11. 4. 2024

downl oaded:

.org/10. 7892/ boris. 115893 |

https://doi

source:

Proc. London Math. Soc. (3) 91 (2005) 153-183 © 2005 London Mathematical Society
doi:10.1112/50024611504015205

HAUSDORFF DIMENSIONS OF
SELF-SIMILAR AND SELF-AFFINE FRACTALS
IN THE HEISENBERG GROUP

ZOLTAN M. BALOGH Axp JEREMY T. TYSON

1. Introduction

Analysis on the Heisenberg group is motivated by its appearance in several
complex variables and quantum mechanics. In addition, as the simplest non-
abelian example, the Heisenberg group serves as a testing ground for questions
and conjectures on more general Carnot groups and sub-Riemannian spaces.
Geometric measure theory and rectifiability play an important role in these
settings in connection with sub-elliptic PDEs and control theory. For recent
results in the subject we refer to [3, 5, 12, 13, 15, 18].

This paper is part of a larger program [5, 4] for studying properties of fractal
sets in the sub-Riemannian metric setting of the Heisenberg group. The results
presented here concern the Hausdorfl dimensions of invariant sets associated to
self-similar and self-affine iterated function systems.

Let us recall that the (first) Heisenberg group H = H' is the unique non-abelian
Carnot group of rank 2 and dimension 3. Explicitly, H = R® with the group law

(1.1) (z,t)x(x',t") = (x + o', t +t' + 2(z, Jz'))
where J : R? — R? denotes the map

J(xlv 1'2) = (_va IE1)

and (-, -) is the standard inner product in RZ.

The sub-Riemannian nature of H is reflected in the so-called horizontal
distribution HH, which is the distinguished subbundle of the full tangent bundle
TH defined by

H,H :=span{X,,Y,}.

Here X and Y denote the left-invariant vector fields in H whose values at a point
p= (xlvx%t) are

X, = 0,, +2x,0,, Y,

p = 3m2 - 2I18t.
Equivalently, H,H can be characterized as the kernel of the canonical contact
form dr = dt + 2x, dxy — 225 dxy on H at the point p.

The Heisenberg group is equipped with a non-Euclidean metric structure via

the so-called Heisenberg metric. This is the left-invariant metric on H defined
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as follows:

(12) dH(pa q) = |p71 *q‘l‘h for p,q € H7

where x denotes the group law from (1.1) and |- |5 denotes the Heisenberg norm
given by

(1.3) (2, D)l = (2| + &%)/,

Before passing to the main results of this paper, let us begin by describing an
application which served as motivation for our studies.

The relationship between the Heisenberg and Euclidean geometry on H = R? is
rather intricate. The Heisenberg Hausdorfl dimension is always greater than or
equal to its Euclidean counterpart; see, for example, (2.6). The inequality can be
strict; indeed, the Hausdorff dimension of (H, dy) is equal to 4 (in fact, balls in the
metric dy have measure proportional to the fourth power of their radius). This
implies, for instance, that the Heisenberg metric dy cannot be locally bi-Lipschitz
equivalent with any Riemannian metric, in particular, with the Euclidean metric dp.

A version of the following problem was posed by Gromov [15, 0.6.C] in the
setting of general sub-Riemannian manifolds.

PROBLEM 1.4. For fixed « € [0, 3], what are the possible values of § = dimy S
when S ranges over all subsets of H with dimgpS = a?

Here and henceforth we denote by Hj and Hj the s-dimensional Hausdorff
measures associated with the relevant metrics dg and dg, respectively, and by
dimy and dimp the corresponding Hausdorff dimensions.

Problem 1.4 is a fundamental question regarding the Hausdorff measures on H
with respect to the Heisenberg metric. It asks which subsets of H are ‘most nearly
Euclidean’ (8 is smallest for fixed «) and which are ‘most nearly non-Euclidean’
(6 is largest for fixed «). Recently, a nearly complete answer to Problem 1.4
was obtained by Balogh, Rickly and Serra-Cassano [5]. We formulate a slightly
different version of the original statement in Theorems 1.1 and 1.2 of [5].

THEOREM 1.5 (Balogh, Rickly and Serra-Cassano). Let S C H with
dimpS=a€[0,3] and dimygS=0¢€]0,4].
Then
(1.6) max{a,2a — 2} =: f_(a) < < By (a) := min{2a, o + 1}.

Moreover,
(i) for each « €10,3] there exists a set S*“ CH with HE(SY) < oo and
HIH (59) > 0,
(i) for each « €[0,2)U{3} there is a set S, CH with H%(S,) >0 and
H%(Q)(Sa) < o0, and
(ii") for each « €2,3) and each 6€ (0,1) there is a set S,s CH with
H5*(Sas) > 0 and Hyr @ (Ss) = Hi~(Sus) < oc. |

See Figure 1.1 for the graphs of (i(a). Observe also the duality relation
4= pBi(a) =B-3—a)
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FIGURE 1.1. Hausdorff measure comparison functions (. («) in the Heisenberg group.

The techniques in [5] did not suffice to obtain examples to show sharpness in
the lower bound in (1.6) in the case 2 <<« < 3. In particular, [5] did not contain
examples of sets S with the property that

As a consequence of our main results (which we describe shortly) we are able to
find such examples and complete the solution to Gromov’s Problem 1.4. More
precisely, we may record the following theorem.

THEOREM 1.7. For each « € [0,3] there exists S, C H with H%(S,) > 0 and
H%(Q)(Sa) < 00, where B_(a) = max{«,2a — 2}.

The case o = f_(«) = 2 is of particular interest. The relevant example in this
case is a self-similar set Qy C H which we call the Heisenberg square. It is obtained
as the invariant set for a certain self-similar iterated function system. Such systems
are the main objects of study in this paper. We will describe this example in more
detail later on in this introduction. Here let us give a few relevant facts which
indicate how the proof of Theorem 1.7 goes. The 1-Lipschitz projection mapping
7 : H — R? given by

(1.8) m(x,t) =z

maps Qy onto the closed unit square Q = [0,1]%. Thus H%(Qp) = H%(Q) =1 > 0.
On the other hand, the self-similar construction of Q) gives rise to natural coverings
by families of self-similar copies of @, and using these covers to estimate the
Heisenberg Hausdorff measure yields H%(Qy) < oco.

The case o =2 is the key to establishing Theorem 1.7 in full generality. The
examples for 2 < o < 3 are constructed as certain ‘product-type’ sets using the
Heisenberg square Qp together with vertical Cantor sets.

With this motivation in mind we turn to the principal objects of study in this
paper, namely, invariant sets for iterated function systems in (H,dy). Recall that
an iterated function system (for short, an IFS) on a complete metric space (X,d)
is a finite collection

f:{fla"'vf]\/[}
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of contraction maps of (X,d), that is, Lipschitz maps with Lipschitz constant
strictly less than 1. The invariant set for F is the unique non-empty compact set
in X which is invariant under the action of the elements of F. See (2.3).

In joint work with Regula Hofer-Isenegger [4], we studied regularity and
connectivity questions for invariant sets of Heisenberg iterated function systems.
The present work is devoted to the study of the dimensions of such invariant sets.

Throughout this paper, we restrict our attention to the case of affine iterated
function systems (AIFS). That is, we assume that each IFS consists entirely of
affine maps. Moreover, we are interested in affine contractions of H that arise as
lifts of affine mappings of R? as follows.

Let f:R? — R* A map F:H — H is called a (horizontal) lift of f if

moF = form,

where 7 is the map in (1.8). It is an important observation that each horizontal
lift of an affine map of R? which is Lipschitz with respect to dj is necessarily
affine. Conversely, each affine map of R? may be lifted to an affine Lipschitz map
of H. See Proposition 2.2 of [4] and §2 of this paper. Such lifts are not unique, but
any two lifts of a given map of R? differ only by the addition of a vertical constant.

Each AIFS Fy ={F,...,Fy} on H therefore arises as a lift of an AIFS F =
{fi,..., fu} on R? and, conversely, each planar AIFS can be lifted to Heisenberg
ATFSs. From the aforementioned ambiguity in the vertical constants, it follows
that the space of all Heisenberg AIFSs which arise as lifts of a given planar AIFS
F is naturally parameterized by an M-dimensional Euclidean space, where M is
the cardinality of F.

We call the invariant sets for Heisenberg AIFSs (self-affine) horizontal fractals.
This terminology comes from the fact that these objects are in some sense tangent to
the horizontal distribution H H. In this paper, we study the Hausdorff dimensions of
horizontal fractals with respect to the metrics dy and dg on H = R3.

