction (for the exact definitions see 
below) have not been studied in [12] and will be treated now. 

The attempt of providing a proof-theoretic analysis of these extensions of BON(/i) 
by forms of positive induction was the starting point for the present paper. Very 
soon it became clear that the analysis of such systems is conceptually similar to 
that of the theory ID*, which results from the well-known fixed-point theory IDi 
by restricting induction on the natural numbers to formulas positive in the fixed 
point constants. Moreover, all these systems can be easily reconstructed within the 
framework of Peano arithmetic with ordinals (cf. Jager [17]), namely the theory 
PA£j + (En-IN): there these forms of positive induction correspond to induction on 
the natural numbers for formulas which are £ in the ordinals. 

Many formal systems are introduced in this article, often only to round off our 
results or for technical intermediate steps. The main emphasis, however, is on 
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SOME THEORIES WITH POSITIVE INDUCTION OF ORDINAL STRENGTH <pcoO 819 

BON(/z) plus operation induction, N induction, and positive formula induction, on 
ID?,andonPAk + (In-lN). 

The plan of this paper is as follows. In Section 2 we introduce the theory IDf and 
show that the second order system (ITj-CA)<a/» can be embedded into ID*. Section 
3 is centered around the theory BON(/a) plus various forms of positive induction 
and provides a wellordering proof for all ordinals less than <pa>0. The core of Section 
4 is to show that the proof-theoretic ordinal of Peano arithmetic with ordinals and 
positive induction is less than or equal to <pa>0. This theory PA^ + (£n-l|\i) extends 
the system PA^ of Jager [17] by Zn induction on the natural numbers so that the 
theories IDf and the relevant applicative theories with positive induction can be 
easily embedded. Thus the circle is closed and all theories are shown to be of proof-
theoretic strength (pcoO. The paper ends with some conclusions concerning related 
topics. 

§2. Fixed point theories with positive induction. The famous theory IDi is an 
extension of Peano arithmetic PA by new relation symbols and axioms which claim 
that every inductive operator form has a fixed point. It is described and studied in 
detail for example in Feferman [10]. Here we consider the subsystem ID* of IDi 
in which induction on the natural numbers is restricted to formulas positive in the 
fixed point constants. 

2.1. The theory IDf. Let L be any of the usual first order languages with number 
variables a,b,c,x,y,z,... (possibly with subscripts), the constant 0 as well as 
function and relation symbols for all primitive recursive functions and relations. 
We assume further that L contains a unary relation symbol U which will have 
no specific interpretation and whose role will become clear by Definition 1. The 
notation e*is a shorthand for a finite string e\,... ,en of expressions whose length 
will be specified by the context. The terms r, s, t,... and formulas A,B,C,... (both 
possibly with subscripts) are defined as usual. 

If P is a new n-ary relation symbol, then L(P) is the extension of L by P. An 
~L(P) formula is said to be P-positive if each occurrence of P in this formula is 
positive. We call P-positive formulas which contain at most x\,... ,xn free n-ary 
inductive operator forms, and let sf(P, x\,... ,x„) range over such forms. Now we 
extend L to a language Lpp by adding a new n-ary relation symbol &>& for each 
n-ary inductive operator form stf{P, x). An LFP formula is called positive, if it is 
positive in all relation symbols &&; it is called negative, if it has negative occurrences 
of relation symbols £?>& only. 

The theories IDi and IDf are formulated in Lpp. The axioms of IDi comprise 
the axioms of Peano arithmetic PA with the scheme of complete induction on the 
natural numbers for all Lpp formulas plus the fixed point axioms 

for all relation symbols &>&. The theory IDf is the restriction of IDi which results 
from IDi if we permit induction on the natural numbers for positive Lpp formulas 
only. We will see below that this restriction of induction has a great effect. 

The proof-theoretic strength of formal systems is generally measured in terms of 
their proof-theoretic ordinals. To introduce this notion we proceed as usual and set 

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2275787
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 19:56:34, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2275787
https:/www.cambridge.org/core


820 GERHARD JAGER AND THOMAS STRAHM 

for all primitive recursive relations c and all formulas A: 

Prog(o,A) := ( V X ) ( ( V J ) ( J C x -* A{y)) - A{x)), 

TI(\Z,A) := Progid,A)^(Wx)A(x). 

DEFINITION 1. Let Th be a theory formulated in a language containing L. 
1. We say that the ordinal a improvable in Th if there exists a primitive recursive 

wellordering c of order type a so that Th h 77(c, £/). 
2. The proof-theoretic ordinal of Th, denoted by |Th |, is the least ordinal which 

is not provable in Th. 

It is well-known (cf. e.g., Feferman [10]) that |IDi | = <peoO, and we will show that 
the proof-theoretic ordinal of ID* is (pcoO. Hence, ID* is significantly weaker than 
IDi. 

2.2. Embedding (ITi-CA)«o<» into IDf. In this article we assume familiarity with 
the standard ordinal notation system (T, -<) for the ordinals less than To which is 
based on the Veblen functions (pa. From now on we write -< for the corresponding 
primitive recursive standard wellordering on the natural numbers of order type 
TV We assume that the field of -< is N and its least element is 0. Furthermore, 
if n is a natural number, then we write <„ for the restriction of -< to the numbers 
m -< n. The reader is referred to Schutte [22] for all details concerning these 
ordinals, ordinal notations and wellorderings. In order to simplify the notation, we 
sometimes identify natural numbers with their codes in the notation system, but it 
should always be clear from the context what we mean. 

I'D*| < <pco0 will be proved in Section 4. Now we show that (pcoO is a lower 
bound for the proof-theoretic ordinal of I D# by embedding the second order system 
(111-C A) «„«>, which has proof-theoretic ordinal <pco0, into IDf. 

Let L be the second order language which extends L by set variables X, Y, Z,... 
(possibly with subscripts) and the binary e relation. In the following we make use 
of standard terminology and notations of first and second order arithmetic: (...) 
is a standard primitive recursive function for forming n-tuples (t\,... ,t„); Seq is 
the primitive recursive set of sequence numbers; lh(t) denotes the length of (the 
sequence number coded by) t; (r), is the ?'th component of (the sequence coded by) 
r if i < lh{t),i.e.,t — ((*)(>>•• • , (0/A(r)-=-i) if ? is a sequence number; J e (X)t stands 
for {s,t)£ X. 

An L formula is called arithmetic, if it contains no bound set variables; it is called 
A0, if it contains no bound set variables and, in addition, every number quantifier 
is bounded. A 2° formula is an L formula of the form (3x)A with A in Ao; a 
III formula is an L formula of the form i^x)A with A in Ao. Relative recursive 
comprehension is the scheme 

(RCA) (Vx)U(x) «-• B{x)) -> {3X)(\fx)(x e l « A{x)) 

for all Zj formulas A(x) and 11° formulas B(x). Now let f(X,x) be a complete 
II, formula with at most X and x free. The jump hierarchy along -<„ starting with 
X is defined by the following transfinite recursion: 

(Y)0 = X and (Y)t = {(m,j) : j -< i hf{(Y)j,m)} 
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SOME THEORIES WITH POSITIVE INDUCTION OF ORDINAL STRENGTH tpmO 821 

for all 0 -< i -< n, and we write Hier(X, Y,n) for the arithmetic formula which 
formalizes this definition. 

If a is an ordinal less than To, then we write (ITj-CA)a for the system of second 
order arithmetic which extends Peano arithmetic PA by relative recursive compre­
hension (RCA) plus the additional axioms 

(VX)(3Y)Hier(X,Y,n) and TI(<n,A) 

for all L formulas A(x) where n is chosen so that the order type of -<„ is a. The 
union of the theories (n^-CA)^ with /? < a is called (n?-CA)<a. 

In the sequel we give an embedding of the system (n^-CA)<a)<» into IDf. In 
particular, we show that L theorems of (nJ-CA)<Q)<» carry over to L theorems of 
our theory ID*. 

