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HAUSDORFF DIMENSIONS OF
SELF-SIMILAR AND SELF-AFFINE FRACTALS

IN THE HEISENBERG GROUP

ZOLT�AAN M. BALOGH AND JEREMY T. TYSON

1. Introduction

Analysis on the Heisenberg group is motivated by its appearance in several
complex variables and quantum mechanics. In addition, as the simplest non-
abelian example, the Heisenberg group serves as a testing ground for questions
and conjectures on more general Carnot groups and sub-Riemannian spaces.
Geometric measure theory and recti2ability play an important role in these
settings in connection with sub-elliptic PDEs and control theory. For recent
results in the subject we refer to [3, 5, 12, 13, 15, 18].

This paper is part of a larger program [5, 4] for studying properties of fractal
sets in the sub-Riemannian metric setting of the Heisenberg group. The results
presented here concern the Hausdor6 dimensions of invariant sets associated to
self-similar and self-a7ne iterated function systems.

Let us recall that the (2rst) Heisenberg group H ¼ H
1 is the unique non-abelian

Carnot group of rank 2 and dimension 3. Explicitly, H ¼ R
3 with the group law

ðx; tÞ�ðx 0; t 0Þ ¼ ðxþ x 0; tþ t 0 þ 2hx; Jx 0iÞð1:1Þ
where J : R2 ! R

2 denotes the map

Jðx1; x2Þ ¼ ð
x2; x1Þ
and h � ; � i is the standard inner product in R

2.
The sub-Riemannian nature of H is re>ected in the so-called horizontal

distribution HH, which is the distinguished subbundle of the full tangent bundle
TH de2ned by

HpH :¼ spanfXp; Ypg:

Here X and Y denote the left-invariant vector 2elds in H whose values at a point
p ¼ ðx1; x2; tÞ are

Xp ¼ @x1 þ 2x2@t; Yp ¼ @x2 
 2x1@t:

Equivalently, HpH can be characterized as the kernel of the canonical contact
form d
 ¼ dtþ 2x1 dx2 
 2x2 dx1 on H at the point p.

The Heisenberg group is equipped with a non-Euclidean metric structure via
the so-called Heisenberg metric. This is the left-invariant metric on H de2ned
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as follows:

dHðp; qÞ ¼ jp
1 � qjH; for p; q 2 H;ð1:2Þ
where � denotes the group law from (1.1) and j � jH denotes the Heisenberg norm
given by

jðx; tÞjH ¼ ðjxj4 þ t2Þ1=4:ð1:3Þ

Before passing to the main results of this paper, let us begin by describing an
application which served as motivation for our studies.

The relationship between the Heisenberg and Euclidean geometry on H ¼ R
3 is

rather intricate. The Heisenberg Hausdor6 dimension is always greater than or
equal to its Euclidean counterpart; see, for example, (2.6). The inequality can be
strict; indeed, the Hausdor6 dimension of ðH; dHÞ is equal to 4 (in fact, balls in the
metric dH have measure proportional to the fourth power of their radius). This
implies, for instance, that the Heisenberg metric dH cannot be locally bi-Lipschitz
equivalent with any Riemannian metric, in particular, with the Euclidean metric dE.

A version of the following problem was posed by Gromov [15, 0.6.C] in the
setting of general sub-Riemannian manifolds.

Problem 1.4. For 2xed � 2 ½0; 3�, what are the possible values of � ¼ dimH S
when S ranges over all subsets of H with dimE S ¼ �?

Here and henceforth we denote by Hs
H and Hs

E the s-dimensional Hausdor6
measures associated with the relevant metrics dH and dE, respectively, and by
dimH and dimE the corresponding Hausdor6 dimensions.

Problem 1.4 is a fundamental question regarding the Hausdor6 measures on H

with respect to the Heisenberg metric. It asks which subsets of H are ‘most nearly
Euclidean’ (� is smallest for 2xed �) and which are ‘most nearly non-Euclidean’
(� is largest for 2xed �). Recently, a nearly complete answer to Problem 1.4
was obtained by Balogh, Rickly and Serra-Cassano [5]. We formulate a slightly
di6erent version of the original statement in Theorems 1.1 and 1.2 of [5].

THEOREM 1.5 (Balogh, Rickly and Serra-Cassano). Let S � H with

dimE S ¼ � 2 ½0; 3� and dimH S ¼ � 2 ½0; 4�:
Then

maxf�; 2�
 2g ¼: �
ð�Þ6 �6 �þð�Þ :¼ minf2�; �þ 1g:ð1:6Þ
Moreover,

(i) for each � 2 ½0; 3� there exists a set S� � H with H�
EðS�Þ <1 and

H�þð�Þ
H ðS�Þ > 0,

(ii) for each � 2 ½0; 2Þ [ f3g there is a set S� � H with H�
EðS�Þ > 0 and

H�
ð�Þ
H ðS�Þ <1, and

(ii 0) for each � 2 ½2; 3Þ and each � 2 ð0; 1Þ there is a set S�;� � H with
H�
�
E ðS�;�Þ > 0 and H�
ð�Þ

H ðS�;�Þ ¼ H2�
2
H ðS�;�Þ <1.

See Figure 1.1 for the graphs of ��ð�Þ. Observe also the duality relation

4
 �þð�Þ ¼ �
ð3
 �Þ:
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The techniques in [5] did not su7ce to obtain examples to show sharpness in
the lower bound in (1.6) in the case 26� < 3. In particular, [5] did not contain
examples of sets S with the property that

dimE S ¼ dimH S ¼ 2:

As a consequence of our main results (which we describe shortly) we are able to
2nd such examples and complete the solution to Gromov’s Problem 1.4. More
precisely, we may record the following theorem.

THEOREM 1.7. For each � 2 ½0; 3� there exists S� � H with H�
EðS�Þ > 0 and

H�
ð�Þ
H ðS�Þ <1, where �
ð�Þ ¼ maxf�; 2�
 2g.

The case � ¼ �
ð�Þ ¼ 2 is of particular interest. The relevant example in this
case is a self-similar set QH � H which we call the Heisenberg square. It is obtained
as the invariant set for a certain self-similar iterated function system. Such systems
are the main objects of study in this paper. We will describe this example in more
detail later on in this introduction. Here let us give a few relevant facts which
indicate how the proof of Theorem 1.7 goes. The 1-Lipschitz projection mapping
� : H! R

2 given by

�ðx; tÞ ¼ xð1:8Þ

maps QH onto the closed unit square Q ¼ ½0; 1�2. Thus H2
EðQHÞ>H2

EðQÞ ¼ 1 > 0.
On the other hand, the self-similar construction of QH gives rise to natural coverings
by families of self-similar copies of QH , and using these covers to estimate the
Heisenberg Hausdor6 measure yields H2

HðQHÞ <1.
The case � ¼ 2 is the key to establishing Theorem 1.7 in full generality. The

examples for 2 < � < 3 are constructed as certain ‘product-type’ sets using the
Heisenberg square QH together with vertical Cantor sets.

With this motivation in mind we turn to the principal objects of study in this
paper, namely, invariant sets for iterated function systems in ðH; dHÞ. Recall that
an iterated function system (for short, an IFS) on a complete metric space ðX; dÞ
is a 2nite collection

F ¼ ff1; . . . ; fMg

Figure 1.1. Hausdor& measure comparison functions ��ð�Þ in the Heisenberg group.
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of contraction maps of ðX; dÞ, that is, Lipschitz maps with Lipschitz constant
strictly less than 1. The invariant set for F is the unique non-empty compact set
in X which is invariant under the action of the elements of F . See (2.3).

In joint work with Regula Hofer-Isenegger [4], we studied regularity and
connectivity questions for invariant sets of Heisenberg iterated function systems.
The present work is devoted to the study of the dimensions of such invariant sets.

Throughout this paper, we restrict our attention to the case of a'ne iterated
function systems (AIFS). That is, we assume that each IFS consists entirely of
a7ne maps. Moreover, we are interested in a7ne contractions of H that arise as
lifts of a7ne mappings of R2 as follows.

Let f : R2 ! R
2. A map F : H! H is called a (horizontal) lift of f if

� � F ¼ f � �;
where � is the map in (1.8). It is an important observation that each horizontal
lift of an a7ne map of R

2 which is Lipschitz with respect to dH is necessarily
a7ne. Conversely, each a7ne map of R2 may be lifted to an a7ne Lipschitz map
of H. See Proposition 2.2 of [4] and x 2 of this paper. Such lifts are not unique, but
any two lifts of a given map of R2 di6er only by the addition of a vertical constant.

Each AIFS FH ¼ fF1; . . . ; FMg on H therefore arises as a lift of an AIFS F ¼
ff1; . . . ; fMg on R

2 and, conversely, each planar AIFS can be lifted to Heisenberg
AIFSs. From the aforementioned ambiguity in the vertical constants, it follows
that the space of all Heisenberg AIFSs which arise as lifts of a given planar AIFS
F is naturally parameterized by an M-dimensional Euclidean space, where M is
the cardinality of F .

We call the invariant sets for Heisenberg AIFSs (self-a'ne) horizontal fractals.
This terminology comes from the fact that these objects are in some sense tangent to
the horizontal distribution HH. In this paper, we study the Hausdor6 dimensions of
horizontal fractals with respect to the metrics dH and dE on H ¼ R

3.
To give a concrete example we describe in detail our basic example, the

so-called Heisenberg square QH . By this name we denote the invariant set for any
horizontal lift of the planar AIFS

F ¼ ff0; f1; f2; f3g;ð1:9Þ
where fjðxÞ ¼ 1

2 ðxþ ejÞ, for j ¼ 0; 1; 2; 3. Here e1 ¼ ð1; 0Þ and e2 ¼ ð0; 1Þ are the
standard basis vectors in R

2, while e0 ¼ ð0; 0Þ and e3 ¼ e1 þ e2. Figure 1.2 shows
several versions of the Heisenberg square, corresponding to di6erent lifts FH of the
IFS F from (1.9).

Figure 1.2. Heisenberg squares: horizontal lifts of Q ¼ ½0; 1�2.
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As indicated above, our 2rst result gives the dimensions of Heisenberg squares.