To give a concrete example we describe in detail our basic example, the
so-called Heisenberg square Q. By this name we denote the invariant set for any
horizontal lift of the planar AIFS

(19) f:{f()vflafZafS}a

where f;(z) =%(z+e;), for j=0,1,2,3. Here ¢; = (1,0) and ey = (0,1) are the
standard basis vectors in R?, while ¢y = (0,0) and e; = e; + ey. Figure 1.2 shows
several versions of the Heisenberg square, corresponding to different lifts F 5 of the
IFS F from (1.9).

2=
A=

N
S

QA
\‘\\‘ X
“\}‘ ;\
\;\

FIGURE 1.2. Heisenberg squares: horizontal lifts of Q = [0,1]°.
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As indicated above, our first result gives the dimensions of Heisenberg squares.
THEOREM 1.10. Let F be the IFS in (1.9) and let F i be any horizontal lift of

F. Denote by Q = [0, 1]2 and Qg the invariant sets for F and F p, respectively.
Then

In fact we have
(1.12) 0<1=HuQ) <HHQu) and Hi(Qu) < oo.

Observe that (1.11) follows from (1.12) and (2.6).

The Heisenberg squares have been considered previously. Strichartz [24] used
@y (and versions in more general Carnot groups) to construct ‘dyadic-type’
Carnot tilings. See also [25]. The equality dimy @z =2 in Theorem 1.10 can be
found in [24]. However, Strichartz obtained Qg in a different way as the graph of
an L*°-function and not as a horizontal lift. Due to our different approach we
obtain a more complete statement and a much simpler proof of Theorem 1.10.
Indeed, we will shortly describe a significantly more general result from which
Theorem 1.10 arises as an easy corollary.

Let us mention that the Heisenberg square Qg is also interesting for another
reason. In [4], we prove the following result: there exists a horizontal lift F of the
IFS F from (1.9), so that each selection §:Q — H, B(z) = (x,9(z)), of the
set-valued map o(z) =7 '(z)NQy, is a function of bounded variation.
Combining this result and Theorem 1.10, we see that there exists a surface
S = ¢(intQ) in H with

(1.13) 0 < H3(S) < oo

and ¢ a function of bounded variation. By way of contrast, Ambrosio and
Kirchheim [1, Theorem 7.2] have shown that there are no Lipschitz horizontal
surfaces in H, that is, surfaces S = g(f), with Q C R?, which satisfy (1.13) with
8 = (id, g) a Lipschitz map from Q to (H,dy).

As mentioned above, Theorem 1.10 is a special case of more general results
concerning the dimensions of self-similar and self-affine horizontal fractals. The
results in question are Heisenberg analogs of theorems of Falconer [10] and Solomyak
[23] on the dimensions of generic invariant sets. To set the stage we recall in brief some
results from [10] and [23]. A more detailed description can be found in §5.

To a finite collection A of contractive linear maps of R", Falconer [10]
associates a critical exponent sp(A). In the case when each element of A is in the
conformal group CO(n) =R, x O(n), the critical exponent of A is equal to the
similarity dimension of A, that is, the unique value s satisfying the equation

(1.14) dollAlr =1,

AcA

where || - || denotes the operator norm. (It is not required that the elements of A
be distinct.)

In the case of self-similar AIFSs satisfying the open set condition (cf. §2) we
have the following remarkable equality of dimensions, which holds for every
horizontal lift.
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THEOREM 1.15. Let F be a self-similar planar AIFS which satisfies the open
set condition and let Fp be a horizontal lift of F. Then

where s denotes the similarity dimension for the associated family of conformal
matrices. Moreover,

0 < Hy(K) <Hp(Ky) and  Hiy(Ky) < oo.

Since the IFS F from (1.9) satisfies the open set condition, Theorem 1.10
follows from Theorem 1.15.

The major question which we address in this paper is what happens in the
absence of the open set condition in the more general setting of affine maps. The
definition of the critical exponent sg(.A) from [10] is more complicated and will be
recalled in §5. By results of Falconer and Solomyak in the Fuclidean case one still
has a dimension formula which holds in a generic sense. To recall this statement
fix a collection A = {A,..., Ay} as above. For each b = (by, ..., by,) in R" define
an AIFS F(b) ={fi,..., fu} on R" where f;(x) = Ajx +b;, fori=1,..., M. Let
K (b) be the invariant set for F(b).

THEOREM 1.16 (Falconer, Solomyak). Let A and K(b) be as above. Then
(i) dimpg K(b) <sp(A) for all b € R™; and
(ii) if ||A;]| <3 for each i, then dimp K(b) = min{n, sy(A)} for a.e. b € R™M.

Falconer proved Theorem 1.16 first with § replaced by % [10, Proposition 5.1 and
Theorem 5.3]. Solomyak [23, Proposition 3.1] observed that the hypotheses could
be weakened as indicated. The constant % is sharp for generic statements of this
type, as was observed by Edgar in [8]. See also the proof of Proposition 3.1 in [23].

Each lift of an affine map f(z) = Az 4+ b of R? to the Heisenberg group is an
affine map F(z,t) = Ay(x,t) + b, where A, is a certain block-lower triangular
matrix defined in terms of A and b and b= (b,7), with 7 an arbitrary real
parameter. See (2.2). For a given b € R®™ and an AIFS F(b) on R? denote by
Fu(b,7) the lifted AIFS corresponding to a specific choice of 7 € RM and denote
by Ky (b, 7) its invariant set. Also, denote by Sg(b;.A) the critical exponent for the
famlly {Al.b17 e 7A1W,b1”}'

From Theorem 1.16 we immediately deduce that

for all b and 7. However, the upper bound in (1.17) is not the correct value for
dimg K (b, 7). In fact, we will prove the following result.

THEOREM 1.18. Let F(b), with b € R* | be a planar AIFS and let F y(b,7),
with 7 € RM, be any horizontal lift. Then
(i) dimp Ky (b, 7) <3p(A) := 55(0; A) for all b€ R*M and 7 € RY; and
(ii) if [|4y]| <2 for all i, then dimp Ky(b,7) = min{3,55(A)} for a.e. b€ R*M
and 7 € RM,

Observe that there is no contradiction between the almost sure results of Theorems
1.18(ii) and 1.16(ii) since the matrices A;, depend on the auxiliary parameter
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b e R*™ Thus it cannot be guaranteed that the almost sure conclusion in Theorem
1.16 is applicable for any particular choice of the lift K (b, 7) in Theorem 1.18(ii).
To study the Heisenberg dimensions of K (b, 7) we introduce a Heisenberg critical
exponent 5y (A) associated with a family A of contractive linear maps of R?. This
quantity differs substantially from its Euclidean counterpart and represents a
major conceptual novelty of this paper. We then have the following result.

THEOREM 1.19. Let F(b), with b € R* | be a planar AIFS and let Fy(b,7),
with 7 € RM, be any horizontal lift. Then
(i) dimy Ky (b, 1) <355(A) for all b€ R*M and 7 € R?; and
(i) if ||A;| <3 for each i, then dimy Ky(b,7) = min{4,5y(A)} for almost
every b e R*M and € RM.

From the definitions of sy, s5 and sj it is straightforward to verify that
min{2, sp(A)} < min{3, sp(A)} < min{4, sy (A)}.
Furthermore, if 0 <sg(A) <1 then sp(A) =55(A) =sy(A) and if 1<sp(A)<2
then sp(A) =5g(A).
In the self-similar case, the critical exponents sp(A), 55(A) and s5(A) all agree

and are equal to the similarity dimension of A. Denoting this common value by s,
we have

dimp (K (b)) = min{2, s},
dimg(Ky(b, 7)) = min{3, s},
and
dimy (K (b, 7)) = min{4, s}

for almost every b and 7. In particular, if s <2 then
(1.20) dimp K(b) = dimp Ky (b, 7) = dimy Ky (b, 7) = s

for a.e. b and 7.

Note added in October 2004

Theorems 1.5 and 1.7 state that the map S+ (dimg S,dimy S) from subsets of
H into R? has range contained in the (closed) parallelogram IT shown in Figure 1.1,
and that the boundary of this parallelogram is contained in this range. In fact, it
is easy to see that the range of this map coincides with the parallelogram, that is,
for every (a, ) € II there exists a set S C H with dimpS =« and dimg S = 3.
Indeed, the monotonicity of the functions 5, («) and S_(«) ensures that the set

S=5,u8%®
has the desired property, where S and S, are the sets constructed in Theorems
1.5 and 1.7, respectively.
Overview

The structure of this paper is as follows. In §2 we collect some definitions and
recall background material. We also fix notation which will be in force for the rest
of the paper.
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Section 3 is devoted to the self-similar case. We prove Theorems 1.18 and 1.19
in this special setting first, in preparation for the general case. We also discuss the
open set condition for horizontal lifts, and give the proof of Theorem 1.15.

