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There has been no attention to circular (purely cyclical) data in political science research. We

show that such data exist and are mishandled by models that do not take into account the

inherently recycling nature of some phenomenon. Clock and calendar effects are the

obvious cases, but directional data are observed as well. We describe a standard maximum

likelihood regression modeling framework based on the von Mises distribution, then develop

a general Bayesian regression procedure for the first time, providing an easy-to-use

Metropolis-Hastings sampler for this approach. Applications include a chronographic

analysis of U.S. domestic terrorism and directional party preferences in a two-dimensional

ideological space for German Bundestag elections. The results demonstrate the importance

of circular models to handle periodic and directional data in political science.

1 Overview

There has been no attention to the problem of circular data in political science: those
measured angularly to reflect automatic return on the measurement scale. Yet, govern-
ments routinely perform tasks based on specific dates, some countries have fixed election
periods, legislatures are very cyclical in their activities, migration patterns follow strong
directional patterns around the world, and spatial political models are often concerned
with the direction of effects. Such iterative data are viewed as sitting on the circumfer-
ence of a circle and come from measurement on: the 24-hour clock, various calendar
types, or compass direction. Because these data recycle through their measure, failing
to account for the circular nature would introduce a misleading break in the support of the
data.

Why is it deleterious to ignore circular effects and simply use a bounded interval mea-
sure to model the data? Statistical summaries and models will produce results that mislead
or misinform readers. Here, we develop a circular regression model for domestic terrorism
events that finds within-year cycles tied to particular attacking groups and particular target
groups. The key is that the political nature of these entities is an important determinant of
the cyclical timing of attacks, controlling for other covariates, and this would be missed
with conventional approaches. In our second study, we look at German Bundestag elections
and find that in a specific two-dimensional ideological space, the parties make direction
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decisions relative to each other and in response to social and political pressure from the
electorate. The developed Bayesian circular regression model captures these relationships
in a way that would be missed otherwise since it provides a direct modeling link between
the covariates and the circular direction changes.

Consider the analysis of crime data in an urban environment. We know that crime rates
at 11:15 p.m. are related to crime rates at 10:45 p.m., which is logical since such activities
may be continuing, the same individuals are likely to be present, and the recorded time of
the crime may be imprecise. However, treating clock time as the bounded interval 0–24 for
hours means that events occurring at 12:15 a.m. appear to be temporally unrelated to events
at 11:45 p.m. This is clearly an unrealistic assumption and is not reflective of the problem
being studied. It is functionally equivalent to the notion that social actors ‘‘reset’’ at mid-
night and start some cycle anew. Such cycling is the so-called wraparound effect, also
known as the crossover problem, which exists because there is no minimum or maximum
on the circle. Consequently, using standard summary statistics, such as the mean or var-
iance, produces nonsensical results.

It is important to distinguish between cases when time is considered as a continuing
linear variable, which is best modeled in a time series context, and cases in which interest
lies in analyzing the cyclical repeating effects. Circular data analysis is analogous to, but
different than, an autoregressive integrated moving average process (Hamilton 1994, 437)
with the assumption that cyclical effects are constant and not trending given the modeled
factors. Time series models are able to estimate the seasonal pattern of the data, that is, the
marginal unconditional seasonality. However, only the circular regression model is able to
model the conditional expectation of the seasonal pattern as a function of one or more
explanatory variables in an intuitive regression context on the circular metric of the data.

Circular data analysis, and more generally spherical data analysis, has been practiced in
astronomy, demography, geology, geography,meteorology, earth sciences, oceanography, and
biology in particular. Perhaps the most common application is in ornithology where the nest
orientation (Bergin 1991; Squires and Ruggiero 1996), migration direction (Beason 1980),
or general flight pattern (Schmidt-Koenig 1963; Matthews 1974; Bryan and Coulter 1987)
of birds is studied with respect to compass direction. Bartels (1984) does a similar analysis
of a much slower animal (the slug). In demography, circular data analysis has been used to
look at geographic marital patterns (Coleman and Haskey 1986), occupational relocation in
the same city (Clark and Burt 1980), and settlement trends (Upton 1986b). The seminal
citation for circular data analysis in biology (and beyond) is Batschelet (1981), and another
standard citation is Upton and Fingleton (1989). General interest in the statistical analysis
of circular data was invigorated by the publication of Mardia’s (1972, 1975b) very thor-
ough reviews, which led to the primary era of theory development in the 1970s and 1980s.

2 Graphical Analysis and Summary Statistics

Failing to account for the reiterative nature in graphics deceives viewers because it appears
that there are explicit endpoints. For example, consider data on gun crimes committed in
Pittsburgh, Pennsylvania, over the period 1987–98. These data are recorded at the hourly
level on the 24-h clock (Cohen and Gorr, ICPSR Study Number 2895) and certainly affect
local political decision making about law enforcement priorities. The left panel of Fig. 1
shows these events in a linear histogram. It appears that the events start at a high level,
decrease, and then return to a high level at the ends. What this histogram approach misses is
the connection of the endpoints: gun crimes occur in much higher levels between 10 p.m.
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and 2 a.m. Conversely, the angular histogram in the right panel of Fig. 1 accurately depicts
the late-night association that occurs across the midnight boundary.

A related figure is the rose diagram, which is an angular histogram formed such that the
bins are projected as connected triangles emanating from the origin. The radius of each bin
is proportional to the square root of the relative frequency of the group depicted in that bin.
This means that the area of the displayed triangle is proportional to that group’s fraction of
the total. The greater the number of bins, the smoother in general a rose diagram appears. In
Fig. 2, we show a rose diagram again for the Pittsburgh gun crime data, with jittered hourly
values around the enclosing circle, which shows in dramatic fashion the upturn centered at
midnight.

