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S

This paper provides high-order asymptotic expansions for the M-ratio and the signed-
root M-ratio robust test statistics, which allow one to compute accurate approximations
to significance or critical values using the Edgeworth approximation, the Bartlett correc-
tion, the variance correction or the saddlepoint approximation. Specific results are
obtained for the linear regression model with the Huber M-estimator. A Monte Carlo
study illustrates the numerical accuracy of these approximations, with respect to the usual
first-order approximations.
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1. I

The classical testing problem assumes that the data are a realisation of an underlying
parametric model. Inference is usually based on the first-order asymptotic approximation,
given by a central limit theorem, of the distribution of a test statistic. This approach has
two major drawbacks: one concerns the robustness of the test and the other the accuracy
of the asymptotic approximation. To limit the influence of the model hypotheses, robust
tests consider the assumed model of an idealised approximation only, so that the results
remain stable under small deviations from the model; see Markatou & Ronchetti (1997)
for a survey. Although there has been more intensive research in robust estimation than
in robust testing, the need for robust test procedures is obvious, since it is not advisable
to estimate robustly the parameters of a model and then use classical tests about these
parameters. The significance probabilities, or p-values, are usually obtained by first-order
approximations with a typical error of O(n−D ), as n�2. In small sample sizes, these
approximations often become inaccurate, especially for the typically small tail probabilities
required by testing problems, and higher-order asymptotic approximations are more
reliable. In this paper we propose some high-order approximations for robust tests and
show, by simulation studies, the numerical accuracy of the new approximations.

We focus on the likelihood ratio test. Suppose that the data Z1 , . . . , Zn are independent
and identically distributed random variables whose distribution belongs to a para-
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metric model {F
h
, hµH}, where h= (h1, . . . , hp ), and suppose there is a null hypothesis

H0 : h=h0 , where hq+1
0
= . . .=hp

0
=0 and h1

0
, . . . , hq

0
are unspecified nuisance parameters.

The likelihood ratio test statistic for this situation is given by

V
qn
=2 q ∑n

l=1
log f (Z

l
, T
n
)− ∑
n

l=1
log f (Z

l
, T
qn

)r , (1)

where T
n

is the maximum likelihood estimator of h, T
qn

is the maximum likelihood esti-
mator constrained by hq+1= . . .=hp=0, and f (x, h )=dF

h
(x)/dx. For the case without

nuisance parameters, q=0 and T
qn
=h0 . If we denote by x2

p−q
a chi-squared random

variable with ( p−q) degrees of freedom, the limiting distribution under H0 of V
qn

is given
by pr (V

qn
∏v)=pr (x2

p−q
∏v)+O(n−1 ). The latter error term can be diminished by applying

the Bartlett correction (Bartlett, 1937; Lawley, 1956) outlined as follows. The Bartlett
factor b obtained by the expansion E(V

qn
)= ( p−q)(1+b/n)+O(n−2 ) determines the

necessary amount of shifting of the chi-squared distribution to give

pr (V
qn
∏v)=pr Ax2p−q∏ v

1+bn−1B+O(n−2 ). (2)

Note that, with nuisance parameters, b=b(h0 ) can be replaced by bA=b(TB
n
), where TB

n
is

an estimator of h0 which satisfies TB
n
−h0=O

p
(n−D ). This does not increase the order of

error in (2). A natural choice satisfying this condition is TB
n
=T
qn

. For the case where
q=p−1, that is hp

0
=0 and h1

0
, . . . , hp−1

0
unspecified, the definition of the signed-root

likelihood ratio test as

R
n
=sgn{T p

n
−hp
0
}V 1/2
p−1,n

(3)

is motivated by its standard normal limiting distribution. The error of the limiting normal
approximation can be brought from O(n−1/2 ) down to O(n−3/2 ) by the following bias and
variance corrections (DiCiccio, 1984). The bias correction factor a(TB

n
) is obtained by the

expansion E(R
n
)=n−1/2a(TB

n
)+O

p
(n−3/2 ) and the variance correction factor c(TB

n
) is

obtained by the expansion var{R
n
−n−1/2a(TB

n
)}=1+n−1c(TB

n
)+O

p
(n−2 ). It then follows

that RB
n
={R

n
−n−Da(TB

n
)}{1+n−1c(TB

n
)}−D is distributed as a standard normal random

variable, up to O(n−3/2 ). Alternative modifications of (3) have been widely explored
(Barndorff-Nielsen, 1991; DiCiccio & Martin, 1993).

The likelihood ratio test statistic (1) can be modified by replacing the logarithmic
density by a convex function defining a robust M-estimator. To be precise, by considering
now T

n
as the solution of

max
h

∑
n

l=1
r(Z
l
, h ), (4)

where −r :Rk×H�R is a convex function in h, we can define the M-ratio test by

W
qn
=2 q ∑n

l=1
r(Z
l
, T
n
)− ∑
n

l=1
r(Z
l
, T
qn

)r , (5)

where T
qn

is the H0-restricted M-estimator. This leads to tests that are robust in validity
and efficiency: the level and the power remain stable under small and arbitrary departures
from the null and alternative hypotheses. Heritier & Ronchetti (1994) derived the asymp-
totic distribution of (5), which is, under H0 , that of a linear combination of ( p−1) x2

1
random variables, and they discussed some robustness properties. In the next section, we
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propose high-order approximations to this distribution, which enable us to compute
p-values with smaller errors.

