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ABSTRACT

Motivation: An important tool in Systems Biology is the stoichiometric

modeling of metabolic networks, where the stationary states of the

network are described by a high-dimensional polyhedral cone, the

so-called flux cone. Exhaustive descriptions of the metabolism can

be obtained by computing the elementary vectors of this cone but,

owing toa combinatorial explosionof thenumberof elementaryvectors,

this approach becomes computationally intractable for genome scale

networks.

Result:Hence, we propose to instead focus on the conversion cone, a

projection of the flux cone, which describes the interaction of the meta-

bolism with its external chemical environment. We present a direct

method for calculating the elementary vectors of this cone and, by

studying the metabolism of Saccharomyces cerevisiae, we demon-

strate that suchananalysis is computationally feasibleeven for genome

scale networks.

Contact: robert.urbanczik@pki.unibe.ch

1 INTRODUCTION

Thanks to the abundance of genome data, it has become possible to

reconstruct chemical reaction networks that comprehensively model

the metabolism of microorganisms such as Escherichia coli and
Saccharomyces cerevisiae (Reed et al., 2003; Duarte et al., 2004).
In the stoichiometric network analysis of such models, the possible

flows through the network are constrained by the requirement that

in the long term there be no net accumulation or depletion of any

chemical compound that cannot cross the cell boundary. Since

typically many of the reactions are irreversible, the space of possible

flows through the network is further constrained, and in mathem-

atical terms corresponds to a high-dimensional polyhedral cone,

which is often called the flux cone.

In Flux Balance Analysis (Ibarra et al., 2002) predictions about
the response of the microorganism to changing environmental con-

ditions or even to the deletion of certain genes are obtained by using

linear programming to study this cone. But not all relevant questions

readily fit into the framework of linear or even convex program-

ming. A case in point would be the enumeration of all minimal

media able to sustain the microorganism. Hence a second approach

to studying chemical reaction networks has been to obtain an

exhaustive description of the flux cone by calculating its elementary

vectors (Stelling et al., 2002; Schuster et al., 2002a), also called

elementary flux modes. Based on a complete set of these, many

conclusions about the metabolism can easily be drawn since each

elementary vector represents a unique, stoichiometrically viable and

non-redundant pathway through the entire network. However, the

price to pay for this exhaustive description by elementary fluxes is

the combinatorial explosion of their number (Klamt and Stelling,

2002) and the approach has therefore been limited to networks

that are an order of magnitude smaller than, for example, the full

genome-scale network of S.cerevisiae.
To achieve genome-scale, we shall adopt a functional perspective

and focus on describing the effect of the microorganism on its

external chemical environment, for instance, the consumption of

energy sources such as glucose and the production of waste such as

CO2. In disregarding the internal mechanism, our concept of con-

versions between external compounds, which can be effected by the

metabolism, is similar to the overall reactions studied by Happel and

Sellers (1989). But, crucially, we do not assume all reactions to be

reversible. Hence the set of possible conversions in general is not

a vector space but a polyhedral cone. While this conversion cone is

a projection of the flux cone, we shall show how the elementary

vectors of the conversion cone can be found, without first having to

compute the flux cone. Using this algorithm, elementary conversion

analysis becomes computationally tractable for networks far larger

than the ones considered in the elementary flux analysis. This is

demonstrated by studying a conversion cone associated with the

above mentioned metabolic network of S.cerevisiae.

2 BASIC CONCEPTS

In stoichiometric analysis (Clarke, 1980; Heinrich and Schuster,

1996; Price et al., 2004; Stucki, 2004) a metabolic network is

modeled by an m by n stoichiometry matrix S, which relates the

flows n through the n reactions to changes _cc in the concentrations

c of the m metabolites by _cc ¼ Sn. Typically many of the reactions

will be irreversible and this means that the flow nj through such a

reaction cannot be negative. Further, one can often assume that the

concentration levels of some (external) metabolites, such as CO2,

are maintained by the environment or large enough that the changes

caused by the reaction system become negligible. For many meta-

bolites, however, this will not be the case and hence in a stationary

state of the network _cci¼ 0 most hold for such an internal metabolite.