As a first observation we need the fact that IDf proves transfinite induction up 
to each a < coaj with respect to positive LFP formulas. Although the proof of this 
fact is elementary, we give it in full length here; an adaptation of this argument will 
be used in the wellordering proof in Section 3.3, where things will be much more 
delicate. We adopt the standard notation 

TI{<, s,A) := Prog{^,A) -> (Vx -< s)A(x), 

and in the sequel we often write Prog(A) and TI(s, A) instead of Prog{<, A) and 
TI{<,s,A). 

LEMMA 2. We have for all k <co and every positive Lpp formula A: 

\Df\-Tl(cok,A). 

PROOF. We prove the claim by induction on k. The case k = 0 is trivial. For 
the induction step assume that the assertion is true for some k < co, and choose a 
positive LFp formula A(x). Let us work informally in IDf and show 

(1) B(y) := (Vx*a>k-y)A(x) 

by induction on y, assuming Prog{A). This will immediately yield the induction 
step. 5(0) is trivially satisfied. So assume B(y) and show B(y + I). First, one 
easily verifies 

(2) (VA)[(V6 -< a)(V* -< cok • y + b)A(x) -> (Vx -< cok • y + a)A{x)] 

by making use of the assumptions B(y) and Prog(A). Furthermore, by applying 
the (meta) induction hypothesis to (2) we obtain 

(3) (\/a^cok)(yX ^cok •y + a)A(x). 

From (3) and Prog(A) we can conclude 

(4) (Va<cok)A(cok-y+a), 

which together with B(y) yields B{y + 1) as desired. This finishes our proof. H 

Using a standard argument (cf. e.g., Sieg [23, Proposition 3.1]) it follows that IDf 
proves induction on the natural numbers for negative Lpp formulas, too. Hence, the 
above proof yields the following corollary. 
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822 GERHARD JAGER AND THOMAS STRAHM 

COROLLARY 3. We have for every k < co and every negative Lpp formula A: 

\D^\-TI{cok,A). 

The main idea for our embedding is to build the jump hierarchy along -< starting 
with the empty set by means of a fixed point &>& of a certain inductive operator 
form sf{P, x,y,z) to be described below. The elements of the fixed point SP^ will be 
triples (a, i, x), where a is a code for an ordinal in T and i equals 0 or 1, depending 
on whether x belongs to the ath stage of the jump hierarchy. 

In the following let f+(X, Y) and f~{X, Y) be L formulas which are positive 
in X and Y, so that f{X) is logically equivalent to f+{X, -<X) and -Jr(Ar) is 
logically equivalent to f~{X, ->X). Here f+{X, ->X) is the formula f+{X, Y), 
where each atom t e Y is replaced by ->(* e X). The formula f~(X,->X) is 
defined analogously. Furthermore, if P is a ternary relation symbol, then we write 
Pr>s(t) for P(r,s,t). 

The ternary inductive operator form s/(P, x,y,z) is defined to be the disjunction 
of the following three formulas: 

(1) x = 0 A y = 1 A z = z, 
(2) O ^ A ^ O A Seq2{z) A (z)i -< x A f+{P{z)lfi,P{z)uU (z)0), 
(3) 0 •< x A y = 1 A [-.&?2(z) V x < (z)x V /-(/%)„(,,-P(z)„i, U)o)]. 

From the fixed point axioms alone we are not able to prove that the membership 
and non-membership relation defined above are complementary, i.e., that we have 

(*) ( V x ) ( ^ ( a , 0 , x ) ^ ^ M a , l , x ) ) 

for all sets (coded by) a. However, observe that (*) is equivalent to completeness 
Compia) and consistency Cons{a) of the membership and non-membership relation, 
where one sets 

Comp(a) := (\/x)(^(a,0,x) V ^{a, \,x)), 

Cons{a) := (Vx) ( - i ^ ( a ,0 ,x ) V - > ^ ( a , \,x)). 

Obviously, Comp(a) is a positive Lpp formula and Cons(a) a negative Lpp formula. 
The idea is to prove Comp{a) and Cons{a) separately by transfinite induction up to 
cok, which is available in ID* according to our previous discussion. 

LEMMA 4. We have for all k < co: 
1. ID? h (Va -< cok)Comp{a). 
2. \Df \- (Va ~< cok)Cons(a). 

PROOF. One verifies in a straightforward manner that 

IDf h Prog(Comp) and ID? h Prog(Cons), 

where essential use is made of the fixed point axioms for &>&, which are available in 
IDf. Then the claim follows from Lemma 2 and its corollary, respectively. H 

In order to increase readability we write %?a (x) instead of ^(a, 0,x). According 
to the previous lemma, ( ^ a L ^ is a well-defined hierarchy of sets for each k < co 
in the sense that ^%'a{x) is equivalent to ^^{a, 1, x), provably in ID?. 
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SOME THEORIES WITH POSITIVE INDUCTION OF ORDINAL STRENGTH ipwO 823 

Now we are ready to give the embedding of (n -̂CA)<ra<» into ID*. More precisely, 
we establish an interpretation of (IT^-CA)^ into IDf for each k < co. Therefore, 
let us fix some k < co. We can now give a translation of L by interpreting the set 
variables as (codes of) the sets recursive in %fa for some a -< cok+1, and leaving 
the first order part of L unchanged. More formally, a set is a pair (a,e), where 
a -< cok+i and e is the index of a set which is recursive in &a. Let us denote this 
translation (depending on k) by (-)0. 

REMARK 5. The translation A° of an L formula A is equivalent to a positive LFP 

formula B, provably in IDf. This is readily seen by making use of the complement 
property (*). 

THEOREM 6. We have for all L sentences A: 

(n?-CA)ffl* V A =• IDf h A°. 

PROOF (SKETCH). Let us first consider the axiom (VX)(3Y)Hier(X, Y,cok) to­
gether with relative recursive comprehension (RCA). Assume that x codes a set 
according to the translation ()°, i.e., x is a pair (a,e), where a -< cok+l and e is 
an index of a set which is recursive in &a. By formalized recursion theory and 
transfinite induction up to cok we can find a set y = (b, f) so that Hier{x,y,cok) 
holds, where b = a +cok and / is the index of a set which is recursive in <%V Since 
cok+l is an additive principal number, we have b -< cok+1 as desired. The verification 
of (RCA) is trivial due to the choice of our interpretation. Furthermore, if B is an 
L formula, then TI(cok, B)° is provable in IDf by Lemma 2 and Remark 5. This 
finishes the interpretation of (n°-CA)m,t into IDf. H 

Observe that a (H^-CA)<co^ proof is in fact already a (nJ-CA)^* proof for some 
k < co. In addition, the translation (-)° preserves L formulas. Hence, we have 
established the following corollary. 

COROLLARY 7. We have for all L sentences A: 

(n?-CA)<C0» V A =» IDf h A. 

By methods of Schutte [22] it is well-known that |(n?-CA)<C0«.| = <pcoO. This 
yields the following ordinal-theoretic lower bound for IDf. 

COROLLARY 8. ipcoO < |IDf |. 

Let us finish this section by mentioning that it is also possible to provide a direct 
wellordering proof up to each ordinal less than ipcoO within IDf. For a similar 
argument the reader is referred to Jager and Strahm [18]. 

§3. BON(ju) plus positive induction. In this section we introduce other very nat­
ural formal systems of ordinal strength ipcoO, namely extensions of the basic theory 
of operations and numbers with non-constructive /J. operator BON(/u) by various 
forms of positive induction on the natural numbers. 

Applicative theories of operations and numbers were introduced in Feferman 
[7, 9] as a basis for his systems of explicit mathematics, and they have become 
relevant as an elementary framework for many activities in (the foundations of) 
mathematics and computer science. Recently, theories with self-application have 
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824 GERHARD JAGER AND THOMAS STRAHM 

been proof-theoretically analyzed in the context of the non-constructive minimum 
operator (cf. Feferman and Jager [12,13], Jager and Strahm [19], GlaB and Strahm 
[15]), and the following considerations can be viewed as a continuation of that work. 