Section 2 provides asymptotic expansions for the M-ratio test in the general parametric
model and for the regression model, both without nuisance parameters. For the case with
nuisance parameters, expansions for the M-ratio and the signed-root M-ratio statistics
are given for the linear regression model. All these expansions allow us to approximate
the necessary cumulants for the Bartlett and variance corrections, and for the Edgeworth,
Cornish–Fisher and saddlepoint approximations. Section 3 gives numerical simulations
and comparisons that show the effectiveness of the proposed high-order approximations.
Proofs and regularity conditions are reported in the Appendices.

2. D   

The next propositions provide high-order expansions for the M-ratio and its signed-
root statistics. These expansions are not direct generalisations of their classical version
(McCullagh, 1987) because Bartlett identities, such as

E{(∂/∂t) log f (Z, t)}2=E{(∂2/∂t2 ) log f (Z, t)},

do not hold generally with M-estimators.
Indeed, we show that Bartlett identities are not necessary: the particular form of the

influence function of M-estimators (7) is sufficient to obtain all simplifications which will
lead to the computational expansions (9) in Proposition 1 and (16) in Proposition 2. The
results are expressed with tensor notation (McCullagh, 1987). The summation convention
is used that, whenever identical indices appear in both superscript and subscript of an
expression, term-wise summation over the indexed elements is meant. For matrices, trans-
ferring both indices from lower to upper levels, or conversely, indicates the elements of
the inverse matrix. Also, unless explicitly mentioned, indices r, s, t, u, v and w range from
1 to p.

We first recall an auxiliary expansion of the rth component Dr of D=nD(T
n
−h0 ). We

denote the derivatives of r(Z1 , h ), defined in (4), by

Y
r
(Z
1
, h )=

∂
∂hr
r(Z
1
, h ), Y

rs
(Z
1
, h )=

∂
∂hr
Y
s
(Z
1
, h ), Y

rst
(Z
1
, h )=

∂
∂hr
Y
st
(Z
1
, h ),

(6)

the corresponding cumulants by k
rs
=E{Y

rs
(Z1 , h0 )}, krst=E{Y

rst
(Z1 , h0 )}, the matrix

inverse of (k
rs
) by (krs ), and we define the random variables

Y
r
=n−D ∑

n

l=1
Y
r
(Z
l
, h
0
), Y

rs
=n−D ∑

n

l=1
Y
rs
(Z
l
, h
0
)−nDk

rs
,

Y
rst
=n−D ∑

n

l=1
Y
rst

(Z
l
, h
0
)−nDk

rst
.

The regularity conditions required for the following results are given in Appendix 1, and
some proofs appear in Appendix 2.

L 1. W hen Conditions (A) in Appendix 1 hold for h=h0µH, the following expan-
sions are valid as n�2:

(i ) Dr=Br+o
p
(1), where

Br= (−krs )Y
s
; (7)
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(ii ) if Condition (C1) also holds, then Dr=Br+n−1/2Cr+O
p
(n−1 ), where

Cr= (−krt )BuY
tu
+

1

2
(−kru )BvBwk

uvw

= (−krt ) (−ksu )Y
s
Y
tu
+

1

2
(−kri ) (−ksj ) (−ktk )k

ijk
Y
s
Y
t
. (8)

Note that Br is currently called the influence function. This result was derived by Fan &
Field (1995) by expanding the p equations defining the M-estimator and by applying the
implicit function theorem, and by Gatto & Ronchetti (1996) as a particular case of the
von Mises functional expansion. Lemma 1 is necessary for establishing the expansions
for the M-ratio statistic and its expectation. For the general parametric model without
nuisance parameters, these expansions are given by Proposition 1, which generalises to
M-estimators the results in formulae (26) and (27) of McCullagh & Cox (1986). We define
the cumulants

k
r,s
=E{Y

r
(Z
1
, h
0
)Y
s
(Z
1
, h
0
)}, k

r,s,t
=E{Y

r
(Z
1
, h
0
)Y
s
(Z
1
, h
0
)Y
t
(Z
1
, h
0
)},

k
r,s,tu
=E{Y

r
(Z
1
, h
0
)Y
s
(Z
1
, h
0
)Y
tu
(Z
1
, h
0
)}−E{Y

r
(Z
1
, h
0
)Y
s
(Z
1
, h
0
)}E{Y

tu
(Z
1
, h
0
)},

k
t,uv
=E{Y

t
(Z
1
, h
0
)Y
uv

(Z
1
, h
0
)}, k

t,uvw
=E{Y

t
(Z
1
, h
0
)Y
uvw

(Z
1
, h
0
)},

k
tu,vw
=E{Y

tu
(Z
1
, h
0
)Y
vw

(Z
1
, h
0
)}−E{Y

tu
(Z
1
, h
0
)}E{Y

vw
(Z
1
, h
0
)}.