We can also use circular nonparametric smoothing for the gun violence data. Figure 3
highlights smooth continuity in the high-event areas across the p.m. to a.m. boundary. No-
tice also the slight asymmetry favoring the left side of the circle. Although there are fewer
gun crimes in the afternoon and mornings relative to late at night, there are slightly more in
the afternoon than in the morning, which makes intuitive sense. The density estimation
differs from the right panel of Fig. 1 in that it provides a smoothing of the period between
hourly measurements. The angular histogram in Fig. 1 implies events directly on the hours
since that is how the police recorded the event. We know, however, that these gun crimes
are not actually scheduled as such, and therefore, the density estimation in Fig. 3 is more
realistic.

In addition to graphical approaches, the initial exploration of data includes summary
statistics. As already mentioned, naively applying linear statistics leads to misleading
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Fig. 1 Two displays of gun crime data.
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summaries: the linear mean for the Pittsburgh data in radians is 3.41, which corresponds to
a little after noon, and the linear variance for these data, 6.15 in radians or 10 hours and 30
min, makes even less sense where dispersion from a low point gives great weight in the
‘‘tails.’’ As seen in the left panel of Fig. 1, the two modes at either end of the graph roughly
balance out, with a slightly greater mass later in the day, thus explaining this mean. We
certainly know already that this is misleading for circular data. The circular data mean, also
called the mean direction, is necessarily more complicated. Start with defining the follow-
ing two mean quantities from the sample of angles, hereafter denoted by Z:

C5
1

n

Xn
i5 1

cosðziÞ S5
1

n

Xn
i5 1

sinðziÞ: ð1Þ

Fig. 2 Rose diagram of gun crime data.
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Fig. 3 Density estimate for gun crime data.
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The sample mean direction then accounts for the wrapping:

�z5 tan21
�
S
�
C
�
1I
�
C< 0

�
p1I

�
S < 0;C> 0

�
2p; ð2Þ

where I() is 1 if the enclosed condition or conditions are met and 0 otherwise. The circular
mean for these data is 20.21 radians, which corresponds to the time of 10:15 p.m.

The circular variance is based on tying the tails of the circle together. Using the def-
initions from above, the circular variance is defined as follows:

VarðzÞ5 12
C21S2

n
; ð3Þ

which is bounded by [0:1]. The interpretation is the same as the linear variance, subject to
the limits, where values close to 0 indicate values concentrated near the mean and values
close to 1 indicate highly dispersed values around the circle. Unfortunately, Var(z)5 1 does
not mean that the values are uniformly dispersed around the circle. In addition, due to the
form of the trigonometric moments (Fisher 1993), the standard deviation is a little more
complicated than the square root of the variance, SDðzÞ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22logð12VarðzÞÞ

p
. The cir-

cular variance and standard deviation for the Pittsburgh data are Var(z)5 0.42 (about 1.5 h)
and SD(z) 5 1.04 (almost 4 hours). Unlike the circular variance, the circular standard de-
viation has the same support as the linear variance or standard error (note the logarithm in
the formula) and is therefore preferred by some researchers to the variance.

3 The von Mises Distribution for Circular Data

There are a number of ways to specify distributions for circular data. Obviously, any ef-
fective choice must have the property that the support of the data resets as it increases.
Specifically, consider a continuous form, f(z), with the requirements that

0< z< 2p; and

Z 2p

0

f ðzÞdz5 1; ð4Þ

such that z only takes on values of in the interval [0:2p). Any constant works here instead
of 2p, but this maximum value makes the use of trigonometric functions particularly easy
since z now specifies the direction of cosines in radians. We could use degrees (0–360)
instead, but radian measurement is vastly more convenient. Normally, the circle is specified
also with unity radius, without any loss of generality since the angle is the real measure of
interest. Noncircular manifolds are mathematically feasible, but they make the intuition
and calculations unnecessarily complicated for statistical purposes. With the additional
stipulation that

f ðz12pÞ5 f ðzÞ; ð5Þ

we have a generic form that meets the circular requirement, which is referred to as rota-
tional because of this last property above. We now need two additional rules that are not
technically tied to the definition of a probability density function (PDF) but are key con-
veniences for modeling circular data. First, it is important to pick a starting point in [0:2p).
Typically, the north or east points are the zero level (equivalent to 12 o#clock and 3 o#clock
points). Any point is acceptable, but other choices may be more difficult to explain to read-
ers. Second, the direction needs to be imposed: clockwise or counterclockwise. Usually,
the trigonometric convention is applied, and z values increase in the clockwise direction.
There is rarely a motivation to change these rules.
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The distribution introduced by von Mises (1918) dominates in the recent analysis of
circular data because it is flexible with regard to the effect of parameters and easy to in-
terpret. This distribution plays the same central role in the analysis of circular data as does
the normal distribution for linear data, and in some ways, it resembles the wrapped normal
(Downs and Gould 1967; Collett and Lewis 1981). The vonMises PDF for random variable
z with mean direction l and concentration parameter j is given by

f ðzÞ5 1

2pI0ðjÞ
exp½j cosðz2lÞ�; 0< z; l< 2p; j> 0; ð6Þ

where I0(j) is the modified Bessel function of the first kind (order 0):

I0ðjÞ5
1

2p

Z 2p

0

exp½j cosð/2lÞ�d/: ð7Þ

As j /N or as the data become more tightly clustered, this distribution converges to
a wrapped normal with mean l and variance 1/j. The support of z is sometimes specified as
[2p:p], but this is obviously an arbitrary decision. Theoretical descriptions of the von
Mises distribution are given by many authors: Bagchi and Guttman (1988), Cotterill
and Csorgo (1982), de Waal (1979), Gruet (2000), Lwin (1975), Gordon and Hudson
(1977), andMardia (1975a). The Bessel function is a major inconvenience here and a num-
ber of works have worried about parameter estimation for the von Mises (Bingham and
Mardia 1975; Hill 1976; Best and Fisher 1981; Abeysasekara and Collett 1982; Bartels
1984; Chan and He 1993).