In §4 we discuss Gromov’s question on the relationship between dimp and dimy.

The various critical exponents for a general affine family and its horizontal lifts
are defined and discussed in §5. Section 6 is devoted to the proofs of Theorems
1.18 and 1.19 in complete generality.

In an appendix, we sketch the proof of an interesting fact from linear algebra
which arises in connection with inequalities between the various critical exponents
associated with a family of contractive linear maps.

2. Definitions, notation and preliminary results

2.1. Affine maps on H

We start by recalling the following relation between affine maps of H and
Lipschitz horizontal lifts of affine maps of R?. See Proposition 2.2 and Theorem
1.6 of [4]. Let F': R® — R?® be an affine map of the form

F(z,t) = (Az +ta+ b, (d,x) + ct + 1),
where A is a real 2 x 2 matrix, a,b,d € R? and ¢, 7 € R. Then F is Lipschitz with
respect to the metric dy if and only if the relations

a=0, d=-24"Jb, c=detA
hold. Thus every Lipschitz affine map F : H — H may be written as

(2.1) F(x,t) Zb(f> +0,

where

(2.2) A= (_2(}4())TA deEc)A)’ b= (i)

and 7 is a real constant. In particular, F' is a horizontal lift of the affine map
f(z) = Az + b. Moreover, any Lipschitz horizontal lift of f is necessarily an affine
map of the form (2.1). The Lipschitz constant of F as a map of (H, dp) is equal to
the Lipschitz constant of f as a map of (R? dg). Furthermore, F is a similarity
with respect to dy if and only if the above relations hold and A € CO(2) is a
conformal matrix. In this case the Lipschitz constant agrees with the operator
norm of the linear part of f.

For example, choose A =rl, with 7> 0 (where I denotes the 2 x 2 identity
matrix), and b = 0. The lift of f(x) = rz corresponding to 7 = 0 is the Heisenberg
dilation F(x,t) = (rz,r°t). Similarly, choose A =TI and b € R? arbitrarily. Then
the lift of f(x) = 2 + b corresponding to 7 € R is the left translation by (b, 7):

F(xz,t) = (by7)x(z,t) = (x + bt + 7 — 2(Jb, x)).

2.2. Affine iterated function systems

Let X be either R", with n = 2,3, or H. Recall that an affine iterated function
system (AIFS) is a finite collection F of contracting affine maps of X. The
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invariant set for F is the unique non-empty compact set K C X which is fully
invariant under the action of F:

(2.3) K= f(x).
feFr
The existence of invariant sets for iterated function systems follows from the
completeness of the space of compact subsets of X with the Hausdorff metric. See,
for example, [19, 4.13] or [17, Theorem 1.1.4].
It follows from the previous paragraph that, to each planar AIFS

f(b) = {flv .- wa}»

where b= (by,...,by;) € R*M and f;(x) = A;z +b;, there correspond Heisenberg
ATFSs given by

Fulb,7) ={F,..., Fy},

where 7= (1,...,7y) € RM,
(2.4 Fila,t) = Ay, (jf) 5,

and Zi,bz and IZ are given in analogy with (2.2). We call such a system Fp(b,7) a
horizontal lift of F(b). Throughout this paper we denote by K (b) and Ky (b, T) the
invariant sets for F(b) and Fp(b,7), respectively. We also call Ky(b,7) a
horizontal lift of K(b). The space of all horizontal lifts F (b, 7) of a fixed AIFS
F(b) of cardinality M depends on the M real parameters 7, ..., 7. _

We call an AIFS F(b) or F(b,7) self-similar if the matrices A, or A;, are
conformal. Recall that the similarity dimension of A = {4;,..., Ay} is the unique
positive solution s to the equation (1.14). From remarks made in the previous
paragraph, it follows that the Heisenberg similarity dimension of the family
{A1p,,- -, Ay, } is equal to the same value s, regardless of the choice of by, ..., by.

2.3. Symbolic dynamics

The dynamical attributes of an iterated function system are encoded via its
representation as a quotient of sequence space. Let 2 be an alphabet consisting of
the letters 1,..., M. Let W, =A™, for m > 1, denote the space of words of length
m, and let ¥ = 2V denote the space of words of infinite length, with letters drawn
from 20 in both cases. We denote elements of these spaces by concatenation of
letters, that is, w = wyw, ... w, € W,, or w = ww,... € X, where w; € A for each
J. Let W =J,,>1 W, be the collection of all words of finite length. For w € W we
write 3, for the set of words in ¥ which begin with w; 3, is called the cylinder
set with label w.

Assume now that F = {f;};cqo is an IFS in a complete metric space (X, d) with
invariant set K. For each finite word w =w;...w,, let f, = f, o...of, and
K, = fu(K). Then K =Jyew, K, for each m and max,cy, diamK, — 0 as
m — 0o0. We also define K, for infinite words w =wjw,... by setting
K, =\ Ky, w,- In this case K, consists of a single point in K.

We consider on ¥ the product topology induced by the discrete topology on 2
and we define a map p = pr : ¥ — K by setting p(w) equal to the unique point in
K,. Then p is a continuous surjection between compact sets [17, Theorem 1.2.3].



162 ZOLTAN M. BALOGH AND JEREMY T. TYSON
Observe that
(2.5) p(w) = lim f, . (x), withw=ww,...€X,

m—00

where x, is an arbitrarily chosen point in X.

2.4. Hausdorfl measure and dimension

Let X = (X,d) be a metric space. For >0 we denote by H{ the a-dimensional
Hausdorfl measure on X, defined as
q(A) :=liminf ) diam(A,)"
HG(A) =l it ) diam(4,)",

where the infimum is taken over all countable covers of A by sets A, A,,...
satisfying diam A,, < 6. Then the Hausdorff dimension of A C X is

dimy(A) = inf{a : Hg(A) = 0} = sup{a : Hg(A) = co}.

We will use these concepts only in the cases (X,d) = (R? dg), (X,d) = (R? dp),
and (X,d) = (H,dy). We write H% and dimp for the Hausdorff measures and
dimension in R? and R* and H$ and dimy for the corresponding objects in H.

Since dp is locally bounded by dy on H =R? [5, Lemma 2.1], we have the
absolute continuity relation H% < H{; for the a-Hausdorff measures on H for any
a >0 [5, Proposition 3.2(i)]. Thus

for any set A C HL.

2.5. The open set condition

An iterated function system F on a complete metric space X is said to satisfy
the open set condition if there exists a bounded open set O C X so that f(O) C O
for all f e F and f(O)Ng(O) =0 for all f,g € F with f #g.

The relevance of this condition for the computation of Hausdorff dimensions
derives from the following result, which was proved by Moran [20] in 1946 and
rediscovered by Hutchinson [16] in the 1980s. The class of self-similar ATFSs was
defined in §2.2.

PROPOSITION 2.7. Let F be a self-similar AIF'S in R" which satisfies the open set
condition. Let K be the invariant set of F. Let A denote the collection of conformal
matrices which arise as the linear parts of elements of F (counted with multiplicity).

Then the Hausdorff dimension of K is equal to the similarity dimension s of A.
Moreover,

0 < Hp(K) < 0.

Schief [22], building on ideas of Bandt and Graf [7], proved the following
(somewhat surprising) converse to Proposition 2.7.

PROPOSITION 2.8. Let F be a self-similar AIFS in R" whose invariant set K
satisfies Hy(K) > 0, where A is defined as in Proposition 2.7. Then F satisfies the
open set condition.
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3. Self-similar horizontal fractals

In this section, we discuss relations between the Euclidean dimension of a
planar self-similar invariant set and the Heisenberg dimensions of its horizontal
lifts. In particular, we prove Theorem 1.15 on the equality of dimensions in
the presence of the open set condition. The principal theorem of this section
(Theorem 3.9) states that the Heisenberg and Euclidean dimensions agree
generically. It is a special case of Theorems 1.18 and 1.19.

Throughout this section, we assume that F is a self-similar planar AIFS with
invariant set K, and that Fp is a horizontal lift of F with invariant set Kp.

Since 7 is a 1-Lipschitz map from (R?,dg) to (R? dg) and 7(Ky) = K, we have
the following a priori inequality:

(3.1) dimp K < dimg Ky < dimg Ky.

Observe that the second inequality follows from (2.6).
The following example shows that we need not always have equality throughout
(3.1). In this example it is the first equality which is strict.