P 1 (General parametric model). W hen Conditions (A) hold for h=h0µH,
the following expansions are valid as n�2.

(i ) If Condition (C1) holds,

W
0n
= (−krs )Y

r
Y
s
+n−D

1

3
krstY
r
Y
s
Y
t
+n−D(−krt ) (−ksu )Y

r
Y
s
Y
tu

+n−1 q 112
krstu+

1

4
krsvktuw(−k

vw
)r YrYsYtYu+n−1krtu(−ksv )Y

r
Y
s
Y
t
Y
uv

+n−1
1

3
(−kru ) (−ksv ) (−ktw )Y

r
Y
s
Y
t
Y
uvw

+n−1(−kru ) (−ksv ) (−ktw )Y
r
Y
s
Y
tu
Y
vw
+O
p
(n−J ), (9)

where

krst= (−kri ) (−ksj ) (−ktk )k
ijk

, krstu= (−kri ) (−ksj ) (−ktk ) (−kum )k
ijkm

.

(ii ) If Condition (C2) holds,

E(W
0n

)= (−krs )k
r,s
+n−1 q13 krstkr,s,t+ (−krt ) (−ksu )k

r,s,tu

+
1

4
krstuk

r,s
k
t,u
+

1

4
krsvktuw(−k

vw
) (k
r,s
k
t,u
+2k

r,t
k
s,u

)

+krtu (−ksv ) (2k
r,s
k
t,uv
+k
r,t
k
s,uv

)+ (−kru ) (−ksv ) (−ktw )k
r,s
k
t,uvw

+ (−kru ) (−ksv ) (−ktw ) (k
r,s
k
tu,vw
+k
r,tu
k
s,vw
+k
r,vw
k
s,tu

)r
+O(n−2 ). (10)
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The proof of Proposition 1 is given in Appendix 2. As a special case, consider the
regression model given by

g
l
=g(j

l1
, . . . , j

lp
, h )+e

l
( l=1, . . . , n), (11)

where Z
l
= (g
l
, j
l1

, . . . , j
lp

) are n independent and identically distributed random vectors
in R×Rp representing the data, e

l
are independent and identically distributed errors of

(j
l1

, . . . , j
lp

), with E(e1 )=0 and var (e1 )=s2, and g satisfies Condition (B1). A Huber type
M-estimator is defined as the solution T

n
of

min
hµH

∑
n

l=1
r Agl−g(j

l1
, . . . , j

lp
, h )

s B , (12)

where r :R�R+ is a convex function satisfying Condition (B2). The M-ratio test statistic
for this model, without nuisance parameters, is given by

W
0n
=2q ∑n

l=1
r AelsB− ∑n

l=1
r AelsBr , (13)

where e
l
=g
l
−g(j

l1
, . . . , j

lp
, T
n
) are the residuals. An equivalent definition of T

n
is given

by Wn
l=1
Y (Z
l
, T
n
)=0, where the generalised score function Y has the form

Y
r
(Z
l
, h
0
)=y(e

l
)g
r
(j
l1

, . . . , j
lp

, h
0
),

with y=r∞ and g
r
=g
r
(j1 , . . . , jp , h0 )=∂g(j1 , . . . , jp , h0 )/∂hr. Note that the regression

model with fixed regressors corresponds to the particular case of the above random
regressors model, in which the empirical distribution of the regressors is used instead of
the distribution of the random regressors. In considering the fixed regressors as a special
case in our theorems, we replace a fixed distribution by another depending on n. This is
possible as long as the fixed regressors can be thought of as the result of a random draw
from a fixed distribution, so that the sequence of the empirical distributions would con-
verge to a fixed distribution. Otherwise, our results hold for random regressors only.

In what follows, we propose specific results for the linear model g(j1 , . . . , jp , h )=hrjr .
This model is of practical importance and we will see that it leads to simple expressions.
We define the moments f

r
=E(j

r
), f
rs
=E(j

r
j
s
), and so on.

C 1 (L inear regression model). W hen Conditions (A) and (B) hold for h=
h0µH, then the following expansion for the M-ratio test statistic in a linear regression model
is valid as n�2:

W
0n
=q 1

E(y∞)r frsYrYs+n−D q 1

E(y∞)r2 frtfsuYrYsYtu
+n−1

1

12 q 1

E(y∞)r4 E(−y+)frifsjftkfumf
ijkm

Y
r
Y
s
Y
t
Y
u

+n−1
1

3 q 1

E(y∞)r3 frufsvftwYrYsYtYuvw+n−1 q 1

E(y∞)r3 frufsvftwYrYsYtuYvw
+O
p
(n−3/2 ),

where

Y
r
=n−D ∑

n

l=1
y(e
l
)j
lr
, Y
rs
=nDE(y∞)f

rs
−n−D ∑

n

l=1
y∞(e
l
)j
lr
j
ls
, Y
rst
=n−D ∑

n

l=1
y◊(e
l
)j
lr
j
ls
j
lt
.
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With nuisance parameters, the expansion of the M-ratio statistic for the linear regression
model is given by Proposition 2, and by Corollary 2 for the Huber M-estimator given by
(21). We denote by e

ql
=g
l
−T r
qn
j
rl

the residual of the reduced model, where T
qn

is the
solution of (12) with hq+1= . . .=hp=0. The M-ratio statistic, also called the t-test
(Hampel et al., 1986, pp. 345–6), is hence given by

W
qn
=2 q ∑n

l=1
r AelsB− ∑n

l=1
r Aeqls Br .