THEOREM 1.10. Let F be the IFS in (1.9) and let FH be any horizontal lift of
F . Denote by Q ¼ ½0; 1�2 and QH the invariant sets for F and FH , respectively.
Then

dimH QH ¼ dimE QH ¼ dimE Q ¼ 2:ð1:11Þ
In fact we have

0 < 1 ¼ H2
EðQÞ6H2

EðQHÞ and H2
HðQHÞ <1:ð1:12Þ

Observe that (1.11) follows from (1.12) and (2.6).
The Heisenberg squares have been considered previously. Strichartz [24] used

QH (and versions in more general Carnot groups) to construct ‘dyadic-type’
Carnot tilings. See also [25]. The equality dimH QH ¼ 2 in Theorem 1.10 can be
found in [24]. However, Strichartz obtained QH in a di6erent way as the graph of
an L1-function and not as a horizontal lift. Due to our di6erent approach we
obtain a more complete statement and a much simpler proof of Theorem 1.10.
Indeed, we will shortly describe a signi2cantly more general result from which
Theorem 1.10 arises as an easy corollary.

Let us mention that the Heisenberg square QH is also interesting for another
reason. In [4], we prove the following result: there exists a horizontal lift FH of the
IFS F from (1.9), so that each selection � : Q! H, �ðxÞ ¼ ðx; gðxÞÞ, of the
set-valued map �ðxÞ ¼ �
1ðxÞ \QH , is a function of bounded variation.
Combining this result and Theorem 1.10, we see that there exists a surface
S ¼ gðintQÞ in H with

0 < H2
HðSÞ <1ð1:13Þ

and g a function of bounded variation. By way of contrast, Ambrosio and
Kirchheim [1, Theorem 7.2] have shown that there are no Lipschitz horizontal
surfaces in H, that is, surfaces S ¼ gðNÞ, with N � R

2, which satisfy (1.13) with
� ¼ ðid; gÞ a Lipschitz map from N to ðH; dHÞ.

As mentioned above, Theorem 1.10 is a special case of more general results
concerning the dimensions of self-similar and self-a7ne horizontal fractals. The
results in question are Heisenberg analogs of theorems of Falconer [10] and Solomyak
[23] on the dimensions of generic invariant sets. To set the stage we recall in brief some
results from [10] and [23]. A more detailed description can be found in x 5.

To a 2nite collection A of contractive linear maps of R
n, Falconer [10]

associates a critical exponent sEðAÞ. In the case when each element of A is in the
conformal group COðnÞ ¼ Rþ � OðnÞ, the critical exponent of A is equal to the
similarity dimension of A, that is, the unique value s satisfying the equationX

A2A
kAks ¼ 1;ð1:14Þ

where k � k denotes the operator norm. (It is not required that the elements of A
be distinct.)

In the case of self-similar AIFSs satisfying the open set condition (cf. x 2) we
have the following remarkable equality of dimensions, which holds for every
horizontal lift.
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THEOREM 1.15. Let F be a self-similar planar AIFS which satis�es the open
set condition and let FH be a horizontal lift of F . Then

dimE K ¼ dimE KH ¼ dimH KH ¼ s;
where s denotes the similarity dimension for the associated family of conformal
matrices. Moreover,

0 < Hs
EðKÞ6Hs

EðKHÞ and Hs
HðKHÞ <1:

Since the IFS F from (1.9) satis2es the open set condition, Theorem 1.10
follows from Theorem 1.15.

The major question which we address in this paper is what happens in the
absence of the open set condition in the more general setting of a7ne maps. The
de2nition of the critical exponent sEðAÞ from [10] is more complicated and will be
recalled in x 5. By results of Falconer and Solomyak in the Euclidean case one still
has a dimension formula which holds in a generic sense. To recall this statement
2x a collection A ¼ fA1; . . . ; AMg as above. For each b ¼ ðb1; . . . ; bMÞ in R

nM , de2ne
an AIFS FðbÞ ¼ ff1; . . . ; fMg on R

n, where fiðxÞ ¼ Aixþ bi, for i ¼ 1; . . . ;M. Let
KðbÞ be the invariant set for FðbÞ.

THEOREM 1.16 (Falconer, Solomyak). Let A and KðbÞ be as above. Then

(i) dimE KðbÞ6 sEðAÞ for all b 2 R
nM ; and

(ii) if kAik < 1
2 for each i, then dimE KðbÞ ¼ minfn; sEðAÞg for a.e. b 2 R

nM .

Falconer proved Theorem 1.16 2rst with 1
2 replaced by 1

3 [10, Proposition 5.1 and
Theorem 5.3]. Solomyak [23, Proposition 3.1] observed that the hypotheses could
be weakened as indicated. The constant 1

2 is sharp for generic statements of this
type, as was observed by Edgar in [8]. See also the proof of Proposition 3.1 in [23].

Each lift of an a7ne map fðxÞ ¼ Axþ b of R2 to the Heisenberg group is an

a7ne map F ðx; tÞ ¼ eAAbðx; tÞ þ ebb, where eAAb is a certain block-lower triangular
matrix de2ned in terms of A and b and ebb ¼ ðb; 
Þ, with 
 an arbitrary real
parameter. See (2.2). For a given b 2 R

2M and an AIFS FðbÞ on R
2, denote by

FHðb; 
Þ the lifted AIFS corresponding to a speci2c choice of 
 2 R
M , and denote

by KHðb; 
Þ its invariant set. Also, denote by essEðb;AÞ the critical exponent for the

family f eAA1;b1 ; . . . ;
eAAM;bMg.

From Theorem 1.16 we immediately deduce that

dimE KHðb; 
Þ6 essEðb;AÞð1:17Þ
for all b and 
 . However, the upper bound in (1.17) is not the correct value for
dimE KHðb; 
Þ. In fact, we will prove the following result.

THEOREM 1.18. Let FðbÞ, with b 2 R
2M , be a planar AIFS and let FHðb; 
Þ,

with 
 2 R
M , be any horizontal lift. Then

(i) dimE KHðb; 
Þ6 essEðAÞ :¼ essEð0;AÞ for all b 2 R
2M and 
 2 R

M ; and
(ii) if kAik < 1

2 for all i, then dimE KHðb; 
Þ ¼ minf3; essEðAÞg for a.e. b 2 R
2M

and 
 2 R
M .

Observe that there is no contradiction between the almost sure results of Theorems
1.18(ii) and 1.16(ii) since the matrices eAAi;bi depend on the auxiliary parameter
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b 2 R
2M . Thus it cannot be guaranteed that the almost sure conclusion in Theorem

1.16 is applicable for any particular choice of the lift KHðb; 
Þ in Theorem 1.18(ii).
To study the Heisenberg dimensions ofKHðb; 
Þ we introduce a Heisenberg critical

exponent essHðAÞ associated with a family A of contractive linear maps of R2. This
quantity di6ers substantially from its Euclidean counterpart and represents a
major conceptual novelty of this paper. We then have the following result.

THEOREM 1.19. Let FðbÞ, with b 2 R
2M , be a planar AIFS and let FHðb; 
Þ,

with 
 2 R
M , be any horizontal lift. Then

(i) dimH KHðb; 
Þ6 essHðAÞ for all b 2 R
2M and 
 2 R

M ; and
(ii) if kAik < 1

2 for each i, then dimH KHðb; 
Þ ¼ minf4; essHðAÞg for almost
every b 2 R

2M and 
 2 R
M .

From the de2nitions of sE , essE and essH it is straightforward to verify that

minf2; sEðAÞg6 minf3; essEðAÞg6 minf4; essHðAÞg:
Furthermore, if 06 sEðAÞ6 1 then sEðAÞ ¼ essEðAÞ ¼ essHðAÞ and if 16 sEðAÞ6 2
then sEðAÞ ¼ essEðAÞ.

In the self-similar case, the critical exponents sEðAÞ, essEðAÞ and essHðAÞ all agree
and are equal to the similarity dimension of A. Denoting this common value by s,
we have

dimEðKðbÞÞ ¼ minf2; sg;
dimEðKHðb; 
ÞÞ ¼ minf3; sg;

and

dimHðKHðb; 
ÞÞ ¼ minf4; sg

for almost every b and 
 . In particular, if s6 2 then

dimE KðbÞ ¼ dimE KHðb; 
Þ ¼ dimH KHðb; 
Þ ¼ sð1:20Þ

for a.e. b and 
 .

Note added in October 2004

Theorems 1.5 and 1.7 state that the map S 7! ðdimE S; dimH SÞ from subsets of
H into R

2 has range contained in the (closed) parallelogram O shown in Figure 1.1,
and that the boundary of this parallelogram is contained in this range. In fact, it
is easy to see that the range of this map coincides with the parallelogram, that is,
for every ð�; �Þ 2 O there exists a set S � H with dimE S ¼ � and dimH S ¼ �.
Indeed, the monotonicity of the functions �þð�Þ and �
ð�Þ ensures that the set

S ¼ S� [ S�

1
þ ð�Þ

has the desired property, where S� and S� are the sets constructed in Theorems
1.5 and 1.7, respectively.

Overview

The structure of this paper is as follows. In x 2 we collect some de2nitions and
recall background material. We also 2x notation which will be in force for the rest
of the paper.
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Section 3 is devoted to the self-similar case. We prove Theorems 1.18 and 1.19
in this special setting 2rst, in preparation for the general case. We also discuss the
open set condition for horizontal lifts, and give the proof of Theorem 1.15.

In x 4 we discuss Gromov’s question on the relationship between dimE and dimH .
The various critical exponents for a general a7ne family and its horizontal lifts

are de2ned and discussed in x 5. Section 6 is devoted to the proofs of Theorems
1.18 and 1.19 in complete generality.

In an appendix, we sketch the proof of an interesting fact from linear algebra
which arises in connection with inequalities between the various critical exponents
associated with a family of contractive linear maps.

2. De�nitions, notation and preliminary results

2.1. A'ne maps on H

We start by recalling the following relation between a7ne maps of H and
Lipschitz horizontal lifts of a7ne maps of R

2. See Proposition 2.2 and Theorem
1.6 of [4]. Let F : R3 ! R

3 be an a7ne map of the form

F ðx; tÞ ¼ ðAxþ taþ b; hd; xi þ ctþ 
Þ;
where A is a real 2 � 2 matrix, a; b; d 2 R

2 and c; 
 2 R. Then F is Lipschitz with
respect to the metric dH if and only if the relations

a ¼ 0; d ¼ 
2ATJb; c ¼ detA

hold. Thus every Lipschitz a7ne map F : H! H may be written as

F ðx; tÞ ¼ eAAb
x
t

� �
þ ebb;ð2:1Þ

where

eAAb ¼
A 0


2ðJbÞTA detA

� �
; ebb ¼ b




� �
;ð2:2Þ

and 
 is a real constant. In particular, F is a horizontal lift of the a7ne map
fðxÞ ¼ Axþ b. Moreover, any Lipschitz horizontal lift of f is necessarily an a7ne
map of the form (2.1). The Lipschitz constant of F as a map of ðH; dHÞ is equal to
the Lipschitz constant of f as a map of ðR2; dEÞ. Furthermore, F is a similarity
with respect to dH if and only if the above relations hold and A 2 COð2Þ is a
conformal matrix. In this case the Lipschitz constant agrees with the operator
norm of the linear part of f.