EXAMPLE 3.2. Fixr € (1,1/v2)andlet f,(z) = re and fo(z) = e; +r(z — €)),
where e; = (1,0). The invariant set for F = {f, fo} is [0, 1]. The formula in (2.4)
gives the horizontal lifts F}, for i = 1,2, as

Fi(z,t) = (rz, vt + 1),
Fy(x,t) = (ey +r(z — €1), 7%t = 2r(1 — 1)1 + 73),
where © = (2, 25) and 7,7 € R. Choose 7y =0 and
2r(1 —r)
1—2r%
It is straightforward to show that the open set U = B(0,1) x (0,27,) satisfies the

open set condition for Fy = {F}, Fy}. The maps F; and F, are similarities of H
with contraction ratio r. By Proposition 3.3 below,

7'2>

log 2
log1/r

In fact, the Euclidean dimension of Ky is also equal to log2/log1/r. The proof
of this latter fact requires Falconer’s theory of dimensions of self-affine fractals
which will be recalled in §5.

In the above example we made use of the following proposition, which extends
the Moran—Hutchinson result to the Heisenberg setting.

ProPOSITION 3.3. Let Fy be a self-similar Heisenberg AIF'S which satisfies
the open set condition. Assume that Fpy is a lift of F, and define A as in
Proposition 2.7. Then the Heisenberg dimension of Ky is equal to the similarity
dimension of A.

Kigami [17, Proposition 1.5.8] gave a new proof of the theorem of Moran and
Hutchinson. His proof extends to the Heisenberg setting, as we now demonstrate.

Kigami’s proof uses the following more general result, which is Theorem 1.5.7
of [17].
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THEOREM 3.4. Let F ={f,...,fu} be an iterated function system in a
complete metric space X. Let K be the invariant set of F. Assume that there exist
r1,...,7y € (0,1) and positive constants C,, Cy, L and 7, so that the following
two conditions hold:

(i) diamf,,(K)<Cir, for each w € W, and

(ii) for any p € K and any 0 < r <ry, the number of words w = w; ... w,, € W

satisfying the conditions

(3.5) Tupy oo Ty, | > T 2Ty 1= Ty e Ty

and

is at most L, independent of p and r.
Then the Hausdorff dimension of K is given by the unique positive solution s to
the equation

(3.7) dor=1.

Moreover, 0 < H*(K) < 0.

Proof of Proposition 3.3. We verify the assumptions of Theorem 3.4 with r;
equal to the Lipschitz constant of F; € Fp. Let r,;, be the minimum of the r;.

Let U be a bounded open set in H which satisfies the open set condition for F .
Without loss of generality we may assume that diamyU = 1; since Ky C U by
Exercise 1.2 of [17], we conclude that diamy Ky <1.

By the choice of r;, diamyF,(Ky)<r, for all words w. This establishes
Theorem 3.4(i) with C; = 1.

Next fix p = (2,t) € Ky and 0 < r<1, and consider a word w satisfying (3.5)
and (3.6) with C5 = 1. Then F,(U) C By(p,2r), where By(p,r) denotes the ball
in the Heisenberg metric about p of radius r. Since the sets F,(U) are pairwise
disjoint for such words w,

D IFSU)<[By(p, 2r)] = 16r'[By (0,1)],

where the sum is taken over all words w satisfying (3.5) and (3.6). Here |U|
denotes the three-dimensional Lebesgue measure of a set U C H. From (3.5) we
see that |F,(U)| > rt,,7*|U| and so the number of words w is bounded by
16|B 1
o 10840, 1)
Tmin|U|

min

O

Since the open set condition passes to horizontal lifts (see Proposition 3.14 of
[4]), we may record the following corollary to Proposition 3.3, stated earlier as
Theorem 1.15.

COROLLARY 3.8. Let F be a self-similar planar AIFS which satisfies the open
set condition and let Fy be a horizontal lift of F. Then

where s denotes the similarity dimension for the associated family of conformal
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matrices. Moreover,

0 < Hy(K) <Hy(Ky) and  Hiy(Ky) < .

Generic equality of dimensions for self-similar fractals

In this subsection, we show that equality holds throughout (3.1) in a generic
sense even in the absence of the open set condition.

Consider a family A= {A,..., Ay} of 2 x 2 conformal matrices. For each
b= (by,...,by) € R*M  consider the AIFS F(b) = {f,..., fu}, where fi(x)=
A;x + by, fori =1,..., M. We view the matrices A, ..., A, as fixed and b;, ..., by
as varying.

The following theorem gives an upper bound for the Hausdorff dimensions of
self-similar lifts. In conjunction with Theorem 1.16, it implies the generic equality
of Heisenberg and Euclidean dimensions.

THEOREM 3.9. Let F(b) be a self-similar planar AIFS as above, and let
Fu(b, 1), with 7 € RM be any horizontal lift. Then

H;{(KH(bv T)) < 09,
where s is the similarity dimension of A. In particular,

dlmH KH(b, T) g S.

COROLLARY 3.10. If ||A;|| <3 for each i and s<2, then
for a.e. b e R*M and all T € RM.

Proof of Theorem 3.9. Without loss of generality assume that the Heisenberg
diameter of Ky (b) is 1.

Since F(b) consists of similarities of R?, F (b, 7) consists of similarities of H.
The value r; := || 4;]| is the common contraction ratio for f; € F(b) and its lift
F; € Fy(b,7). Denote by r. < 1 the maximum of the r;.

Given 6 > 0, choose m so that 7, <. The sets A, := F,(Ky(b,7)), with
w e W,,, cover Ky(b,7) and diamy A, = r, < 6. Thus

Hiro(Ky(b,7) < Y (diampyA,)°

weW,,
M m
- S (2) =1
weW,, i=1
Hence Hy(Kg(b,7)) <1 and dimy Ky(b,7) < s. O

REMARK 3.11. The theory developed by Falconer in [10] and recalled in §5
applies to self-affine systems in arbitrary Euclidean spaces R". Each self-similar
AIFS in R? lifts to self-similar AIFSs in (H,dj) which are not self-similar when
viewed as AIFSs on (R?,dp). It is an interesting exercise to use Theorem 1.16 to
verify that the Euclidean dimension of the lifted fractal agrees with the similarity
dimension in this case.
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4. Comparison of Euclidean and Heisenberg dimensions

In this section we discuss the application of Theorem 1.10 to the problem of
Gromov. In particular, we will prove Theorem 1.7, whose statement we now recall.

THEOREM 4.1. For each « € [0, 3] there exists S, C H with

HE(S,) >0 and Hiy™ (8 ) < oo

Let us also recall that relevant examples for the cases 0 <a < 2 and a = 3 of
Theorem 4.1 were previously given by Balogh, Rickly and Serra-Cassano [5].

Proof of Theorem 4.1. By Theorem 1.10, each horizontal lift Q; of the unit
square serves as the desired example Sy in Theorem 4.1 in the case a = 2. Indeed
H%(S,) < 0o while H%(Sy) >HE(Q) = 1.

To treat the case 2 < a < 3, we construct certain product-type sets over Q. Let
p=ca—2 and consider a Cantor set C,, in the t-axis with 0 < H},(C,) < oo and
0< H2p (C,) < oc. The construction of such a set is standard; see, for example, [3,
p- 300] or [5, §4]. To wit, choosing s = 27/7 we view C, as the invariant set associated
with the system Gy = {G;, Gy}, where G| and G, are the /s-Lipschitz maps of
(H,dy) defined by G,(z,t) = (v/sz,st) and Gy(z,t) = (v/sz,1+ s(t —1)).

The set S, is defined as the following product of Qy with C):

Sy = {(z,t+1t'): (z,t) € Qy, (0,1') € C,}.
The estimate H%(S,) = Hz"(S,) > 0 is a consequence of the Euclidean product
structure of S, as follows. For x € () define
t, = max{t: (z,t) € Qx}
and ®:Q x C, — S, by
O(x,(0,t) = (x,t, + t).