Lemma 2 is useful for the expansion of W
qn

(0∏q∏p−1).

L 2. L et A be a real p×p symmetric positive definite matrix. T hen the matrix V,
defined by Vrs=frs−fabdr

a
ds
b
, is positive semidefinite of rank ( p−q), and there exists a

nonsingular p×p matrix V such that V TA−1V=I and V TVV=L, where L=
diag (0, . . . , 0, l

q+1
, . . . , l

p
) with l

q+1
= . . .=l

p
=1, and where dr

a
equals 1 if a=r, and 0

otherwise; Greek letters indices range from 1 to q.

This result was used by E. Ronchetti in his 1982 Ph.D. thesis at the Swiss Federal
Institute of Technology, Zurich, in a similar context. An explicit form of V can be obtained
by considering the Choleski decomposition A−1=L L T, where L is lower triangular, by
defining H=L−1V (L−1 )T, and by using the singular value decomposition H=CLCT along
with the fact that CTC=I, to obtain V= (L−1 )TC.

P 2 (L inear regression model). Assume that Conditions (A) and (B) hold for
h=h0µH. T hen the following expansions are valid as n�2.

(i ) If Condition (C1) holds, then

W
qn
=q 1

E(y∞)r (frs−fabdradsb )SrSs+O
p
(n−3/2 ), (14)

where

S
r
=Y
r
+n−D

1

2 q 1

E(y∞)r fstYrsYt+n−1
1

24 q 1

E(y∞)r3 E(−y+)f
rx
fxstuY

s
Y
t
Y
u

+n−1
1

6 q 1

E(y∞)r2 fsuftvYrstYuYv+n−1
3

8 q 1

E(y∞)r2 fstfuvYrsYtuYv . (15)

(ii) If Condition (C1) holds, then

W
qn
=qE(y2 )

E(y∞)r ∑p
r=q+1

U2
r
+O
p
(n−3/2 ), (16)

where U
r
is defined by

U
r
=q 1

E(y2 )rD vjsd
jr
S
s
, (17)

in which vjs denotes the ( j, s)th element of V −1, V being defined by a particular application
of L emma 2 to the matrix A= (f

rs
), and where d

jr
equals 1, if j=r, and 0 otherwise.

(iii ) If Condition (C1) holds, then the first four cumulants of U
r
are given by

v
r
=O(n−3/2 ), v

r,r
=1+n−1c

y
h
r
+O(n−2 ),

v
r,r,r
=O(n−3/2 ), v

r,r,r,r
=n−1e

y
m
r
+O(n−2 ),

(18)



1159High-order asymptotic expansions for robust tests

where c
y
, e
y
, h
r
and m

r
are given by

c
y
=q 1

E(y∞)r q 1

E(y2 )r CqE(y2 )

E(y∞)r {E(y∞y∞)+E(y◊y)}−E(y∞y2 )−
1

4 qE(y2 )

E(y∞)r2 E(y+)D ,
(19)

e
y
=q 1

E(y∞)r2 CE(y4 )+qE(y2 )

E(y∞)r2 {3E(y∞y∞)+4E(y◊y)}

−6 qE(y2 )

E(y∞)r E(y∞y2 )−qE(y2 )

E(y∞)r3 E(y+)D , (20)

h
r
=vxivyjd

xr
d
yr
fzwf
ijzw

, m
r
=vxivyjvzkvwmd

xr
d
yr
d
zr
d
wr
f
ijkm

.

The proof of Proposition 2 is given in Appendix 2. For the Huber M-estimator defined
by

r
c
(v)=q12v2, for |v |∏c,

c |v |−1
2
c2 , otherwise,

(21)

with c>0, Proposition 2 applies with the specific values given by Corollary 2.

C 2 (Huber M-estimator). For the Huber M-estimator, the terms (19) and (20)
in Proposition 2 are given by

c
y
c

=q 1

E(y∞
c
)r q 1

E(y2
c
)r CqE(y2

c
)

E(y∞
c
)r E(y∞

c
)−E(y∞

c
y2
c
)D ,

e
y
c

=q 1

E(y2
c
)r2 CE(y4

c
)+3 qE(y2

c
)

E(y∞
c
)r2 E(y∞

c
)−6 qE(y2

c
)

E(y∞
c
)r E(y∞

c
y2
c
)D ,

respectively, where y
c
(v)=max{−c, min (v, c)}.

The proof of Corollary 2 is given in Appendix 2. The previous expansions can be used
in the following formulae for approximating significance or critical values.