Thus the possible steady states of the metabolic model are required

to satisfy

I: _cc ¼ Sn‚
II: nj � 0 if j 2 Irrev‚
III: _ccj ¼ 0 if i 2 Int‚

ð1Þ

where Irrev denotes the subset of irreversible reactions and Int
the subset of internal metabolites. Sometimes one further wants to�To whom correspondence should be addressed.
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subclassify some of the external metabolites into inputs ( _cci � 0) and

outputs ( _cci � 0). While such a distinction can easily be incorporated

into the formal framework given below, for brevity, we shall not

explicitly consider this here.

The above notation is a bit unusual since we do not incorporate

exchange fluxes into the stoichiometry matrix S. Often the system is

augmented by pseudo reactions (Ci $ 0 for i =2 Int) for the external
metabolites, and the stoichiometry matrix of the augmented system

is denoted by N. Then a steady state flux vector J of the augmented

systemmust satisfy N J¼ 0 and the irreversibility conditions. But, if

one orders the columns in N appropriately, any pair ( _cc, n) satisfying
Equation(1)correspondsto thesteady-statefluxvectorJ ¼ _ccjExt ‚n

� �
,

where _cc|Ext denotes the restriction of _cc to the external metabolites.

Since condition III means that _cc|Int¼ 0, this correspondence is easily

seen to be a bijection, and the two notations are entirely equivalent.

The set of all pairs ( _cc, n) satisfying the three conditions in

Equation (1) is a polyhedral cone, and we shall call it the flux

cone F . Our notation highlights that the two components of the

pair ( _cc, n) provide quite different information on the stationary state

of the network. Whereas n tells us how the network is operating in

terms of the flows through its reactions, _cc describes what effect the
networks operation has on the environment, in terms of the con-

versions taking place between the external metabolites. In order to

separate the ‘what’ from the ‘how’, we now introduce the conver-

sion cone C as the set of all vectors _cc, which can be part of a

stationary flux ( _cc, n). Formally

C ¼ f _cc j There is a n such that _cc‚nð Þ 2 Fg: ð2Þ

The definition of the conversion cone in Equation (2) is rather

oblique and our main goal will be to find a more explicit description

of this cone in terms of elementary conversions. We call a non-zero

vector e an elementary vector of C or simply an elementary con-

version if e lies, for some s2 {�1,1}m, on an edge of the pointed

cone C \ Os, where Os is the orthant:

Os ¼ fx 2 R
m j sixi � 0 for i ¼ 1‚ . . . ‚mg: ð3Þ

The concept is illustrated in Figure 1. We call a set of elementary

conversions complete if for any orthant Os each edge of the inter-

section cone C \ Os is represented by exactly one vector in this set.

The importance of elementary conversions stems from the fol-

lowing observation. Any vector _cc of the conversion cone will lie in

at least one orthant Os and can hence be decomposed into vectors

e(l) lying on the edges of C \ Os as

_cc ¼ e 1ð Þ þ e 2ð Þ þ � � � þ e kð Þ: ð4Þ

Since the e(l) are edge vectors of C \ Os, in the matrix

(e(1), e(2), . . . , e(k)) each row is either semi-positive or semi-

negative and no cancellation can occur during the addition in

Equation (4). Of course, by definition, the e(l) are elementary. So

we have established that any vector in C can be decomposed into

elementary conversions without cancellation and this implies that

many properties of the conversion cone can be found by simply

inspecting the elementary vectors. For instance, a statement such as

‘consumption of glucose must be accompanied by the production of

ethanol and CO2’ will hold for any stationary state if and only if it is

true for all elementary conversions.

In passing we note that one can define elementary vectors of

the flux cone F analogously by requiring that they lie on an

edge of F \ O, where O is an orthant. While at first glance this

definition differs from the one used in Schuster et al. (2002a) and
Rockafellar (1970), where elementary vectors are defined by having

a maximal set of zeroes, in Supplementary Material A.4 (Lemma 2)

we show that the two definitions are in fact completely equivalent

for flux cones. Hence, any elementary conversion is the projection

of at least one elementary flux.