In the first paragraph of this section we describe the formal framework for ap­
plicative theories with the non-constructive minimum operator and the relevant 
induction principles. In the second paragraph we briefly mention some known 
proof-theoretic equivalences, and in the third paragraph we show that the theory 
BON {(i) plus so-called N induction proves transfinite induction up to each ordinal 
less than (pcoO, 

3.1. The formal framework for applicative theories. In this paragraph we intro­
duce the basic theory BON of operations and numbers together with various forms 
of complete induction on the natural numbers, and we give the axioms of the 
non-constructive minimum operator. 

The language Lp of the basic theory of partial operations and numbers is a first 
order language of partial terms with individual variables a, b, c, x, v, z, f,g,h,... 
(possibly with subscripts). In addition, L^ includes individual constants k,s (com-
binators), p, po, pi (pairing and unpairing), 0 (zero), s# (numerical successor), pN 

(numerical predecessor), djv (definition by numerical cases), rjv (primitive recur­
sion) and ft (unbounded minimum operator). Lp has a binary function symbol • 
for (partial) term application, unary relation symbols J. (defined) and N (natural 
numbers) as well as a binary relation symbol = (equality). 

In order to use the same definition of proof-theoretic ordinal as in the previous 
section (cf. Definition 1), we also assume that the language Lp contains a unary 
relation symbol U. The operation constant cu acts as a characteristic function of 
U. Of course, all meaningful applicative theories formulated in the language Lp are 
conservative over the corresponding theories without U and cy. 

The individual terms (r, s, t, r\, si, t\,...) of hp are inductively defined as follows: 
1. The individual variables and individual constants are individual terms. 
2. If s and t are individual terms, then so also is (s • t). 

In the following we write {st) or just st instead of (s • t), and we adopt the convention 
of association to the left, i.e., s\s2 • • • s„ stands for (... (si^) • • • s„). We also write 
{t\, ti) for p?i?2 and {t\,ti,... ,t„) for {t\, (t2,... , t„)). Further we put t' :— sNt 
and 1 := 0'. 

The formulas {A, B, C, A i, B\, C\,...) of Lp are inductively defined as follows: 
1. Each atomic formula N(t), U(t), f j and (s = t) is a formula. 
2. If^and2?areformulas,thensoalsoare-i.4,G4V.B), (AAB)aviid{A —> B). 
3. If A is a formula, then so also are (3x)A and (Vx)A. 

Our applicative theories are based on partial term application. Hence, it is not 
guaranteed that terms have a value, and t[ is read as 't is defined' or't has a value.' 
The partial equality relation ~ is introduced by 

s ~t := (s[Vtl) -> (s = t). 

In addition, we write (s ^ t) for (s[ A t[ A -1(5 = t)). Finally, we use the following 
abbreviations concerning the predicate N: 
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SOME THEORIES WITH POSITIVE INDUCTION OF ORDINAL STRENGTH <po>0 825 

t eN 

(3x 6 N)A 

(Vx € N)A 

(teN-^N) 

(t e Nm+1 -> N) 

N(t), 

(3x)(xeN AA), 

(Vx)(x eN-^A), 

(Vx G N)(tx G TV), 

The positive and negative formulas of Lp are given by the following simultaneous 
inductive definition: 

DEFINITION 9 (F+ and F~ formulas). 
1. Each atomic formula N(t), U(t), /J. and (s — t) is an F+ formula. 
2. If A is an F+ formula [F~ formula], then -iA is an F~ formula [F+ formula]. 
3. If A and B are F+ formulas [F~ formulas], then {A V B) and {A A B) are 

F+ formulas [F~ formulas]. 
4. If A is an F~ formula [F+ formula] and B is an F+ formula [F~ formula], 

then {A —> 5 ) is an F+ formula [F~ formula]. 
5. If A is an F+ formula [F~ formula], then (3x e N)A and (Vx e Â )̂ 4 are 

F+ formulas [F~ formulas]. 

The underlying logic of BON is the (classical) logic of partial terms due to Beeson 
[1]; it corresponds to E+ logic with strictness and equality of Troelstra and Van 
Dalen [25]. The non-logical axioms of BON are divided into the following five 
groups. 

I. PARTIAL COMBINATORY ALGEBRA. 

(1) kxy = x, 

(2) sxyl A sxyz ~ xz(yz). 

II. PAIRING AND PROJECTION. 

(3) p0{x,y) = x A pi{x,y) = y. 

III. NATURAL NUMBERS. 

(4) O e i V A (Vx € N)(x' e N), 
(5) (Vx € N)(x' / 0 A pN{x') = x), 

(6) (Vx e N)(x ^ 0 -> pNx £ N A (pNx)' = x). 

IV. CHARACTERISTIC FUNCTION OF U. 

(7) (Vx G N)(cvx = 0 V cc/x = 1), 

(8) (Vx G N){U{x) <-• C£/x = 0). 

V. DEFINITION BY NUMERICAL CASES. 

(9) aeNAb€NAa=b—> ANxyab — x, 
(10) a eN Ab &N A a^b ^ dNxyab = y. 

VI. PRIMITIVE RECURSION ON N. 

(11) ( / G N - N) A (g G N3 - AT) - ( i * / * G TV2 - TV), 
(12) {feN^N)A(geNi^N)AxeNAy€NAh = rNfg -+ 

hxO = fx A hx(y') = gxy(hxy). 
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826 GERHARD jAGER AND THOMAS STRAHM 

As usual the axioms of a partial combinatory algebra allow one to define lambda 
abstraction. More precisely, for each Lp term t there exists an Lp term (Xx.t) whose 
free variables are those of t, excluding x, so that 

BON h {Xx.t)i A (Xx.t)x ~ t. 

In addition, it is well-known that BON proves a recursion theorem. For proofs of 
these two important results the reader is referred to [1, 7]. 

Let us recall the definition of a subset of N from [8, 12]. Sets of natural numbers 
are represented via their characteristic functions which are total on N. Accordingly, 
we define 

/ G P(N) := (Vx 6 N)(fx = 0 V fx = 1), 
with the intention that an object x belongs to the set / G P{N) if and only if 
( /* = 0). 

In the following we are interested in five forms of complete induction on the 
natural numbers, namely set induction, operation induction, N induction, positive 
formula induction and full formula induction. 

SET INDUCTION ON N (S-IN). 

/ G P(N) A / 0 = 0 A (Vx G N)(fx = 0 -> / (* ' ) = 0) -» (Vx € tf)(/x = 0). 

OPERATION INDUCTION ON N (O-IN). 

/ 0 = 0 A (Vx G N)(fx = 0 -f / (x ' ) = 0) -» (Vx G 7V)(/x = 0). 

Â  INDUCTION ON JV (N-IN). 

/ 0 G N A (Vx € AT)(/x G N -> / (x ' ) G AT) -» (Vx G AT)(/x G TV). 

POSITIVE FORMULA INDUCTION ON N (F+-IN). For all F+ formulas A(x) of Lp: 

A{0) A (Vx G N)(A{x) -+ A(x')) -> (Vx G N)A(x). 

FORMULA INDUCTION ON N (F-IN). For arbitrary formulas B(x) of ~LP: 

5(0) A (Vx G N)(B{x) -» 5(x')) -» (Vx G 7V)5(x). 

REMARK 10. Sometimes it will be convenient to work with a slightly more general 
notion of set. According to this generalization, a set is not necessarily an element 
of P(N) but an element of (N —• N), and as above, an object x belongs to a set 
( / G N —> N) if and only if (fx = 0). It is easily seen that these to notions of a set 
are equivalent. In particular, BON + (S-IN) proves set induction for 'extended sets,' 

( / G N -• N) A/0 = 0A(Vx G N){fx = 0 -> / (x ' ) = 0) -> (Vx G 7V)(/x = 0). 

Therefore, we will tacitly use both P{N) and (N —> N) as our notion of set, 
whichever is more convenient. 

Now we turn to the non-constructive minimum operator. We follow its ax-
iomatization according to Jager and Strahm [19], which is a strengthening of the 
formulation in Feferman [8] and Feferman and Jager [12, 13]. 
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SOME THEORIES WITH POSITIVE INDUCTION OF ORDINAL STRENGTH IPOIO 827 

THE UNBOUNDED MINIMUM OPERATOR 
Cu.l) (feN-+N)~pf£N, 

(fi.2) (feN->N)A(3xe N)(fx = 0) - f(fif) = 0. 