For example, choose A ¼ rI, with r > 0 (where I denotes the 2 � 2 identity
matrix), and b ¼ 0. The lift of fðxÞ ¼ rx corresponding to 
 ¼ 0 is the Heisenberg
dilation F ðx; tÞ ¼ ðrx; r2tÞ. Similarly, choose A ¼ I and b 2 R

2 arbitrarily. Then
the lift of fðxÞ ¼ xþ b corresponding to 
 2 R is the left translation by ðb; 
Þ:

F ðx; tÞ ¼ ðb; 
Þ�ðx; tÞ ¼ ðxþ b; tþ 
 
 2hJb; xiÞ:

2.2. A'ne iterated function systems

Let X be either R
n, with n ¼ 2; 3, or H. Recall that an a'ne iterated function

system (AIFS) is a 2nite collection F of contracting a7ne maps of X. The
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invariant set for F is the unique non-empty compact set K � X which is fully
invariant under the action of F :

K ¼
[
f2F

fðKÞ:ð2:3Þ

The existence of invariant sets for iterated function systems follows from the
completeness of the space of compact subsets of X with the Hausdor6 metric. See,
for example, [19, 4.13] or [17, Theorem 1.1.4].

It follows from the previous paragraph that, to each planar AIFS

FðbÞ ¼ ff1; . . . ; fMg;

where b ¼ ðb1; . . . ; bMÞ 2 R
2M and fiðxÞ ¼ Aixþ bi, there correspond Heisenberg

AIFSs given by

FHðb; 
Þ ¼ fF1; . . . ; FMg;

where 
 ¼ ð
1; . . . ; 
MÞ 2 R
M ,

Fiðx; tÞ ¼ eAAi;bi

x
t

� �
þ ebbi;ð2:4Þ

and eAAi;bi and
ebbi are given in analogy with (2.2). We call such a system FHðb; 
Þ a

horizontal lift of FðbÞ. Throughout this paper we denote by KðbÞ and KHðb; 
Þ the
invariant sets for FðbÞ and FHðb; 
Þ, respectively. We also call KHðb; 
Þ a
horizontal lift of KðbÞ. The space of all horizontal lifts FHðb; 
Þ of a 2xed AIFS
FðbÞ of cardinality M depends on the M real parameters 
1; . . . ; 
M .

We call an AIFS FðbÞ or Fðb; 
Þ self-similar if the matrices Ai or eAAi;bi are
conformal. Recall that the similarity dimension of A ¼ fA1; . . . ; AMg is the unique
positive solution s to the equation (1.14). From remarks made in the previous
paragraph, it follows that the Heisenberg similarity dimension of the family
f eAA1;b1 ; . . . ;

eAAM;bMg is equal to the same value s, regardless of the choice of b1; . . . ; bM .

2.3. Symbolic dynamics

The dynamical attributes of an iterated function system are encoded via its
representation as a quotient of sequence space. Let A be an alphabet consisting of
the letters 1; . . . ;M. Let Wm ¼ Am, for m> 1, denote the space of words of length
m, and let P ¼ AN denote the space of words of in2nite length, with letters drawn
from A in both cases. We denote elements of these spaces by concatenation of
letters, that is, w ¼ w1w2 . . .wm 2 Wm or w ¼ w1w2 . . . 2 P, where wj 2 A for each
j. Let W ¼

S
m> 1Wm be the collection of all words of 2nite length. For w 2 W we

write Pw for the set of words in P which begin with w; Pw is called the cylinder
set with label w.

Assume now that F ¼ ffigi2A is an IFS in a complete metric space ðX; dÞ with
invariant set K. For each 2nite word w ¼ w1 . . .wm let fw ¼ fw1

� . . . � fwm and
Kw ¼ fwðKÞ. Then K ¼

S
w2Wm

Kw for each m and maxw2Wm
diamKw ! 0 as

m!1. We also de2ne Kw for in2nite words w ¼ w1w2 . . . by setting
Kw ¼

T
m Kw1...wm . In this case Kw consists of a single point in K.

We consider on P the product topology induced by the discrete topology on A

and we de2ne a map p ¼ pF : P! K by setting pðwÞ equal to the unique point in
Kw. Then p is a continuous surjection between compact sets [17, Theorem 1.2.3].
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Observe that

pðwÞ ¼ lim
m!1

fw1...wmðx0Þ; with w ¼ w1w2 . . . 2 P;ð2:5Þ

where x0 is an arbitrarily chosen point in X.

2.4. Hausdor& measure and dimension

Let X ¼ ðX; dÞ be a metric space. For �> 0 we denote by H�
d the �-dimensional

Hausdor& measure on X, de2ned as

H�
d ðAÞ :¼ lim

�&0
inf

X
n

diamðAnÞ�;

where the in2mum is taken over all countable covers of A by sets A1; A2; . . .
satisfying diamAn < �. Then the Hausdor& dimension of A � X is

dimdðAÞ ¼ inff� : H�
d ðAÞ ¼ 0g ¼ supf� : H�

d ðAÞ ¼ 1g:
We will use these concepts only in the cases ðX; dÞ ¼ ðR2; dEÞ, ðX; dÞ ¼ ðR3; dEÞ,
and ðX; dÞ ¼ ðH; dHÞ. We write H�

E and dimE for the Hausdor6 measures and
dimension in R

2 and R
3 and H�

H and dimH for the corresponding objects in H.
Since dE is locally bounded by dH on H ¼ R

3 [5, Lemma 2.1], we have the
absolute continuity relation H�

E  H�
H for the �-Hausdor6 measures on H for any

�> 0 [5, Proposition 3.2(i)]. Thus

dimE A6 dimH Að2:6Þ
for any set A � H.

2.5. The open set condition

An iterated function system F on a complete metric space X is said to satisfy
the open set condition if there exists a bounded open set O � X so that fðOÞ � O
for all f 2 F and fðOÞ \ gðOÞ ¼ ; for all f; g 2 F with f 6¼ g.

The relevance of this condition for the computation of Hausdor6 dimensions
derives from the following result, which was proved by Moran [20] in 1946 and
rediscovered by Hutchinson [16] in the 1980s. The class of self-similar AIFSs was
de2ned in x 2.2.

PROPOSITION 2.7. LetF be a self-similar AIFS in R
n which satis�es the open set

condition. Let K be the invariant set of F . Let A denote the collection of conformal
matrices which arise as the linear parts of elements of F (counted with multiplicity).

Then the Hausdor& dimension of K is equal to the similarity dimension s of A.
Moreover,

0 < Hs
EðKÞ <1:

Schief [22], building on ideas of Bandt and Graf [7], proved the following
(somewhat surprising) converse to Proposition 2.7.

PROPOSITION 2.8. Let F be a self-similar AIFS in R
n whose invariant set K

satis�es Hs
EðKÞ > 0, where A is de�ned as in Proposition 2.7. Then F satis�es the

open set condition.
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3. Self-similar horizontal fractals

In this section, we discuss relations between the Euclidean dimension of a
planar self-similar invariant set and the Heisenberg dimensions of its horizontal
lifts. In particular, we prove Theorem 1.15 on the equality of dimensions in
the presence of the open set condition. The principal theorem of this section
(Theorem 3.9) states that the Heisenberg and Euclidean dimensions agree
generically. It is a special case of Theorems 1.18 and 1.19.

Throughout this section, we assume that F is a self-similar planar AIFS with
invariant set K, and that FH is a horizontal lift of F with invariant set KH .

Since � is a 1-Lipschitz map from ðR3; dEÞ to ðR2; dEÞ and �ðKHÞ ¼ K, we have
the following a priori inequality:

dimE K6 dimE KH 6 dimH KH:ð3:1Þ
Observe that the second inequality follows from (2.6).

The following example shows that we need not always have equality throughout
(3.1). In this example it is the 2rst equality which is strict.

Example 3.2. Fix r 2 ð 12 ; 1=
ffiffiffi
2
p
Þ and let f1ðxÞ ¼ rx and f2ðxÞ ¼ e1 þ rðx
 e1Þ,

where e1 ¼ ð1; 0Þ. The invariant set for F ¼ ff1; f2g is ½0; 1�. The formula in (2.4)
gives the horizontal lifts Fi, for i ¼ 1; 2, as

F1ðx; tÞ ¼ ðrx; r2tþ 
1Þ;
F2ðx; tÞ ¼ ðe1 þ rðx
 e1Þ; r2t
 2rð1
 rÞx2 þ 
2Þ;

where x ¼ ðx1; x2Þ and 
1; 
2 2 R. Choose 
1 ¼ 0 and


2 >
2rð1
 rÞ
1
 2r2

:

It is straightforward to show that the open set U ¼ Bð0; 1Þ � ð0; 2
2Þ satis2es the
open set condition for FH ¼ fF1; F2g. The maps F1 and F2 are similarities of H
with contraction ratio r. By Proposition 3.3 below,

dimH KH ¼
log 2

log 1=r
> 1 ¼ dimE K:

In fact, the Euclidean dimension of KH is also equal to log 2= log 1=r. The proof
of this latter fact requires Falconer’s theory of dimensions of self-a7ne fractals
which will be recalled in x 5.

In the above example we made use of the following proposition, which extends
the Moran--Hutchinson result to the Heisenberg setting.

PROPOSITION 3.3. Let FH be a self-similar Heisenberg AIFS which satis�es
the open set condition. Assume that FH is a lift of F , and de�ne A as in
Proposition 2.7. Then the Heisenberg dimension of KH is equal to the similarity
dimension of A.

Kigami [17, Proposition 1.5.8] gave a new proof of the theorem of Moran and
Hutchinson. His proof extends to the Heisenberg setting, as we now demonstrate.

Kigami’s proof uses the following more general result, which is Theorem 1.5.7
of [17].
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THEOREM 3.4. Let F ¼ ff1; . . . ; fMg be an iterated function system in a
complete metric space X. Let K be the invariant set of F . Assume that there exist
r1; . . . ; rM 2 ð0; 1Þ and positive constants C1, C2, L and r0 so that the following
two conditions hold:

(i) diamfwðKÞ6C1rw for each w 2 W , and
(ii) for any p 2 K and any 0 < r6 r0, the number of words w ¼ w1 . . .wm 2W

satisfying the conditions

rw1
. . . rwm
1 > r> rw :¼ rw1

. . . rwmð3:5Þ
and

distðp; fwðKÞÞ6C2rð3:6Þ

is at most L, independent of p and r.
Then the Hausdor& dimension of K is given by the unique positive solution s to
the equation XM

i¼1
rsi ¼ 1:ð3:7Þ

Moreover, 0 < HsðKÞ <1.