From a random sample z1, z2, . . ., zn, we can calculate C and S according to equation (1)
so that the maximum likelihood estimate (MLE) of j is given (Dobson 1978, Downs and
Mardia 2002) by the solution from

AðĵÞ5
�
C21S2

�1
2; ð8Þ

where the function A(x)5 I1(x)/I0(x) is defined with I1(x), the modified Bessel function of
the first kind (order 1; see Abramowitz and Stegun 1972). Meaning that we need

ĵ5A21
��

C21S2
�1
2

�
: ð9Þ

This is sufficiently unwieldy that tabular lookup was used historically and we are now
advantaged by software. Unfortunately, the MLE here is also biased for finite samples
(Upton 1986a). Defining

R2 5 ½nI1ðxÞ=I0ðxÞ�2: ð10Þ

Schou (1978) and Batschelet (1981) tabulate unbiased values of j̃, which is the solution
for A(j) 5 RA(Rj)/n when R2 > n. These authors recommend that j̃5 0 when R2 < n. A
very useful set of approximations is given by Fisher (1993, 88), according to

ĵ5

8<
:

2ðR=nÞ1ðR=nÞ315ðR=nÞ=6 for R< 0:53n;
20:411:39ðR=nÞ10:43ð12R=nÞ for 0:53n<R< 0:85n;
1=ððR=nÞ324ðR=nÞ13ðR=nÞÞ for R> 0:85n;

ð11Þ

which needs to be adjusted for small sample size and small R/n:
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ĵadj 5

(
max

�
ĵ2 2

nĵ

�
for ĵ< 2;

ðn21Þ3ĵ
n31n

for ĵ> 2:
ð12Þ

The MLE for the mean direction is the value l̂ that satisfies the equations

l̂5C=R l̂5 S=R; ð13Þ

with C, S, and R defined as above. Upton (1973) gives a likelihood ratio test statistic for
H0:l 5 l0 versus H1:l 6¼ l0, provided that j is not large, that rejects H0 if

R2 >X21

�
2n22X2

�
Za

4n
; X2 5

�
Rcos

�
l02l̂

��2 ð14Þ

for an a significance level. See also the likelihood ratio test for vonMises mixtures given by
Grimshaw, Whiting, and Morris (2001), as well as multisample tests from Stephens (1972)
and Upton (1976). Alternately, Damien and Walker (1999), Mardia and El-Atoum (1976),
and Bagchi and Kadane (1991) provide (limited) Bayesian treatments to inference and
model comparison with circular data. Upton (1986a) extends his hypothesis test to derive
two confidence intervals for l:

l̂± cos21

"	
4nR224n2Za
4nR22R2Za


1
2

#
for R< 0:9n;

l̂± cos21

"	
n22

�
n22R2

�
exp
�
Za/n

�
R2


1
2

#
for R> 0:9n

ð15Þ

Under the normal approximation, this reduces to the simpler form

l±
�
Za
��

Rĵ
��1

2: ð16Þ

Finally, note that the R package circular (Ulric Lund and Claudio Agostinelli) pro-
vides many of these calculations using the von Mises distribution.

4 A Model for Circular Regression

So far we have only discussed how to graph and analyze univariate circular data. However,
political scientists are really interested in connecting a set of explanatory variables to some
outcome of interest with regression-style models. To specify a linear-additive right-hand
side structure and its estimated effect on some circular outcome variable, we need to de-
velop the appropriate generalized linear model (GLM) structure in the conventional
McCullagh and Nelder (1989) sense. Since GLMs connect the nonlinear outcome variable
to the linear-additive contribution from the explanatory variables through a mean function,
the mistake of calculating linear means from circular data (section 3) applies to regression
settings as well.

The existing literature on circular statistics provides little guidance for building standard
regression models with circular outcomes, and we may want to reparameterize the von
Mises distribution in terms of a set of possible explanatory variables: (1) the mean direction
l in terms of a vector of covariates, (2) the dispersion j in terms of covariates, or (3) model
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both the mean direction and the dispersion simultaneously. We focus here on the most
important model, (1), thereby making the testable assumption that all concentration
parameters are homoscedastic, that is, ji 5 j, "i. Following Fisher and Lee (1992),
our model assumes that the individual mean directions lis are related to the covariates
by a link function g21() such that

li 5 l1g21
�
xib
�
; ð17Þ

where xi is the ith row vector of the explanatory variable matrix, X, corresponding to the
ith observation, and b is a vector of regression coefficients. The function g21() maps the
real line to the scale of the outcome variable, which is a circle or sphere. We consider only
monotone link functions having the following two properties: (1) as xib ranges from 2N
to 1N and g21(xib) ranges from 2p to 1p and (2) g21(0) 5 0, thereby preserving the
interpretation of the constant l as the origin. Functions having these two properties are
a generalization of the Johnson and Wehrly (1978) model and are referred to as ‘‘angular
monotonic’’ (Fisher and Lee 1992).