REMARK 11. In Feferman [8] and Feferman and Jager [12, 13] a weaker form /iw 

of the minimum operator is considered, where the axiom {fiwA) reads as 

(feN^N)->Mwfe N, 

and the second axiom (/iw.2) for fiw is identical to (fi.2). The above formulation of 
the axiom (fi.l) is stronger than the axiom {fiw.\) of [12, 13] in the following sense: 
ft is not only a functional on (N —> N) which assigns to each ( / e N —• N) an 
x e N with /JC = 0, if there is any such je, and any y in N otherwise, but fi also 
has the property that juf £ N already implies that / is an operation from N to N, 
i.e., ( / € N —• N). It is easy to see, however, that the proof-theoretic strength of 
the theories in [8, 12, 13] is not affected by moving from fiw to/*. 

In the sequel we write BON(,u) for BON + (/i.l,/i.2), and we will determine the 
proof-theoretic strength of BON(,u) extended by the forms of induction mentioned 
above. 

Finally, we will be interested in two possible strengthenings of the applicative 
axioms, namely totality and extensionality. The totality axiom (Tot) expresses that 
application is always total, i.e. 

(Tot) (Vx){Vy)(xyl). 

The extensionality axiom (Ext) claims that operations are extensional in the follow­
ing sense: 

(Ext) (Vx)(/x~gx) - ( / = * ) . 

This finishes the description of the formal framework for those applicative theories 
which will be studied below. 

3.2. Some known proof-theoretic equivalences. In this paragraph we briefly ad­
dress some known proof-theoretic equivalences concerning applicative theories with 
and without the non-constructive ft operator in the presence of various induction 
principles. 

The proof-theoretic strength of all relevant theories without the operator fi is 
well-known, cf. e.g., Feferman and Jager [12]. The corresponding reductions make 
use of formalized (ordinary) recursion theory. 

PROPOSITION 12. We have the following proof-theoretic equivalences: 
1. BON + (S-IN) = BON + (0-lN) = BON + (N-IN) = PRA. 
2. BON + (F+-IN) = BON + (F-IN) = PA. 

Following Cantini [3] or Jager and Strahm [19], the above equivalences still hold 
in the presence of totality (Tot) and extensionality (Ext), where formalized term 
model constructions serve to determine proof-theoretic upper bounds. 

The proof-theoretic strength of BON(/<) with set and formula induction is due 
to Feferman and Jager [12]. Here essential use is made of so-called fixed-point 
theories with ordinals (cf. Section 4), which have been introduced in Jager [17]. 
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828 GERHARD JAGER AND THOMAS STRAHM 

These theories turned out to be an adequate framework for formalized II { recursion 
theory, which is used to interpret the fi operator. 

PROPOSITION 13. We have the following proof-theoretic equivalences: 
1. BON(/i) + (S-IN) S PA. 
2. BONM + (F-lN) = (n?-CAW 

As for the case without the fi operator, these results can be strengthened to include 
(Tot) and (Ext). This is due to Jager and Strahm [19], where formalized infinitary 
term models and Church Rosser properties yield the desired upper bounds, again 
making use of fixed point theories with ordinals. 

Let us finish this paragraph by mentioning some crucial relationships between set 
induction (S-IN), operation induction (O-IN) and N induction (N-IN), which have 
been established in Kahle [20], Observe that (S-IN) is trivially contained in (O-IN). 

PROPOSITION 14. We have the following relationships: 
1. (N-IN) implies (S-IN) over BON. 
2. (N-IN) and (O-IN) are equivalent over BON(/z). 

For the second assertion of this proposition the presence of the strong /u operator is 
crucial. Furthermore, it is not yet known whether (N-IN) is equivalent to (O-IN) over 
BON or BON(fiw), although BON + (N-IN) and BON + (0-lN) are proof-theoretically 
equivalent according to Proposition 12. 

In the next paragraph we determine ipcoO as a lower bound of BON(/u) + (N-IN). 

According to the proposition above, this will also yield a lower bound for the system 
BON(^) + (0-lN). Both theories are contained in BON(/u) + (F+-IN), and we will 
show in Section 4 of this paper that BON(/^) + (F + - IN) does not go beyond ipcoO. 

3.3. The wellordering proof for BON(,u) + (N-IN). In the sequel we show that 
BON (//) + (N-IN) proves transfinite induction along each initial segment of ipcoO. We 
are implicitly working with a translation of L into Lp, where the number variables of 
L are interpreted as ranging over N, and the set variables as ranging over (N —> N). 
Hence, an atomic formula (x £ Y) of L is translated into yx = 0, where x and y are 
the variables of Lp which are associated to the variables x and Y of L, respectively. 
Furthermore, using the recursion operator rN, each primitive recursive function can 
be represented in BON by an individual term of Lp. Summarizing, the translation 
(0^ from L into Lp is such that 

((3x)A(x))N = (3xeN)AN(x), 

{{3X)A{X))N = (3xeN ^N)AN{x), 

and similarly for universal quantifiers. In order to simplify notation, we identify 
individual terms and formulas of L and their translations into hp, when there is 
no danger of confusion. In addition, we freely use symbols for primitive recursive 
relations, which are introduced as usual via their characteristic functions. 

This is the right place to mention a crucial application of the unbounded /u 
operator, namely elimination of number quantifiers (cf. [12]). 

PROPOSITION 15. For every arithmetic L formula A{X, y) with at most X, y free 
there exists an individual term tA of hp so that 

1. BON(/i) r- (Vx e N -> N)(\/y e N)(tAxy £ N), 
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SOME THEORIES WITH POSITIVE INDUCTION OF ORDINAL STRENGTH <pcoO 829 

2. BON(/i) h (Vx G N -» N)(y?eN)(AN(x,f) «-• tAxy = 0). 

Recall that -< is a primitive recursive standard wellordering of ordertype r 0 with 
field N and least element 0. We will show that 

BON(/0 + (N-IN) h (V/ € TV -» N)TI{a,f) 

for each a -< y>a>0, where 77(a, / ) abbreviates 77(a, / x = 0). 
In order to make the wellordering proof work, we need a certain amount of 

transfinite induction with respect to formulas of the form tx G N. More precisely, 
we have to extend N induction (N-IN) to N transfinite induction up to cok for each 
k < co. This can be established in the very same way as in Lemma 2, however, 
there is one point where attention is needed: In the proof of Lemma 2 we used 
the fact that the class of positive Lpp formulas is closed under universal quantifiers 
of the form (Vx < s), a closure property which is not obvious for the formulas 
tx G N. Observe that in the proof of the following lemma we make essential use of 
the (strong) non-constructive ju operator for the first time. 

LEMMA 16. For every Lp term s there exists an Lp term t so that 

BONGu) h (Vx G N){{Vy < x)sy G N <-• tx G N). 

PROOF. Let r be an hp term for the characteristic function of -<. For a given Lp 

term s choose the term t' of Lp given by 

(1) t' := iy.dN(sy)0(ryx)0. 

Then it is straightforward to verify that 

(2) BON h x G N -f [(\/y G N){ryx = 0 - • sy G N) ^ (t' G N - • N)]. 

Using the axiom (/u. 1) for the non-constructive fi operator we have 

(3) BON{fi) h (t'e N ^ N) ~ jut'€ N. 

Hence, we can take t := Xx./it' and read off our assertion from (2) and (3). H 

Now we can copy the proof of Lemma 2 to get the following important lemma. 

LEMMA 17. We have for all k < co: 

BONGu) + (N-IN) h TI(cok,fx G N). 

On the other hand, we already know that BON(ju) + (N-IN) proves transfinite 
induction up to each ordinal less than eo with respect to sets: According to Propo­
sition 14, BON(ju) + (N-IN) proves set induction (S-IN), and BON{ju) + (S-IN) in 
turn contains PA via the embedding described at the beginning of this paragraph 
(cf. also Proposition 13). 