Proof of Proposition 3.3. We verify the assumptions of Theorem 3.4 with ri
equal to the Lipschitz constant of Fi 2 FH . Let rmin be the minimum of the ri.

Let U be a bounded open set in H which satis2es the open set condition for FH .
Without loss of generality we may assume that diamHU ¼ 1; since KH � U by
Exercise 1.2 of [17], we conclude that diamHKH 6 1.

By the choice of ri, diamHFwðKHÞ6 rw for all words w. This establishes
Theorem 3.4(i) with C1 ¼ 1.

Next 2x p ¼ ðx; tÞ 2 KH and 0 < r6 1, and consider a word w satisfying (3.5)
and (3.6) with C2 ¼ 1. Then FwðUÞ � BHðp; 2rÞ, where BHðp; rÞ denotes the ball
in the Heisenberg metric about p of radius r. Since the sets FwðUÞ are pairwise
disjoint for such words w,X

w

jFwðUÞj6 jBHðp; 2rÞj ¼ 16r4jBHð0; 1Þj;

where the sum is taken over all words w satisfying (3.5) and (3.6). Here jUj
denotes the three-dimensional Lebesgue measure of a set U � H. From (3.5) we
see that jFwðUÞj> r4minr

4jUj and so the number of words w is bounded by

L :¼ 16jBHð0; 1Þj
r4minjU j

: �

�Since the open set condition passes to horizontal lifts (see Proposition 3.14 of
[4]), we may record the following corollary to Proposition 3.3, stated earlier as
Theorem 1.15.

COROLLARY 3.8. Let F be a self-similar planar AIFS which satis�es the open
set condition and let FH be a horizontal lift of F . Then

dimE K ¼ dimE KH ¼ dimH KH ¼ s;
where s denotes the similarity dimension for the associated family of conformal
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matrices. Moreover,

0 < Hs
EðKÞ6Hs

EðKHÞ and Hs
HðKHÞ <1:

Generic equality of dimensions for self-similar fractals

In this subsection, we show that equality holds throughout (3.1) in a generic
sense even in the absence of the open set condition.

Consider a family A ¼ fA1; . . . ; AMg of 2 � 2 conformal matrices. For each
b ¼ ðb1; . . . ; bMÞ 2 R

2M , consider the AIFS FðbÞ ¼ ff1; . . . ; fMg, where fiðxÞ ¼
Aixþ bi, for i ¼ 1; . . . ;M. We view the matrices A1; . . . ; AM as 2xed and bi; . . . ; bM
as varying.

The following theorem gives an upper bound for the Hausdor6 dimensions of
self-similar lifts. In conjunction with Theorem 1.16, it implies the generic equality
of Heisenberg and Euclidean dimensions.

THEOREM 3.9. Let FðbÞ be a self-similar planar AIFS as above, and let
FHðb; 
Þ, with 
 2 R

M , be any horizontal lift. Then

Hs
HðKHðb; 
ÞÞ <1;

where s is the similarity dimension of A. In particular,

dimH KHðb; 
Þ6 s:

COROLLARY 3.10. If kAik < 1
2 for each i and s6 2, then

dimE KðbÞ ¼ dimE KHðb; 
Þ ¼ dimH KHðb; 
Þ ¼ s
for a.e. b 2 R

2M and all 
 2 R
M .

Proof of Theorem 3.9. Without loss of generality assume that the Heisenberg
diameter of KHðbÞ is 1.

Since FðbÞ consists of similarities of R
2, FHðb; 
Þ consists of similarities of H.

The value ri :¼ kAik is the common contraction ratio for fi 2 FðbÞ and its lift
Fi 2 FHðb; 
Þ. Denote by rmax < 1 the maximum of the ri.

Given � > 0, choose m so that rmmax < �. The sets Aw :¼ FwðKHðb; 
ÞÞ, with
w 2 Wm, cover KHðb; 
Þ and diamH Aw ¼ rw < �. Thus

Hs
H;�ðKHðb; 
ÞÞ6

X
w2Wm

ðdiamHAwÞs

¼
X
w2Wm

rsw ¼
�XM

i¼1
rsi

�m

¼ 1:

Hence Hs
HðKHðb; 
ÞÞ6 1 and dimH KHðb; 
Þ6 s. �

Remark 3.11. The theory developed by Falconer in [10] and recalled in x 5
applies to self-a7ne systems in arbitrary Euclidean spaces R

n. Each self-similar
AIFS in R

2 lifts to self-similar AIFSs in ðH; dHÞ which are not self-similar when
viewed as AIFSs on ðR3; dEÞ. It is an interesting exercise to use Theorem 1.16 to
verify that the Euclidean dimension of the lifted fractal agrees with the similarity
dimension in this case.
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4. Comparison of Euclidean and Heisenberg dimensions

In this section we discuss the application of Theorem 1.10 to the problem of
Gromov. In particular, we will prove Theorem 1.7, whose statement we now recall.

THEOREM 4.1. For each � 2 ½0; 3� there exists S� � H with

H�
EðS�Þ > 0 and Hmaxf�;2�
2g

H ðS�Þ <1:

Let us also recall that relevant examples for the cases 06� < 2 and � ¼ 3 of
Theorem 4.1 were previously given by Balogh, Rickly and Serra-Cassano [5].

Proof of Theorem 4.1. By Theorem 1.10, each horizontal lift QH of the unit
square serves as the desired example S2 in Theorem 4.1 in the case � ¼ 2. Indeed
H2
HðS2Þ <1 while H2

EðS2Þ>H2
EðQÞ ¼ 1.

To treat the case 2 < � < 3, we construct certain product-type sets over QH . Let
p ¼ �
 2 and consider a Cantor set Cp in the t-axis with 0 < Hp

EðCpÞ <1 and
0 < H2p

H ðCpÞ <1. The construction of such a set is standard; see, for example, [3,
p. 300] or [5, x 4]. To wit, choosing s ¼ 2
1=p we view Cp as the invariant set associated
with the system GH ¼ fG1; G2g, where G1 and G2 are the

ffiffiffi
s
p

-Lipschitz maps of
ðH; dHÞ de2ned by G1ðx; tÞ ¼ ð

ffiffiffi
s
p

x; stÞ and G2ðx; tÞ ¼ ð
ffiffiffi
s
p

x; 1þ sðt
 1ÞÞ.
The set S� is de2ned as the following product of QH with Cp:

S� :¼ fðx; tþ t 0Þ : ðx; tÞ 2 QH; ð0; t 0Þ 2 Cpg:

The estimate H�
EðS�Þ ¼ H2þp

E ðS�Þ > 0 is a consequence of the Euclidean product
structure of S�, as follows. For x 2 Q de2ne

tx ¼ maxft : ðx; tÞ 2 QHg
and Q : Q � Cp ! S� by

Qðx; ð0; tÞÞ ¼ ðx; tx þ tÞ:
The map Q is an expanding (1-co-Lipschitz) embedding of Q � Cp into S�. Thus
it su7ces to show that

H�
EðQ � CpÞ ¼ H2þp

E ðQ � CpÞ > 0:

This follows from [19, Theorem 8.10], since H2
EðQÞ ¼ 1 and Hp

EðCpÞ > 0.
To show the estimate H2�
2

H ðS�Þ ¼ H2þ2p
H ðS�Þ <1 we use the obvious covering

of S� by similarity images of Q and Cp. Fix � > 0 and choose

m >
1

4
þ 1

2p
þ log 1=�

log 2
:

Set n ¼ ½2pm�, where ½x� denotes the greatest integer less than or equal to x, and
consider the covering of S� with the sets

Svw :¼ fðx; tþ t 0Þ : ðx; tÞ 2 FwðQHÞ; ð0; t 0Þ 2 GvðCpÞg;

where w and v range over the sets Wm ¼ f1; 2; 3; 4gm and Vn ¼ f1; 2gn respectively.
To estimate diamHðSvwÞ, choose ðx; tþ t 0Þ and ðexx; ettþ ett 0Þ in Svw with

diamHðSvwÞ ¼ dHððx; tþ t 0Þ; ðexx;ettþ ett 0ÞÞ
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and compute

diamHðSvwÞ4 ¼ jexx
 xj4 þ ðett
 tþ ett 0 
 t 0 
 2hx; JexxiÞ2
6 2ðjexx
 xj4 þ ðett
 t
 2hx; JexxiÞ2 þ ðett 0 
 t 0Þ2Þ
6 2ðð12Þ

4m þ �2nÞ < �4:

Thus

H2þ2p
H;� ðS�Þ6

X
w2Wm

X
v2Vn

diamHðSvwÞ2þ2p

6 21=4 � 4m � 2n � ðð12Þ
4m þ �2nÞð1þpÞ=2

6CðpÞ22mð1þpÞðð12Þ
2mð1þpÞ þ �2mð1þpÞpÞ ¼ 2CðpÞ <1

as desired. �

5. Self-a'ne horizontal fractals: part I

In this section, we collect some preliminary material on the Euclidean and
Heisenberg critical exponents for a family of linear maps, and Hausdor6-type
measures on sequence space de2ned using these quantities. We also give an example
of a Heisenberg AIFS whose dimension can be estimated using our theorems.

5.1. Singular value functions and critical exponents

Let n> 2 be an integer. For a contracting linear map A : Rn ! R
n denote by

1 > �1 > . . . >�n > 0 the singular values of A, de2ned as the lengths of the
principal semi-axes of the ellipsoid AðBnð0; 1ÞÞ, or equivalently as the positive
square roots of the eigenvalues of ATA. The singular value function ’sðAÞ is
de2ned for s> 0 as

’sðAÞ ¼ �1�2 . . .�m
1�
s
mþ1
m ; for 0 < s6n;ð5:1Þ

where m is the integer such that m
 1 < s6m, ’0ðAÞ ¼ 1, and

’sðAÞ ¼ ð�1 . . .�nÞs=n; for s > n:

Given a collection A ¼ fA1; . . . ; AMg of linear maps in R
n, de2ne the critical

exponent sEðAÞ as the unique non-negative solution s to the equation

lim
m!1

� X
w2Wm

’sðAwÞ
�1=m

¼ 1;ð5:2Þ

where Aw ¼ Aw1
. . .Awm and w ¼ w1 . . .wm 2Wm :¼ f1; . . . ;Mgm. This critical

exponent is the value which appears in the theorem of Falconer and Solomyak
from the introduction. If each element of A is conformal, sEðAÞ is equal to the
similarity dimension of A.