Possible choices for g21(), which satisfy the restrictions (1) and (2), are discussed in
Jammalamadaka and Sengupta (2001) and Fisher and Lee (1992). Here, we focus on a spe-
cific choice, namely

g21
�
z
�
5 2arctan

�
z
�
: ð18Þ

Using this link function and assuming our sample of size n is i.i.d., we can write the log-
likelihood function for the homoscedastic von Mises regression model according to

‘ðbjXÞ52nlogð2pI0ðjÞÞ1j
XN
i5 1

cosðzi2l22arctanðxibÞÞ: ð19Þ

As we will show in simulations, this log-likelihood function is not globally concave.
However, given suitable starting values, the iterative reweighted least squares algorithm
(IRLS) of Green (1984) can successfully be applied to this optimization problem. To es-
timate the unknown parameters l, b, and j, define first the following intermediate quan-
tities (Fisher and Lee 1992; Fisher 1993):

u#5
�
u1; . . . ; uN

�
with elements ui 5 sin

�
zi2l2g21

�
xib
��
;

X5 ½xi; . . . ; xn�#;

G5 diag
�
g21
�
xib
�
; . . . ; g21

�
xnb

��
: ð20Þ

Similar to the previous section, we (re-)define

S5
1

n

Xn
i5 1

sinðzi2gðxibÞÞ C5
1

n

Xn
i5 1

cosðzi2gðxibÞÞ; ð21Þ

and relabel the quantity from the right-hand side of equation (8) as R5
�
S21C2

�1
2. Now, the

MLEs are solutions to the equations

X#Gu5 0; Rsin
�
l̂
�
5 S; A

�
ĵ
�
5R; Rcos

�
l̂
�
5C; ð22Þ
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where the last equation comes from equation (21). Fisher and Lee (1992) propose to solve
this system of equations with the following iterative method:

1. Start with initial values for b̂; calculate S, C, R, l̂, and ĵ.

2. Insert these values into equation X#Gu 5 0 to produce b̂
1
as an update of b̂.

3. Solve X#Gu 5 0 iteratively using the updating equations:

X#G2X
�
b̂
1
2b̂
�
5X#G2r; ð23Þ

where r is a vector of length n with elements ri 5 ui
��

A
�
ĵ
�
g#
�
xb̂
��

.
4. Update l̂ and ĵ from Rsin

�
l̂
�
5 S and Rcos

�
l̂
�
5C.

This process is then repeated with the new values until convergence is obtained. Fisher and
Lee (1992) also derive the large-sample variance of these MLEs as follows:

Var

 
b̂

!
5

1

jAðjÞ

 �
X#G2X

�21
1

�
X#G2X

�21
X#gg#X

�
X#G2X

�21

n2g#X
�
X#G2X

�21
X#g

!
; ð24Þ

where g is a vector whose elements are the diagonal elements of G. The variance of ĵ is
given by

VarðĵÞ5 1

nA#
�
ĵ
�; where A#ðjÞ5 @AðjÞ

@j
5 12

AðjÞ
j

2A2ðjÞ: ð25Þ

This algorithm is implemented in our R package to be hosted at the Comprehensive R
Archive Network (along with our new Bayesian approach below).

5 Monte Carlo Simulation Study

To build intuition, we illustrate the likelihood version of the homoscedastic von Mises
regression model using a small Monte Carlo simulation. We draw three samples, each
of size n 5 1000 from the von Mises PDF: zi � VM(li, j), with li 5 l 1 arctan(xib)
and x values uniform on (21, 1). For three different contrived but realistic parameter
groups, Fig. 4 shows the scatter plots of the raw data (first row), kernel densities on
the circle (second row), and the corresponding log-likelihood functions as a function
of the estimated b coefficients where the b̂ coefficients are estimated using the IRLS al-
gorithm (third row). The first row visualizes possible patterns in the plot of (z, x) and the
additional points (z 1 p, x) in Cartesian coordinates. For the two strongly nonuniform
cases, we see the effect of ‘‘rolling’’ past the zero point as the mode determines
a well-defined point cloud. The second row shows that these are not strongly modal forms
despite the patterns in the first row. The third row is the most informative because it dem-
onstrates the difficulty in naively applying a mode-finding algorithm, and this is why we
recommend always using multiple starting points to find the global maxima (dashed ver-
tical line).

The first case (column) of Fig. 4 shows that if the true b is equal to or near zero, the log-
likelihood function not only has a peak near b̂5 0 but also asymptotes out to ±N as b
gets big in absolute value. In such a case, the only practical estimate of the mode is the
peak near zero, which is the solution produced by equation (4). Despite this seemingly
arbitrary choice, the parameter b̂

�
mod2p

�
is fully identified in the mathematical sense,
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as opposed to the econometric sense. This difference in identification definitions is a direct
result of wrapping around the circle.

If the true jbj � 0, as given in the second and third cases (columns) of Fig. 4, then the R
component of the likelihood function is not globally concave and local maxima can exist
quite close to the global maxima. Inspection of R as a function of b usually produces good
starting values for maximization process. In many applications, the coefficients of a simple
linear regression give surprisingly close starting values for this process. If computationally
feasible—which critically depends on the dimension of xi—we recommend using a grid of
starting values for subsequent runs of the IRLS algorithm. Given the lack of global log
concavity, a careful exploration of the likelihood surface is always highly advisable when
using the likelihood version of the circular regression model.

6 A Bayesian Circular Data Regression Model

We now derive an easy-to-use Bayesian version of the circular regression model. To date,
efforts to produce a general Bayesian framework for the regression analysis of circular
data have not made much progress. There are considerable difficulties in producing mar-
ginal posterior distributions from the joint posterior due to the mathematical forms of the
modified Bessel function of the first kind and the arctan link function. Some work has been
done to deal with these challenges, but there is no general approach to producing an an-
alytical or Markov chain Monte Carlo (MCMC) solution. Here, we address this deficiency.