In the sequel we need primitive recursive auxiliary functions p and e on our 
ordinal notations, which satisfy 

• p(0) = e(0) = 0; p(coa) = 0 and e(coa) = a; 
• if a = co"' + • • • + co"" for more than one summand so that an -< • • • -< a\, 

then p(a) — co"1 + • • • + co""-1 and e(a) — a„. 
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830 GERHARD JAGER AND THOMAS STRAHM 

In addition, let us define some sort of jump operator / , which is given by the 
following arithmetic definition: 

J{X,a) := (\/y){(Vx-< y)(x £ X) ^ (Vx ^ y + a)(x £ X)). 

Let ( / € N —• N) be a set. In order to prove TI(a, f) for each a -< <pa>0, we build 
up a hierarchy of sets {Hb)bHa>

k f°r e a c n k < co. The definition of the hierarchy 
corresponds to the formulas 3i{P, Q, t) of Schutte [22, p. 184rTJ. More precisely, 

Ho = f, 
Ha = {y : (Vz) (/>(«) <z<a^ J{Hz,<p{e{a),y)))}, (0 < a). 

In order to formalize {Hb)b^wk in BON(^) + (N-IN), we need some preliminary 
considerations. The arithmetic L formula A(X, a,y)h given by 

A(X,a,y) := (Vz) (p(a) ± z -< a -» J((X)z,<p(e(a),y))). 

According to Proposition 15, there exists an hp term tA so that BON(/u) proves: 

(Vx G N -> N){Va,y G A^)(^xaj G JV), 
(Vx G AT -+ N)(Va,y G iV)UAr(x,a,}') <-• ̂ xay = 0). 

An application of the same proposition provides us with a term s so that BON(/u) 
proves: 

(Vx,yeN)(sxyeN), 

(Vx, y E N)((x = <(*)„, (x)i)A (x)i -< y) <-» sxj = 0). 

Finally, the operation g is given by 

g := Ax;yz.(djV(jc(z)i(z)o)l(s'zy)0). 

If x is assumed to be an operation which enumerates the sets xb, then gxa is a 
characteristic function of the disjoint union of the sets {xb)b<a. 

We have prepared the ground in order to introduce an operation h so that hfa 
represents the ath level of the H hierarchy with initial set / . It is given by the 
recursion theorem to satisfy 

hf ~ J fy> if a = 0, 
\ tAig{hf)a)ay, otherwise. 

So far we do not know that hfa represents a set in BON(//) + (IM-IN). This is the 
content of the following crucial lemma. Observe that the presence of the strong n 
operator is again essential. 

LEMMA 18. We have for all k < co: 

BON(//) + (N-IN) I- (V/ G N -> N)(Va -< ™k)(hfa e N ^ N). 
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PROOF. Let us first fix a k < co and an ( / e N —• N). We work informally in 
BON(^) + (N-IN) and show that 

(1) Prog(ra G N), 

where r is defined to be the term Aa.fi(hfa). Then our assertion immediateley 
follows from (1), Lemma 17 and an application of the axiom {ju.l). In order to 
prove (1) let us assume 

(2) (VZ> -< a){rb E N), 

i.e., (Vb -< a)(ji(hfb) e N). The equivalence (ju.l) yields 

(3) (V* -< a){hfb eN->N). 

It is our aim to show (hfa e N —> N), which by (ju.l) yields ra G N as desired. 
If a — 0, then (A/0 € N —> JV) holds since it is ( / € iV —• JV) by assumption. 
Otherwise, we have to show {tA{g{hf)a)a E J V - * TV). But this is immediate, since 
(3) implies (g{hf)a e N —> N), and tA maps sets and numbers into sets according 
to our discussion above. This finishes the proof of (1), and hence our assertion 
follows as shown. -\ 

We have established the existence of the hierarchy (Ha)a^mk as a hierarchy of sets 
in BON(ya) + (N-IN) for each k < co, and its defining properties can be proved there. 

The next lemma is essential in the wellordering proof for BON(^) + (N-IN). It 
corresponds to Lemma 9 of Schiitte [22], and its proof is very similar to the proof 
of Lemma 9. A careful but straightforward formalization of that proof only uses 
set induction (S-IN), which is available in BON(/i) + (N-IN) by Proposition 14. For 
the details the reader is referred to [22]. 

LEMMA 19. Wis have that BON(/u) + (N-IN) proves for all k < co: 

( / € N -> N) A 0 -< a -< cok A (V6 -: a)Prog(hfb) -> Prog(hfa). 

We are now able to show that B O N ( / / ) + (N-IN) proves transfinite induction up 
to (pkO for each k < co. This will immediately yield the desired lower bound. 

THEOREM 20. We have for all k < co: 

BONCa) + (N-IN) h (V/ € N -» N)Tl(cpkO,f). 

PROOF. In the following we work informally in the theory BON(//) + (N-IN). Let 
us choose k < co and an arbitrary ( / e N —> N). By Lemma 18 we have a hierarchy 
of sets {hfa)a^wk+\ with initial set hfO = / . Hence, we trivially have 

(1) Prog(f) - Prog(hfO). 

A combination of (1) and the previous lemma yields 

(2) Prog(f) Aa< cok+1 A (V* -< a)Pwg(hfb) -» Prog(hfa). 

If we abbreviate B(a) := a -< cok+l —• Prog(hfa), then (2) amounts to 

(3) />r a#(/) - P*tf(*). 
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Furthermore, it is easily seen that B can be represented as a set tB, provably in 
BON(/a) + (N-IN), for example, choose 

(4) tB := Xa.dN{prog{hfa))\{raa)k+x)0, 

where prog is the set corresponding to Prog according to Proposition 15, and r 
represents the characteristic function of -<. Therefore, we can conclude from (3) 
and set transfinite induction up to cok+x that 

(5) Prog(f) - Prog(hfcok). 

In addition, we trivially have 

(6) Prog(hfcok) -» (A/m*0 = 0). 

Since p(cok) = 0 and e{cok) = k we get by the definition of hfcok that 

(7) (A/o>fc0 = 0) -+J(f,pkO). 

Furthermore, it is immediate from the definition of / that 

(8) J(f,fk0) -+ (Vx -< <pk0){fx = 0). 

If we combine (5)-(8) we obtain TI(f, <pk0) as desired. H 

By replacing ( / e N —• N) by the characteristic function cu of U we have shown 
that <pco0 is a lower bound for the proof-theoretic ordinal of BON(//) + (N-IN) in 
the sense of Definition 1. Together with Proposition 14 we have established the 
following corollary. 

COROLLARY 21. ipcoO < |BON(/x) + (N-IN)| = |BON(^) + (0-lN)|. 

Instead of giving a wellordering proof for BON(yu) + (N-IN), it would also have 
been possible to provide a direct embedding of the second order system (ITI-CA)<C0» 
into BON(/z) + (N-IN). This embedding is similar to the one of (1TJ-CA) <£0<» into 
IDf of Section 2.2, formalized in the framework of BON(/z) + (N-IN) and by making 
use of the same techniques for building hierarchies of sets as in the wellordering 
proof above. 

§4. Peano arithmetic with ordinals and positive induction. Fixed point theories in 
Peano arithmetic with ordinals were first introduced in Jager [17] and then used 
in Feferman and Jager [12] in order to provide upper proof-theoretic bounds for 
several first order systems of explicit mathematics with non-constructive // operator. 
The weakest theory of PA plus ordinals considered in [17] is the theory PAr

n which 
is a conservative extension of PA. 

Now we study the effect of adding to PA£j a form of positive induction on the 
natural numbers, namely induction for S" formulas. We will show that PA£j + 
(En-IN) contains ID* and BON(//) + (F+-IN) and establish that its proof-theoretic 
strength is bounded by (pcoO. 
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4.1. The theory PAn + (In-IN). The theory PAn + (S"-IN) is formulated in the 
language Ln which extends L by adding a new sort of ordinal variables a, T,rj,£,... 
(possibly with subscripts), a new binary relation symbol < for the less relation on 
the ordinals1 and an (n + l)-ary relation symbol P& for each inductive operator 
form srf{P, x\,... ,x„). 