For a scalar parameter of interest, that is q=p−1, under the conditions of
Proposition 2,

R
n
=sgn (T p

n
)W D
p−1,n

=JD
y
U
p
+O
p
(n−3/2 ),

where J
y
=E(y2 )/E(y∞).

If we write w=W∞, the second-order Edgeworth expansion of pr(R
n
∏r) is given by

pr (U
p
∏x)=W(x)−n−1w(x) q12 c

y
h
p
x+

1

24
e
y
m
p
(x3−3x)r+O(n−3/2 ),

at x=rJ−1/2
y

. The Cornish–Fisher expansion provides an approximation to the bth quan-
tile of R

n
; it is given by

r(b)=JD
y
z
b
+n−1JD

y q12 c
y
h
p
z
b
+

1

24
e
y
m
p
(z3
b
−3z

b
)r+O(n−3/2 ),

where z
b

is the bth quantile of the standard normal. Note that the n−1/2 terms do not
appear because of symmetry assumptions in y; see Condition (B2). In this situation, the
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validation of the Edgeworth expansion, for a statistic for which we can obtain expansions
to its cumulants with sufficiently small errors, is established by Bhattacharya & Ghosh
(1978).

Alternatively, the saddlepoint approximation has a bounded relative error and leads
therefore to very accurate approximations of small tail probabilities; see Field & Tingley
(1997) for a survey. Define

H
n
(a)=

1

2
(n+c

y
h
p
)a2+

1

24
n2e
y
m
p
a4. (22)

The saddlepoint approximation of pr(R
n
∏r) is derived by applying the method of Easton

& Ronchetti (1986), and it is given by

pr (U
p
∏x)=qW(r

x
)−w(r

x
) A1s
x
−

1

r
x
Br {1+O(n−1 )},

at x=rJ−1/2
y

, where

s
x
=a
x
{nH◊
n
(a
x
)}D, r

x
=sgn (a

x
)[2n{a

x
x−H

n
(a
x
)}]D, (23)

and a
x

is the saddlepoint defined as the solution of the equation

H∞
n
(a)=x. (24)

Here H
n

is constructed from the fourth-order Taylor expansion of the logarithm of
the characteristic function of U

p
, and is based on the first four approximated cumulants

given by (18). Hence this saddlepoint approximation does not require the existence
of the cumulant generating function, as does the standard saddlepoint approximation
of the sample mean. The following one-step algorithm proposed by Wang (1995)
provides approximated quantiles with the same asymptotic error as we would obtain by
inverting the saddlepoint probabilities. The steps are the following. We define
r*
x
=r
x
+ log (s

x
/r
x
)/r
x
. We find the normal approximation to the bth quantile

x(0)=z
b
(1+n−1c

y
h
p
)D, and determine the starting value

x(1)=x(0)+
z2
b
− (r*
x(0)

)2

2na
x(0)

and the increment

D(x(1) )=
z2
b
− (r*
x(1)

)2

2na
x(1)

.

The one-step approximation to the bth quantile of R
n
is J1/2
y

x(2), where x(2)=x(1)+D(x(1) ).
It can be shown that, if J1/2

y
x(b) denotes the exact bth quantile, then x(2)=

x(b){1+O(n−3/2 )}. It was pointed out by Wang (1992) that (24) could have multiple
solutions and to avoid this problem he proposed the modification of H

n
(a) of the form

HB
n
(a; a)=

1

2
(n+c

y
h
p
)a2+

1

24
n2e
y
m
p
a4c
n
(a; a),

where

c
n
(a; a)=exp{−(n+c

y
h
p
)a2a2/2}, a=max[1

2
, inf{b |HB ◊

n
(a; b)>0}].

Replacing H
n
(a) by HB

n
(a; a) in (23) and (24) guarantees a unique solution of (24) and

does not change the order of the approximations.
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Another type of approximation is obtained by the variance-corrected statistic, now
given by RB

n
=R
n
[J
y
{1+ (n−1c

y
h
p
)}]−D, which leads to the approximation

pr (R
n
∏r)jW(r[J

y
{1+ (n−1c

y
h
p
)}]−D ).

It must however be stressed that the asymptotic error here is O(n−1 ) and not O(n−3/2 ), as
in the classical case. The reason for this is that Lawley (1956) made use of the Bartlett
identities to prove that the third and fourth cumulants of R

n
are O(n−3/2 ) and O(n−2 ),

respectively, while without these identities they are O(n−1/2 ) and O(n−1 ).
For several parameters of interest, we can define a Bartlett correction for the M-ratio

statistic. By Proposition 2 we can define the Bartlett factor b from the expansion

E A ∑p
r=q+1

U2
r B= ( p−q) A1+ b

nB+O(n−2 ),

which leads to

b=
1

p−q
c
y
∑
p

r=q+1
h
r
.

Thus, the Bartlett-corrected approximation of the distribution of the M-ratio is

pr (W
qn
∏w)=pr qx2p−q∏ w

J
y
(1+b/n)r+O(n−1 ).

This result is obtained by following the same lines that give the classical result (2). It
should however be noted that, for the same reasons mentioned in connection with the
variance-corrected statistic, the error of the above expression would be O(n−2 ) in the
classical situation.