Fig. 4 Simulation summaries for the von Mises distribution.
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Nearly, all Bayesian approaches to circular data modeling do not include covariates.
Tover and Ruiz-Rivas (1986) produce a Bayesian construct for the mean direction only
with the goal of handling outliers, but outliers are not as important in circular data as
in linear data since they wraparound to the other side of the origin if large enough, thus
losing their outlier status. In another early piece without covariates, Guttorp and Lockhart
(1988) use the Bayesian circular model as a way to use prior distributions in radio direction
finding. Another paper demonstrates how Fourier transforms can help with the estimation
process for the mean direction (Healy and Kim 1996). Ghosh, Jammalamadaka, and
Vasudaven (1999) focus on estimating change points. More recently, Morelande (2008)
applies the mean-only Bayesian approach to an engineering setting. The closest paper
to producing a general Bayesian regression approach is that by Damien and Walker
(1999). They introduce latent variables and avoid all major restrictions in the process
of getting a workable Gibbs sampler, which unfortunately is setup only for l and j
(our notation). In fact, these authors state: ‘‘But, to the best of our knowledge, there is
no paper in the literature that provides a full Monte Carlo solution to the problem, despite
the low-dimensional nature of the model.’’ We solve this problem by introducing a hybrid
MCMC algorithm that contains subcomponents that deal with the two difficult parameters.
The Metropolis-within-Gibbs sampler (Robert and Casella 2004) on each cycle first draws
(easily) a conditional Von Mises for the mean vector, l, a conditional normal vector for the
regression coefficient parameters, b, and then calculates j using the most recent draws for
l and b. We then accept or decline this collection of values as a single unit in a Metropolis
acceptance step. Since the process is really a Metropolis-Hastings algorithm where the
joint candidate distribution is produced by an unchanging probabilistic process, we know
that the full chain remains ergodic (Gill 2007, chap. 11).

More specifically, the algorithm is given by the following steps:

1. Initialization: Using the IRLS algorithm from the previous section, compute the
MLEs l̂ and ĵ, then set lð0Þ 5 l̂. Compute now the MLE b̂ and the matrix R̂b cor-
responding to the asymptotic covariance of b̂ and set b(0) 5 b̂.

2. Iterate for M steps:

(a) Generate ðl̃� ðlðt21Þ,s2lĵÞÞ, where sl is a tuning parameter to enhance effi-
cient proposals.

(b) Generate
�
b̃� ðbðt21Þ,s2R̂

2

b

��
2, where s2 is another tuning parameter, usually

different from sl.

(c) Calculate j̃5A21
��

C21S2
�1
2

�
, where both C

�
l̃; b̃

�
and S

�
l̃; b̃

�
are defined in

the previous section about the IRLS algorithm.

(d) Compute qðfl̃; b̃; j̃g; flðt21Þ;bðt21Þ; jðt21Þg
�
5 min

�
1;

pðfl̃;b̃;j̃gjyÞ
pðflðt21Þ;bðt21Þ;jðt21ÞgjyÞ

�
.

(e) With probability qðfl̃; b̃; j̃g; flðt21Þ;bðt21Þ; jðt21ÞgÞ, take lðtÞ 5 l̃, b
�
t
�
5 b̃,

and jðtÞ 5 j̃; otherwise, take l(t) 5 l(t 2 1), b(t) 5 b(t 2 1) and j(t) 5 j(t 2 1).

We observe that this MCMC algorithm mixes slowly through the sample space in part due
to the small steps generated by the heavily scaled-down covariance matrix built into the
proposal distribution to accomplish a ‘‘reasonable’’ acceptance rate (about 22% in the ap-
plication in Section 8). However, this is simply a computational issue, and it means that
users have to make sure to run the algorithm long enough to ensure that all subspaces of
the posterior distribution are visited. Since the algorithm is very fast (5 million iterations of
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our algorithm took less than 1 h on a standard laptop computer), this is only a minor
inconvenience.

Finally, we recommend use of the following forms of priors to complete the Bayesian
von Mises regression specification:

although the specification is not particularly sensitive to the choice of hyperparameter val-
ues. Here, we emphasize uninformative priors for all parameters except for l, although this
could easily be changed in presence of reliable prior knowledge. Another uninformed prior
for l is the uniform distribution over [0:2p).

7 Domestic Terrorism in the United States

In this section, we demonstrate circular regression using ML estimation only. The statis-
tical analysis of terrorism is problematic because data consist of either selected publicly
observed events or classified data at government agencies, existing tools for filling in miss-
ing information are difficult to apply, qualitative and technical experts have not tradition-
ally cooperated, and it can even be physically dangerous to study. Yet, terrorism is an
important political problem because it affects internal government policy, public percep-
tion, and relations between states. Statistical modeling has yielded some limited insights
into the determinants and timing of terrorist incidents (see, e.g., Enders and Sandler 1995;
Li and Schaub 2004; Enders 2007).

The data set Political Violence in the United States, 1819–1968 (Levy 1991) provides an
almost unique look at incidents of political violence resulting in injury or death over a very
long period. The data were produced from coding articles in randomly selected issues of
the NewYork Times and theWashington National Intelligence (now defunct) covering 150
years. Potential explanatory variables include the nature of the target, the number of at-
tackers, the level of violence inflicted, the motivation for the attack, a count of deaths and
injuries to targeted individuals and to attackers, the type of attacker, any property damage,
and the number of pages in the newspaper describing the event. The critical category is
whether the attacker or the targets are considered to be political groups, and wewill use this
as the baseline for attackers and victims in the model. We have also collected groups that
are not well defined into an ‘‘other’’ category. These two variables are plotted against each
other in Fig. 5 where darker cells denote higher frequencies. Although racial group and
labor attackers are dominant (especially with regard to racial group targets in the case of
racial group attackers), the political group row and column show important interactions.