The number terms of Ln are the number terms of L; the ordinal terms of Ln are 
the ordinal variables. The formulas A, B, C,... (possibly with subscripts) of Ln are 
inductively generated as follows: 

1. If R is an w-ary relation symbol of L, then R(s\,... ,s„) is an (atomic) 
formula of Ln-

2. (c < T), (<T = T) and P^{a,s) are (atomic) formulas of Ln. We write 
P°Jf) for P«(a,s). 

3. If A and B are formulas of Ln, then ->A, {A V B), {A A B) and {A ->• B) 
are formulas of Ln. 

4. If A is a formula of Ln, then (3x)A and (Vx)A are formulas of Ln. 
5. If A is a formula of Ln, then (3{)A, (VE.)A, (3£ < <x).4 and (Vf < <r)4 are 

formulas of Ln-
For every Ln formula A we write A" to denote the Ln formula which is obtained 
by replacing all unbounded quantifiers {QE) in A by (Q£ < a). Additional abbre­
viations are: 

P<°(s) := (3{<<x)/£(S) and iV(/) := (3£)J*(j). 

Finally we introduce subclasses of Ln formulas which will be needed for formulating 
the axioms of the theory PAn + (Sn-I|\i). 

DEFINITION 22 (A° formulas). The A" formulas of Ln are inductively defined as 
follows: 

1. Every atomic formula of Ln is a An formula. 
2. If A and B are A£> formulas, then ^A, {A V B), {A A B) and {A -> 5) are 

An formulas. 
3. If A is a A" formula, then (3x)A and (Vx)yi are A" formulas. 
4. If ,4 is a A" formula, then (3£ < cr)y4 and (V£ < o-)̂ 4 are An formulas. 

DEFINITION 23 (Sn and IIn formulas). The E" and 11° formulas are inductively 
generated as follows: 

1. Every An formula is a if1 and ITn formula. 
2. If A is a Zn formula [IIn formula], then -iA is a IIn formula [Sn formula]. 
3. If A and B are I n formulas [LTn formulas], then {A V J5) and (A A 5) are 

if1 formulas [Un formulas]. 
4. If A is a n n formula [En formula] and 5 is a En formula [IIn formula], 

then (A —> B) is a £ n formula [IIn formula]. 
5. If 4̂ is a En formula [IIn formula], then (3x)A and (Vx)A are En formulas 

[IIn formulas]. 
6. If ^ is a Sn formula [IIn formula], then (3f < a)A and (V£ < a)A are I n 

formulas [IIn formulas]. 

1 In general it will be clear from the context whether < and = denote the less and equality relation on 
the nonnegative integers or on the ordinals. 
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7. If A is a I " formula, then (3£)A is a !n formula; if A is a Ft" formula, then 
{V£)A is a n n formula. 

In [17] three theories PAQ, PAQ and PAQ of Peano arithmetic with ordinals are 
considered. Now we restrict ourselves to repeating the axioms of PAn. This system 
is the restriction of PA^ in the sense that induction on the natural numbers and 
on the ordinals is permitted for A" formulas only. PAn comprises the usual logical 
axioms of two-sorted predicate logic plus the following non-logical axioms: 

I. NUMBER-THEORETIC AXIOMS. The axioms of Peano arithmetic PA with the excep­
tion of complete induction on the natural numbers. 

II. INDUCTIVE OPERATOR AXIOMS. For all inductive operator forms s/(P, x): 

pz(s)~sf(p<r,?). 
III. IP REFLECTION AXIOMS. For all IP formulas A: 

A - (3£)A<. 

IV. LINEARITY AXIOMS. 

a ft a A (<r < T A T < r\ —> a < r\) A [a <xM a = %\l t <a). 

V. A" INDUCTION ON THE NATURAL NUMBERS. For all A" formulas A(x): 

A(0) A (VJC)U(X) -» A{x')) -> {Vx)A{x). 

VI. A" INDUCTION ON THE ORDINALS. For all A" formulas A{£): 

(V£)[(V* < £)A(TI) - A(£)] - (VZ)A(Z). 

From the inductive operator axioms and the IP reflection axioms one can easily 
deduce that the IP formulas P& describe fixed points of the inductive operator form 
s/(P,x). 

LEMMA 24. We have for all inductive operator forms stf (P, x): 

PAn h (Vx)(iV(x) <- s/(Ps,,Z)). 

As mentioned before, PAQ is a conservative extension of PA. In view of Corollary 
8 and Corollary 21 it is therefore impossible to embed IDf or BON(/z) + (F+-IN) 

into PAn. In order to obtain a proper framework for such interpretations we have 
to strengthen induction on the natural numbers. The scheme of IP induction on 
the natural numbers consists of all formulas 

(2n-lN) ^(0) A (Vx)U(x) -» A(x')) -+ {Vx)A(x) 

so that A(x) is a IP formula. In the following we write PAn + (I°-IN) for the 
extension of PAn by iP induction on the natural numbers. 

There is a natural interpretation of Lpp into LQ: For every relation symbol && 
of LFP translate the Lpp formula &&(s) by the IP formula P^(s) of LQ. This 
determines a translation of Lpp formulas A in Ln formulas 4̂° which leaves L 
unchanged and interprets Lpp formulas, which are positive in fixed point constants 
&&, as IP formulas. Hence, we have the following embedding. 
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SOME THEORIES WITH POSITIVE INDUCTION OF ORDINAL STRENGTH ipcoO 835 

THEOREM 25. We have for all LFp formulas A: 

IDf h A => PA^ + (En-IN) h A*. 

The article Feferman and Jager [12] contains an embedding of BON(/u) + (S-IN) 

into PA^; actually, this embedding is for the old form of the ju -operator (which 
is called ftw here) but an obvious modification works for the new form of // as 
well. One crucial step in this embedding is to translate the Lp formula {xy = z) 
as a suitable E n formula App{x,y,z) and to lift this interpretation to a natural 
translation of Lp formulas A into LJJ formulas A*. 

Now we work exactly with the same translation and observe that each instance 
A of (F+-IM) goes over into an instance A* of (S"- IN) . Together with the results 
of [12] this translation therefore yields an embedding of BON(/«) + (F+-IN) into 
PA£j + (En-IN). Since (0-lN) and (N-IN) are special cases of (F+-IN), it follows that 
the theories BON(/u) + (0-lN) and BON(/i) + (N-lN) are contained in PA^ + (Sfl-lN), 
too. 

THEOREM 26. We have for all Lp formulas A: 

BON(fi) + (F+-IN) h A =• PAr
n + (Ln-\N)^A*. 

4.2. A Gentzen-style reformulation of PAJJ + (En-IN). The purpose of this sub­
section is to give a Gentzen-style reformulation G of the theory PAJJ + (£ Q - IN) . 

This step is essentially performed for obtaining a weak cut elimination theorem 
which then will be used for the final proof-theoretic analysis of PA£j + (S°-IN) in 
the following subsection. 

The capital Greek letters T, &, 3>, *F.. . (possibly with subscripts) will be used to 
denote finite sets of LQ formulas, and sequents are formal expressions of the form 
r D 0 . Often we write (for example) T, A for the union of T and {A}. 

The system G is an extension of the classical Gentzen calculus LK (cf. [14] or [24]), 
in which the structural rules are obsolete since we work with sets, and weakening 
is built in. G is formulated in the language Ln and comprises the following axioms 
and rules of inference. 

I. AXIOMS OF G. For all finite sets r and 0 of Ln formulas, all A" formulas A and 
all A^ formulas B which are axioms of PA£j + (£n-l|\i): 

r,AD&,A and T D 0 , B. 

II. PROPOSITIONAL AND QUANTIFIER RULES. These include the usual Gentzen-style 
inference rules for the propositional connectives and all sorts of quantifiers. 