3. M C 

This section presents a numerical study of the Bartlett correction for the M-ratio statis-
tic, and of the Edgeworth approximation and the variance correction with the signed-
root M-ratio statistic. We consider the linear regression model and the Huber
M-estimator. The errors e

l
of the model are generated from the standard normal, the

Student t3 , the contaminated normal 0·9N(0, 1)+0·1N(0, 102 ) and the Cauchy distri-
butions, for which the ‘tail weights’ are 1·00, 1·72, 4·93 and 9·22, respectively; we measure
the tail weight of a distribution function F by

 (F )=
{F−1(0·99)−F−1(0·5)}/{W−1(0·99)−W−1(0·5)}

{F−1(0·75)−F−1(0·5)}/{W−1(0·75)−W−1(0·5)}
.

All moments involving the error distribution are computed with respect to the normal
distribution since in practice we do not know the true distribution. We consider p=4,
j
l1
=1 and j

l2
, j
l3

and j
l4

as fixed regressors drawn from the Un(0, 1) distribution. We
used sample size n=40, 20, 16, 12 or 8 and set p−q, the number of components of h to
be tested, equal to 1, for n=40, 12 or 8, equal to 2, for n=20, and equal to 1 or 2 for
n=16. A standard computation shows that the number of draws used, 50 000, leads to
sufficiently small standard errors for the Monte Carlo estimators of p-values, so that we
can consider the Monte Carlo p-value as exact. The scale parameter s in (12) is estimated
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simultaneously with h, by solving

1

n−p
∑
n

l=1
y2
c Agl−h1jl1− . . .−hpj

lp
s B−E{y2

c
(e
1
)}=0,

where e
1
is standard normal and c=1·345 (Huber, 1981, p. 177). For some of the scenarios,

Fig. 1 shows the relative errors, as {(approximated−simulated)/simulated}, for p-values
ranging from 1 to 10 percent for a scalar null hypothesis. The solid line represents the
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(d) Cauchy, n=40
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(e) Normal, n=12
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(f) t3, n=12
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(g) CN, n=12
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(h) Cauchy, n=12
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(i) Normal, n=8
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(j) t3, n=8
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(k) CN, n=8
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(l) Cauchy, n=8
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Fig. 1. Relative errors versus p-values for a scalar null hypothesis. Errors are generated from standard
normal, Student t3 , contaminated normal () and Cauchy distributions, for 40, 12 and 8 observations. Solid

lines, Bartlett correction; dotted lines, first-order approximation.
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Bartlett correction and the dotted line represents the first-order approximation. The
Bartlett correction generally improves on the first-order approximation, although it
becomes inaccurate for extremely small p-values. With n=40, the asymptotic approxi-
mation still remains generally far from the simulated p-values, even at the underlying
model. In contrast, the Bartlett correction provides very low errors. Figure 2 shows good
approximations obtained with the Bartlett correction, for p-values equal to 5%. The
shaded bars represent the Bartlett correction and the white bars the first-order approxi-
mation. Regarding the robustness of the approximations, Fig. 3 shows small errors with
the Bartlett correction at p-values equal to 5%. The solid lines represent the Bartlett
correction and the dotted lines the first-order approximation. The Bartlett correction
deteriorates as  (F ) increases, becoming inaccurate under the Cauchy distribution, which
is extremely heavy-tailed. A comparison of Figs 2 and 3 suggests that the number of
parameters ( p−q) to be tested should also be taken into account in the determination of
the effective sample size.

(a) p_q=1, n=16
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Fig. 2. Absolute errors under various distributions at p-values equal to 5%. Shaded bars, Bartlett
correction; white bars, first-order approximation.

For the signed-root M-ratio statistic, we show comparisons between the first-order,
the Edgeworth and the variance-corrected p-values. For n=16, Table 1 shows that both
variance-corrected and Edgeworth approximations are accurate. Both improve signifi-
cantly on the first-order approximation, as does the Bartlett correction.

In conclusion, provided that we are not approximating extremely small p-values or that
a quantity like n/p− ( p−q−1) is not smaller than 3, the use of a high-order approxi-
mation leads to substantially more accurate numerical results, for various underlying
distributions of the regression errors, except for heavy-tailed ones like the Cauchy
distribution.

4. D

The previous section illustrates the advantage, in terms of numerical accuracy, of using
our high-order approximations with robust test statistics. As in the classical setting,
approximations with small asymptotic errors lead to small numerical errors. Since it is
well established that robust methods lead to stable inference, with respect to model devi-
ations (Markatou & Ronchetti, 1997), the addition of high-order approximations does
guarantee very reliable inference.
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Fig. 3. Absolute errors versus  (F ) at p-values equal to 5%. Solid
lines, Bartlett correction; dotted lines, first-order approximation.