Recall that each horizontal lift of a planar a7ne map fðxÞ ¼ Axþ b is an a7ne
map F ðx; tÞ ¼ eAAbðx; tÞ þ ebb, where eAAb and ebb ¼ ðb; 
Þ, with 
 2 R, are de2ned in
(2.2). For 2xed b 2 R

2M and a planar AIFS FðbÞ, we denote by FHðb; 
Þ the lifted

IFS corresponding to a speci2c choice of 
 2 R
M and by KHðb; 
Þ its invariant set.

Also, denote by essEðb;AÞ the critical exponent for the family f eAA1;b1 ; . . . ;
eAAM;bMg, as

de2ned above, and abbreviate essEðAÞ :¼ essEð0;AÞ.
We now recall the statement of Theorem 1.18 from the introduction.
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THEOREM 5.3. Let FðbÞ, with b 2 R
2M , be an IFS of a'ne maps in R

2 and let
FHðb; 
Þ, with 
 2 R

M , be any horizontal lift to H as above. Then
(i) dimE KHðb; 
Þ6 essEðAÞ for all b 2 R

2M and 
 2 R
M ; and

(ii) if kAik < 1
2 for all i, then dimE KHðb; 
Þ ¼ minf3; essEðAÞg for a.e. b 2 R

2M

and 
 2 R
M .

If �1 and �2 are the singular values of A then the singular values of the 3 � 3
matrix eAA0 are �1, �2 and �1�2, as can easily be seen from (2.2). It follows thatessEðAÞ is the unique non-negative solution s to the equation

lim
m!1

� X
w2Wm

e’’sðAwÞ
�1=m

¼ 1;ð5:4Þ

where e’’s is the modi2ed singular value function

e’’sðAÞ ¼
�s1 if 0 < s6 1;

�1�
s
1
2 if 1 < s6 2;

�s
11 �s
12 if 2 < s6 3;

�
2s=3
1 �

2s=3
2 if 3 < s;

8>>><
>>>:ð5:5Þ

and e’’0ðAÞ ¼ 1. Note that ’s ¼ e’’s for 06 s6 2.
For essEðAÞ6 3, the estimate

essEðAÞ6 essEðb;AÞ;ð5:6Þ

clearly follows from (1.17) and Theorem 5.3(ii) for a.e. b 2 R
2M . In fact, (5.6)

holds without restriction. This is a purely linear algebraic fact which can be
proved by adapting a theorem of Golub [14] on singular values of rank 1
perturbations of diagonal matrices. See the appendix for details.

Next, for a contracting linear map A of R2 with singular values 1 > �1 >�2 > 0,
de2ne the Heisenberg singular value function  sðAÞ, for 06 s6 4, as

 sðAÞ ¼
�s1 if 0 < s6 1;

�
ðsþ1Þ=2
1 �

ðs
1Þ=2
2 if 1 < s6 3;

�2
1�

s
2
2 if 3 < s6 4;

8<
:ð5:7Þ

and  0ðAÞ ¼ 1. Note that ’s ¼  s for 06 s6 1 and e’’s6 s for all 06 s6 3.
Given a family of linear maps A ¼ fA1; . . . ; AMg on R

2, we de2ne the Heisenberg
critical exponent essHðAÞ as the unique non-negative solution s to the equation

lim
m!1

� X
w2Wm

 sðAwÞ
�1=m

¼ 1:ð5:8Þ

We now restate Theorem 1.19 from the introduction.

THEOREM 5.9. Let FðbÞ, with b 2 R
2M , be an IFS of a'ne maps in R

2 and let
FHðb; 
Þ, with 
 2 R

M , be any horizontal lift to H as above. Then
(i) dimH KHðb; 
Þ6 essHðAÞ for all b 2 R

2M and 
 2 R
M ; and

(ii) if kAik < 1
2 for each i, then dimH KHðb; 
Þ ¼ minf4; essHðAÞg for a.e. b 2 R

2M

and 
 2 R
M .
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The singular value functions de2ned in (5.1) and (5.7)may be interpreted as follows.
In theEuclidean case, the image of a cubeQ of side length 1 inRn underA is a rectilinear
parallelepiped with sides of length �1; . . . ; �n. In the singular value function

’sðAÞ ¼ �1

�m
. . .

�m
1
�m
� �sm;

the term ð�1=�mÞ . . . ð�m
1=�mÞ counts (roughly) the number of cubes Q 0 of side
length �m needed to cover AðQÞ, while the term �sm represents the sth power of
the diameter of such a cube Q 0.

In the Heisenberg case, the image of Q � R
3 ¼ H under a lift eAA of A is a

(skewed) parallelepiped, whose base is a rectangle with sides of length �1 and �2

and which has Euclidean height �1�2 and Heisenberg height
ffiffiffiffiffiffiffiffiffiffi
�1�2
p

. Then, in the
singular value function

 sðAÞ ¼

1 � �s1 if 0 < s6 1;
�1ffiffiffiffiffiffiffiffiffiffi
�1�2
p ð ffiffiffiffiffiffiffiffiffiffi

�1�2
p Þs if 1 < s6 3;


�1

�2

�2
�s2 if 3 < s6 4;

8>>>><
>>>>:

the terms 1, �1=
ffiffiffiffiffiffiffiffiffiffi
�1�2
p

and ð�1=�2Þ2 count the number of Heisenberg cubes Q 0 of
the appropriate size needed to cover eAAðQÞ, while the 2nal term �s1, ð

ffiffiffiffiffiffiffiffiffiffi
�1�2
p Þs, or

�s2 represents the sth power of the (Heisenberg) diameter of such a cube Q 0.

5.2. Measures of Hausdor& type on P

Fix s> 0. Following Falconer [10, x 4], we de2ne certain measures of Hausdor6
type on symbolic space P. A collection R of 2nite words is called a partition of P
if P is the disjoint union of the cylinder sets Pw, with w 2 R.

Let A be a 2nite collection of linear maps in R
n, with n ¼ 2; 3. For m 2 N and

S � P let

Ms
E;mðSÞ :¼ inf

R

X
w2R

S\Pw 6¼;

’sðAwÞ;

where the in2mum is taken over all partitions R of P with words of length at least
m. Next, let

Ms
EðSÞ ¼ lim

m!1
Ms

E;mðSÞ:

Then Ms
E is an outer measure on P. The Borel subsets of P are Ms

E-measurable,
so Ms

E restricts to a Borel measure on P. The technical term for Ms
E is the

Method II measure constructed from the premeasure 
ðPwÞ ¼ ’sðAwÞ on the net
fPw : w 2 Wg. See Rogers [21] for the relevant de2nitions and vocabulary.

In a similar manner, we de2ne fMM s
H;m and fMM s

H by replacing ’s in the above
equation with  s. Then fMM s

H is again a Method II Borel net measure on P.
By Proposition 4.1 of [10], the Euclidean critical exponent sEðAÞ de2ned via

(5.2) is also equal to

inffs :Ms
EðPÞ ¼ 0g ¼ supfs :Ms

EðPÞ ¼ 1g:

In a similar manner, we show the following result.
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PROPOSITION 5.10. The Heisenberg critical exponent essHðAÞ de�ned via (5.8)
is equal to

inffs : fMM s
HðPÞ ¼ 0g ¼ supfs : fMM s

HðPÞ ¼ 1g:

The proof is completely analogous to the proof of [10, Proposition 4.1] and will
be omitted. The relevant features of the singular value function  s which are
necessary for the proof are:

(i)  sðAwÞ is submultiplicative in w:  sðAww 0 Þ6 sðAwÞ sðAw 0 Þ,
(ii)  sðAwÞ is decreasing in s.

These properties are easily proved using the de2nition of  s.
The following technical result on Method II net measures will be used in the proof

of Theorem 1.19. The case 6 ¼Ms
E, 
ðPwÞ ¼ ’sðAwÞ is Lemma 4.2 in [10], but the

result holds for any Method II net measure 6 on P satisfying the assumptions. In
particular, it holds for 6 ¼ fMM s

H , 
ðPwÞ ¼  sðAwÞ. Compare Theorem 54 of [21].

LEMMA 5.11. Let 6 ¼ sup�>0 6� be a non-atomic Method II net measure on P
of in�nite total mass, de�ned from a �nite premeasure 
 on the cylinder sets
fPw : w 2 Wg. Assume that 6�ðCjÞ ! 0 as j!1 for every � > 0 and every
sequence C1 & C2 & . . . of compact subsets of P with 6ð

T
j CjÞ ¼ 0.

Then there exists a compact subset C0 � P so that 0 < 6ðC0Þ <1 and there
exists a constant C <1 so that

6ðC0 \ PwÞ6C
ðPwÞð5:12Þ
for all w 2 W .

The following example shows that the second inequality in (3.1) can be strict
for self-a7ne fractals.

Example 5.13. Fix integers n> p> 2 and consider the planar AIFS
F ¼ ff11; . . . ; fnpg, where fijðx1; x2Þ ¼ ððx1 þ iÞ=n; ðx2 þ jÞ=pÞ, for i ¼ 1; . . . ; n and
j ¼ 1; . . . ; p. The invariant set for F is the unit square Q ¼ ½0; 1�2, viewed as the self-
a7ne set obtained by gluing together np rectangles with sides of length 1=n and
1=p. In this case

Aij ¼
1=n 0
0 1=p

� �
and bij ¼

i=n
j=p

� �
:

For w 2Wm ¼ f1; . . . ; npgm, the singular values of Aw are p
m and n
m. Then

lim
m!1

� X
w2Wm

 sðAwÞ
�1=m

¼
np1
s if 06 s6 1;

nð3
sÞ=2pð1
sÞ=2 if 16 s6 3;

n3
sp
1 if 36 s6 4:

8<
:

Thus

dimH KHð
Þ6 essHðAÞ ¼ 1þ 2 logn

logðnpÞ
for any Heisenberg lift FHð
Þ of F . Note that essHðAÞ ¼ 2 only in the self-similar
case n ¼ p.

From (5.5) it easily follows that essEðAÞ ¼ sEðAÞ ¼ 2. Thus

dimE KHð
Þ ¼ 2

for all 
 .
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Remark 5.14. In a subsequent paper [11], Falconer derived lower bounds
for dimE KðbÞ which hold for every b. Let s
 ¼ s
ðA1; . . . ; AMÞ be the unique
non-negative solution to the equation

lim
m!1

� X
w2Wm

’sðA
1w Þ
1
�1=m

¼ 1:ð5:15Þ

Then [11, Proposition 2] reads as follows.