The map ® is an expanding (1-co-Lipschitz) embedding of @ x C, into S,. Thus
it suffices to show that

HE(Q x C,)) = Hy"(Q x C,) >

This follows from [19, Theorem 8.10], since H3(Q) =1 and H3(C,) > 0.
To show the estimate H%2(S,) = H3 *(S,) < oo we use the obvious covering
of S, by similarity images of @ and C,. Fix 6 > 0 and choose
1 1 logl/é

>+ — .
e og2

Set n = [2pm], where [z] denotes the greatest integer less than or equal to x, and
consider the covering of S, with the sets

S = {(@, t+1') 1 (2,8) € F,,(Qn), (0,) € G,(C,)},

where w and v range over the sets W, = {1,2,3,4}" and V,, = {1,2}" respectively.
To estimate diamg(.S,,), choose (m t+t') and (Z,t+1t') in S, with

diamp(S,,,) = dy (2, t +1'), (Z, £+ 1))



HAUSDORFF DIMENSIONS OF HEISENBERG FRACTALS 167
and compute
diamy (S,,)! = [T — ' + t —t +t' —t' —2(zx, JT))?
2T —al* + (t—t—2(x, JT))* + (' —t')?)
<2 +a™) < 6

Thus
Hy (S < Y0 diamp(S,,)* ™
weW,, veV,
< 21/4 S4m Lo ((%)4m + a?n)(1+P)/2
< C(p)22m(1+p)((%)2771(14—[)) + a27n(1+p)p) _ 20(])) < oo
as desired. O

5. Self-affine horizontal fractals: part I

In this section, we collect some preliminary material on the Euclidean and
Heisenberg critical exponents for a family of linear maps, and Hausdorff-type
measures on sequence space defined using these quantities. We also give an example
of a Heisenberg AIFS whose dimension can be estimated using our theorems.

5.1. Singular value functions and critical exponents

Let n>2 be an integer. For a contracting linear map A : R" — R" denote by
1>a,> ... 2a, >0 the singular values of A, defined as the lengths of the
principal semi-axes of the ellipsoid A(B"(0,1)), or equivalently as the positive
square roots of the eigenvalues of ATA. The singular value function ¢°(A) is
defined for s >0 as

(5.1) 0 (A) = ajan ... a8, for 0 < s<n,

where m is the integer such that m —1 < s<m, ¢(A) =1, and
O (A) = (a...0,)"",  for s> n.

Given a collection A= {A,,..., Ay} of linear maps in R", define the critical
exponent sp(A) as the unique non-negative solution s to the equation

(52) (3 wS<Aw>)Um .

weW,

where A, =A, ...A, and w=w...w, €W, ={1,...,M}"™. This critical
exponent is the value which appears in the theorem of Falconer and Solomyak
from the introduction. If each element of A is conformal, sgp(A) is equal to the
similarity dimension of A.

Recall that each horizontal lift of a planar affine map f(z) = Az + b is an affine
map F(z,t) = Ay(x,t) + b, where A, and b= (b,7), with 7 € R, are defined in
(2.2). For fixed b € R* and a planar AIFS F(b), we denote by F (b, 7) the lifted
IFS corresponding to a specific choice of 7 € RM and by K (b, T) its invariant set.

Also, denote by 55(b; A) the critical exponent for the family {A;, ,..., Ayy,, }, as
defined above, and abbreviate sg(A) := 55(0;.A).
We now recall the statement of Theorem 1.18 from the introduction.
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THEOREM 5.3. Let F(b), with b € R* | be an IFS of affine maps in R? and let
Fu(b,7), with 7 € RM, be any horizontal lift to H as above. Then
(i) dimp Ky (b, 7) <3p(A) for all b € R* and 7 € RM; and
(ii) if ||A;|| <1 for all 4, then dimy Ky (b,7) = min{3,35(A)} for a.e. b€ R*M
and T € RM,

If oy and ay are the singular values of A then the singular values of the 3 x 3
matrix Ay are a;, ay and ajay, as can easily be seen from (2.2). It follows that
$p(A) is the unique non-negative solution s to the equation

(5.4 i (X Fan) =t

wew,,

where ¢° is the modified singular value function

o] if 0 <s<1,
. s oyt if 1 <s<2,
(5.5) 74 = o lay™t i 2 < 5<3,

a%s/:;ags/s if 3 < s,

and @"(A) = 1. Note that ¢° = @* for 0<s<2.
For sp(A) <3, the estimate

(5.6) sp(A) <sp(b;A),

clearly follows from (1.17) and Theorem 5.3(ii) for a.e. b€ R*. In fact, (5.6)
holds without restriction. This is a purely linear algebraic fact which can be
proved by adapting a theorem of Golub [14] on singular values of rank 1
perturbations of diagonal matrices. See the appendix for details.

Next, for a contracting linear map A of R? with singular values 1 > a; > ay > 0,
define the Heisenberg singular value function i*(A), for 0 < s<4, as

o] if 0 <s<1,
(5.7) P(A) = TIETIRp < 5 <3,
aday? if 3 <s<4,

and wO(A) = 1. Note that ¢* =9° for 0<s<1 and ¢* <¢* for all 0<s<3.
Given a family of linear maps A = {4, ..., A;;} on R? we define the Heisenberg
critical exponent sr(A) as the unique non-negative solution s to the equation

(5.8) 73@(}( > w‘*(Aw)>l/m =1.

We now restate Theorem 1.19 from the introduction.

THEOREM 5.9. Let F(b), with b € R* | be an IFS of affine maps in R? and let
Fu(b,7), with 7 € RM be any horizontal lift to H as above. Then
(i) dimy Ky (b,7) <54(A) for all b € R*™ and 7 € R; and
(i) if ||A;|| <1 for each i, then dimy Ky(b,7) = min{4,5,(A)} for a.e. b € R*M
and 7 € RM,
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The singular value functions defined in (5.1) and (5.7) may be interpreted as follows.
In the Euclidean case, the image of a cube @ of side length 1in R"” under A is arectilinear
parallelepiped with sides of length «q,...,q,. In the singular value function

QOS(A) = ﬂ . M : aera
am am
the term (aq/ay,) ... (,_1/ay,) counts (roughly) the number of cubes Q' of side
length «,, needed to cover A(Q), while the term «}, represents the sth power of
the diameter of such a cube Q. B
In the Heisenberg case, the image of @ C R® =H under a lift A of A is a
(skewed) parallelepiped, whose base is a rectangle with sides of length a; and «ay
and which has Euclidean height oy and Heisenberg height |/ajas. Then, in the
singular value function

1-af if 0 <s<1,
o s
S(A) = allaQ(w/Ocl(xQ) if 1 <s<3,
[e%] 2 .
(—) as if 3<s<4,
A

the terms 1, ay/\/a;a and (a;/a,)? count the number of Heisenberg cubes Q' of
the appropriate size needed to cover A(Q), while the final term of, (\/a;as)°, or
o} represents the sth power of the (Heisenberg) diameter of such a cube Q.

5.2. Measures of Hausdorff type on %

Fix s>0. Following Falconer [10, §4], we define certain measures of Hausdorff
type on symbolic space X. A collection A of finite words is called a partition of X
if ¥ is the disjoint union of the cylinder sets %, with w € A.

Let A be a finite collection of linear maps in R", with n =2,3. For m € N and
S CX let

M., (S) == inf *(A,),
E,m( ) A % ¥ ( w)
SNY,,#0D
where the infimum is taken over all partitions A of ¥ with words of length at least
m. Next, let
Mg(S) = lim ME,,(S).
m—oQ
Then M is an outer measure on Y. The Borel subsets of 3 are M7j-measurable,
so M7, restricts to a Borel measure on 3. The technical term for M3 is the
Method II measure constructed from the premeasure 7(X,) = ¢*(A,) on the net
{3, :w e W}. See Rogers [21] for the relevant definitions and vocabulary.
In a similar manner, we define My and M7 by replacing ¢* in the above
equation with ¢°. Then M7 is again a Method II Borel net measure on .
By Proposition 4.1 of [10], the Euclidean critical exponent sp(.A) defined via
(5.2) is also equal to

inf{s : Mp(X) =0} = sup{s : Mp(X) = cc}.

In a similar manner, we show the following result.
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PROPOSITION 5.10. The Heisenberg critical exponent $y(A) defined via (5.8)
is equal to

inf{s : M3 (X) = 0} = sup{s : M () = oc}.

The proof is completely analogous to the proof of [10, Proposition 4.1] and will
be omitted. The relevant features of the singular value function ¢° which are
necessary for the proof are:

(i) ¥°(A,) is submultiplicative in w: 9*( A, ) <Y*(A,)0° (Ay),

(ii) ¥*(4,) is decreasing in s.

These properties are easily proved using the definition of °.

The following technical result on Method II net measures will be used in the proof
of Theorem 1.19. The case y = M3, 7(X,) = ¢°(A,) is Lemma 4.2 in [10], but the
result holds for any Method II net measure p on ¥ satisfying the assumptions. In
particular, it holds for p = Mj;, 7(%,,) = ¥°(A,). Compare Theorem 54 of [21].