Table 1. p-values×100 under four distributions, for
n=16

Normal t3
p-value    p-value   

3·0 1·6 2·9 2·8 3·0 1·9 3·2 3·1
5·0 3·6 5·6 5·5 5·0 3·5 5·4 5·3
7·0 5·3 7·7 7·6 7·0 5·6 8·1 8·0

10·0 7·7 10·5 10·4 10·0 8·8 11·8 11·8

Contaminated normal Cauchy
p-value    p-value   

3·0 1·6 2·9 2·7 3·0 2·2 3·8 3·6
5·0 3·1 5·0 4·8 5·0 3·6 5·6 5·4
7·0 4·6 7·0 6·9 7·0 5·1 7·5 7·4

10·0 7·3 10·0 10·0 10·0 7·9 10·8 10·8

Approximations: , first-order; , Edgeworth; , variance
correction.

S-Plus routines for computing the p-values of the M-ratio and its signed-root test
statistics are described in F.-X. de Rossi’s 1996 Ph.D. thesis from the University of Geneva.
We have focused on the linear regression model, but computer algebra (Andrews &
Stafford, 1993) would allow generalisation of the expansions to more complicated situ-
ations, such as generalised linear models or nonlinear models, for which the amount of
algebraic manipulation, although simple in nature, becomes daunting.
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A 1
Regularity conditions

The sample space R5Rk is an open convex set and G denotes the metric space of probability
distributions on R with distance d. The parameter space H5Rp is an open convex set.

Conditions for the existence of M-estimators
Condition (A1a). The function r : R×H�R is differentiable up to the fifth order with respect

to hµH.
Condition (A1b). The function −r is strictly convex with respect to h.
Condition (A1c). Given hµH, there exists a compact neighbourhood D of h such that the sign

of Y
r
(z, t) is not constant on D, for all zµR.

Integrability
Condition (A2). Given hµH, there exists a compact neighbourhood D of h such that, for all
tµD,

dd
Y
(z, t)d∏h(z),

where d
Y

: R×H�R is any product of functions (6), and where h : R�R is some function that is
integrable with respect to all GµB(F

h
, e), for some e>0, B(F

h
, e) denoting an open ball and d .d

the Euclidean norm.

Fisher consistency
Condition (A3). We require that ∆

R
Y
r
(z, h ) dF

h
(z)=0, for all hµH.

Continuity at F
h

Condition (A4). For all d>0, there exists e>0 such that, for all GµB(F
h
, e),

sup
tµD LPR d

Y
(z, t) dG(z)− P

R
d
Y
(z, t) dF

h
(z)L<d,

for any d
Y
.

Fréchet diVerentiability at F
h

Condition (A5a). The matrix whose (r, s) element is ∆
R
Y
rs
(z, h ) dF

h
(z) is nonsingular.

Condition (A5b). There exists a neighbourhood N
F
h

of F
h

such that, for all GµN
F
h

,

P
R
Y
r
(z, t) d(G−F

h
) (z)=O{d(G, F

h
)}.

Central limit theorem condition
Condition (A6). We require d(F

n
, F
h
)=O

p
(n−1/2 ) for the empirical distribution F

n
of a sample

Z1 , . . . , Zn with individual distribution F
h
.

Regression model
Condition (B1). The function g :Rp×H�R is four-fold differentiable with respect to h.
Condition (B2). The function r :R�R+ is an even function which satisfies

r(g, j1 , . . . , jp , h )=−r{g−g(j1 , . . . , jp , h )}.



1166 F -X D R  R G

High-order Fréchet diVerentiability
Condition (C1). Given hµH, the M-functional T

Y
:G�R which solves ∆

R
Y
r
(z, t) dG(z)=0 is

Fréchet differentiable up to the third order at F
h
.

Condition (C2). Given hµH, the M-functional T
Y

is Fréchet differentiable up to the fourth order
at F
h
.

Condition (A1a) is a smoothness condition for an elementary treatment of Taylor expansions
involving r. Conditions (A1b) and (A1c) ensure uniqueness and existence of the M-estimator.
Uniqueness and continuity are proved under weaker conditions by Clarke (1983) and even by
relaxing differentiability assumptions (Clarke, 1986). Condition (A2) ensures integrability for the
moments of interest, and allows the interchange of differentiation and integration. Condition (A3)
is the Fisher consistency for the M-functional T

Y
, and Condition (A4) is a continuity condition

that allows us to establish the validity of formal expansions for the M-ratio statistic. It can be
derived under some conditions on the integrand; see Clarke (1983) and F.-X. de Rossi’s thesis.
Conditions (A5a) and (A5b) are conditions for Fréchet differentiability, and Condition (A6) is a
condition for the central limit theorem, holding for the Kolmogorov distance through the
Dvoretzky, Kiefer and Wolfowitz inequality (Serfling, 1980, pp. 59–61). Conditions (A2)–(A5b)
include those of Clarke (1983), who demonstrated that they imply the Fréchet differentiability of
the M-functional T

Y
. Since other tractable conditions implying high-order Fréchet differentiability

are still an open question, Conditions (C1) and (C2) assume the required differentiability for our
propositions. Fréchet differentiability together with Condition (A6) implies the asymptotic nor-
mality of an M-estimator in a neighbourhood of the parametric model; see Bednarski (1993).