PROPOSITION 5.16. If F satis�es the disjointness condition

fiðKðbÞÞ \ fjðKðbÞÞ ¼ ; for every i 6¼ j;
then

dimE KðbÞ> s
:ð5:17Þ

Note that the open set condition does not su7ce to imply (5.17); see [11, Example
2] for an example of an AIFS F in R

2 such that s
 > 0 but KðbÞ is a single point.
The claim regarding the Euclidean dimension of the horizontal lift in Example

3.2 may be proved using Proposition 5.16.

6. Self-a'ne horizontal fractals: part II

In this section, we give the proofs of Theorems 1.18 and 1.19. To simplify the
exposition, we will present the proofs of the 2rst parts of both theorems together,
followed by the proofs of the second parts. In each case, we present in detail the
proof for the Heisenberg dimension (Theorem 1.19) and only sketch how this proof
should be modi2ed for the Euclidean dimension (Theorem 1.18).

Proof of Theorem 1.19(i). Fix b 2 R
2M , 
 2 R

M and s > essHðAÞ. We will show
that

Hs
HðKHðb; 
ÞÞ6C fMM s

HðPÞð6:1Þ
for some absolute constant C. Since fMMs

HðPÞ ¼ 0 by Proposition 5.10, this su7ces
to complete the proof.

Let 0 < � < 1 be so that

dHðFiðpÞ; FiðqÞÞ < �dHðp; qÞ
for p; q 2 H and i ¼ 1; . . . ;M. Let B ¼ BHð0; RÞ � H be a Heisenberg ball
centered at the origin of radius R, chosen so large that FiðBÞ � B for all i.
Given � > 0, choose m so large that �m < �.

Let R be an arbitrary partition of P by words of length at least m. By the
choice of m, diamHFwðBÞ < � for all w 2 R. For each w 2 R, we may write

Fwðx; tÞ ¼ eAAw;bwðx; tÞ þ ebbw, where eAAw;bw and ebbw are given by the formulas in (2.2).
If we denote by �i;1 >�i;2 the singular values of Ai, for i ¼ 1; . . . ;M, then the
singular values of Aw are �w;1 >�w;2, where

�w;j6
Ym
i¼1

�wi;j6�m

for any word w of length m.
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In what follows we 2x a word w and write �j ¼ �w;j, for j ¼ 1; 2. Let Qw be a
rectangle containing �ðFwðBÞÞ ¼ fwð�ðBÞÞ with sides of length 3R�1 and 3R�2.
Observe that bw ¼ fwð0Þ 2 Qw. Then FwðBÞ � eQQw, where

eQQw ¼ fðx; tÞ : x 2 Qw; jtþ 2hx; Jbwi 
 
wj < R2�1�2g

is a parallelepiped with base Qw 2 R
2 and (Euclidean) height 2R2�1�2.

If ðx; tÞ and ðx 0; t 0Þ are elements of eQQw, then

jx 0 
 xj6 diamQw6 3
ffiffiffi
2
p

R�1ð6:2Þ

and

jt 0 
 t
 2hx; Jx 0ij6 2R2�1�2 þ 2jhx 0 
 x; Jðbw 
 xÞij:ð6:3Þ

We distinguish three cases according to the value of s.
Case 1: 06 s6 1. From (6.2) we have jx
 x 0j6CR�1. Since bw 2 Qw we obtain

likewise that jbw 
 xj6CR�1. Using (6.3) we deduce that

jt 0 
 t
 2hx; Jx 0ij6CR2�2
1:

Using this and (6.2) in (1.2) we obtain

diamH
eQQw6CR�1:

The sets eQQw, with w 2 R, cover KHðb; 
Þ and we obtain

Hs
H;CR�ðKHðb; 
ÞÞ6CðR; sÞ

X
w2R

�s1 ¼ CðR; sÞ
X
w2R

 sðAwÞ

by the choice of m.
Observe that in this estimate the dependence of b does not appear at all; this

will also happen in the other cases.
Case 2: 16 s6 3. In this case we divide eQQw into at most K :¼ 2�1=

ffiffiffiffiffiffiffiffiffiffi
�1�2
p

smaller parallelepipeds ePPj whose base is a rectangle Pj in R
2 with sides of length

3R
ffiffiffiffiffiffiffiffiffiffi
�1�2
p

and 3R�2 and whose (Euclidean) height is still 2R2�1�2.
Our task is to estimate the Heisenberg diameter of such a parallelepiped ePPj. Let

ðx; tÞ and ðx 0; t 0Þ be elements of ePPj. Then

jx 0 
 xj6 3
ffiffiffi
2
p

R
ffiffiffiffiffiffiffiffiffiffi
�1�2

p

and (by (6.3))

jt 0 
 t
 2hx; Jx 0ij6 2R2�1�2 þ 2jhx 0 
 x; Jðbw 
 xÞij:

The expression jhx 0 
 x; Jðbw 
 xÞij equals twice the area of the planar triangle
with vertices x 0, x, bw which lies in Qw. This yields

jhx 0 
 x; Jðbw 
 xÞij6 2�1�2;

and so we have

diamH
ePPj6CR

ffiffiffiffiffiffiffiffiffiffi
�1�2
p

using (1.2).
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The sets ePPj, for j ¼ 1; . . . ; K, associated with each eQQw, where w 2 R, cover
KHðb; 
Þ and we obtain

Hs
H;CR�ðKHðb; 
ÞÞ6CðR; sÞ

X
w2R

XK
j¼1
ð ffiffiffiffiffiffiffiffiffiffi
�1�2
p Þs6CðR; sÞ

X
w2R

 sðAwÞ

by the choices of m and K.
Case 3: 36 s6 4. As in the previous case we begin by dividing eQQw into at most

N :¼ 2�1=�2 smaller parallelepipeds ePPjwhose base is a squarePj inR
2 with side length

3R�2 and whose (Euclidean) height is at most 40R2�1�2. Explicitly, let cwj be the
center of the square Pj and let ePPj be the set of points ðx; tÞ 2 eQQw for which x 2 Pj and

jtþ 2hx
 bw; Jcwji 
 
wj < 40R2�1�2:ð6:4Þ
Observe that

eQQw �
[N
j¼1

ePPj:

Indeed, ðx; tÞ 2 eQQw and x 2 Pj imply that

jtþ 2hx
 bw; Jcwji 
 
wj6 jtþ 2hx; Jbwi 
 
wj þ 2jhx
 bw; Jðcwj 
 xÞij
6R2�1�2 þ 2ð3

ffiffiffi
2
p

R�1Þð3
ffiffiffi
2
p

R�2Þ
< 40R2�1�2:

Next we show that we can cover ePPj by at most 2N Heisenberg balls of the form
BHðpjk; CR�2Þ with centers

pjk ¼ ðcwj; tjkÞ;
where

tjk ¼ 
w þ 2hbw; Jcwji þ 20kR2�2
2;ð6:5Þ

for k ¼ 
N; . . . ; N. Indeed, if ðx; tÞ 2 ePPj then x 2 Pj and so jx
 cwjj6CR�2. By
(6.4) there exists an integer k 2 ½
N;N � such that

20 � ðk
 1ÞR2�2
2 6 tþ 2hx
 bw; Jwji 
 
w6 20 � kR2�2

2:

Using (6.5) this implies that for large enough C > 0 we have

jt
 tjk þ 2hx
 cwj; Jcwjij6CR2�2
2

and so

jt
 tjk þ 2hx; Jcwjij6CR2�2
2:

From (1.2) we deduce that

dHððx; tÞ; ðcwj; tjkÞÞ6CR�2;

as required.
The balls BHðpjk; CR�2Þ, for j ¼ 1; . . . ; N and k ¼ 
N; . . . ; N , associated with

each eQQw, with w 2 R, cover KHðb; 
Þ and we obtain

Hs
H;CR�ðKHðb; 
ÞÞ6CðR; sÞ

X
w2R

XN
j¼1

XN
k¼
N

�s2

6CðR; sÞ
X
w2R

 sðAwÞ

by the choices of m and N .
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In all cases, we have shown that

Hs
H;CR�ðKHðb; 
ÞÞ6CðR; sÞ

X
w2R

 sðAwÞ:

Taking the in2mum over partitions R followed by the limit as m!1 yields
(6.1). This completes the proof of Theorem 1.19(i). �

Proof of Theorem 1.18(i). For this only a few modi2cations need to be made
in the above reasoning. In Case 1, the Euclidean diameter of eQQw is at most CR�1

and so

Hs
E;CR�ðKHðb; 
ÞÞ6CðR; sÞ

X
w2R

�s1 6CðR; sÞ
X
w2R

’sð eAAw;bwÞ:

Case 2 must be split into two subcases: either 16 s6 2 or 26 s6 3. In the
former case we divide eQQw into at most N ¼ 2�1=�2 parallelepipeds whose base is a
square of side length 3R�2 and estimate

Hs
E;CR�ðKHðb; 
ÞÞ6CðR; sÞ

X
w2R

XN
j¼1

�s2 6CðR; sÞ
X
w2R

’sð eAAw;bwÞ:

In the latter case we divide eQQw into at most P ¼ 2=�1�2 parallelepipeds whose
base is a square of side length 3R�1�2 and estimate

Hs
E;CR�ðKHðb; 
ÞÞ6CðR; sÞ

X
w2R

XP
j¼1
ð�1�2Þs6CðR; sÞ

X
w2R

’sð eAAw;bwÞ:

As before, these estimates su7ce to complete the proof of Theorem 1.18(i). �

As is typical with problems involving the computation of Hausdor6 dimension,
obtaining lower bounds is more di7cult. Following the technique employed by
Falconer in the Euclidean case (Theorem 1.16), we use potential-theoretic
arguments to obtain almost sure lower bounds.

We begin with a simple lemma which provides a geometric interpretation of the
Heisenberg singular value function. Compare Lemma 2.2 of [10].

LEMMA 6.6. Let 0 < s < 4, with s 6¼ 1; 3. For each R > 0 there exists a
constant C depending only on R and s so thatð

BH ð0;RÞ

dp

j eAAbðpÞjsH
6

C

 sðAÞ ;ð6:7Þ

where, for p 2 H, BHðp; rÞ denotes the ball in the Heisenberg metric dH of radius r
and jpjH ¼ dHðp; 0Þ.

In the proof of Lemma 6.6 the following fact (whose proof is an easy exercise)
will be used several times.

LEMMA 6.8. Let F : R! R be an even function which is decreasing for 
 > 0.
Let c 2 R and h > 0. Then

Ð cþh
c
h F ð
Þ d
 6

Ð h

h F ð
Þ d
 .