3 CALCULATING ELEMENTARY
CONVERSIONS

We have recently presented the Nullspace algorithm (Urbanczik and

Wagner, 2005), a double description method (Fukuda and Prodon,

1995) tailored to the calculation of elementary fluxes. The proced-

ure first obtains a representation, in terms of linear inequalities, of a

so-called coordinate cone isomorphic to the flux cone F . Then,

based on these inequalities, a generating set of the coordinate

cone is calculated, i.e. a set such that the entire coordinate cone

can be obtained by taking all linear combinations of the vectors in

this set, involving only non-negative scalar factors. In fact, the

generating set found is minimal, so no proper subset generates

the cone. Then, based on these generating vectors, the algorithm

finds a complete set of elementary fluxes. Here, we shall use similar

ideas to obtain all elementary conversions, without first having to

calculate the elementary fluxes.

Our starting point is the cone C0 of all vectors satisfying the first

two conditions in Equation (1),

CO ¼ fSnjnj � 0 if j 2 Irrevg ð5Þ

Obtaining the conversion cone C, i.e. the vectors in C0 that also

satisfy the condition III in Equation (1), would be quite easy if we

had a different representation of C0. In particular, assume that we

have an inequalities representation of C0, that is, a set of vectors

Fig. 1. Elementary vectors of the cone C (grey). The vectors e(2) and e(3) are
elementary because they lie on the edges of the intersection of C with the

semi-positive orthant O 1‚ 1ð Þ. Intersecting C with O �1‚ 1ð Þ shows that e
(1) and

e(2) are elementary. Since the intersection of C with O �1‚�1ð Þ, as well as

with O 1‚�1ð Þ, is empty, the only elementary vectors of C are, upto positive

multiples, e(1), e(2) and e(3).
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H � R
m such that

C0 ¼ f _cc 2 R
m j h · _cc � 0 for all h 2 Hg: ð6Þ

Then, by writing the equality constraints in condition III of Equation

(1) as inequalities, we immediately also have the following inequal-

ities representation of the conversion cone,

C ¼ f _cc 2 R
m j h · _cc � 0 for all h 2 H‚

_cci � 0 and � _cci � 0 for i 2 Intg:
ð7Þ

From this inequalities representation of C first a minimal generating

set and then all elementary conversions can be calculated using

minor modifications of the Nullspace algorithm described in

Supplementary Material A.

We still need to specify how to find the set H representing C0

by inequalities. For this, we first note that using the definition in

Equation (5) a, possibly redundant, generating set of C0 is easily

obtained from the stoichiometry matrix. If there are no reversible

reactions, the columns S(j) of S are already a generating set and for

reversible reactions we just need to take the reverse direction into

account as well. So, a generating set of C0 is

G ¼ fS jð Þgn
j¼1 [ f�S jð Þgj=2Irrev:

Now, since they generate C0, the vectors in G are an inequalities

representation of a cone C�0, which is called the dual of C0,

C�0 ¼ fx 2 R
m j g · x � 0 for all g 2 Gg. Clearly, given G, we can

use the Nullspace algorithm to obtain a minimal generating set of

C�
0 and, surprisingly, this set is just the set H we are looking for.

The reason is that, by standard results in Convex Analysis

(Rockafellar, 1970; Fukuda, 2004, http://www.ifor.math.ethz.ch/

~fukuda/polyfaq/), the vectors of a generating set of the dual

cone C�
0 are an inequalities representation of the primal cone C0.

In fact any algorithm computing a minimal generating set from a

linear inequalities representation also solves the converse problem

of obtaining a minimal linear inequalities representation, given a

generating set.

In summary, the basic procedure is to obtain H from G by running

Nullspace (as detailed in Supplementary Material A), then to aug-

ment the set H by the vectors reflecting the additional constraints for

the conversion cone (Equation 7) and, finally, to run Nullspace

again on the augmented set to get the complete set of elementary

conversions. This is illustrated in Figure 2 using a very simple

example.

4 APPLICATIONS

To compare the conversion cone with the flux cone we first study the

stylized model of the central carbon metabolism of E.coli presented

in Stelling et al. (2002). A version of this metabolic model

consisting of 99 reactions, with 11 external compounds (5 input,

5 output and 1 input/output), was analyzed in Klamt and Stelling

(2002) and it was found that an excess of 5 · 105 elementary fluxes

are needed for a complete set. In contrast to this, we find that a

complete set of elementary conversions has only 344 elements,

highlighting the drastic reduction in descriptive complexity

achieved by focusing on the conversion cone.

In fact an even simpler description is possible if one considers all

external compounds as being inputs as well as outputs and only

calculates a minimal generating set of the conversion cone. One

finds that this set consists of only 27 vectors, summarizing the basic

metabolic capabilities of the model.