In addition to our concern about groups, we include the variable Year to test for an
underlying trend across time (calendar year minus 1819 scaled by 100), a dichotomous
measure for resulting deaths or not (Some Killed), and the variable Large Attack Group,
which is 1 for more than 10 attacking individuals and 0 otherwise. Lone attackers are ex-
cluded from the sample so that attacker group identification is meaningful (reducing the
sample size to 746). Our central research question is whether there is a cyclical pattern
within the years. Therefore, the outcome variable is the day of the year, which is obviously
defined on the circular metric.

Table 1 gives the output from the circular regression model for these data, which is fit
using our version of the Fisher and Lee (1992) algorithm described on the previous page.
To ensure that the IRLS algorithm converged to the global maxima, the algorithm in Sec-
tion 4 was run from several different starting values since the likelihood function is not
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guaranteed to be unimodal, making the model somewhat fragile as seen in Fig. 4. We also
treated the missing data with multiple imputation (Little and Rubin 1983; Rubin 1987), so
that the results in Table 1 are averaged across five replicate filled-in data sets. The fitted
model provides a substantial improvement over the null (l only) model since the difference
in deviance (46) is far into the tail of a chi-squared distribution with 14 df.

The most important general finding is that there is evidence of a within-year cyclical
trend as indicated by the proportion of statistically reliable explanatory variable coefficient
estimates (10 of 12), and there is some evidence of an across-year trend from the results for
Year. The model summary therefore supports the use of a circular data model on the annual
scale. The negative sign on Year indicates that over the 150-year period attacks are increas-
ingly occurring earlier in the year and we can expect that trend to continue. Conversely,
‘‘successful’’ terrorist attacks in terms of fatalities are more likely later in the year, perhaps
due to the corresponding concentration of electoral and holiday gatherings. In terms of the
attacking group, all types of groups are more likely to initiate violence earlier in the year
than political groups. Since the U.S. electoral calendar is heavily weighted toward the latter
part of the year, this makes sense. However, the target group coefficients tell the opposite
story. These groups are all more likely to be attacked earlier in the year relative to political
groups. Together the two blocks of group coefficient estimates tell a story: attacking po-
litical groups are motivated toward violence against other groups later in the calendar year,
but not typically toward other political groups, except for the political groups in office
(Public Officials).

8 Party Preferences in the German Bundestag

In this section, we turn to our fully Bayesian regression setup with another example. Two
classes of spatial models dominate in political science: proximity models and directional

Fig. 5 Attackers versus targets, domestic terrorism. Note. RAC, racial group; LAB, labor group;
BUS, business group; OTH, other group; POL, political group; SOC, social group; OFF, public
officials.
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models. Although proximity models follow a distance logic and are based on Euclidean
spaces, directional models assume radial measures to be more relevant and are based on
vector spaces. This distinction affects many interests in political science such as voting
theory, coalition theory, and legislative politics. Purely directional models, our focus
here, concentrate not on the positions of political actors, but rather the direction in
which these actors try to shift policies. Linhart and Shikano (2009) categorize direc-
tional models into three types. The first two models are due to Grofman (1985) and
Rabinowitz and MacDonald (1989) and assume that both direction and intensity define
the ideal vector of a voter. Although these two models have many things in common,
they differ in some important aspects. The third group of directional models, which is
due to Matthews (1979) and Schofield (1985), is purely directional. Only the linear path
of an actor’s ideal vector, that is, the vector beginning in some starting point (e.g., the
status quo) and ending in the actor’s ideal point, is relevant. The length of the ideal
vector, that is, the intensity, plays no role in these models. With every policy change,
a new interim status quo is reached and the ideal direction is updated. Actors do not
have to follow their ideal vectors exactly but can negotiate and change directions along
the way. Hence, for the actor’s utility, only directions matter, and vector lengths are
irrelevant (Linhart and Shikano 2009, 4). Schofield (1985, 1993) and Linhart and
Shikano (2009) provide the basic tools for the formal analysis of this purely directional
approach. We combine their approach with the circular regression model to analyze
party preferences over policy issues for all Bundestag elections in post–World War
(WW) II Germany.

Measurement of the parties’ preferences are based on the Comparative Manifesto
Project (CMP; see Budge et al. 2001). The CMP uses party manifestos to code statements
of left or right preferences with regard to various policies. We use CMP data rather than
expert surveys because CMP data cover the whole period of interest: all 16 elections from
the first post-WWII contest in 1949 to the recent 2005 one that produced the grand co-
alition. Parties are included if they won seats in multiple elections (Social Democratic

Table 1 ML results for domestic terrorism

Explanatory variable Coefficient SE jzj p

Effect of attack type
(relative to political)

l̂ 22.462 0.282 28.725 .001
Year 20.319 0.183 21.746 .090
Some Killed 0.517 0.208 2.493 .037
Large Attack Group 0.190 0.270 0.704 .513
Racial Group 21.139 0.435 22.616 .037
Labor Group 20.737 0.441 21.672 .149
Social Protest Group 20.949 0.606 21.565 .177
Other Groups 20.684 0.520 21.315 .250

Effect of target type
(relative to political)

Racial Group 1.135 0.428 2.649 .035
Labor Group 0.694 0.404 1.717 .132
Business Group 0.246 0.561 0.439 .678
Public Officials 1.661 0.408 4.067 .000
Other Groups 0.445 0.328 1.355 .212
ĵ 0.453 0.057 7.986 .000