PLMS 1520---7/6/2005---SRUMBAL---131826

ZOLT�AAN M. BALOGH AND JEREMY T. TYSON174



Proof of Lemma 6.6. From the expression for eAAb in (2.2) we observe that the
integrand in (6.7) equals

ðjAxj4 þ ðt detA
 2hAx; JbiÞ2Þ
s=4;ð6:9Þ
where p ¼ ðx; tÞ. Choose coordinates in R

2 so that jAxj2 ¼ �2
1x

2
1 þ �2

2x
2
2. Writing

b ¼ ðp; qÞ in these coordinates, we express (6.9) in the form

ðð�2
1x

2
1 þ �2

2x
2
2Þ2 þ ð�1�2tþ 2�1x1q 
 2�2x2pÞ2Þ
s=4:

Make the change of variables yi ¼ �ixi=R, for i ¼ 1; 2, and


 ¼ �1�2tþ 2�1x1q 
 2�2x2p

R2

in the integral in (6.7) to obtain

R4
s

�2
1�

2
2

ð
E

ð
Iy

d
 dy

ðjyj4 þ 
2Þs=4
;ð6:10Þ

where E ¼ fy : ðy1=�1Þ2 þ ðy2=�2Þ2 < 1g,
Iy ¼ f
 : j
 þ uy2 
 vy1j < �1�2g

and ðu; vÞ ¼ ð2=RÞðp; qÞ.
As before we distinguish three cases according to the value of s.
Case 1: 0 < s < 1. The integral in (6.10) may be estimated from above by

CðR; sÞ
�2
1�

2
2

ð�2Þð�1�2Þ
ð�1

0

dy1
ys1
¼ CðR; sÞ

 sðAÞ :

Case 2: 1 < s < 3. The region of integration in (6.10) may be written asS
y2E Iy ¼ P1 [ P2, where

P1 ¼
�
ðy; 
Þ 2

[
y2E

Iy : y
4
1 þ ð
 þ uy2 
 vy1Þ2 6 2�2

1�
2
2

�

and

P2 ¼
�
ðy; 
Þ 2

[
y2E

Iy : y1 >
ffiffiffiffiffiffiffiffiffiffi
�1�2
p

�
:

Write the integral in (6.10) in the form ðR4
s�
21 �
22 ÞðI1 þ I2Þ, where

Ij ¼
ð
Pj

ðjyj4 þ 
2Þ
s=4 dy d
 for j ¼ 1; 2:

For the 2rst term, we use Lemma 6.8 to estimate

I1 6

ð2 ffiffiffiffiffiffiffiffi
�1�2
p


2 ffiffiffiffiffiffiffiffi
�1�2
p dy1

ð�2


�2

dy2

ð�1�2


�1�2

d
 ðy41 þ 
2Þ
s=4

6C�2

ð2 ffiffiffiffiffiffiffiffi
�1�2
p

0
dy1

ð�1�2

0
d
 ðy41 þ 
2Þ
s=4:

(Note that jy1j6 2
ffiffiffiffiffiffiffiffiffiffi
�1�2
p

for any ðy; 
Þ 2 P1.)
Making the Heisenberg change of variables y1 ¼ r

ffiffiffiffiffiffiffiffiffiffi
cos>
p

, 
 ¼ r2 sin> (cf. the
polar coordinates in [6]) we 2nd that

I1 6C�2

ð2 ffiffiffiffiffiffiffiffi
�1�2
p

0
r2
s dr ¼ C�ð3
sÞ=21 �

ð5
sÞ=2
2 :
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Similarly, we obtain the estimate

I2 6C�2ð�1�2Þ
ð1ffiffiffiffiffiffiffiffi

�1�2
p y
s1 dy1 ¼ C�

ð3
sÞ=2
1 �

ð5
sÞ=2
2 :

Returning to (6.10) we see that

R4
s

�2
1�

2
2

ð
E

ð
Iy

d
 dy

ðjyj4 þ 
2Þs=4
6
CðR; sÞ
 sðAÞ

as desired.
Case 3: 3 < s < 4. This is similar to the previous case. We write

S
y2E Iy ¼

P1 [ P2, where

P1 ¼
�
ðy; 
Þ 2

[
y2E

Iy : jyj4 þ ð
 þ uy2 
 vy1Þ2 6 4�4
2

�

and

P2 ¼
�
ðy; 
Þ 2

[
y2E

Iy : y
4
1 þ ð
 þ uy2 
 vy1Þ2 > �4

2

�
;

and decompose the integral in (6.10) as before into I1 and I2 terms. In this case,
another application of Lemma 6.8 gives

I1 6

ð2�2


2�2

dy1

ð2�2


2�2

dy2

ð2�2


2�2

d
 ðjyj4 þ 
2Þ
s=4;

and making the change of variables for integration in Heisenberg polar coordinates
y1 ¼ r

ffiffiffiffiffiffiffiffiffiffi
cos>
p

cos ?, y2 ¼ r
ffiffiffiffiffiffiffiffiffiffi
cos>
p

sin ?, 
 ¼ r2 sin> yields

I1 6C

ð2�2

0
r3
s dr ¼ C�4
s

2 :

In a similar manner we obtain the estimate

I2 6C�2

ð1
�2

r2
s dr ¼ C�4
s
2

and hence

R4
s

�2
1�

2
2

ð
E

ð
Iy

dy d


ðjyj4 þ 
2Þs=4
6
CðR; sÞ
 sðAÞ

as desired. �

Next, we consider products of matrices indexed by words in P. For a planar AIFS
FðbÞ with horizontal lift FHðebbÞ we write pHðebbÞ : P! KHðebbÞ and pEðbÞ : P! KðbÞ
for the canonical surjections from P to the invariant sets. Thus

pHðebb; wÞ ¼ \1
m¼1

Fw1
� . . . � FwmðKHðebbÞÞ

and

pEðb; wÞ ¼
\1
m¼1

fw1
� . . . � fwmðKðbÞÞ;

where w ¼ w1w2 . . . 2 P and fiðxÞ ¼ Aixþ bi and Fiðx; tÞ ¼ eAAi;biðx; tÞ þ ebbi.
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Observe that

pHðebb; wÞ ¼ ebbw1
þ eAAw1;bw1

� ebbw2
þ eAAw1;bw1

� eAAw2;bw2
� ebbw3
þ . . . :ð6:11Þ

For w and w 0 in P denote by w ^ w 0 the maximal 2nite word which is a
subword of both w and w 0.

LEMMA 6.12. Assume that kAik < 1
2 for each i. For 0 < s < 4, with s 6¼ 1; 3,

and R > 0 there exists a constant C ¼ CðR; sÞ so thatð
BHð0;RÞM

debb
dHðpHðebb; wÞ; pHðebb; w 0ÞÞs 6

C

 sðAw^w 0 Þ
for all w;w 0 2 P. Here BHð0; RÞM ¼ BHð0; RÞ � . . . � BHð0; RÞ ( R

3M andebb ¼ ebb1; . . . ; ebb2 2 R
3M .

Proof. Write w ^ w 0 ¼ � 2 W and set w ¼ �v and w 0 ¼ �v 0, for v; v 0 2 P. Thenð
BH ð0;RÞM

debb
dHðpHðebb; wÞ; pHðebb; w 0ÞÞsð6:13Þ

¼
ð
BHð0;RÞM

debb
j eAA�;b�ðpHðebb; vÞ
1 � pHðebb; v 0ÞÞjsH :

By the choice of �, v1 6¼ v 01. Without loss of generality we may assume that v1 ¼ 2
and v 01 ¼ 1.

With (6.11) in mind we make the change of variable

q ¼ pHðebb; vÞ
1� pHðebb; v 0Þ ¼ b1 
 b2 þ EðbÞ

1 
 
2 þ F ð
Þ þGðbÞ

� �
;

ebb2 ¼ ebb2;ð6:14Þ

..

.

ebbM ¼ ebbM;
where E : R2M ! R

2, EðbÞ ¼ E1ðb1Þ þ . . .þ EMðbMÞ and F : RM ! R are linear
maps and G : R2M ! R is a quadratic map.

We claim that

kE@k < 1ð6:15Þ
for some @ ¼ 1; 2 and

kFk < 1:ð6:16Þ
Taking (6.15) and (6.16) for granted observe that the preceding change of

variables is invertible. Consequently, we obtainð
BH ð0;RÞM

debb
dHðpHðebb; wÞ; pHðebb; w 0ÞÞs
6C

ð
BH ð0;ð2þMÞRÞ

dq

ð
BHð0;RÞM
1

debb2 . . . debbM 1

j eAA�;b�ðqÞj
s
H

6
CðR; sÞ
 sðA�Þ

by Lemma 6.6.
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It remains to describe the maps E, F and G explicitly and show (6.15) and (6.16).
Using (6.11) we 2nd that a direct computation yields

pHðebb; vÞ
1� pHðebb; v 0Þ ¼ X
T

� �
;

where

X ¼ pEðb; v 0Þ 
 pEðb; vÞð6:17Þ
¼ bv 01 
 bv1 þ ðAv 01

bv 02 
Av1bv2 þ Av 01
Av 02

bv 03 
 Av1Av2bv3 þ . . .Þ

(see equation (3.7) in [10]) and

T ¼ ð
v 01 
 
v1Þ þ ðAv 01
v 02 
 Av1
v2Þ þ ðAv 01Av 02
v 03 
 Av1Av2
v3Þ þ . . .ð6:18Þ

 2ðhAv 0

1
bv 0

2
; J bv 0

1
i 
 hAv1bv2 ; J bv1i þ . . .Þ


 2ðhbv 0
1
; J bv1i þ hAv 0

1
bv 0

2
; J bv1i þ hbv 01 ; JAv1bv2i þ . . .Þ;

where Avi ¼ detAi. Observe that the last term in equation (6.18) is the
contribution to T from the term 
2hpEðebb; vÞ; JpEðebb; v 0Þi.

We may choose @ equal to either 1 or 2 and an index m with 26m61 so that
the following conditions hold:

(i) for each k < m, both vk and v 0k are not equal to @, and
(ii) if m <1, then vm 6¼ @ and v 0m 6¼ @.
From (6.17) and (6.18) we have

X ¼ b1 
 b2 þ EðbÞ ¼ b1 
 b2 þ E1ðb1Þ þ . . .þ EMðbMÞ
and

T ¼ 
1 
 
2 þ F ð
Þ þGðbÞ;
where the Ei are linear maps on R

2M with values in R
2, F is a real-valued linear

map on R
M , and G is a real-valued quadratic map on R

2M . With the choice
B ¼ maxi¼1;...;M kAik we 2nd that

kE@k6
Xm
1
k¼2

Bk
1 þ
X1

k¼mþ1
2Bk
1 6

B

1
 B

and

kFk6
X1
k¼1

2B2k ¼ 2B2

1
 B2 :

(Observe that it is only necessary to ensure the invertibility of E and F in order
to perform the change of variables (6.14) in (6.13). No restriction on G is needed.)
The restriction B < 1

2 guarantees (6.15) and (6.16) and completes the proof of
the lemma. �

To prove Theorems 1.18(ii) and 1.19(ii) we use the following well-known
connection between Hausdor6 dimension and measures with 2nite energy.