LEMMA 5.11. Let p = supgsq ps be a non-atomic Method II net measure on X
of infinite total mass, defined from a finite premeasure T on the cylinder sets
{¥,:we W}, Assume that ps(C;) — 0 as j— oo for every 6 >0 and every
sequence C; D Cy O ... of compact subsets of ¥ with pu(();C;) = 0.

Then there exists a compact subset Cy C ¥ so that 0 < u(Cy) < oo and there
exists a constant C' < co so that
(5'12) /”'(CO N Zw) < CT(Zw)

for all we W.

The following example shows that the second inequality in (3.1) can be strict
for self-affine fractals.

ExaMpPLE 5.13. Fix integers n>p>2 and consider the planar AIFS

F = {flla ey fnp}a where fij(‘Tl;xZ) - ((zl + Z)/na (‘TQ +])/p)v for ¢ = 15 RN and
j=1,...,p. The invariant set for F is the unit square @ = [0, 1]2, viewed as the self-
affine set obtained by gluing together np rectangles with sides of length 1/n and

1/p. In this case
_(1/n O _(i/n

For we W,, ={1,...,np}"™, the singular values of A, are p™™ and n~". Then
1/m np'~* if 0<s<1,
lim < Z ¢S(A1l,)> = n<3*5)/2p(1*8)/2 if 1<s<3,
weW,, 7,Liifspfl if 3 < s < 4.
Thus
2logn
log(np)
for any Heisenberg lift F (1) of F. Note that 55(A) =2 only in the self-similar
case m = p.
From (5.5) it easily follows that sp(A) = sp(A) = 2. Thus

dimy Ky(1) <sy(A) =1

for all 7.
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REMARK 5.14. In a subsequent paper [11], Falconer derived lower bounds
for dimg K(b) which hold for every b. Let s_ =s_(A;,...,A)) be the unique
non-negative solution to the equation

(5.15) lim ( > ¢S(Aw1)1>1/7YL =1.

m—00 /
weW,

Then [11, Proposition 2] reads as follows.

PROPOSITION 5.16. If F satisfies the disjointness condition

FKB) 0 (D) =0 for every i £ j,
then

(5.17) dimp K(b) >s_.

Note that the open set condition does not suffice to imply (5.17); see [11, Example
2] for an example of an ATFS F in R? such that s_ > 0 but K (b) is a single point.

The claim regarding the Euclidean dimension of the horizontal lift in Example
3.2 may be proved using Proposition 5.16.

6. Self-affine horizontal fractals: part II

In this section, we give the proofs of Theorems 1.18 and 1.19. To simplify the
exposition, we will present the proofs of the first parts of both theorems together,
followed by the proofs of the second parts. In each case, we present in detail the
proof for the Heisenberg dimension (Theorem 1.19) and only sketch how this proof
should be modified for the Euclidean dimension (Theorem 1.18).

Proof of Theorem 1.19(i). Fix b € R* 7 ¢ RM and s > 55 (A). We will show
that

(6.1) Mg (K (b, 7)) < OM(S)

for some absolute constant C. Since ./T/l/ﬁl(Z) = 0 by Proposition 5.10, this suffices
to complete the proof.
Let 0 < a <1 be so that

dy(Fi(p), Fi(q)) < ady(p,q)

for pjgeH and i=1,...,M. Let B=By(0,R) CH be a Heisenberg ball
centered at the origin of radius R, chosen so large that F;(B) C B for all i.
Given 6 > 0, choose m so large that o < 6.

Let A be an arbitrary partition of ¥ by words of length at least m. By the
choice of m, diamyF,(B) <6 for all we A. For each we€ A, we may write
F,(z,t) = gwb (x,t) + i)vw, where gw,bw and gw are given by the formulas in (2.2).
If we denote by «;; > «;, the singular values of A;, for i =1,..., M, then the
singular values of A, are ;> a5, Where

m
m
0y < [Jaw, <o
i=1

for any word w of length m.
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In what follows we fix a word w and write a; = a, j, for j =1,2. Let @, be a
rectangle containing 7(F,(B)) = f,(m(B)) with_sides of length 3Ra; and 3Ras.
Observe that b, = f,(0) € Q,. Then F, (B) C @,, where

Qu = {(z,t) 12 € Qy, |t + 2(x, Jb,) — 7| < Ry}

is a parallelepiped with base @, € R? and (Euclidean) height 2R% 0 vy
If (z,t) and (z',t') are elements of @, then

(6.2) |z — 2| < diam Q,, < 3V2 Ray
and
(6.3) it —t —2(x, Jo)| <2R*ayap + 2|(z” — 2, J (b, — x))].

We distinguish three cases according to the value of s.

Case 1: 0 < s< 1. From (6.2) we have |z — 2’| < CR«;. Since b, € Q,, we obtain
likewise that |b, — x| < CRay. Using (6.3) we deduce that

[t' —t —2(x, Jz')| <CR*}.
Using this and (6.2) in (1.2) we obtain
diamH va S CRO{l
The sets Q,,, with w € A, cover Ky(b,7) and we obtain
Hirers(Kn(b,7) <C(R,5) Y o = C(R.s) Y ¢ (A
weA weA

by the choice of m.

Observe that in this estimate the dependence of b does not appear at all; this
will also happen in the other cases.

Case 2: 1<s<3. In_this case we divide Qu into at most K :=2ay/,/0q0;
smaller parallelepipeds P whose base is a rectangle P; in R? with sides of length
3R,/o705 and 3Ray and Whose (Euclidean) height is still 2R*c; .

Our task i IS to estimate the Heisenberg diameter of such a parallelepiped P Let
(z,t) and (z',t") be elements of P;. Then

2" — 2| <3V2 R/,
and (by (6.3))
it —t —2(x, Jr')| <2R*aya + 2|(z’ — 2, J (b, — T))].

The expression |(z’ — x, J(b, — x))| equals twice the area of the planar triangle
with vertices z’, x, b, which lies in Q,,. This yields

(2" — 2, J(by — x))] < 2010,
and so we have
diamy P; < CR\/aja;,
using (1.2).
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The sets IBJ-, for j=1,..., K, associated with each @w, where w € A, cover
Ky(b,7) and we obtain

Hirors (K (b, 7)) <C(R, s) ZZ Vaia; ) <C(R,s) Y 4 (A

weN j= weA

by the choices of m and K. _

Case 3: 3<s<4. As in the previous case we begin by dividing @,, into at most
N := 20y /oy smaller parallelepipeds P; whose base 15abquareP in R? with side length
3Ray and whose (Euclidean) height is at most 40R2 0y s Exphatly, let ¢,; be the
center of the square P; and let P; be the set of points (z,t) € @,, for which z € P; and

(6.4) [t +2(x — by, Jeu;) — Tl < 40R .
Observe that

~ N ~
Q.c|JP;
j=1

Indeed, (x,t) € Q,and z € P; imply that
[t +2(x — by, Jey,j) — 7| <[t + 2(x, Jby) — 7| + 2[{x — by, J(cpj — )]
< R’on0y +2(3V2 Ray) (3V2 Ray)
< 40R20z1a2.
Next we show that we can cover ﬁj by at most 2N Heisenberg balls of the form
By (pji, CRay) with centers
Pik = (Cujrtjr),
where
(6.5) tik = T + 2(by, Jey;) + 20kR%a3,
for k=—N,...,N. Indeed, if (z,t) € ]5j then z € P; and so |z — ¢,;| <CRay. By
(6.4) there exists an integer k € [N, N] such that
20 - (k — 1)R*aj <t + 2(z — by, Jw;) — 7, <20 - kR a3
Using (6.5) this implies that for large enough C' > 0 we have
[t =t + 2(x — cyjy Jeu;)| < CR*o}
and so
[t =t + 2(x, Jey,;)| < CR*a3.
From (1.2) we deduce that
dp((2,1), (Cujr tj1)) < CRa,

as required.
The balls By (p;r, CRay), for j=1,...,N and k= —N,..., N, associated with
each @, with w € A, cover Ky(b,7) nd we obtain

N
Hirors(Ku(b,7)) <C(R,8) Y Z > s

weA j=1 k=—N
C(R,s) Y U°(Ay)
weA

by the choices of m and N.
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In all cases, we have shown that

Hircrs(Ku(b,7)) <C(R,8) Y (A

weA

Taking the infimum over partitions A followed by the limit as m — oo yields
(6.1). This completes the proof of Theorem 1.19(i). O

Proof of Theorem 1.18(i). For this only a few modifications need to be made
in the above reasoning. In Case 1, the Euclidean diameter of @, is at most CRay
and so

Hiyons(Kn(b,7) SC(R,5) > 0 <C(R,5) > ¢*(A

weA weA

Case 2 must be split into two subcases: either 1<s<2 or 2<s<3. In the
former case we divide @,, into at most N = 2a4 /«a, parallelepipeds whose base is a
square of side length 3Ras and estimate

Hpcors(Ku(b, 7)) <C(R, s ZZGS C(R, S)Zws(A

weA j= weA

In the latter case we divide @u into at most P = 2/«a;ay parallelepipeds whose
base is a square of side length 3Raja, and estimate

Hpors(Ku(b,7)) <C(R, 5) ZZ (a109)" <O(R, 3) Z<P wb,

weA j= weA

As before, these estimates suffice to complete the proof of Theorem 1.18(i). O

As is typical with problems involving the computation of Hausdorff dimension,
obtaining lower bounds is more difficult. Following the technique employed by
Falconer in the Euclidean case (Theorem 1.16), we use potential-theoretic
arguments to obtain almost sure lower bounds.