A 2
Proofs

Proof of Proposition 1. By Taylor expansion,

1

2
W
0n
=DrY

r
+

1

2
DrDsk

rs
+n−D A12 DrDsYrs+ 1

6
DrDsDtk

rstB
+n−1 A16 DrDsDtYrst+ 1

24
DrDsDtDuk

rstuB+O
p
(n−3/2 ),

where Dr=Br+n−1/2Cr+n−1Dr+O
p
(n−3/2 ), and Br and Cr are given by Lemma 1. By use of (7),

an explicit expression for Dr is not necessary, and we can obtain

1

2
W
0n
=

1

2
BrY
r
+n−D A12 BrBsY

rs
+

1

6
BrBsBtk

rstB
+n−1 q12 (CrCsk

rs
+2BrCsY

rs
+BrBsCtk

rst
)+

1

6
BrBsBtY

rst
+

1

24
BrBsBtBuk

rstur+O
p
(n−3/2 ).

The use of (8) leads to

W
0n
=BrY

r
+n−D A13 BrBsBtk

rst
+BrBsY

rsB
+n−1 q 112

BrBsBtBuk
rstu
+

1

4
(−ksu )BvBwBrBtk

uvw
k
rst

+ (−ksu )BvBrBtY
uv
k
rst
+

1

3
BrBsBtY

rst
+ (−ksu )BvBrY

uv
Y
rsr+O

p
(n−3/2 ),

and replacing Br by (7) gives (9). By standard transformations from moments to cumulants
(McCullagh, 1987, § 2.3), (10) is proved.
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Proof of Proposition 2. Write W
qn
=W
0n
=W
0qn

, where W
0qn

is defined by replacing e
l
by e
ql

in
(13). By (9), we can obtain

W
0n
=q 1

E(y∞)r frsSrSs+O
p
(n−3/2 ).

By a similar computation for W
0qn

, we can obtain (14) and (16). We denote by v*
r
, v*
r,s

, . . . the
cumulants of S

r
. From (15) we have, for instance,

v*
r,i
=n−D

1

2 q 1

E(y∞)r (fjkk*r,(ij,k)+fstk*i,(rs,t) )+n−1
1

4 q 1

E(y∞)r2 fjkfstk*(ij,k),(rs,t)
+n−1

1

24 q 1

E(y∞)r3 E(−y+) (f
iy
fyjkmk*

r,(j,k,m)
+f
rx
fxstuk*

i,(s,t,u)
)

+n−1
1

6 q 1

E(y∞)r2 (fjmfknk*r,(ijk,m,n)+fsuftvk*i,(rst,u,v) )
+n−1

3

8 q 1

E(y∞)r2 (fjkfmnk*r,(ij,km,n)+fstfuvk*i,(rs,tu,v) )+O
p
(n−3/2 ),

where k*
r,(ij,k)

=cov (Y
r
, Y
ij
Y
k
), . . . are the cumulants associated with the Y

r
, Y
rs

and Y
rst

. By applying

transformations from generalised to simple cumulants (McCullagh, 1987, Ch. 4), we may obtain

v*
r
=O(n−3/2 ),

v*
r,i
=E(y2 )f

ri
+n−1 q 1

E(y∞)r CE(−y∞y2 )+qE(y2 )

E(y∞)r E(y∞y∞)+
1

4 qE(y2 )

E(y∞)r2 E(−y+)

+qE(y2 )

E(y∞)r E(y◊y)D fst
=f
rist
+O(n−2 ),

v*
r,i,j
=O(n−3/2 ),

v*
r,i,j,k
=n−1 CE(y4 )+6 qE(y2 )

E(y∞)r E(−y∞y2 )+3 qE(y2 )

E(y∞)r2 E(y∞y∞)

+qE(y2 )

E(y∞)r3 E(−y+)+4 qE(y2 )

E(y∞)r2 E(y◊y)D fr,i,j,k+O(n−2 ),

v*
r,i,j,k,m

=O(n−3/2 ), v*
r,i,j,k,m,n

=O(n−3/2 ), v*
r,s,i,j,k,m,n

=O(n−3/2 ),

and so on. Since by (17) the U
r

are linear combinations of the S
r
, standard transformations of

cumulants lead to (18).

Proof of Corollary 2. We need to give only the reasons for which Corollary 2 remains valid even

though some of the hypotheses of Proposition 2 regarding the differentiability of y
c
are not satisfied.

Here, we define y
c
implicitly in the following way, using the theory of mathematical distributions.

We consider a sequence of differentiable functions r
m
:R�R+ with y

m
=r∞
m

and r
c
= lim

m�2
r
m
,

such that the real-valued functionals of F, c(F; y
m
)=∆y

m
dF and lim

m�2
c(F; y

m
), exist for every

F in some functional neighbourhood. Then we define y
c
, the derivative of r

c
, implicitly by c(F; y

c
)=

lim
m�2
c(F; y

m
). We can select y

m
as an odd function and, since the standard normal density is
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an even function, by integration by parts we can show for instance that

E(y+
m
)= P2

−2
y+
m
(r)w(r) dr=− P2

−2
y
m
(r)w+(r) dr=0.

With m�2, E(y+
c
)=0, which justifies Corollary 2.
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