Note. Null deviance 5 2714.47, on 745 df; N 5 746. Residual deviance 5 2668.18, on 731 df; Akaike’s

information criterion 5 2692.18.
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Party [SPD] from 1949 to 2005, Christian Democratic Union/Christian Social Union
[CDU/CSU] 1949–2005, Free Democratic Party [FDP] 1949–2005, Alliance ’90/The
Greens [B90/Greens] 1983–2005, and Party of Democratic Socialism [PDS] 1990–
2005), producing 60 observations. These data include coding of both valence issues
and positional issues that enables estimation of both parties’ ideal positions and preferred
directions. Based on the CMP data, Linhart and Shikano (2007) estimated the German
parties’ ideal directions for all Bundestag elections between 1949 and 2005. Consistent
with this literature, we assume a two-dimensional policy space for Germany, where the
first (‘‘Dimension 1’’) dimension captures economic issues and the second (‘‘Dimension
2’’) captures mostly social or cultural issues (Linhart and Shikano 2009, 13). Although
parties in the lower left quadrant prefer policies more to the economic left and culturally
more liberal, parties in the higher right quadrant prefer economically and culturally more
conservative policies. The assumption of two dimensions is key for the applicability of
the more basic circular regression model since a three-dimensional policy space would
require spherical regression models. As with every other directional model, we have to
make an assumption about the origin of the two-dimensional policy space. Does this origin
reflect some sort of neutral point or rather the current status quo? The literature has not fully
sorted out the defining criteria here, and so following the CMP group and Linhart and
Shikano (2009), we simply assume that parties have the same origin point in mind when
writing their manifestos.

Figure 6 displays nonparametric Gaussian kernel density estimates of the preferred di-
rections of the ideal vectors for the five parties in the 16 Bundestag elections between 1949
and 2005. The ideal vectors of the leftist parties, SPD, Greens, and PDS, all point in the
lower left direction. Although the Greens and the PDS express almost exactly equally
strong preferences for more leftist policies in the first and second dimension, the SPD fa-
vored in some years more leftist policies along the economic dimension while being sat-
isfied with the current status quo/neutral point of the second dimension. In contrast, the
FDP consistently favored more liberal policies along the second dimension while favoring
more right-leaning policies along the economic dimension, especially during the more re-
cent elections. The CDU/CSU have a less consistent pattern of ideal directions but prefer in
general more conservative policies along the second dimension while being satisfied with
the status quo/neutral point of the first dimension.

The explanatory variables include the unemployment rate, which is assumed to influ-
ence primarily Dimension 1, as well as the proportion of out of wedlock births (in Western
Germany), which is assumed to influence primarily Dimension 2. The remaining covariates
are more directly political in nature. We use the party dummies (with the FDP as reference
category) to contrast party direction. As a control for changes in the status quo between
elections by including the year of the election and its square, making party movement
relative to each other and therefore internally consistent. To reflect the great political up-
heaval of German reunification, a binary variable is specified that is 0 until the year 1990
and 1 afterward.

As a quality control measure for our MCMC sampler (fully describing the dominant
mode), and a convenient means of comparing Bayesian and non-Bayesian estimation for
this example, we run both the circular ML IRLS algorithm from Section 4 and the circular
Bayesian estimation process described in Section 6 from four different starting values. The
first estimation process conveniently specifies an asymptotic covariance matrix from the
IRLS process that we can use as part of our proposal distribution for theMetropolis-Hastings
algorithm. For the MCMC process, we performed 5,000,000 iterations, throwing away the
first 1,000,000 of the chain as a burnin period, and thinning by keeping every 4000th
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iteration. All the conventional diagnostics pointed toward convergence (see Gill [2008] for
relevant issues), including those of Geweke (1992), Heidelberger and Welch (1981a,
1981b), and Gelman and Rubin (1992), and standard graphical analysis. Interested readers
can download the full set of MCMC sample values, and the diagnostic reports, from our
replication page for this project. http : ==jgill:wustl:edu=replication:html.

The ML and Bayesian approaches in Table 2 yield very similar results, which is not
surprising given our use of uninformative priors. The ML results also show a good fit
to the data in terms of deviance improvement since the difference in deviance between
the fitted and the null models (90) is well past any arbitrary significance threshold for
a chi-squared distribution with 10 df. The seemingly huge difference in the mean parameter
l between the two models is in fact negligible since20.811 2p5 5.47, which is close to
the mean of the Bayesian posterior of 5.89. Notice that all the Bayesian model posterior
means for the explanatory variable coefficients are slightly bigger in absolute value com-
pared to the ML point estimates. This is because the Bayesian summary takes into account
the full form of the posterior when calculating this mean, as opposed to finding the dom-
inant mode and then measuring curvature around it.

The estimated party dummies confirm the visual impression of Fig. 6, specifically that
relative to the FDP, all other parties’ ideal directions have larger radians. It is important to
keep in mind that although the baseline party is an arbitrary choice, we picked the FDP
because doing so highlights the most interesting political differences between the parties.
This choice means that the average angle between some selected party listed in Table 2 and
the FDP is the marginal effect (first difference) of switching on and off the relevant co-
efficient. For example, in the case of the Greens, it is the expected difference between the
two scenarios run through the link function,

Fig. 6 Preferred directions of German parties’ ideal vector.
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2 � atan½12:02 �Greens20:08 �meanðUnemployment rateÞ
20:34 �meanðOut of wedlockÞ20:50 �meanðReunificationÞ
20:17 �meanðYearÞ10:51 �meanðYear squaredÞ�;

and

2 � atan½0:00 �Greens20:08 �meanðUnemployment rateÞ
20:34 �meanðOut of wedlockÞ20:50 �meanðReunificationÞ
20:17 �meanðYearÞ10:51 �meanðYear squaredÞ�;

which gives the average angle of the bargaining set as ;(FDP,Greens) 5 0.86 radians.
Over time this turns out to be the smallest difference between any party and the FDP, mak-
ing the Greens a high-probability coalition partner. Interestingly, though, the FDP and the
Greens have never jointly accumulated enough seats to form a minimal winning coalition.
However, a potential coalition of CDU/CSU, FDP, and Greens (called the ‘‘Jamaica-
coalition’’ because the party colors together resemble the Jamaican flag) was heavily dis-
cussed in the aftermath of the important 2005 elections.We can also calculate other parties’
progressively large differences relative to the FDP: the left party ;(FDP,PDS) 5 0.96
radians, ;(FDP,SPD) 5 1.96 radians, and ;(FDP,CDU/CSU) 5 2.88 radians. All these
differences between the party dummies and the FDP’s preferred direction are statistically
reliable in the sense that they are estimated with high precision relative to effect size.