We next consider the genome-scale metabolic network of

S.cerevisiae published in Duarte et al. (2004). This fully compart-

mentalized model has 1149 reactions as well as an additional reac-

tion reflecting the metabolic needs of the organism for sustaining

growth. To track the flow through this growth reaction we added the

formal external metabolite Biomass to its output.

A coupling to the environment was used, where 21 of the meta-

bolites marked as extracellular in the model are external. Interest-

ingly, the conversion cone obtained for this coupling is only 10

dimensional, although it is embedded in the 21 + 1 dimensional

space given by the external metabolites. Further, the complete set

for this conversion cone consists of 40 969 extremal conversions,

98% of which sustain growth. However, there are only 1313

extremal conversions in this set that do not consume any amino-

acid but nevertheless show growth. These are analyzed in more

detail in Figure 3.

Having obtained an overview of the metabolic capabilities of an

organism, it will often be of interest to determine how a specific func-

tion is achieved. Luckily, it is conceptually simple to determine just

the elementary fluxes that give rise to a single elementary conver-

sion. To analyze an elementary conversion e in this manner, one will

define the matrix S0 obtained by augmenting the stoichiometry

matrix S, with �e as an irreversible column vector, as S0 =

(S, �e). One can then compute the elementary fluxes of S0, treating

all compounds as internal. Among the elementary vectors
� n

l

�
of

the restricted flux cone thus obtained, a few may be futile cycles

(l ¼ 0) but all others give rise to the conversion e, since Sn ¼ le.

To illustrate this, we analyzed the following conversion:

90 626 ac þ 23 710 211 acald þ 5530 csn þ 35 ergst þ
23 052 269 fum þ 9885 gam6p þ 4 033 772 glc-Dþ
476 hdcea þ 23 401 575 nh4 þ 672 ocdcea þ 252 ocdcyaþ
3865 so4 þ 75 zymst

! 22 812 604 asp-L þ 50 000 Biomass þ 15 522 497 co2þ
27 266 477 etoh þ 323 346 ser-L þ 12 475 thr-L:

This was chosen because it maximizes ethanol production relative

to biomass among the 1313 elementary conversions described

Fig. 2. Example calculation of the conversions for the two reaction system

Aext ! B ! Cext. Since the two reactions are irreversible, the columns of the

above stoichiometry matrix S already are the generating set G of C0 from

which we obtain H, the inequalities representation of C0. Note that for the first

two columns of H we even have h(1) · S(j) = h(2) · S(j) ¼ 0. Next, H+ is the

augmented system of inequalities, Equation (7), reflecting that the metabolite

B is internal. Finally, the inequalities representation H+ of C yields that the

conversion cone is generated by the single conversion _cc, i.e. by Aext ! Cext.

A more elegant way of enforcing the equality _BB ¼ 0 is described in Supple-

mentary Material A.3.
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above, which sustain growth without consuming any amino-acid.

Using the Nullspace procedure, we first find that already a minimal

generating set of the restricted flux cone for this one conversion has

1039 elements. But the true scale of redundancy of the metabolic

network only becomes apparent when the procedure goes on to

enumerate the complete set for the restricted cone. This yields

3.71 · 107 elementary flux vectors, with only 28 corresponding

to futile cycles and the remaining ones all providing different

ways of implementing the single conversion displayed above.

5 DISCUSSION

We have shown that the analysis of elementary conversion is pos-

sible for genome-scale metabolic systems in situations where it

seems highly probable that the enumeration of all elementary fluxes

will remain computationally intractable for the foreseeable future.

Although it is difficult to make rigorous statements about the com-

plexity of our procedure, in the examples we have considered, the

computational requirements are quite benign. For instance, the cal-

culation of the 40 969 elementary conversion for S.cerevisiae takes
<3 h of computing time on a standard workstation despite of the fact

that we do not rely on machine precision but use infinite precision

arithmetic in a mixed Mathematica/Matlab/C implementation of the

Nullspace procedure. In part, this relatively fast computation time

results from employing transformations (detailed in Supplementary

Material B) that simplify the metabolic network but leave the

conversion cone invariant.