III. IP REFLECTION. For all finite sets T and 0 of Lfi formulas and for all E n 

formulas ,4: 
T D 0 , A 

r D ©, (3Z)A< • 

IV. I,n INDUCTION ON THE NATURAL NUMBERS. For all finite sets T and 0 of Ln 
formulas, all IP formulas A(x) and all number variables u which do not occur in 
r D 0 , ,4(0): 

r p 0 , ,4(0) T, A{u) D 0 , A{u') 

T D 0 , (Vx)A(x) 
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836 GERHARD JAGER AND THOMAS STRAHM 

V. A" INDUCTION ON THE ORDINALS. For all finite sets T and 0 of LQ formulas, all 
A" formulas A{a) and all ordinals variables £, which do not occur in T D 0 , A{a): 

T, (Viy < £)A(ti) 3 0 , A{{) 
TD@, A{a) 

VI. CUTS OF G. For all finite sets T and 0 of Ln formulas and all Lr> formulas A: 

r,AD@ Tp@,A 
TD@ 

The notion G \^- T D 0 is used to express that the sequent T D 0 is provable in G by 
a proof of depth less than or equal to n; we write G £ r D 0 if T D 0 is provable 
in G by a proof of depth less than or equal to n so that all its cut formulas are IP 
formulas. In addition, G | - r D 0 o r G ^ - r D 0 means that there exists a natural 
number n so that G | - ^ - r D 0 o r G [ - ^ - r z > 0 , respectively. 

One immediately observes that the main formulas of all axioms and rules of the 
systems G are IP formulas. Hence, the following weak cut elimination theorem is a 
matter of routine. 

THEOREM 27 (Weak cut elimination). We have for all finite sets T and 0 of LQ 

formulas: 

G h T D © =• G h r T D © . 

Furthermore, the axioms and rules of G are tailored so that the theory PAfi + 
(Z^-IN) can be easily embedded into G. 

THEOREM 28 (Embedding of PAn + QE^-IN)). We have for all Ln formulas A: 

PAr
n + (Ln-\N)\~A ^ G\- DA. 

Combining the previous two theorems yields the following corollary, which will 
be used for the proof of Theorem 35 below. 

COROLLARY 29. If the LQ formulas A is provable in PAn + (E"-IN), then there 
exists a natural number n so that G\^ D A. 

4.3. The system G^. The system G^ is based on the language L ^ which extends 
LQ by constants a for all ordinals a < com (in the sense of the notation system). The 
ordinal terms (9, 6Q, 6\,...) of L ^ are the ordinal variables and the ordinal constants 
of Loo. The atoms of L ^ are the atoms of LQ plus all expressions which result from 
the atoms of Ln by replacing some ordinal variables by ordinal constants. To 
simplify the notation we often write A(a) instead of A(a) if a is an ordinal less 
than coro. 

The formulas of L ^ are inductively generated as follows: 

1. Every atom of L ^ is an L ^ formula. 
2. If A and B are LOT formulas, then ->A, (A V B), {A A B), and {A -> B) are 

Loo formulas. 
3. If A is an L ^ formula, then (Sx)A, {Vx)A, (3£ < 6) A and (Vf < 0)A are 

Loo formulas. 
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SOME THEORIES WITH POSITIVE INDUCTION OF ORDINAL STRENGTH cpwO 837 

Notice that Loo formulas do not contain unbounded ordinal quantifiers. The C L ^ 
formulas are the Loo formulas which do not contain free number and free ordinal 
variables. Two Loo formulas A and B are called numerically equivalent if they differ 
in closed number terms with identical value only. Furthermore, an atom of CL^o 
is called primitive if it is not of the form U(s) or P%{s). Obviously, every primitive 
atom of CLoo is either true or false, and in the following we write TRUE for the set 
of true primitive atoms and FALSE for the set of false primitive atoms. 

In order to measure the complexity of cuts in Goo we assign a rank to each CLoo 
formula. This definition is tailored so that the process of building up stages of an 
inductive definition is reflected by the rank of the formulas P%{s). 

DEFINITION 30. The rank rn(A) of a CLoo formula A is inductively defined as 
follows: 

1. If A is an atom of L or an atom {a < /?) or (a = /?) for some ordinals a 
and /?, then rn(A) := 0. 

2. If A is an atom P^(s) for some ordinal a, then rn(A) := co(a + 1). 
3. If A is a formula -^B so that rn(B) = a, then rn{A) := a + 1. 
4. If A is a formula (5 V C), {B A C) or (B -> C) so that m{B) = B and 

rn(C) = y, then rn(A) := max{fi, y) + 1. 
5. If A is a formula (3x)B(x) or (Vx)fi(x) so that rn(B(0)) = a, then 

rn{A) := a + 1. 
6. If A is a formula (3^ < OL)B{£) or (V^ < a)B{£,) for some ordinal a, then 

raU) := sup{rn(B(B)) + \:B<a}. 

We write oc(5) for the set of ordinal constants which occur in the Loo formula 
B. The proof of the following lemma is a matter of routine (cf. Jager and Strahm 
[18]). 

LEMMA 31. We have for all inductive operator forms s/(P,x), all CLoo formulas A 
and all oridnals a G T: 

1. rn{stf{P<a,T))<rn{P%{r)). 
2. If ft < a. for all ft € oc(A), then rn(A) < coa + co. 

The system Goo is formulated in the language CLoo and contains the following 
axioms and rules of inference. 

I. AXIOMS OF GOO. For all finite sets r and 0 of CLoo formulas, all CL^o formulas 
U(s) and U{t) which are numerically equivalent, all atoms B in TRUE and all atoms 
C in FALSE: 

T, U{s) D 0 , U(t) and r D 0 , B and T, C D 0 . 

II. PROPOSITIONAL RULES. These include the usual Gentzen-style inference rules for 
the propositional connectives ->, V, A and —•. 
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838 GERHARD JAGER AND THOMAS STRAHM 

III. NUMBER QUANTIFIER RULES. For all finite sets T and 0 of C L ^ formulas and 
all CLoo formulas A(s): 

T D 0 , A{s) T, A{t) D 0 for all closed terms t 

r D 0 , (3x)A(x)' r , (3x)A(x) D 0 

T D 0 , A(t) for all closed terms t T, ^ (s ) D 0 

r D 0 , (VJC)^(JC) ' r , (Vx)^(x) D 0 ' 

IV. INDUCTIVE OPERATOR RULES. For all finite sets T and 0 of C L ^ formulas, all 
inductive operator forms sf(P, x), all closed number terms / a n d all ordinals a: 

rp@,tf{p<a,s) r,tf(p<a,s)p@ 
TD®,p%(r) ' T,P%(S)D® ' 

V. ORDINAL QUANTIFIER RULES. For all finite sets T and 0 of CLoo formulas, all 
CLQO formulas A{a) and all ordinals P with a < fi: 

TD®,A{a) r,A{y)D® for all y < p 

T D -0, (3£ < p)A(g)' T, (3£ < 0)A(Z) D 0 ' 

rp@,A(y) forally<yg T, A(a) D 0 

r D 0, (v£ < fi)A(() ' r, (vz < p)A({) D ®' 
VI. CUTS OF GOO- For all finite sets T and 0 of CLoo formulas and all CLoo formulas 
A: 

T,Ap® YD®, A 
TD® 

The formula A is the cut formula of this cut; the rank of a cut is the rank of its cut 
formula. 

Based on the axioms and rules of inference, derivability in the system Goo is 
defined as usual. 

DEFINITION 32. Let T and 0 be finite sets of CLoo formulas. Then CLoo \~ T D ® 
is defined for all ordinals a and p in T by induction on a. 

1. If T D 0 is an axiom of Goo, then we have Goo \-j- for all ordinals a, p in T. 

2. I f G o o ^ - T , D 0 , a n d a, < a for every premise T; D 0 ; of a propositional 
rule, a number quantifier rule, an inductive operator rule, an ordinal quantifier 
rule or a cut of Goo whose ran 
conclusion T D 0 of this rule. 
rule or a cut of Goo whose rank is less than p, then we have Goo \y T D 0 for the 

It is easy to check that the assignment of ranks and the rules of inference are 
tailored so that the methods of predicative proof theory yield full cut elimination 
for Goo. Therefore, we omit the proof fo the following theorem and refer to Pohlers 
[21] or Schutte [22]. 