On average, both unemployment rates and proportion of out of wedlock births move all
parties substantially counterclockwise, where the effect of out of wedlock births is almost
four times larger than unemployment rates. The binary indicator for reunification has no
reliable effect on the parties’ ideal directions. We include the linear and squared term of
years since the first election in 1949 into the arctan function to control, at least partially, for
a change in the implicit status quo between election years. Nevertheless, these coefficients
have a substantive interpretation as well. The negative effect of the linear time variable

Table 2 Results for Bundestag party directional preferences

MLE Marginal posteriors

Coefficient SE jzj Mean SD
95% Highest

Posterior Density

l̂ 20.81 0.08 9.85 5.68 0.38 5.26 6.13
Unemployment rate 20.08 0.03 3.04 20.11 0.05 20.23 20.02
Out of wedlock 20.34 0.08 4.15 20.49 0.17 20.86 20.25
Reunification 20.50 0.31 1.64 20.70 0.43 21.56 0.08
SPD 2.68 0.76 3.53 3.91 1.37 1.89 6.84
CDU/CSU 3.59 0.77 4.66 4.96 1.42 2.78 8.09
Greens 2.02 0.80 2.53 2.72 1.39 0.39 5.38
PDS 2.11 0.81 2.63 2.89 1.40 0.59 5.38
Year 20.17 0.04 4.32 20.25 0.08 20.41 20.12
Year2/100 0.51 0.11 4.66 0.73 0.23 0.39 1.22
ĵ 3.45 0.56 6.21 3.01 0.18 2.60 3.30

Note. Null deviance5 197.30, on 59 df; Deviance information criterion5 246.95. Residual deviance 5 107.75,

on 49 df;Akaike’s information criterion5 125.75, on 49 df.N 5 60more than 16 elections, FDP as party reference

category.
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indicates that in more recent elections, parties move in clockwise directions, although this
effect is decreasing over time as shown by the estimated positive effect of its squared term.

The average direction for the FDP is 2.95 radians, which is consistent with Fig. 6, cal-
culated by

20:8112 � atan½20:08 �meanðUnemployment rateÞ
20:34 �meanðOut of wedlockÞ20:50 �meanðReunificationÞ
20:17 �meanðYearÞ10:51 �meanðYear squaredÞ� mod2p;

giving 2.95 from the wrapping property. This, and similar, calculations show that even
though this model was more challenging to estimate, the marginal effects of interest
are produced with the same level of effort as any standard GLM. Finally, the estimated
ĵ5 3:45 reflects the rather high clustering of the preferred directions, apparently mostly
toward the lower left quadrant. This pervasive trend over time is consistent with most stud-
ies of German political parties.

9 Conclusions

Our purpose here is two-fold: to point out that there exist circular data problems in political
science and to provide a means of building regression-style models that account for such
purely cyclical outcomes. This work builds on standard von Mises approaches but is tai-
lored for the type of data analysis that political scientists routinely perform. We demon-
strate that ML estimation works, provided that one is careful about the application of the
IRLSs algorithm. Furthermore, we provide an easy-to-use Metropolis-Hastings sampler,
which is less prone to get stuck in a local maxima and offers all the advantages of a Bayes-
ian model. Our code for these approaches is freely available to interested researchers.

Terrorism data are notoriously tricky to model in a regression context. Poor measure-
ment, surreptitious subjects, and an inability to collect data firsthand make this a difficult
research area in political science. When the data are measured in a circular fashion, the
modeling exercise becomes even more challenging. We demonstrate here, however, that it
is possible to pull findings out of such material. We learn from the results that there is
a within-year cycle, implying stability of effects. Political groups, whether they are attack-
ers or victims of domestic terrorism, appear to have a different profile than other defined
groups in the data. In particular, political targets are more likely to be attacked later in the
year closer to the election cycle.

In our second application, we looked at an important approach to spatial analysis of
German Bundestag elections. The directional analysis of parties’ policy positions and co-
alition preferences in a two-dimensional ideological space offers new insights to common
political science data and questions. Our focus here on circular effects highlights the sub-
stantive interplay of the two dimensions, which are clearly not independent thus making
a circular treatment appealing. We found that parties were remarkably consistent over time
in their preferences relative to each other. The Liberals (FDP) as a baseline provide a steady
scale of differences relative to other mainstream political groups. Interestingly, unemploy-
ment and out of wedlock births were shown to be reliable influences on party behavior, but
reunification was not. This may be because the East Germans did not have the same diverse
party history as citizens in the West, and therefore, they readily adopted the structures and
cleavages of the more mature democratic partner.

Other research interests in political science generate circular data as well. Legislatures,
Congress in particular, operate on a reasonably fixed schedule such that deviations often
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point toward critical political events. Migration and immigration, with strong political con-
sequences, often follow well-defined directional patterns. This is notably true in Europe
and North America. There is a large literature in formal models that evaluate directional
effects well beyond the Matthews-Schofield structure discussed here. Scholars in political
economy encounter regularly measured calendar variables since governments often release
data and indicators at fixed times. Finally, we also see rich potential for circular data anal-
ysis in the increasing use of geographic information systems data in political science, par-
ticularly with the release of the 2010 U.S. Census containing geocoding information.
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