We begin with a simple lemma which provides a geometric interpretation of the
Heisenberg singular value function. Compare Lemma 2.2 of [10].

LEMMA 6.6. Let 0<s<4, with s#1,3. For each R >0 there exists a
constant C' depending only on R and s so that
J _ dp < gC' ,
Ba(0.R) |Ay(p)|3y — ¥°(A)
where, for p € H, By (p,r) denotes the ball in the Heisenberg metric dy of radius r
and [p|ly = dy(p,0).

(6.7)

In the proof of Lemma 6.6 the following fact (whose proof is an easy exercise)
will be used several times.

LEMMA 6.8. Let I': R — R be an even function which is decreasing for 7> 0.
Let ¢ € R and h > 0. Then [} F(r)dr< [", F(r)dr.

C
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Proof of Lemma 6.6. From the expression for A, in (2.2) we observe that the
integrand in (6.7) equals
(6.9) (JAz|* + (tdet A — 2(Ax, Jb))?) /%,
where p = (z,t). Choose coordinates in R? so that |Az|> = a?2? + a3x3. Writing
b= (p,q) in these coordinates, we express (6.9) in the form

((eiz] + a323)” + (st + 200219 — 205m5p)7) /.
Make the change of variables y; = oya;/R, for i = 1,2, and

ot + 200219 — 20029p
T =

RZ
in the integral in (6.7) to obtain
R dr dy
(6.10) ],
ayeq Jel1, (Jyl" +7%)

where E = {y: (y1/o1)* + (yo/a2)* < 1},
I, = {7 |7 +uy, —vy| < o}
and (u,v) = (2/R)(p,q)-
As before we distinguish three cases according to the value of s.
Case 1: 0 < s < 1. The integral in (6.10) may be estimated from above by

C(R,s) “dy,  C(R,s)
o (o)) | W= SR

Case 2: 1 < s < 3. The region of integration in (6.10) may be written as
Uyer I, = Py U Py, where

b = {(I%T) € U L yi + (7 + ug —vy1)2<2a§a§}
yekE

and
pPy= {(y,T) € U Iy > w/oqo@}.
yek
Write the integral in (6.10) in the form (R'*aj?ay?)(I, + I,), where
I = JP (Jy[* + 7'2)_"/4 dydr for j=1,2.

J

For the first term, we use Lemma 6.8 to estimate

< 2,/aray J o) J oY% J A 2\—s/4
1< M Y2 T(y + 1)

—2\/aray —0 —01Qy
2\/ajay (25105
< COQJ dy1J dr (yi + 7'2)_5/4~
0 0

(Note that |y,| <2,/aqa; for any (y,7) € P;.)
Making the Heisenberg change of variables y; = r\/cos¢, 7= r’sin¢ (cf. the
polar coordinates in [6]) we find that

J‘Z /oy

I, <Cay S dr = Caggfs)ﬂa(s*sw.
0

2
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Similarly, we obtain the estimate

00

IZ gCOéQ(OqOCQ)J y;.s dyl _ 00[5375)/2062578)/2.

Nes
Returning to (6.10) we see that

R45J J dr dy - C(R,s)
13 )l (y[t 4+ 7)1 T 9 (4)

ara;

as desired.
Case 3: 3 < s < 4. This is similar to the previous case. We write J,ep I, =
Pl U PQ, Where

P = {<y,r> e UL ol + (r+ o —vy1>2<4a;‘}
yekE

and

Py = {(W) el v+ (r+uy, —om)* > a%},
yek

and decompose the integral in (6.10) as before into I; and I, terms. In this case,
another application of Lemma 6.8 gives

20y 20y 2009 A 9\_s/4
N I I R
2

—20 —2ay

and making the change of variables for integration in Heisenberg polar coordinates
1y = 1/Cos G cos B, Yy = /cos psinf, T = r?sin ¢ yields

20

I < C’J P dr = Cay *.
0
In a similar manner we obtain the estimate

I, < C’oz2J P dr = Cay*

Q2

and hence
R J J dydr  _ C(R,s)
i3 Jeln, (jylt + 72t T 47 (4)
as desired. O

Next, we consider products of matrices indexed by words in ¥. For a planar AIFS
F(b) with horizontal lift F(b) we write py(b) : ¥ — Kg(b) and pg(b) : ¥ — K(b)
for the canonical surjections from ¥ to the invariant sets. Thus

paBw) = () Fuy o0 Fuy (Ku(B)

m=1

and

pe(b,w) = () fu, 0.0 fu, (K1),

m=1

where w = wywy ... € ¥ and fi(z) = A;xz 4+ b; and Fi(z,t) = A,y (x,t) +b;.
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Observe that
(611) pH([f;? w) = gwl + Awl,bwl ' i;'wQ + Awl,b

~Aw2,bw2 by,

wy

For w and w’ in ¥ denote by wAw’ the maximal finite word which is a
subword of both w and w'.

LEMMA 6.12. Assume that ||A;|| <3 for each i. For 0 < s <4, with s # 1,3,
and R > 0 there exists a constant C' = C(R,s) so that

J db __cC

Bu0.0)" dyg(pyr (b, w), pyr(b,w'))* ¥ (Aunar)

for all w,w' €. Here Bp(0,R)" = By(0,R) x ... x By(0,R) CR* and
b=by,...,by € R,

Proof. Writew Aw' = a € W and set w = av and w’ = av’, for v,v’ € ¥. Then
J db
By(O.R)" dp(pyr (b, w), pyr (b, w"))?

(6.13)

db
JBH(O’R)M Mm) (P (b, v) ™ % pr (0,05

By the choice of a, v; # v{. Without loss of generality we may assume that v; = 2
and v] = 1.
With (6.11) in mind we make the change of variable

-~ ~ by — by + E(b)
¢ =pnu(b,v) *pH(b7U)_<T1—TQ+F(T)+G(b))’
(6.14) by = by,

gM = g]\] )

where F:R*™ — R? E(b) = Ey(by) + ...+ Ey(by) and F:RM = R are linear
maps and G : R*™ — R is a quadratic map.
We claim that

(6.15) 1B, <1
for some v =1,2 and
(6.16) ||| < 1.

Taking (6.15) and (6.16) for granted observe that the preceding change of
variables is invertible. Consequently, we obtain

J db

By (0,R)" dH(pH(gv w);pH(gv w'))?
I 1
dby . .. by —

cof L
By(0,(2+M)R) ") By (0,R)M"! |Ans, (@)1
< C(R,s)
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It remains to describe the maps F, F and G explicitly and show (6.15) and (6.16).
Using (6.11) we find that a direct computation yields

- X
6o o) = (F):
where

(617) X :pE(bavl) _pE(baU)
= b?)l’ - b?ll + (Avl’bvé - Avl b7;2 + A?)I’sz’ b?)é - Az)l A7;2 b1)3 + .. )
(see equation (3.7) in [10]) and
(6.18) T = (1 = 7)) + A7y = Ay 7,) + Ay Ay Ty — Ay A7) +
_2(<Avl'buz’7jbv> <A bL27Jb > )
- 2(<b7;1’7 Jbv1> <A7>l’bvéa Jbv1> <b7)1’7 JAq)lbv2> +.. ')7
where A, =det A;. Observe that the last term in equation (6.18) is the
contribution to T from the term —2(pp(b,v), Jpp(b, v")).
We may choose v equal to either 1 or 2 and an index m with 2 <m < oo so that
the following conditions hold:
(i) for each k < m, both v, and vj are not equal to v, and

(ii) if m < oo, then v,, # v and v}, # v.
From (6.17) and (6.18) we have

X - bl - b2 “I‘E(b) - bl - bg +E1(b1) + e +E]M(bf\1)
and

T'=mn-7m+F7T)+G0),

where the E; are linear maps on R*M with values in R?, F is a real-valued linear
map on RM, and G is a real-valued quadratic map on R?*. With the choice
n=max;_; s ||4;| we find that

1B, ]| < an "+ Z " <

k=m+1

and

. 2k 2772
#l< 2 =2
=1 n

(Observe that it is only necessary to ensure the invertibility of £ and F' in order
to perform the change of variables (6.14) in (6.13). No restriction on G is needed.)
The restriction 7 < 3 guarantees (6.15) and (6.16) and completes the proof of
the lemma. O

To prove Theorems 1.18(ii) and 1.19(ii) we use the following well-known
connection between Hausdorff dimension and measures with finite energy.