While the conversion cone is an interesting object in its own right,

enabling the determination of minimal media or the study of carbon

fates, it is also important that conversion analysis can be linked up

with flux analysis. We have already mentioned the possibility of

directly determining the elementary fluxes that give rise to a given

elementary conversion. Incidentally, this technique can also be used

to study the degeneracy of the optimization problems considered in

the Flux Balance Analysis, and this seems computationally cheaper

than the approach considered in Lee et al. (2000) and Reed and

Palsson (2004), where the enumeration of the alternative optimal

flux vectors is carried out by solving a sequence of NP-complete

problems (mixed-integer linear programming).

A second way of linking conversion analysis with flux analysis is

to use our technique to study more general projections of the flux

cone. If one is interested only in the flows through a few reactions,

one can modify the network by adding a new formal external meta-

bolite as a tag for each reaction one wishes to track. For instance, to

track the reaction A! B one could replace it by A! B + AtoBext.

Then the flows through the reactions, which have been tagged in this

way, can be read of from the stoichiometric factors of the formal

metabolites appearing in the elementary conversions of the modified

system. In a rudimentary form, we have already used this in our

analysis of S.cerevisiae when employing the formal compound

Biomass to track the growth reaction.

A third option for linking the two approaches, which we have yet

to explore, arises in the analysis of subnetworks. Elementary

flux analysis has variously been applied to larger networks by

decomposing these into subnetworks and treating any metabolite

linking two or more of the subnetworks as external (Schilling and

Palsson, 2000; Schuster et al., 2002b; Dandekar et al., 2003). While

regarding such linkage metabolites as external, formally makes it

possible to consider each subnetwork in isolation, it has remained

difficult to relate the elementary fluxes of the subnetworks to those

of the entire network. An alternative is to focus on a single sub-

network and also treat the linkage metabolites as external but to use

this to calculate the conversion cone of all of the reactions not

belonging to the subnetwork. The minimal generating set of this

etoh
co2

Biomass
thr–L
ala–L
asp–L
ser–L
gly
ac

acald
xylt
glc–D
zymst
so4

ocdcya
ocdcea
nh4
hdcea
gam6p
fum
ergst
csn

Input unused Output

Fig. 3. Input/output sets of the 1313 elementary conversions that sustain growth but do not consume any of the amino acids: ala-L, asp-L, gly, ser-L and thr-L. The

input/output sets are found by ignoring the stoichiometric factors in the conversion and only noting if a metabolite is consumed or produced. Each column in the

figure shows one of the 129 distinct input/output sets thus obtained. Tenmetabolites are essential for growth but have to be supplemented by either glc-D or both

acald and xylt to form aminimal set of inputs enabling growth. Further, co2 and etoh are necessary by-products of growth.However, if one considers the full set of

conversion, where amino acids are allowed as inputs (data not shown), one finds 14 different minimal sets of inputs sustaining growth, and etoh is no longer a

necessary by-product of growth. The full metabolite names are as follows: ac, acetate; acald, acetaldehyde; ala-L, L-alanine; asp-L, L-aspartate; co2, CO2; csn,

cytosine; ergst, ergosterol; etoh, ethanol; fum, fumarate; gam6p, D-glucosamine 6-phosphate; glc-D, D-glucose; gly, glycine; hdcea, hexadecenoate (n-C16:1);
nh4, ammonium; ocdcea, octadecenoate (n-C18:1); ocdcya, octadecynoate (n-C18:2); ser-L, L-serine, so4, sulfate; thr-L, L-threonine; xylt, xylitol and zymst,

zymosterol.
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cone enumerates the potential contributions of the rest of the net-

work to the operation of the subnetwork. One can now augment the

subnetwork by the conversions in this generating set. Then any

elementary flux of the augmented subnetwork represent at least

one elementary flux of the entire system. In this manner one arrives

at valid descriptions of the operation of the entire network, which

are detailed with respect to the reactions in the subnetwork but only

sketch the operations of the other reactions.

Large metabolic networks show a wealth of possible modes of

operation. While this is probably essential for the survival of the

microorganism in changing environmental conditions, it makes it

practically impossible to enumerate all the possibilities. Hence, in

describing the metabolism it is useful to focus on specific aspects of

its operation and abstract away details that are not of interest in a

given context. In stoichiometric network analysis a formal equival-

ent of this is to focus on suitable projections of the flux cone. The

results presented above show that in this manner it does indeed

become possible to tackle genome-scale networks.
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