PROPOSITION 6.19. If A is a subset of a complete metric space ðX; dÞ which
supports a Borel measure @ with 0 < @ðAÞ <1 whose s-energyðð

dðx; yÞ
s d@ðxÞ d@ðyÞ

is �nite, then dimA> s.
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See, for example, [19, Theorem 8.7] or [9, Corollary 6.6].
The following lemma is the Heisenberg version of Lemma 5.2 in [10]. Its proof,

which uses Proposition 6.19, is entirely analogous to the proof of the result from
[10] and will be omitted.

LEMMA 6.20. Let 6 be a Borel measure on P with 0 < 6ðPÞ <1 for whichð
P

ð
P

ð
BH ð0;RÞM

debb d6ðwÞ d6ðw 0Þ
dHðpHðebb; wÞ; pHðebb; w 0ÞÞt <1

for some t < 4 and some R <1. Then

dimH KHðb; 
Þ> t

for almost every ebb ¼ ðb; 
Þ 2 BHð0; RÞM � H
M .

Proof of Theorem 1.19(ii). Fix R > 0 and choose t 6¼ 1; 3 so that
0 < t < minf4; essHðAÞg. We will verify the assumptions of Lemma 6.20 for such
a choice of t.

Fix s so that t < s < minf4; essHðAÞg. Then fMMs
HðPÞ ¼ 1. By Lemma 5.11, there

exist a compact set C0 � P and a constant C <1 so that 0 < fMMs
HðC0Þ <1 and

6ðPwÞ6C sðAwÞ; for w 2W;ð6:21Þ
where 6 is the Borel measure on P given by 6ðAÞ :¼ fMMs

HðC0 \ AÞ. By Lemma 6.12,

I :¼
ð
P

ð
P

ð
BH ð0;RÞM

debb d6ðwÞ d6ðw 0Þ
dHðpHðebb; wÞ; pHðebb; w 0ÞÞt

6C

ð
P

ð
P

d6ðwÞ d6ðw 0Þ
 tðAw^w 0 Þ

;

and by the de2nition of the cylinder sets Pw and (6.21) we obtain

I 6C
X
�2W

X
i6¼j

6ðP�iÞ6ðP�jÞ
 tðA�Þ

6C
X
w2W

6ðPwÞ2

 tðAwÞ

6C
X1
m¼1

X
w2Wm

 sðAwÞ6ðPwÞ
 tðAwÞ

:

From the de2nition (5.7) of the Heisenberg singular value function, we see that

 sðAwÞ6 tðAwÞ�1ðAwÞs
t

for all contractive linear Aw. The submultiplicativity of the singular value function
gives

�1ðAwÞ6�1ðAw1
Þ . . .�1ðAwmÞ; where w ¼ w1 . . .wm:

Fix a < 1 so that �1ðAiÞ6 a for all i. Then

 sðAwÞ6 amðs
tÞ tðAwÞ
and

I6C
X1
m¼1

amðs
tÞ
X
w2Wm

6ðPwÞ6C6ðPÞ <1

since a < 1, t < s and 6ðPÞ ¼ fMMs
HðC0Þ <1. By Lemma 6.20 we conclude that
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dimH KHðb; 
Þ> t for almost every ebb ¼ ðb; 
Þ 2 BHð0; RÞM . Letting R!1 gives the
result for almost every ebb 2 H

M , and letting t% minf4; essHðAÞg through values in
ð0; 4Þ n f1; 3g 2nishes the proof. �

For the Euclidean case (Theorem 1.18(ii)) the derivation is similar. It uses the
following modi2ed versions of Lemmas 6.6 and 6.12.

LEMMA 6.22. Let 0 < s < 3 be non-integral. For each R > 0 there exists a
constant C depending only on R and s so thatð

BEð0;RÞ

dp

j eAAbðpÞjsE
6

C

’sð eAAbÞ
:

LEMMA 6.23. Assume that kAik < 1
2 for each i. For 0 < s < 3 non-integral

and R > 0, there exists a constant C ¼ CðR; sÞ so thatð
BEð0;RÞM

debb
jpHðebb; wÞ 
 pHðebb; w 0ÞjsE 6

C

’sð eAAw^w 0;bw^w 0 Þ

for all w;w 0 2 P.

The proofs are easy variations on the proofs of Lemmas 6.6 and 6.12.
With these lemmas in hand the remainder of the proof of Theorem 1.18(ii)

proceeds by analogy with the proof of Theorem 1.19(ii). We omit the details.

Appendix. Eigenvalues of rank 1 perturbations of block diagonal matrices

This appendix is devoted to discussion and a sketch of an elementary proof of
(5.6) using only techniques from linear algebra. The key result (Theorem A.4)
concerns deformation of the singular values of block diagonal matrices under rank
1 perturbations. We begin with a classical theorem of Golub [14].

THEOREM A.1 (Golub). Let D 2 R
n�n be a diagonal matrix, with diagonal

entries A1 > A2 > . . . > An. Let w ¼ ðw1; . . . ; wnÞ 2 C
n be a complex n-tuple with

non-zero entries, and let w+ w be the associated rank 1 matrix whose ði; jÞth
entry is wiwj. Finally, let D 6¼ 0 be real.

Then the eigenvalues of the Hermitian matrix P ðDÞ ¼ Dþ Dw+ w are the
solutions to the equation

1þ D
Xn
i¼1

jwij2

Ai 
 A
¼ 0:

COROLLARY A.2. If D > 0 then the eigenvalues A 01 > . . . > A 0n of P ðDÞ interlace
with the eigenvalues of D in the following sense:

An < A 0n < . . . < A1 < A 01:ðA:3Þ

For extensions and further discussion of Golub’s theorem, see Anderson [2].
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Assume that the conditions in Corollary A.2 hold and assume also that An ¼ 0.

Then P ¼ eAAT eAA, where
eAA ¼

�1

�2

. .
.ffiffi

D
p

w1

ffiffi
D
p

w2 . . .
ffiffi
D
p

wn

0
BBB@

1
CCCA

and �i denotes the positive square root of Ai. The values �1, . . ., �n
1, 0 are the
singular values for A ¼

ffiffiffiffi
D
p

. Denote by � 0i ¼
ffiffiffiffiffi
A 0i

p
, for i ¼ 1; . . . ; n, the singular

values for P . Then (A.3) implies the following inequality between the singular
value functions for A and eAA:

’sðAÞ6’sð eAAÞ; for 06 s6n:

This gives some indication of how Theorem A.1 may be applied in the context of
Falconer’s theory. For the speci2c application to (5.6), however, we require a version
of Golub’s result for block diagonal matrices. As we are interested in applications to
the 2rst Heisenberg group, we give the following result only in the case n ¼ 3.

THEOREM A.4. Let A 2 R
2�2 with distinct singular values 0 < �2 < �1, let

b 2 R
2 and let D 6¼ 0. Set

D ¼ A 0
0 0

� �
2 R

3�3; w ¼ wðA; bÞ ¼ 
2ðJbÞTA detA
� �

;

and

eAAbðDÞ ¼ Dþ
ffiffi
D
p

e3 + w ¼
A


2
ffiffi
D
p
ðJbÞTA

ffiffi
D
p

detA

� �
;

where e3 ¼ ð0; 0; 1Þ.
Let A 2 C n fA1; A2g, where Ai ¼ �2

i , for i ¼ 1; 2. Then A is an eigenvalue for

P ðDÞ ¼ eAAbðDÞT eAAbðDÞ if and only if A is a solution to the equation

F ðAÞ :¼ 1þ D
�
ðdetAÞ2


A þ C1

A1 
 A
þ C2

A2 
 A

�
¼ 0;ðA:5Þ

where

C1 ¼
4A1ðjATJbj2 
 A2jbj2Þ

A1 
 A2
and

C2 ¼
4A2ðA1jbj2 
 jATJbj2Þ

A1 
 A2
:

Observe that C1; C2 > 0 since A1 and A2 are the eigenvalues of ATA.
The proof of this theorem is by direct computation of the characteristic

polynomial of P ðDÞ. We omit the details.
A modi2ed version of Theorem A.4 holds in the orthogonal case A1 ¼ A2; we

omit the details. More general versions are presumably true for block diagonal
matrices in higher dimensions, but we do not pursue this here.
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We now sketch the application of Theorem A.4 to the proof of (5.6). Observe

that eAAbð1Þ ¼ eAAb, where eAAb is given in (2.2). We assume that b 6¼ 0. As before,
denote by A 01 > A 02 > A 03 the eigenvalues of P ð1Þ ¼ eAAT

b
eAAb.

If Jb is not an eigenvector for ATA, then C1 and C2 are both positive.
Consequently, we may conclude as in Corollary A.2 that the eigenvalues of P ð1Þ
and D interlace:

0 < A 03 < A2 < A 02 < A1 < A 01:

If jATJbj ¼ �2jbj then C1 ¼ 0, C2 ¼ 4A2jbj2 > 0 and

0 < A 03 6A2 6A 02 < A1 < A 01:

Similarly, if jATJbj ¼ �1jbj then C2 ¼ 0, C1 ¼ 4A1jbj2 > 0 and

0 < A 03 < A2 < A 02 6A1 6A 01:

In all cases, we 2nd that

A1 6A 01 and A2 6A 02:ðA:6Þ

The function F ðAÞ in (A.5) is equal to

detðP ðDÞ 
 AIÞ
detðD
 AIÞ ¼

detðP 
 AIÞ
ð
AÞðA1 
 AÞðA2 
 AÞ

:

From the expression for F ðAÞ in (A.5), the product of the eigenvalues of P ð1Þ is

A 01A
0
2A
0
3 ¼ ðdetAÞ2 ¼ A21A22:ðA:7Þ

Since the singular values of eAA0 are �1, �2 and �1�2, it follows from (A.6), (A.7)
and the de2nition of the singular value function in (5.5) that

’sð eAA0Þ6’sð eAAbÞ
for all s> 0. Thus the critical exponents satisfy the inequality

essEðAÞ6 essEðb;AÞ
as desired. This concludes the proof of (5.6).
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