PrOPOSITION 6.19. If A is a subset of a complete metric space (X,d) which
supports a Borel measure v with 0 < v(A) < oo whose s-energy

“d(z, y) " dv(z) duv(y)

is finite, then dim A > s.
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See, for example, [19, Theorem 8.7] or [9, Corollary 6.6].

The following lemma is the Heisenberg version of Lemma 5.2 in [10]. Tts proof,
which uses Proposition 6.19, is entirely analogous to the proof of the result from
[10] and will be omitted.

LEMMA 6.20. Let p be a Borel measure on ¥ with 0 < u(X) < oo for which
dbd
J J J p(w) dp(w’)
o)z BH(O’R)M dH(pH<b7 w)7pH(b7 w/))t
for some t < 4 and some R < oco. Then

dimy Ky (b,7) >t
for almost every b= (b,7) € By(0, )M c HM.

Proof of Theorem 1.19(ii). Fix R >0 and choose t# 1,3 so that
0 <t <min{4,s5(A)}. We will verify the assumptions of Lemma 6.20 for such
a choice of ¢. .

Fix s so that ¢ < s < min{4,5y(A)}. Then M7(X) = co. By Lemma 5.11, there
exist a compact set Cy C ¥ and a constant C' < oo so that 0 < M7 (Cy) < oo and

(6.21) p(E,) SCY(A,), forweW,
where p is the Borel measure on ¥ given by p(A) := MV}I(C'O N A). By Lemma 6.12,

I J J J db dp(w) dp(w')
- Je)e)Buon) dy (p (b w), pr (b, w'))’
!/
< CJ J du(:ﬂ) dp(w’)
i R (Aw/\w’)
and by the definition of the cylinder sets ¥, and (6. 21) we obtain

I<CZZ Cz“t A

acW i#j weW

gczzw w )

m=1weW,,

From the definition (5.7) of the Heisenberg singular value function, we see that

wS(Aw> < wt (Aw)al (Aw)57t
for all contractive linear A,,. The submultiplicativity of the singular value function
gives
a(A,) <oq(Ay)...oq(A, ), where w =wy...w,.

Fix a < 1 so that a;(A;) <a for all i. Then

P (A,) <a™yl(A,)
and

I1<CY " a™ ) N u(s,) <Oux) < oo

m=1 weW,,

since a <1, t <s and p(X) = M%(C()) < 0o0. By Lemma 6.20 we conclude that
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dimy Ky (b, 7) >t for almost every b= (b,7) € By(0,R)™. Letting R — oo gives the
result for almost every b € HM  and letting ¢ ,/ min{4,5;(A)} through values in
(0,4) \ {1, 3} finishes the proof. O

For the Euclidean case (Theorem 1.18(ii)) the derivation is similar. It uses the
following modified versions of Lemmas 6.6 and 6.12.

LEMMA 6.22. Let 0 < s <3 be non-integral. For each R > 0 there exists a
constant C' depending only on R and s so that

itz
Bp(0.R) [Ay(p)|E ¢°(As)

LEMMA 6.23. Assume that ||A;|| <3 for each i. For 0 <s <3 non-integral
and R > 0, there exists a constant C'= C(R,s) so that
db C
< =

J B0 |py (b, w) = p(b,w)i ¢ (Aunur,,.)

for all w,w’ € X.

The proofs are easy variations on the proofs of Lemmas 6.6 and 6.12.
With these lemmas in hand the remainder of the proof of Theorem 1.18(ii)
proceeds by analogy with the proof of Theorem 1.19(ii). We omit the details.

Appendix. Figenvalues of rank 1 perturbations of block diagonal matrices

This appendix is devoted to discussion and a sketch of an elementary proof of
(5.6) using only techniques from linear algebra. The key result (Theorem A.4)
concerns deformation of the singular values of block diagonal matrices under rank
1 perturbations. We begin with a classical theorem of Golub [14].

THEOREM A.1 (Golub). Let D € R"™" be a diagonal matrix, with diagonal
entries Ay > Ay > ... > \,. Let w= (wy,...,w,) € C" be a complex n-tuple with
non-zero entries, and let w® w be the associated rank 1 matrix whose (i,j)th
entry is w;w;. Finally, let € # 0 be real.

Then the eigenvalues of the Hermitian matrix P(e) = D+ ew® w are the
solutions to the equation

COROLLARY A.2. Ife > 0 then the eigenvalues A\| > ... > X, of P(e) interlace
with the eigenvalues of D in the following sense:

(A.3) A, <A< <A <.

For extensions and further discussion of Golub’s theorem, see Anderson [2].
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Assume that the conditions in Corollary A.2 hold and assume also that A\, = 0.
Then P = AT A, where

a
~ (6D}

\/Ewl \/EwQ cee \/E’LU"

and «; denotes the positive square root of )\;. The values «y, ..., a,_;, 0 are the
singular values for A =+/D. Denote by al = \/)\7, for 1 =1,...,n, the singular
values for P. Then (A.3) implies the following inequality between the singular
value functions for A and A:

0 (A)<¢’(A), for0<s<n.

This gives some indication of how Theorem A.1 may be applied in the context of
Falconer’s theory. For the specific application to (5.6), however, we require a version
of Golub’s result for block diagonal matrices. As we are interested in applications to
the first Heisenberg group, we give the following result only in the case n = 3.

THEOREM A.4. Let A € R**? with distinct singular values 0 < as < ay, let
beR? and let € # 0. Set

A x
D:(O 8)@1{8 o w=w(A,b) = (=2(Jb)TA detA),

and

- A
Ay(e) =D+ Veez@w = (_Qﬁ(Jb)TA ﬁdetA)’

where e3 = (0,0,1).
Let A € C\ {\,\s}, where \; = a2, for i =1,2. Then \ is an eigenvalue for
P(e) = Ay(e)T Ay(e) if and only if X is a solution to the equation

(det A)? O C,
A. F =1 =
(A.5) (\) —I—e{ — +A1_A+A2_A 0,
where
o AN (JAT B> — A |]?)
' Al — X
and
AXo (A [b]* — |AT B[
02 == .

A=A

Observe that C,C, >0 since A\, and A, are the eigenvalues of AT A.

The proof of this theorem is by direct computation of the characteristic
polynomial of P(e). We omit the details.

A modified version of Theorem A.4 holds in the orthogonal case A} = \y; we
omit the details. More general versions are presumably true for block diagonal
matrices in higher dimensions, but we do not pursue this here.
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We now sketch the application of Theorem A.4 to the proof of (5.6). Observe

that gb(l) = A,, where A, is given in (2.2). We assume that b # 0. As before,
denote by A{ > A, > \} the ecigenvalues of P(1) = Al A,.

If Jb is not an eigenvector for ATA, then C; and C, are both positive.
Consequently, we may conclude as in Corollary A.2 that the eigenvalues of P(1)
and D interlace:

0< A <A <A< A <AL
If |ATJb| = au|b] then C; =0, Cy = 4Xy|b> > 0 and
0 <A< A <A < A <AL
Similarly, if |AT.Jb| = oy |b] then Cy =0, C, = 4\ |b]* > 0 and
0< A <A <A< A <AL
In all cases, we find that
(A.6) A <Al oand A <A
The function F(\) in (A.5) is equal to
det(P(e) — AI) det(P — \I)

det(D— ) (N =N =)
From the expression for F'(\) in (A.5), the product of the eigenvalues of P(1) is

(A7) MM = (det A)* = NIN2.

Since the singular values of ZU are oy, ay and ajay, it follows from (A.6), (A.7)
and the definition of the singular value function in (5.5) that

@' (A) <¢'(A)

for all s>0. Thus the critical exponents satisfy the inequality
5p(A) <sp(b; A)

as desired. This concludes the proof of (5.6).
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