THEOREM 33. We have for all finite sets T and ® of C L ^ formulas and all ordinals 
a,P,p € T: 

G O O ^ T D G => G o o ^ T D © . 
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SOME THEORIES WITH POSITIVE INDUCTION OF ORDINAL STRENGTH tpcaO 839 

The next step is to reduce the theory G to the systems Goo via an asymmetric 
interpretation. For this purpose, it is useful to have the following persistency 
lemma, whose straightforward proof by induction on a will be omitted. 

LEMMA 34. We have for all finite sets Y and 0 of CLoo formulas, all IP formulas 
A(£,x) of Ln with free variables as indicated, all closed number terms r, and all 
ordinals a, P,y,8,p e T so that /? < S < com: 

1. Gx ff- T, As(y, r)D@ =» Goo [f T, A^f, f) D 0. 
2. Goo ff r D 0, AP(f, f) =* Goo \y r D 0, ^(f , r). 

We proceed with introducing the notion of an (a, /?) instance which will be 
needed in the proof of Theorem 35 below. Suppose that T and 0 are finite sets of 
Ln formulas and let G> and *P be finite sets of CLoo formulas; assume further that a 
and P are ordinals less that com. Then the sequent $ D *P is called an (a, /?) instance 
of the sequent T D 0 provided the following conditions are satisfied: 

(i) each free number variable is replaced by a closed number term and each free 
ordinal variable by an ordinal less than a. 

(ii) each occurrence of an unbounded ordinal quantifier (Q£) in the formulas of 
T is replaced by (Q£ < a); each occurrence of an unbounded ordinal quantifier 
(Q£) in the formulas of© is replaced by (Q£ < /?). 

(a, p) instances of a given sequent T D 0 may only vary in the interpretation of 
the free variables in the formulas of T and 0. In particular, if A and B are closed 
Ln formulas, then the only (a, /?) instance of A D B is the sequent Aa D BK 

THEOREM 35 (Asymmetric interpretation). Let T and 0 be finite sets of Sn for­
mulas so that G ^ T D ©for some natural number n. Then we have for all ordinals 
a < cow and all finite sets $ and Y of CL^ formulas: 

a+<an 

O D f i s an (a, a+co") instance ofFD® =̂  Goo \coia+of,) ^>^>^-

PROOF. The theorem is proved by induction on n. Apart from Sn induction 
on the natural numbers all axioms and rules of inference are treated as in similar 
asymmetric interpretations, cf. Jager [16, 17] and Schutte [22]. In the following 
argument we make tacitly use of Lemma 34. 

Now suppose that T D 0 is the conclusion of the rule for ~Ln induction on the 
natural numbers. Then there exists a If1 formula A(x) and no, n\ < n so that 

(1) G ^ T D 0,^(0) , 

(2) G\^T,A(u)D&,A(u'). 

Let m be the maximum of «o and «i and set fa '•— & + com (k + 1) for all natural 
numbers k. We show by side induction on k that 

(3) Goober* D * , ^ W 
2To be more precise, we mean the instance of A^k (k) where all free variables are replaced according 

t o O D T . 
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840 GERHARD JAGER AND THOMAS STRAHM 

If k = 0 then (3) follows from (1) and the main induction hypothesis. If k > 0 
then the side induction hypothesis yields 

(4) G ^ O D T . A ' l t - D . 

Now we apply the main induction hypothesis to (2) with a replaced by fik-\ and 
obtain 

(5) Goo b ( ^ T *> Ah-l(k ~ D D ^ APkW-

Hence (4), (5) and a cut imply 

This finishes the proof of (3). A further application of Lemma 34 to (3) gives 

(?) G „ f ^ < l > D ¥ , ^ ( * ) 

for /? := a + co" and all natural numbers k. In (7) we can replace k by an arbitrary 
closed term with value k. Hence, we are in a position to apply the inference rule for 
numerical universal quantification on the right hand side and conclude 

a+a>n 

(8) Goo h ^ r ® D *> (V*)^M. 

Since the formula (Vx)^4^(x) is contained in *F the treatment of £ n induction on 
the natural numbers is completed. H 

Corollary 29, the above asymmetric interpretation and complete cut elimination 
for Goo provide a reduction of the E n fragment of PA^ + (Sn-I|\i) to the cut-free 
part of Goo. This means that the following theorem is obtained from Corollary 29, 
Theorem 35 and Theorem 33. 

THEOREM 36. Let A be a closed lP formula which is provable in PAQ + (Z"-IN). 

Then there exists ana < (pcoO and a /? < cow so that Goo \-$- 3 A&. 

As usual this result also gives an upper bound for the proof-theoretic ordinal of 
the theory PA^ + (In-IN), cf. e.g., Schiitte [22], 

COROLLARY 37. |PA^ + (In-IN) | < fcoO. 

4.4. Summary. Let us now collect what we have achieved. From Corollary 7, 
Corollary 21, Theorem 25, Theorem 26 and Corollary 37 we obtain the following 
relationship between our theories: 

(i) (n<l-CA)<m« < ID? < PA^ + (S"-IN) < (n?-CA)<ro,, 
(ii) (n?-CA)<ro» < BON(/z) + (N-lN) = BON(/*) + (0-lN) < BON(/u) + (F+-lN) < 

PA^ + (E"-lN)<(n?-CA)<ai». 
Unfortunately, we do not know yet whether it is possible to get a direct reduction 
of ID? to BON(//) + (N-IN) or a reduction of BON(yu) + (F+-IN) to ID?. However, 
the problem does not affect proof-theoretic equivalences of these systems, and we 
can formulate the following main theorem. 
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THEOREM 38. 

1. Thefive theories IDf, BON(^) + (N-lN), BON(/w)+(0-lN), BON(//)+(F+-lN) 
and PAQ + (E^-IN) have proof-theoretic ordinal <pa>0. 

2. All these theories are proof-theoretically equivalent to (ITj-C A) <«,<». 

This result remains true if we add the axioms of totality (Tot) and extensionality 
(Ext) to the theories BON(/z) + (N-IN), BON(//) + (0-lN) and BON(//) + (F+-IN). 
To see this one only has to follow the pattern of [19]. 

§5. Related systems of strength <pa>0. We conclude this article by making some 
comments on related theories of strength cpwO. Of course we do not want to 
present a complete list of such systems, so that we confine ourselves to some typical 
candidates. 

In Schutte [22] it is shown that the theory (Aj-CR), i.e., (n?-CA) plus A| com­
prehension rule is of ordinal strength </xo0. A system of explicit mathematics 
corresponding to (Aj-CR) is the theory EMo plus join rule (cf. [2]). Furthermore, it 
is shown in Cantini [4] that (£|-DC) \ has proof-theoretic ordinal ipcoO. 

An additional subsystem of second order arithmetic of this strength is the the­
ory (£}-AC) \ plus induction on the natural numbers for Sj formulas. In order to 
establish the lower bound one just interprets (ITi-CA)<ra<» or IDf by standard meth­
ods. The upper bound is obtained by partial cut elimination and a straightforward 
asymmetric interpretation. 

Feferman [11] introduces the general notion of reflective closure of a theory. In 
particular, he considers an extension Ref (PA) of Peano arithmetic which makes 
crucial use of two unary predicates T(x) and F(x) of partial and self-reflecting 
truth and falsity. The proof-theoretic ordinal of Ref (PA) is <peoO. However, if 
induction on the natural numbers is restricted in Ref (PA) to formulas positive in 
T and F, we end up with a system Ref#(PA) of strength cpcoO. Formal theories 
of truth are also considered in Cantini [5], and he presents, among other systems, 
a theory KF which is similar to Ref#(PA). All these theories contain ID* and are 
contained in PA^ + (S"-IN). 

Finally, it should be mentioned that there are also interesting term rewriting 
systems whose termination ordering has order type ipcoO. We refer to Dershowitz 
and Jounannaud [6] for further reading. 
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